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Nonlinear growth of periodic patterns
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We study the growth of a periodic pattern in one dimension for a model of spinodal decomposition, the
Cahn-Hilliard equation. We particularly focus on the intermediate region, where the nonlinearity cannot be
neglected anymore, and before the coalescence dominates. The dynamics is captured through the standard
technique of a solubility condition performed over a particular family of quasistatic solutions. The main result
is that the dynamics along this particular class of solutions can be expressed in terms of a simple ordinary
differential equation. The density profile of the stationary regime found at the end of the nonlinear growth is
also well characterized. Numerical simulations correspond satisfactorily to the analytical results through three
different methods and asymptotic dynamics are well recovered, even far from the region where the approxi-

mations hold.
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[. INTRODUCTION phase coalesce in the so-called Ostwald ripening where the

number of domains diminishes, whereas their typical size

When a homogeneous system departs suddenly fronmcreases. The asymptotic state is decomposed into two do-
equilibrium, the fluctuations around the initial ground statemains, one for each phase. This coarsening dynamics is in
are linearly amplified, for example, the homogeneous phastact present already from the beginning of the spinodal de-
separates spontaneously into two different more stable statesomposition; however, as we will discuss below, its influence
The interfaces that delimit the domains of each phase form an the two first stages can be often neglected.
complex pattern and interact with each other, giving rise to Hillert [6], Cahn and Hilliard 7] have proposed a model
interface dynamics or pattern formation. Its results can be aquation for a scalar order parameter describing the segrega-
slow process of coarsening that ends up with only two wellion for a binary mixture. This model, known as the Cahn-
separated domains. This process of first-order phase trandtilliard equation(CH hereafter, belongs to the ModeB
tion arises particularly for binary mixturd4] or alloys[6],  class in Hohenberg and Halperin’s classificatigh Indeed,
vapor condensatiof2], ferromagnetic Ising mod€l3] or  different models of phase separation have been proposed,
thin films of copolymerg4]. depending on whether the order parameter is a scalar or a

For the most general, first-order transitions initiate in twovector, or whether it is or is not a conserved quantity a
different ways: first, a nucleation process, where the homogreview see Refd.3,8,9)). The CH equation is in fact a stan-
enous state is put suddenly in a metastable configuration, artthrd model for phase transition with conserved quantities
an energy barrier has to be crossed before the transition apnd has applications to phase transition in liquid crystals
pears. This is the typical dynamics of cavitation, for instance[10], segregation of granular mixtures in a rotating drum
see Ref[5]. The other method is spinodal decomposition[11], or formation of sand ripplegl2,13. It is a partial dif-
where the system leads in a linearly unstable configurationferential equation to which a conservative noise is added to
such is the situation that we will study here. In this latteraccount for thermal fluctuation44.
case, three different regimes are identified in the dynamics: Figure 1 shows snapshots of the numerical simulation of
first the linear instability of the homogenous phase developthe CH dynamics which represents the full phase transition
from the fluctuations, leading to the creation of a modulationprocess after a quench in temperature. In that case, thermal
of the order parameter at a well-defined length scale. Théuctuations have been omitted in the dynamics, but were
modulations grow exponentially with time as long as thepresent in the initial conditions. The three main stages of the
nonlinearities are negligible. This stage is very short andspinodal decomposition described above are clearly distin-
results mainly in the selection of a particular length scale forguished: first, from Figs. (&) and Xb), we observe the se-
the process. Nonlinearities rapidly slow down the growth oflection of a typical length scale for the modulations, then the
the modulation resulting in an interface pattern composed ofionlinear growth and its saturation from Figgbjland Xc).
well-defined interfaces delimiting domains containing one ofWe note that the number of peaks has been almost conserved
the two stable phases. Remarkably, this intermediate stadmtween these two configuration; on the other hand the am-
conserves quite perfectly the modulation width, so that theplitude of the modulation has now reached almost its
resulting pattern is of almost the same length scale as the orasymptotic value and will not change significantly in the
selected initially. Finally, a slow, self-inhibiting dynamics further dynamics. On the contrary, the coarsening dynamics
dominates the last stage of the process, due to the interais observed between Figs(cl and Xd) and the typical
tions between the interfaces. The different regions of eackength of the pattern is increasing.
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typical length of the domains or the rate of decay of the
inhomogeneities. For instance, scaling arguments and stabil-
ity criteria give the lawL (t)~tY® for spatial dimensions

greater than 1 and a logarithmic behavior for one dimension
in the case of the CH equatigi5].

