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Boundary effects on the nonequilibrium structure factor of fluids
below the Rayleigh-Baard instability
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We consider a horizontal fluid layer between two rigid boundaries, maintained in a stationary thermal
nonequilibrium state below the convective RayleighiBel instability. We derive an explicit expression for the
nonequilibrium structure factor in a first-order Galerkin approximation valid for negative and positive Rayleigh
numbersR up to the critical Rayleigh numbdR. associated with the appearance of convection. The results
obtained for rigid boundaries by the Galerkin-approximation method are compared with exact results previ-
ously derived for the case of free boundaries. The nonequilibrium structure factor exhibits a maximum as a
function of the wave numbeg of the fluctuations. This maximum is associated with a crossover from*a
dependence for largerto ag? dependence for smail This maximum is present at both negative and positive
R, becomes pronounced at positiReand diverges aR approaches the critical value, .
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I. INTRODUCTION where S¢ is the well-known isotropic expression for the in-

] ) tensity of the fluctuations in thermodynamic equilibrium,
During the past years considerable effort has been de-

voted to the study of hydrodynamic fluctuations in liquids in y—1
stationary thermal nonequilibrium states, particularly when a Se=p2urkgT , (2
liquid layer is subjected to a constant temperature gradient, Y
VT,. It turns out that density or temperature fluctuations in . ~ A
such nonequilibrium states become spatially long rangedhie Ske represents the strength of the nonequilibrium en-
even in the absence of any convective instabilifiEls hancement of the structure factor, and is given by

The long-range nature of the fluctuations manifests itself

as a wave-number-dependent anisotropic enhancement in the =0 _ R+(CP/T)L4 VT2 3
Rayleigh componen$(q) of the structure factor. The first SNE= O D% (Vo)™ €

correct calculation of the nonequilibrium structure factor of a
fluid, without taking into account gravity or finite-size ef-
fects, was performed by Kirkpatriclet al. using mode-
coupling theony2] and later confirmed by fluctuating hydro-
dynamics [3—-6]. The main conclusion is that the
nonequilibrium enhancement &(q) is maximum for fluc-

In the equations above; denotes the Prandtl numbé&t.the
Rayleigh numberp the densityx; the isothermal compress-
ibility, T the average temperature,the heat-capacity ratio,
cp the isobaric specific heat capacity, abg the thermal
tuations with wave vectogl VT, in which case it varies as c_iif_fusivit_y. In Egs. (1) ar_1d(3) we _have also introduced_ the
q~* with the wave numbeq of the fluctuations. The diver- finite helghtl-_ of the horlgontal fluid Iayer so as to elucidate
gence of the structure factor for smalhsq* cannot go on  the connection of5(q) with the Rayleigh numbeR and to
indefinitely up to wave numbers corresponding to macrofacilitate a comparison with the results to be presented in this
fied that will cause deviations from tg # behavior at very  Ed. (1) represents the bulk structure factor of the fluid with-
small wave numbers: gravity and finite-size effects. Gravityout any finite-size effects and one can readily verify that it
causes the* divergence to be quenched, the structure facdoes not depend explicitly upon the finite height

tor reaching a constant limit ig—0, as was elucidated by ~ We note tha$S(q), as given by Eq(1), contains an equi-
Segreet al.[7,8]. They found that the static structure factor librium contribution and a nonequilibrium enhancement. The
of a fluid subjected to a stationary temperature gradvehy  equilibrium contributiorSe is independent of the wave num-
in the presence of gravity can be written as ber g and equals the traditional formula for the isotropic
Rayleigh-scattering intensity9]. The nonequilibrium en-
hancement is proportional to the square of the temperature

gradient througt8ye. For g*>R/L* $(q) varies asq *,

in accordance with the asymptotic behavior first found by

Kirkpatrick et al.[2]. This dependence of the nonequilibrium
* Author to whom correspondence should be addressed. Email agontribution to the structure factor an # has been experi-

dress: fiapl02@sis.ucm.es mentally verified by several small-angle Rayleigh-scattering
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1+ o+1 q4|_4_R

S(q)=S¢ , D
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experimentg10-13. For g—0, the nonequilibrium struc- Rup to the critical Rayleigh number associated with the first
ture factor reaches a constant value, which is a consequencenvective instability, which for “stress-free” boundary con-
of the presence of gravity. The gravitationally induced satuditions isR.=277*/4. The main conclusion was that, in the
ration of theq™* divergence of the nonequilibrium structure nonequilibrium contribution to the Rayleigh component of
factor has been confirmed by Vailati and Giglit,15 from  the structure factor, finite-size effects cause a crossover from
ultra-low-angle light-scattering experiments. the ™ divergence to & dependence for extremely small
As investigated by several authdis6—18, the presence Wave numbers. This crossover fran“ to g°> means that a
of a temperature gradient also affects the “bulk” Brillouin maximum in the Rayleigh-scattering intensity appears. The
component of the Scattering spectrum, Causing an anisotropRQSition of this maximum is close to the critical wave num-
asymmetry between the two Brillouin peaks, which has bee®er d. for the appearance of convection. For positive Ray-
observed experimentalj19—21. This asymmetry effect on leigh numbers the height of this maximum diverges as the
the Brillouin lines is maximum whem||VT, and is zero ~convective instability is approach¢ad].
whengql VT,, thus, just the opposite to the nonequilibrium ~ The position and height of the maximum 8(q) will
effects on the Rayleigh line. In addition, the presence of &epend on the boundary conditions considered. In our previ-
temperature gradient only affects the shape of the BrillouirPus publicatiorj29] we adopted “stress-free” boundary con-
spectrum; however, it does not affect the total intensity ofditions for the fluctuating velocity because of their math-
scattered light, since one of the Brillouin peaks shrinks jus€matical simplicity. But these conditions correspond to a
the same as the other enhanm_ In the present paper we fluid Iayer bounded by two free surfaces which is rather un-
are concerned with nonequilibrium fluctuations as can béealistic[30]. For the realistic case of a fluid bounded by two
observed by two experimental techniquésw-angle static rigid solid plates the appropriate boundary conditions are
light-scattering and shadowgraphyhich probe fluctuations “no-slip” boundary conditions. The goal of the present paper
with wave vector L VT, and which are sensitive to the total iS to analyze the finite-size effects on the nonequilibrium
intensity of light scattered by the medium. ConsequentlyStructure factor by considering the more realistic “no-slip”
nonequilibrium effects on the Brillouin spectrum are not ex-Poundary conditions and comparing the results with the
pected to play a role. For this reason and to simplify thefinite-size effects obtained with “slip-free” boundary condi-
calculations, we shall adopt in the present paper hydrodytions. In doing so, we shall obtain an expressionStu) for
namic approximationgBoussinesy which imply that the both negative and positive Rayleigh numbers below the criti-
density fluctuations are only caused by the temperature flucal Rayleigh number for a fluid between rigid walls. By ana-
tuations, neglecting the pressure fluctuations. This is equivdyzing the behavior of our general expression &) near
lent to neglecting the Brillouin components in the scatteringthe convective instability, we shall be able to make contact
spectrum. with expressions and approximations obtained by previous
An evident shortcoming of Eq(1) is that such a bulk workers[22-2§.
nonequilibrium structure factor is only valid for negative ~ We shall proceed as follows. In Sec. I, we present the
Rayleigh numbers. For any positi®there is always some linearized Boussinesq equations supplemented with random
finite value of the wave numbqfor which S(q)’ as given noise terms, which pI’OVide the Commonly accepted Starting
by Eq. (1), diverges. This shortcoming is a consequence opoint for dealing with thermal nonequilibrium fluctuations in
the fact that in the derivation of Eql) for S(q), boundary ~ fluids[22,24,31,32 and we also review our previous results
effects due to the finite heigltt of the fluid layer have not obtained for a fluid layer with two free boundaries]. Sec-
been incorporated. Various authors have studied finite-sizBon Il contains the main results of the paper, where we
effects on the nonequilibrium structure facf@2—26. These  consider a fluid layer between two rigid boundaries and
investigators have focused their attention exclusively on th@dopt a Galerkin-polynomial approximatif28,33. In Secs.
situation close to the convective Rayleighraed instability |V and V we study the finite-size effects as they will appear
and studied the divergence $fq) as the critical value of the in low-angle light-scattering or shadowgraph experiments,
Rayleigh number is approached from below. respectwely, and we discuss their relevance for the interpre-
Finite_size eﬁects on the nonequ”ibrium structure factortauon Of aVailabIe eXperimental information. In Sec. VI we
have also been studied recenﬂy by Ortiz deaZeet a|_, who Shal.l perform a detailed ana|ySiS of the nonequilibrium fluc-
first considered “stress-free” boundary conditiof7], and ~ tuations close to the convective instability. In Sec. VII we
subsequently “no-slip” boundary conditions which were evaluate the ;o-called power of thermal fluctuations so as to
evaluated in a first-order Galerkin approximatif2g], but make a detallle.d numerical comparison with the predictions
without considering the presence of gravity. Hence, the refrom the traditional Swift-Hohenberg model. Our conclu-
sults thus obtained refer to the special case corresponding &0ns are summarized in Sec. VIIl.
R=0. It is the purpose of the present paper to consider the