In this paper, by spinodal decomposition, we refer to the
first two stages only, excluding the coarsening dynamics or
the third stage.

Only little is known experimentally about these two re-
gimes of the dynamics: indeed, they are too brief and there-
fore very hard to capture. However, these stages were ob-
served in a recent experiment on a two-dimensional
demixion of copolymef4] which motivated our work, since
it shows the need for a better understanding of the dynamics
before the coalescence. While the linearized theory gives a
full understanding of the first stage, the second stage of
phase separation, which concerns the saturation of the
growth through the nonlinearity, appears to have been less
studied. There exist numerical attempts to provide descrip-
tions of the saturation of the profile up to its stationary re-
gime, using, for example, a concentration dependant diffu-

plitude of the modulation has decreased, while only long wave-S'on_ FOeff'C'ent[]'G] D,:DO(,I)(l,_(I))' V_Vh'Ch leads to a
length contributions are still present. The small scale perturbation§'dified Kuramoto-Shivashinski equation and enables one
have been damped by the CH dynami3.At t=225, the modu- to have_ a saturation of grqwth. Here_, on the cont_rary,_we
lation has almost reached its final amplitude, keeping roughly théVOrk with a constant diffusion coefficient: the nonlinearity
same number of peaks as befof@). At t=1800, we observe that will only come from the usuad* term of the Landau free

the number of domains has decreased from the coarsening dynar@liergy.
ics. The paper is organized as follows: First we present a brief

review of general properties of phase segregations and of the

Note that in the numerical experiments, contrary to a reCH model, mainly to fix the notation. We will reproduce
alistic experience, we go instantaneously from one temperd2i€fly the original derivation by Cahn and Hilliard, and we
ture to anotherideal quench And we will see in the fol- will restrict ourselves to the one-dimensional case. In Sec.

lowing that the system will evolve in a smoother way in thelll, we present the_different assumptions of our calculations.
sense that, due to finite diffusion process, it will not instan-Numerical simulations are used to determine the role of the

taneously reach the thermodynamical state associated wifiis€ and the influence of the coarsening in the early dynam-
the temperature of the quench. ics. The.n,' in Sec. IV we focus on mterfaces.; in partlcullar, we

In this paper, we will focus on the one-dimensional CH will exh|b|t_ a twc_)-parameter family of solut|on_s, speC|_f|c of _
equation and our aim is to offer a consistent description ofn€ one-dimensional case, the so-called soliton lattice. Fi-
the pattern formation, corresponding to the intermediatd@lly in Sec. V, we will make use of the solvability criterion
(nonlineay regime. We will obtain a simple ordinary differ- i order to select the dynamical evo.Iut|on of the density pro-
ential equation describing the dynamics along a family offile among aselecteq “ansatz”_solutlon.' Eventually, we com-
quasistatic periodic solutions. We recover the linear regim@are these results with numerical studies of the full CH dy-
for short times, and correctly reproduce the saturation of th&@mics shown at the end. We conclude with a discussion of
second(nonlineay stage, in the case of small initial pertur- POSSible extensions of this work.
bations, in the region close to the critical poiie., for a
symmetric mixtur¢ These results are valid in the limit
where thermal fluctuations and coarsening processes are ne- - . - e .
glected. We will discuss these important assumptions and _The Cah_n-Hllllard theory |s_amod|f|ed_d|ffu5|qn equ_atlon;
show how the resulting ordinary equation depends on th is a continuous model, which reads, in its dimensionless
wavelength of the periodic solution. orm,

As mentioned above, numerous models for phase transi-
tion have been proposed; an important activity has been de- @(r t)=V2 f®+2q)3_vzq) 1)
voted to the description of their dynamics, using both statis- at >’ 2 '
tical methods and numerical simulatioffer a review see
Ref.[15]). However, these works mainly concentrate on the Herer andt represent the position vector and the time, the
late stage of the spinodal decomposition where the coarserectors being noted with bold font® is the order param-
ing dynamics dominates and exhibits “dynamical scaling”: eter, a real number; for instance, it can correspond to the
the dynamics presents a self-similar evolution where timalimensionless magnetization in the Ising ferromagnet, to the
enters only through a length scadl€t), associated with a fluctuation of density of a fluid around its mean value during
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FIG. 1. Time evolution of the order paramet®i(x,t) for e=
—1, dx=0.1227.(a) Initial conditions att=0 are taken randomly
with a very low amplitude (%10 %). (b) At time t=15, the am-

II. THE CAHN-HILLIARD MODEL
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a phase separation or to the concentration of one of the conshown in Fig. 1 in one space dimension, where the noise has
ponents of a binary solution in some region around is  been omitted except for the initial condition, where it con-
the diffusion constant anel is the dimensionless control pa- sists of a random noise of a small amplitude around the mean
rameter of the system; it is often identified with the reducedvalue (®)=0. This can be justified, since the noise level,
temperaturd e =(T—T.)/T., whereT, is the critical tem- being proportional to the square root of the temperature, is
perature of the phase transitiofhis equation, first derived higher before the quench than after. Thus, taking a noisy
by Cahn and Hilliard 7], has also been retrieved by Langer initial condition and omitting the noise further on can be
[17] from microscopic considerations. As mentioned, theinterpreted as neglecting the noise of the quenched system
(CH) equation does not account for thermal fluctuationscompared to the residual noise coming from the “hot” initial
present in the system. These can be added through a Langemperature. However, we will discuss more precisely below
vin force, which integrates in the Fokker-Planck equation forthe influence of the noise in the quenched phase.
the probability distribution ofd(t) [17]. However, as ex- When the equation is studied for a constantvia a res-
plained in Refs[7,14,9, the thermal fluctuations can equiva- caling of® (as\—e®), positionr (asr/\—¢) and time(as
lently be taken into account through a random noise term ot/|s|?), we observe that we could restrict the dynamics to the
the right hand sidérhs) of Eq. (1). Thus, the CH equation cases=—1. However, since we will later on compare sta-
reads, in its more general form, tionary solutions of the CH model with a different reduced
temperature, we will continue to write the equation with a
given g, keeping in mind that the dynamics can always be
rescaled to the case=—1.

The stability of the solutionb=0 can be studied by lin-
where{ is a white noise of norm unity, whose amplitude is earizing Eq.(1) around®=0 (i.e., neglecting the nonlinear

proportional to the square root of the temperature of the syserm @3); considering® as a sum of Fourier modes,
tem.

The CH model is a conservative model for the order pa-

oD e
W(r,t)=v2 E<I>+2c1>3—V2c1>+g(r,t) , 2)

- igr+aot
rameterd. Indeed, it can be written as ®(r.1) zq: bqe '
@: V. where ¢, is the Fourier coefficient at=0, we obtain that
at b the amplification factow(q) satisfies
where | is the current associated witfe. Moreover, this B 2 | 5
current obeys the standard law related to the gradient of a o(@=={a°F RE

so-called chemical potentigl (j=—V ). For CH model,
w is itself defined as the functional derivative of a free en-It shows immediately tha® =0 is linearly stable fore>0

ergy F, through while a band of Fourier modes are unstable for negative
sincea(q)>0 for 0<q</(—&/2). Moreover, the most un-
_oF stable modgwhere o is maxima) is for q,,= \/— /2(with
K= s om=¢2/16). We can anticipate that this wave number of

maximum amplification factor will dominate the first stage
with F being, in that case, the usual Landau-Ginzburg denof the dynamics; in particular, it explains why the modula-
sity tions appear at length scales closextg=2=/q,,, the wave

length associated witky,,,. Indeed, we show in Fig. 2 the

F— 1 (Vd)2+ fq)2+(p4 time evolution of the usual structure factor in one dimension,
2 2 '

S(@)=P(q)P(q)*,

The homogeneous stationary solutions for the noiseless
CH equation are extrema of the effective potentgld) where®d is the Fourier transform of the fiel® (Ci)* stand-
=e®?+®*. For positivee, there is only one homogenous ing for its complex conjugajeWe have taken the noiseless
solution® =0, which is linearly stable; for negatiwe, the  CH equation with random initial conditions; the curve is ob-
stationary solution®=0 undergoes a pitchfork bifurcation tained through an average over 100 initial conditions.
and three stationary solutions exiét=0 is still a stationary The different regimes are again well identified: at short
solution, but it is now linearly unstable; two other symmetrictimes we see that the modulations whose wave number is
solutions® = + \/— ¢/2 are stable and have the same freeclose toq,, grow rapidly from the white noise, while the
energyF = — £2/32. fluctuations forq>/2q,, for which the amplification factor