boundary effects on the none_qwllbnum contnpuuon to t.he Il. LINEARIZED FLUCTUATING BOUSSINESQ
structure factor for both positive and negative Rayleigh EQUATIONS
numbers.

In a recent paper we have embarked on this program by We consider a fluid layer between two horizontal plates
considering “stress-free” boundary conditiof29]. We were  separated by a distand¢e The fluid layer is subjected to a
able to derive an explicit expression for the nonequilibriumtemperature gradient in the vertical direction by maintaining
structure factor valid for both negative and positive values othe plates at two different temperatures. The size of the sys-
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tem in the two horizontaX- and directions is much larger Boussinesq Eq(5b) the coefficient multiplyingv 26 is usu-
than the sizd_ in the verticalZ direction. ally identified with the thermal diffusivity of the fluid .

To determine the structure factor of the fluid we consider=or consistency, we have also expressed the prefactor of the
small fluctuations around the conductive solution. Thesegecond random noise term in E@b) in terms of the same
small fluctuations will be described by the linearized Bouss-diffusivity Dy [34].
inesq equations supplemented with random noise terms, as Since in practice the fluid layer is confined between two
first considered by Zaitsev and Shlioni®1] and by Swift  horizontal plates separated bysamall distancel, the non-
and Hohenberd?22] for studying the influence of thermal equilibrium structure factor will be affected by the presence
noise close to the convective instability. Use of the Boussof boundary conditions in th& direction. To accommodate
inesq approximation to the full hydrodynamic equations im-the boundary conditions, we apply a Fourier transformation
plies that we neglect the sound modes and consider onl9f the fluctuating Boussinesq equatiofis in space and in
density fluctuations caused by temperature fluctuationgme, but restrict the spatial Fourier transformation to the
[24,30. We consider the stationary temperature gradientX-Y plane[27-29. We thus obtain the following set of lin-
VT,, applied along the direction, so thalV T, is positive  ear stochastic differential equations:
when the fluid layer is heated from above and negative when
heated from below. The gravitational forgeis directed in iwD— pD?2 agqﬁ
the negativeZ direction. In this notation, the Rayleigh num- .
ber may be defined as VTo lwo—DD

(w(w,q ,Z)) _ ( Fi(w,q ,Z))
0(w,q“,z) FZ(qu”lZ) ,
(7

al®g- VT, al?gVT,
R= wDr  wDy 4 whereq is the component of the wave vectgrin the X-Y
plane andD the differential operator
where« is the thermal expansion coefficient andhe kine-

matic viscosity of the fluid. d2
We shall evaluate the structure factor of the fluid main- D= ——qf . (8)
tained in a convection-free thermal nonequilibrium state, dz*

where the average valyde) of the local fluid velocityv will

be zero. Such states correspond to both negative and positivéye random noise tern®; (w,q,2) andFy(w,q,2) in Eq.

values of the Rayleigh numb&as long aRis smaller than  (7) are related to the partial Fourier transford\s(w,q ,2)

the critical vaIueRC . For this purpose we write the linearized of the random stress tensor aﬁ@(w,q” ,z) of the random

fluctuating Boussinesq equations in the for22,29,33 heat flux. The actual expressions are a bit complicated and
can be found elsewhef@8].