Thus, a first-order transition can be experienced byis negative are damped. Then, higher wave numbers emerge,
guenching the system suddenly from a positive reduced tenwhich correspond roughly to harmonics mode of the initial
peraturee to a negative one. Spinodal decomposition is themodulations. It corresponds to the intermediate stage of the
resulting dynamics. Since for all positive the system is dynamics, where the single-mode approximation of the pro-
described byp =0, we only have to study the case where wefiles is not valid any more and the dynamics is in a highly
start att=0 with ®=0 and a negative. This is what was nonlinear regime. Notice, however, that the structure factor
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FIG. 3. The ratio between the mean length of the modulations
FIG. 2. The structure facto8(q) as a function of the wave and the most amplified wavelengiy,=2/q,, as a function of
numberq for different timest=0,50, 100, 150, and=500 time time, for the same conditions as in Fig. 2. The inset shows a similar
units; the higher the peaks are, the larger the time. The curves are anrve in two space dimensions, obtained by computing the mean
average over 100 initial conditions taken as a random noise of amwave number as a function of time, over ten initial conditions.
plitude 5x 1074, the discretization is over 4096 grid points with the
grid spacedx=0.6, ande=—1. Att=0, we observe the flat spec-
trum of the white noise. Fdr=50, the spectrum reflects the ampli-
fication factor: the peaks of the factor are locatedgt 0.5 while

modulation is\ ,,, with a deviation of less than 1% from the
value predicted by the linear theory. It does not mean that
for all the modesy> 2 the initial noise has been damped. Then for e_ach modulatlon_ hgs a length scalexaf, .bUt more- pre-

- N . . .—_cisely that the distribution of the modulation length is cen-
t=100 andt=150 we observe the formation of higher harmonlcst d i b f the struct fact
but the peaks of the structure factor stay arogpd However, at ere Fa.lroun Mm’ as Car.] € seen rﬁm he struc rt:ref ac Of:
t=>500, the coarsening of the solution has begun since the mam(-see Ig. 2, Oreqver, It suggests that the growth o ea'c
mum of S(q) is now at a larger wavelength. modulation is achieved at constant length scale, determined

by the initial linear instability and thus centered aroungl.

keeps its peak located arougg,; as we will discuss below, At t around 200, the'growth of the modulation is sgtu(ane

it is indicating that the number of domains stays almost un£an be seen from Fig,) land the coalescence dominates the
changed during this regime. Later on, interfaces separatinfytureé dynamics: the length scale of the structures slightly
each domain are formed and interact only through coaledl'creases with time. The inset of Fig. 3 shows equivalently
cence dynamicsS(q) changes slowly through a self-similar the typical wave length of the modulations for the CH model

process(see Ref[17]) and the peak of the function will in two _spatial dimensions; it shows again the same plateau
slowly move to smaller wave numbers. that is in favor of the pattern growth at a constant size.

Thus, we have shown that the coalescence due to the non-
periodic pattern selected at short time can be neglected dur-
ing the growth of the modulations. We need also to quantify

Our analytic method will rely on the assumption that thethe influence of the noise during the dynamics: until now, we
intermediate region is approximated through the growth of &have simplified it to the initial conditions that then induce a
periodic modulation solution of the noiseless CH equationnonperiodic initial pattern sufficient to characterize the gen-
we need therefore to discuss how this approach is relevant teral features of the spinodal decomposition. Moreover, we
the general case where noise is present and where the coahsve shown that the growth of the modulation during the
ening of the nonperiodic pattern acts. Indeed, as it can b#termediate regime can be considered to occur at constant
seen in Fig. 2, the coalescence, roughly characterized by tHength (centered around\,,) for each modulation. But
evolution of the position of the peak of the structure func-strictly speaking, noise is always present in the dynamics
tion, does not appear to influence the dynamics before a fewnd, in addition to feeding the linear instability of the ho-
hundreds of units of time. At those times, the intermediatenogenous solutiond =0) for short time, it generates a sys-
regime has ended and the modulated pattern is formed. Motematic seed of perturbations to the quasiperiodic pattern. It
precisely, Fig. 3 shows the typical mean width of the patterrcan therefore disturb this apparent frozen dynamics at con-
as a function of time for the same conditions as Fig. 2; aftestant size. Figure 4 characterizes its effect through the evo-
a transient behaviduntil aboutt=50) where the size of the Iution of the mean length of the modulation for different
pattern is dominated by the initial conditions combined withnoise levels. Each curve presents the same behavior, tran-
the linear theory of the CH model, we observe the intermesient dynamics that selects a length scale of the ord&f,of
diate regimeg(for t between 50 and 200 roughlyin particu-  then a plateau regim@eginning around=50), which cor-
lar, for this regime, we note that the average size of theesponds to the nonlinear growth, followed by a coalescence