7’0 90 In this paper we are interested in the structure factor of

EJF (9_y2 AL T CE TN nonequilibrium fluid S(w,qy,z,z"), which is related to
the autocorrelation function of the temperature fluctuations

90 by [27,2§

E=DTV29—WVTO+ Fs, (5b)

Jd
- (V2w)=092(V2W) + ag

3

! 4 ! (277-) ’ !
whered=T— T, represents the local fluctuating temperature! ¢ (@:4,2)8(@".qj .2")) = a2 S(@,q),2.2") (0 - ')

andw is the fluctuatingZ component of the fluid velocity.

To eliminate the stationary pressure gradient from the equa- X 5(qH—q”’). 9
tions we find it convenient to consider Ea) for V2w,
rather than an equation for the fluctuating fluid velooity
itself [30]. Finally, F, and F, represent the contributions . S(q1,2,2')=(27) " fdwS(w,q;,2,2'), which is the
from rapidly varying short-range fluctuations and are related, 5i, ir”1t,e}est of this paper., "I"he result obtained for
to Landau’s random stress tens®F and random heat flow S(q,2,2') will depend on the boundary conditions z 0

6Q in such a way thaf26] andz=L. In a previous publicatiof29] we calculated, from
1 Ed. (7), S(qy,z,2") using stress-free boundary conditions for
Fi=—{VX[VX(V-6D)1},, (g  the vertical velocity and perfectly conducting walls for the
p temperature. For that purpose, we represent¢e,q,z)
and 6(w,q,z) as a series expansion in a complete set of
eigenfunctions of the differential operator in E@), satisfy-
ing the corresponding boundary conditions. Because of the
simplicity of the boundary conditions considered in Ref.
wherep and\; are the density and the thermal conductivity [29], it was possible to obtain an exact expression for
of the fluid, while the subscrigtin Eq. (62 indicates thaF;  S(qj,z,z'), with no other simplifications than those con-
has to be identified with th& component of the vector tained in the Boussinesq approximatid@. The final results
between the curly brackets. We finally note that in themay be expressed §29]

Integration over the frequency gives the static structure fac-

D

F2=—)\—TTV<6Q>, (6h)
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* For the boundary conditiondl2), the method employed
é‘(z—z’)+~Sﬂ,E2 AE(EH) in Ref.[29] to calculate the static structure factor exactly is
N=1 not adequate. The eigenvalues and eigenfunctions of the dif-
ferential operator on the left-hand side of K@) satisfying
, (10 the new boundary conditiond2) cannot be calculated ex-
plicitly. As discussed elsewhef@4,30,33, to calculate the
eigenvalues in this case an algebraic equation is obtained
which cannot be solved explicitly. The spectrum of the dif-

ferential operator continues to be discrete, but the set of ei-

-0 iy
Ske represents the strength of the nonequilibrium enhancegenyalues and eigenfunctions can only be calculated numeri-
ment of the structure factor as defined by E8). To facili- a1y Hence, for the case of “no-slip” boundary conditions

tate a comparison with the calculation for the case of rigid,, explicit evaluation of the structure factor can only be per-

boundaries, we have adopted here a definitioﬁﬂgin Ed.  formed approximately.

(3) that is slightly different from the one in our previous |t turns out that a suitable approximation scheme is ob-
publication[29]. Furth::‘rmore, we have introduced in EQ. tained by using the Galerkin meth§2s]. Thus we represent
(10) the quantitieSAE(qH), which represent the normalized the solutions for the velocity fluctuations and temperature
nonequilibrium enhancements per mode and are given by fluctuations in terms of first-order Galerkin polynomials,

2
Z2
-

S(qH ,Z,Z,):SE

X sin
L

Nwz\ (N=mz
SN L

where(~:1”=q||L. In Eq. (10) Sg is the intensity of the fluctua-
tions in thermodynamic equilibrium, given by E(®), and