I1l. AN ADIABATIC ANSATZ
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1.5 . . For <0, a stationary solution exists that relies on two
homogenous phasds= =+ —¢/2,
=1 r<zx> ®
X)=—— tan .
2 Vel
3 Such a monotonic solution allows a continuum descrip-
e Tr i tion of the interface between the two stable phases. In fact,

this is a particular member of a one-parameter family of
stationary solutions of the Ginzburg-Landau equation

&€
E<1)+2<1>3—V2<1>=0. (4

0.5 ! '
0 500 1000 1500

time

These solutions, the so-called soliton-lattice solutipt],
are

FIG. 4. The ratio between the mean length of the modulations X _ 1 kZ2+1
and the most amplified wavelengih,=27/q,, as a function of ®y (x)=KAS E,k with &= A= V2 — (5
time, for different noise levels from 18° to 10" 2 (the noise being

multiplied by 100 between each cujv&he shorter the nonlinear

plateau, the higher the noise level is. Each curve is obtained throquhere S.n((’k) !S the Jacqblan. elliptic fungtlon sine ampli-
an average over 100 runs. The other characteristics of the simuléude' This family of solutions IS paramet_rlzed bya_nd _the
tions are the same as for Fig. 3. modulusk e[ 0,1]. These solutions describe a periodic pat-

tern of period

dynamics. We observe that the length of the plateau regime,

on which we are focusing, depends strongly on the noise 2 dt

level. In particular, for low noise levels, the growth of the A=4K(k)¢, whereK(k)= fo \/ﬁ 6)
modulation seems to occur at the constant lenggh during

a long period aftet=>50. But, the higher the noise level, the

intermediate regim@2]. For noise levels higher than 16, tons (or alternating interfacég18]
the growth regime cannot be differentiated anymore from the

coalescence dynamics and in such cases, our assumption of 2k(s)K(s)

growth at a constant scale would no longer be valid. 2 (=1)" tanj ws(x—n)]= Snx,k) with s
In conclusion, we can consider that, for low enough noise " TS

level, the nonlinear growth of the modulations is made at a K (K)

constant length scale and that the noise has a very weak =— " andkZ&1-—k2.

influence on the dynamics of the two first stages. K(k")

Taking advantage of this observation, we can simplify the
particular study of the second stage of the dynamics, the The soliton-lattice solution can be associated with a mi-
nonlinear saturation. The aim of this paper is therefore tarophase separation locally limited by the finite diffusion co-
present a detailed calculation for the growth of a periodicefficient. Fork=1, Snf,1)=tanh), we recover the usual
modulation of constant size, for the noisel¢€#l) equation  interface solution; it is associated with a one-soliton solution
(1) in one spatial dimension for a fixed temperatage and corresponds to a macroscopic segregation. Note that

However, we hope that this approach is valid also in theK(1) diverges; the solution
limit of the small noise levels, where the growth of each
modulation appears to be unperturbed. Although the numeri- Je| Vel
cal comparison is developed for the particular case\ gf Dy (X)= e tan >
periodicity, it applies to any wavelength.

We can now use known results concerning nonhomogey

. X ) thus the limit of infinites, when the solitons are far apart
neous solutions of the Ginzburg-Landau equation.

one each othefstrong segregation regime
In the opposite limit k— 0, or weak segregation regime

IV. QUASISTATIC APPROXIMATION it describes a sinusoidal modulation
In order to describe our method, we will first describe a ] el
particular family of stationary solutions of the one- i _ el €
. ) im,_o®, .(X)=k\/—= sin —X.
dimensional CH model. k—0Pu(X) 2 2
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0.4

We now seek the evolution of the solutieh(x,t), ac-
cording to the CH noiseless dynamics, for a fixed reduced
temperatures:

od €0 3
E(th):axx ?(IH—Z(ID —ﬁqu) . (7)

Numerical simulations of that problem with a small initial
condition of periodicityA show the growth of the modula-
tion at this periodicityn. As discussed in the preceding sec-
tion, such dynamics is unstable and would, in the presence o
noise for instance, loose its periodicity. However, we have
shown that this can be neglected for low enough noise levels
and that this “unstable” growth of the pattern is relevant
there.

The initial condition will then be taken as the sine mode
g=2m/\,

<
£ 0.2
90

time

@ (x,t=0)= v siN(AmaxX), FIG. 5. Comparison for timé=100 andt=140 between the

where v is an arbitrary small amplitude. This profile is a numerical solution of Eq(7) (circleg and the functionst™ (x,k),
y P ) p with k extrapolated from the Fourier transform &f(x,t). Initial

member of the soliton-lattice famllgqr very smallk). . conditions are taken with=10"% and\ = 27/q,
The core of the method we are using involves tracking the

luti f th iodi dulati th h implified
evoLtion OF T periodic moctlations troligh a simpine gyder onto a dynamics along the subfamity (x,k), which

equation. For that purpose, we now make the ansatz that

first order, these modulations belong at any time to the two

parameter family of solution®, .+, with k and £* being
functions of time. Since the period is chosen to be consta
and equal to\, using Eqs(5) and(6), we find thatk ande*
are related to one another through

4K \?

iy

e*(k)=—2(1+k? (8)

can be considered as an attractor of the solutions. This is well
justified when a nonsinusoidal initial conditi¢of small am-

rRlitude) is chosen: we then observe, in numerical simula-
tions, a short transient in the dynamics which drives the so-
lution towards the sine mode at roughly the same amplitude.
However, for consistency, we need to check that at any time,
the solution of the CH mode can be well approximated by a
member of the subfamily. For this purpose, we have devel-

oped three different algorithms, taking advantage of the gen-

and we have eventually selected a one-parameter subfamiff@l properties of the family of solution®,,: either, k

of solutions of given spatial periodicitfthat we will call
W*(x,k) later on,
SRS

The dynamics ofP(x,t) is now reduced to the evolution
of k(t) [or equivalentlys*(t)]. Given a function® [ob-
tained either from experimental data or numerical simulatio
of Eq. (7)] at timet, the ansatz assumes that there eXiste
that ®(x,t)~W¥*(x,k). €*(t) can be then interpreted as a

4K (K)k
\

4K (k)x

v*(x,k)= X

can be deduced both from the amplitude of the oscillation
equal to 4«K(k)/A, or from the relation k=1

— ([P (N/2})/P(N41)]?>—1)?; next, a straightforward com-
putation relatek to the ratio of the two first terms of the
Fourier transform of®. We have observed that the three
methods show in general similar results within an error of
1%. However, the validity of the ansatz has still to be
checked by comparing the initial functioh(x,t) with the
rextrapolated functio?* (x,k) obtained by using one of
these three procedures. It is shown in Fig. 5 at two different
times in a numerical solution of E¢7); we observed that the

fictitious temperature: it is the temperature extracted fronf€lative differences between the two functions is much less

the profile at a given time, using the correspondence betwe
* andk of Eq. (8). For instance, at=0, the amplitude is
small and we find thatk(0)=wv\,/27 and thuse*(0)
=8m?/\?, differenta priori from g, [¢*(0)=g4/2 in the
limit »—0, for A=\,]. In the same spirit, we expect that at
the end of the growth, the “local temperature” of the inter-

dhan 0.01.

Moreover, an enlargement on the very early time of the
one-dimensional numerical simulation with small sinusoidal
initial conditions, as presented in Fig. 6, shows a discrepancy
between the different methods used to extdadtom the
numerics. In fact using the ratio between the Fourier series

face coincides with the thermodynamic one, i.e., the quenchOefficients or the ratio between the amplitudes at two spe-

temperatur@o,
lim;_..e*(t)=¢eo,

at which the dynamics ends. Somehow, we have assum

cific points of the profiles, gives for the very beginning of the
numerical simulation the value=0, in agreement with the

edNote also that these two methods give estimatioristbft are so

that the dynamics of the CH model can be projected at firstlose that they cannot be differentiated in Fig. 6.
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0.03 - - - - : To describe the evolution of the modulk§&), or equiva-
o lently the dynamics foe* (t), we will use the so-called solu-

bility condition technique. Substituting formul@®) in the

Cahn-Hilliard equation(7), gives the following dynamics:

S ad t_a\If* dk+ g P £0 i 1 ety
RGP T L i Iy

kit)

g
+7 ?O(p+6\l’*2go—V2<p”,

001 i
|

- where we have kept only the lowest-order terms in the per-
1 turbation. AsW* (x,k(t)) satisfies the relation

o
0

2 ' 4 ' 5 e* (K)W* +4W*3-2v2y* =0,
time
FIG. 6. (Color online only Comparison for the very early times W€ then have the following dynamics:
of the dynamics between tHet) predicted by the three different
methods. T_he ratio between the_Fourier series coeffici@nsles oP* dk (e* —gq) 92+ 9
and the ratio between the amplituded{\ ,/2t) and & (N /41) — Yt —F——+71=09
: me ok dt 2 2 ot
(gray line both start ak=0 and almost coincide. On the contrary, IX
the third method, which uses the amplitude of the profile, starts 5
from a finite value. Nevertheless, the three methods merge within a 9° [ &g %2 2
. L e . . e+6WV*“p—V
short time, indicating the “affinity” of the CH dynamics for soliton-
lattice solutions.

The balance of the different terms gives the small param-
ger of the expansiom~ e* —¢,; we obtaindk/dt~ » and
dyo~ ne. Neglecting the terms of ordey? in the preceding
eequation, we end up solving the linear system

statement of the initial conditichindeed, these two methods
account for the shape of the profile, which has been take
initially as a sine mode, instead of a Sn mode.

However, using the third method, which depends on th
amplitude, leads to a small but finike= 0.02 due to the small
but finite value ofv. Even if the distortion from a sinusoidal 92 Jvr* dk . .
function associated with this finite Jacobi modulus is small ﬁ(ﬁ‘P): rralrraC _So)ﬁq’ .

(the relative change in the natural period and in the shape of

the function is of order 10%), one nevertheless observes that ) ) .

the dynamics of the system is such that, within a short time, Here, £ is the linearized CH operatofo= 7[(s*/2)

the three methods give results that are again in agreement.6%**—V?]e. Strictly speaking, this analysis is valid only
There is a short inflation period during which there is afor e* ~&o; however, it is a classical assumption of the solu-
change in the shape of the profile and where the shoulders flity condition (confirmed below by the numerical results
the initial sinusoidal inflate. That is, there exists a very shoriPresented in Fig.)7to expand it for the whole dynamics.
Stage during which the System goes very rap|d|y to a state A necessary condition for the solution is that the rlght-

very close to an element of the family of the soliton lattice hand side of the system is orthogonal to the kernel of the
W* (x,k). adjoint operator ,2£)". The Goldstone mode,® .+, for

e=g*=const, is clearly an element of Ket(), and if we

consider the distributiony(x,t), such that §/9x?)x(x,t)

=®,,+(x), then we have),y e Ker (dx2L)"].2 Thus, using
Although the evolution ok(t) can be extracted from di- the scalar product§) over the period\, defined as

rect numerical simulations of Eq7), as shown above, the

2

V. NONLINEAR GROWTH

aim of the rest of this work is to show th&i{t) can be 1 (A2
deduced via an explicit ordinary differential equation. There- (flg)= —J f(x)g(x)dx,
fore, in what follows, we will seek the solution of E€f) in N a
the form
we obtain the desired equation fak/dt,

DX, 1) =T*(x,k(1)+ ne(x,t), 9
where ¢ accounts for high-order correction terms 40*, 2Note that the partial derivative with respectkds made withe *
while the “ansatz” assumes thaj<1 (we considers, and  as constant, since we are interested in a member of&@r(lin-
A of order 1. earized CH operator fos*.
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0.8 - In the limit k—0, that is, for early times, Eq1l) be-
: : ] comes, with the wave numbey=2=/\ associated to the
period A
06 dk €9
2 = 2 —
T q 2+q k=a(q)k.

Sincek is proportional to the amplitude of the sine mode
of wave numberg, we observe that we retrieve the linear
theory of the CH model in that limit.