2 1 of
Lo+l (af+ N27T2)3_R"(]” '

AR(ap= (11

| N
—

W(w,q,Z)=Wo(w,Q||)(

The first term in Eq.(10) is the static structure factor of a

fluid in thermodynamic equilibrium; it is short ranged, pro-

portional to a delta function, and it is not affected by any z 2

finite-size effect§9]. The second term in EQ10) represents 0(w,q),2)= 90(‘*"“([ - F) : (13
the nonequilibrium enhancement of the structure factor. This

nonequilibrium enhancement is proportional t& T()?2

through the expressiof) for Sye; it depends on the gravi- Note that the polynomials in Eq13) satisfy the required
tational acceleration constagithrough the appearance of the joyndary condition$12). The results obtained with this ap-
Rayleigh number in Eq410) and(3), and it depends on the oximation scheme will depend on the adoption of Galerkin
finite heightL of the fluid layer explicitly in Eq.(10) and  yoqt fynctions. Another possible choice would be the
also throughy =qL. It is interesting to note that E¢L0) is  Chandrasekhar functidi30]. We have chosen the polynomi-
valid for both negative 4and positive Rayleigh numbers, proy|s (13) because they lead to simpler analytical results and
vided thatR<R.=277"/4. For R=R; there always exist they do not contain constants to be determined numerically.
values ofq for which the ”ght'ha”‘i side of E10) di-  moreover, in studies of linear stability, the choi¢d) is
verges. Of course, the valug.=277"/4 equals the well-  consjdered to be optimal owing to the variational structure of
known_ value obta|_ned fo_rm a Im_ear stability analy_S|s of theyne underlying probleni33]. Anyway, as we shall see, the
Boussinesq equations with no-slip boundary conditi@®.  choice(13) produces reasonable results when the asymptotic
behavior of the structure factor for largeis compared with

lll. SOLUTION FOR TWO RIGID BOUNDARIES the behavior expected form the exact “bulk” res[dee Eq.

While “stress-free” boundary conditions, considered in a(30|)::|%€v\?2'g a standard procedure, we evaluate the ampli-

previous publication[29], are convenient for obtaining a tudesfo(w,q;) andwo(w,q;) by imposing the condition that

simple and exact solution of the linearized Boussinesq equa; . .
tions, a fluid bounded by two free surfaces is an unrealisti%he ansati13) represents an exact solution of Eg) in the

representation of the actual experimental situafi®d,33. Subspace generated by the corresponding Galerkin polyno-

For a fluid layer between two rigid walls we can continue tomhIal .[33]' Sub;tltut|ng Eq(l;%) Into Eq.. (7) and projecting
. e first equation onto the first Galerkin polynomial and the
assume perfectly conducting walls, but we need to adoptt

. o " . Second equation onto the second Galerkin polynomial, we
no-slip” boundary conditions for the local velocity. Hence, . : .

e ; S obtain the set of two algebraic equations,
the boundary conditions to be considered in this paper are

f(w,q,2)=0 at z=0L,
o (Wo(qu|)>_(Gl(waq)) 14
W(w,q),2)=0 at z=0L, (12 W pywap) Neswa)

d
d_zw(w’qH 2)=0 at z=0L. where the matrixt(w,q) is given by
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—iw(12+qfL?)  [(12+qfL®)? 4 agqfL
— —
630L 630L3 7L3 140
H(w,q))= . - (15)
VTOL lwlL DT(lo+qHL )
140 30 T a0
|
and where we have introduced the quantities 2kg T2\ 1 qﬁL2+ 10
* . ’ ! — 3
Uy 22 (G3(w,q))-Ga(w',q))) p2C2 300 (2m)
Gl(w,qH)=f 2| Falwq.2)dz, , ,
0 L Xd(w—w")d(q—q)). (17)

o\L 2 ready been evaluated by a similar procedure in a previous
publication[28] and is given by

which are the projections onto the corresponding Galerkin
polynomial of the Langevin random noise terms. Upon in- v qiLA+ 24qPL%+ 504
verting the matrixH(w,q)), the solution of Eq(14) for the <G’{(w,q”)~Gl(w’,qﬁ)>=2kBT—qﬁ H 63(]H_3
amplitudesvy(w,q)) and fy(w,q;) can be obtained. Explicit p
expressions are long and not very informative, so they are ><(27-r)35(w—w’)5(qH—q’).
not presented here. However, explicit results obtained upon |
integration of the expression fah(w,q)), will be presented (18
in the sequel.

We focus our attention on the calculation of the structure Now we have all the required information to obtain the
factor, which is related by Eq9) to the autocorrelation func-  dynamic structure facto®(w,q,z,z") of the fluid. Integra-
tion of the temperature fluctuations. For the calculation oftion over the frequency gives the static structure factor.
this quantity, we need the autocorrelation function betweermfter some long, but otherwise straightforward calculations,
the projections of the Langevin random noise terms onto theve find that the static structure factor for the case of “no-
Galerkin polynomials, defined by Eq16). The cross- slip” boundary conditions, in the first-order Galerkin ap-
correlation{G7 (w,q)) - G(w',q[)) is zero, because the ran- proximation, can be written as
dom current tensor and the random heat flux are uncorrelated
[4]. We now proceed to calculate the autocorrelation 30 _ N 7 22\[z 22

T+SR'EA§(Q)KE_F)(f_F)’
(19

Lz Z? - - -
GZ(‘*”qH):f (__ _) Fa(w.q).2)dz, (16) The autocorrelation functiofG} (w,q)) - G(w ,q))) has al-

functions  (Gj(w,q))-Gi(w',q()) and (G;(w,q) S(q).2,.2')=S¢
-Gy(w',q()). We first conside{G; (w,q)) - G,(w',q|)) for

the random noise associated with the temperature fluctua-

tions. Using the definition 0G,(w,q)), given by Eq.(16), o . .
the definition ofF ,(,q,2) as a function of the random heat Where, similarly to Eq(10), we have introduced the quantity
flow, given by Eq.(6b), and the equilibrium correlations be- Ag(q”) which represents the normalized nonequilibrium en-
tween the different components 6Q(w,q;,z), as given by hancement for two rigid boundaries in the first-order Galer-

Schmitz and Cohef¥], we obtain kin approximation, and is given by
R~ . 30 1 27qf
Aol =1 =2 =2 =2 = 2 =" (20
(af +12)%+360

In Eq. (19), S is again the intensity of the thermal fluctua- sults for the combined effects of gravity and finite size on the
tions in thermodynamic equilibrium, defined by E8&), and  nonequilibrium structure factor of a fluid between two rigid
P is the same nonequilibrium enhancement of the structur@oundaries. The remainder of this paper will be concerned
factor defined by Eq(3). Equations(19) and (20) for the  with an analysis of some of the physical consequences im-
nonequilibrium structure factor represent our principal re-plied by these results.
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It is interesting to compare the approximate solution foraries, the interval of positiv& for which it is possible to
the case of two rigid boundaries, given by EG®9) and(20), calculate the structure factor with a linear theory is larger
with the exact solution for the case of two free boundariesthan for the case of two free boundaries. This is a conse-
given by Eqgs.(10) and (11). First of all, we have obtained quence of the fact that “no-slip” boundary conditions are
here only the first term in the Galerkin expansion for themore stabilizing than “stress-free” boundary conditions.
structure factor for the case of two rigid boundaries. Thus,
Eq. (19 is equivalent to the first term_in the serigs expansion IV. CONSEQUENCES FOR LIGHT-SCATTERING
(10) for _the structure factor of a fluid _Iayer with two free EXPERIMENTS
boundaries. Truncating E4L0) at N=1 is called the most-
unstable-mode approximatidr22,29,31, and, as we shall The nonequilibrium fluctuations can be detected in small-
see, it represents a good approximation to the exact solutio@ngle light-scattering experimenf40—15. The scattering
in particular for smallg. medium in such experiments is a thin horizontal fluid layer
As a second comment we note that, wHé,=0, the bounded by two parallel plates whose temperatures can be
exact solution for two free boundaries, Ef0), produces the controlled independently so as to establish a temperature gra-
exact result for the structure factor in equilibrium, which is dient across the fluid layer. The temperature gradient can be
short ranged and proportional to a delta functiéggz—z').  parallel or antiparallel to the direction of gravity. The hori-
However, our approximate solution for two rigid boundarieszontal plates are furnished with windows allowing laser light
contains a constant multiplying the Galerkin polynomials.to propagate through the fluid in the direction parallel to the
Actually, what we obtain from Eq(19) for the equilibrium  gravity and to the temperature gradient. Light scattered over
structure factor is the first term of the series expansion of th@n angleg arises from fluctuations with a wave number such
delta function in terms of the Galerkin polynomials. There-that[9]: q=2qqsin(¢/2), whereq, is the wave number of
fore, this shortcoming is a consequence of having performethe incident light inside the scattering medium. To observe
the calculation in first order only. any nonequilibrium fluctuations one needs to observe the
The normalized nonequilibrium enhancement for the casécattered light at small wave numbers and, hence, at small