The rhs of Eq.(11) is in fact proportional taeg—e*, so
that the dynamics ends when the fictitious temperature
0.z reaches the thermodynamic omg; this occurs fork=Kkg
which satisfies 32(%k2)K (kg)?=—go\2. For A=\, we
obtain k=0.471941. This corresponds to the end of the
nonlinear growthin Fig. 1 (c)] and the value ok associ-

0 100 ' 200 ated with this steady state is well retrieved numerically by
tima the three methods explained above. Thus, the asymptotic

steady state solution of Eq.7) for a given period is
the ordinary diff - - lim,_..®(x,t)=¥*(x,k;). However, no analytic solutions

y differential equatiofll) for the modulusk(t) (black - .
line) and the modulus extracted from the full CH dynam(ciscles of Eq. (:!'1) have been found, and We, need to SOIVQ It numeri-
with the same initial conditiork(0)=2x10"%, for \=\,,. The  Cally. Figure 7 compares the solution of Hd1) with the
dynamics converges ths in both cases for large time. The inset dynamics ofk extracted by the Fourier method from the full
shows the exponential convergence of both curves in the asymptotieH €volution, for the periodh =\,, the fastest growing
regime, where the solubility condition is valid; it compares well mode. It shows a good agreement between the two curves; in
particular, both limite— 0 andt—o<c are well captured; thus
equation(11) remains valid even fok far from k.

= 0.4

tirme

FIG. 7. (Color online only Comparison between the solution of

with kg— k(t)~e‘8f21“8. In addition, far fromks, the exponential
2
growth for small timek(t) ~e %018 is also retrieved by Eq11).

VI. CONCLUSION

dk (gop—e*)
* —
(Gl oy YatT T 2 (Oix] da®i o) We have shown that the choice of an ansatz within the
soliton-lattice family allows a reliable description of the
_ L. KK(K) [ 2E(k) growth of a periodic pattern in the noiseless Cahn-Hilliard
=4(eo—e ))\2(1+k2) 1—K2 —K(k) |, equation. Contrary to Refl19], our ansatz relies on the hy-

pothesis that during the first two stages of the dynamics, the
(10 periodicity of the order parameter remains constant. In this

sense, it is an adiabatic ansatz. The validity of these assump-
whereE(k) = f§'*/1—K?sin’x dx s the complete Jacobi el- tions has been investigated in detail and checked numerically
liptic integral of the second kind. The |hs can be expressedsee Fig. 5. It enables one to model the nonlinear growth

using ¥(x,t), defined as 4/9x)="¥*, which reads starting with spatial random initial conditions and predicts
P(x,t)=In > )
phase transition due to the presence of npisé, we claim

the stationary profilel} , which ends this nonlinear growth.
X X °
Dn| -,k | —kCn —,k)
[F4]-vodz
that this approach should be valid when the noise is low

—lln(l—kz) Although this profile might not be observable in a usual
5 .
Cn and Dn are the Jacobi elliptic function cosine and deltanough, which is the case when the quench is achieved at

amplitudes, respectively. Then, noting that low temperatures. We expect this approach to have a particu-
lar pertinence for axial segregation in rotating druf@],
(X[ T i ox) = — (Ol by = — 1 (K), where the dynamics ends after the second stage.

The use of the solubility technique combined with the
where [ (K) is independent of. Finally, Eqg.(10) can be choice of an adiabatic ansatz might be generalized to the
recast as the following explicit ordinary differential equation study of other non linear dynamics. For instance, spinodal
for k(t): decomposition in superfluid Helium or Bose condensate has

been argued to be described by a cubic-quintic nonlinear
dk 4K(k)ﬂ kK(K) equation[21]; in this particular case, one would first need to

a:—4

eot2(1+k?) N 5 > retrieve a relevant solitonlike family of solutions along
A1 (k) (1+K%) which to compute the adiabatic dynamics. The same difficul-

) ties would arise when the method is adapted to higher space

(11  dimensions.
Finally, this approach could be used to explore the self-

<2E(k)
X —
1-Kk?
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similar scenario for coalescence suggested by AFM experia differential equation foi, the order parameter with the
ments for spinodal decomposition in mixtures of block co-same technique. However, these questions are postponed to
polymers, depicted in Ref4], starting with the previous future studies.

stationary distribution as initial conditions. The only change

WI|! pe in the use of a family of solutions pf growing peri- ACKNOWLEDGMENTS

odicity \;, which would also be a slow variable of the posi-

tion, since the coalescence is controlled by local interactions The authors are grateful to David Andelman and Sergio
of the patterr22]. The goal in that case would be to obtain Rica for helpful discussions.
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