of two rigid boundaries in first orden §(qy), has a structure scaFttering Iantgles' o th  follows that th t
very similar to the general term,ﬁ(’d”), given by Eq.(11), rom electromagnetic theoff] it follows that the scat-

for the case of two free boundaries. With regards to the det_enng intensityS(q) is obtained from an integration of the

. . structure factor over the scattering volume. When the wave
pendence on the Prandtl number, the 1 in the denominator (\)f g

N ector of the incident light is parallel to the temperature gra-
the term 1/g'+ 1), appearing in E¢(11) for two free bound- dient and for very small scattering anglesattering vector

aries, is replaced with a rational function of, which rap- | VT,), the total intensity of scattered light is proportional
idly approaches unity ag increases. With regards to the to [24,27,29

dependence on the Rayleigh number, this is also very simi-

lar: the factor §f +N?72)* in Eq. (11) for two free bound- I I (A )

aries is simply replaced with a polynomial of sixth order in S, 4. = 0 ) S(q).2,27)dzd7, (22)

qy-
H The approximate solution for two rigid boundaries breakswhere it is assumefR4] that the scattering volume extends
down when over the full height of the fluid layer and that the thickness of
_ _ the scattering volumé. is larger thanq”’l. In an actual
28 (qf +10)[(gf +12)+360] light-scattering experiment the magnitude of the components

(21 g, andq, of the scattering vector are not independent vari-

ables, they are both related to the scattering ange29

In Eq. (21) we recognize the threshold condition for the con-and for the interpretation of small-angle experiments one
vective instability, as calculated by the Galerkin method inMa&y use in practice the approximatiom=q, q,=0.
first order[33], and we recover the well-known results of Hence, the nonequilibrium structure facts(q,,q, ), de-
linear stability theory from studying the divergences of thefined by Eq.(22), depends only on the magnitudeof the
structure factor, which are associated with the appearance §Faltering wave vectay. In the remainder of this paper we
convection. For Eq(21) to hold, the Rayleigh numbd has ~ 'estrict ourlselves to this small—{:mgle approximation. _
to be larger than a critical Rayleigh numbRg=1750. For To obtain the exact expression for the structure factor in

. . ) . ~ the small-angle approximatio =(,q, =0), for the
this critical Rayleigh number, Eq(21) yields [33] q . case of two f?ee b(?LE)ndaries Wrg(g&bsqtitﬂte Ex%)) into Eq.

=3.1165. These critical values in the first Galerkin approxi- . S i
mation are to be compared with the exact threshold valuegzz) and perform the double integration in E@2). Intro

for the case of two rigid boundaries, which a&3] R, ducing a dimensionless wave numiger qL, we thus obtain
=1708 andac:3.1163. We note again that introduction of ~ =0 =F /=

boundary conditions in the calculation of the structure factor, S(q) = Se[ 1+ S\eSne(@) 1, (23
results in an extension of the validity of E@.) for the struc-

ture factor at negative Rayleigh numbers to a finite range ofvhere we have introduced the normalized nonequilibrium
positive Rayleigh numbers. For the case of two rigid boundenhancement for free boundari@E(q), such that

=2
27 qf
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f ~ = ¢~ 2L[1-cogNm)] 3
Se@=2 ANO—7 (24 105
1
with the nonequilibrium enhancement per modef(q), 10”1
given by Eq.(11) with g=T. o N
To obtain the nonequilibrium structure factor at small Mv% 1073
scattering angles for the case of two rigid boundaries, we w4 _915
substitute Eq(10) into Eq. (22) and perform the double in- 1073
tegration in Eq(22), to obtain 1
10—11_i

S L gy 1 :

S(q):SE 6+SIQIESNE(q) ) (25) 10" Ly vy - .

0.1
where the normalized nonequilibrium enhancement for rigid

. ~R ~ . .
boundariesSyg(q) is given by FIG. 1. First-order Galerkin approximation for the nonequilib-

rium enhancemer8R:(q), given by Eq.26) of a fluid with Prandtl
numbero=8, as a function of the dimensionless wave nunﬁper
=qL for three values of the Rayleigh numbd®=1700 (solid
_ curve, R=0 (dashed curve R=—25 000(dotted curve For ref-
with the first-order nonequilibrium enhancememg(q), erence, the correct asymptotic “bulk” behavior, given by E2g),
given by Eq.(20) with g=7j. We note that for the case of IS displayed as a dashed-dotted line.

two free boundaries the exa&(q), given by Eq.(23), is
written as the sum of an isotropic equilibrium contribution,
Seg, and a nonequilibrium contribution which is expressed in
terms of a series expansion through Ezy).

For the case of rigid boundaries, E¢25) and (26) rep-

L ~
SNE(@) =3gA5(a) (26

sharp. The height of the maximum divergesfRas R.. For
details and further comments, we refer to our previous pub-
lication [29].

Similarly, from the first-order Galerkin approximation for

resent the first Galerkin approximation in which the equilib-
rium contribution is 17%=1/6) lower than the actual value,
while the expressiori26) obtained for the nonequilibrium

enhancement is the first term of a series expansion. In prin-
ciple, better results can be obtained, both for the equilibrium

and the nonequilibrium contributions for rigid boundaries, by
considering higher-order Galerkin approximants.

the nonequilibrium enhancement with rigid boundaries, Eq.
(26), we obtain for smalb,

aﬁO 3

'62
896210+5) 7’

Sie(a) (29)

and for largeq,

The exact expression for the normalized nonequilibrium

enhancement for two free boundari&§(q) was studied in

a previous publication, where the sum of the series in Eq
(24) was calculated exacth29]. We showed that in the limit
L—oo the sum of the series in Eq24) converges to the
exact “bulk” result: (c+1)"%(q*—R) ! [cf., Eq.(1)]. The
dependence of the nonequilibrium enhancement on the d

mensionless wave number was analyzed in detail. For
small'q we obtained 29]

-0 17 1

Se(@ 2016051 0 (27
and for largeq
o~ 211
S\e(d) —— m?- (28)

Equations(27) and(28) demonstrate the crossover frayn*

to ag? behavior. Separating the two limiting behaviors there
is a maximum inS{(q). For negativeR this maximum is
relatively flat, while for positiveR the maximum is very

oo

45 1 1

Ste(q) —— 56071 ?- (30)

Just as for two free boundaries, the nonequilibrium enhance-
ment exhibits a crossover fromea * to aq? behavior. Upon
Eomparing Eq.(28) with the asymptotic behavior corre-
sponding to the “bulk” solution, Eq(1), we note that the
solution for free boundaries reproduces for lagythe cor-
rect limiting behavior, which is independent of the Rayleigh
number. The first-order Galerkin approximation for rigid
boundaries reproduces this asymptotic behavior for lagge
except for a factor 45/56.

In Fig. 1 we show on a double-logarithmic scale the non-

equilibrium enhancemer8Rc(q) as a function ofg, calcu-
lated from Eq.26) for three different values of the Rayleigh
number. In all examples to be presented in this paper, we use
a value of the Prandtl number=8, which approximately
corresponds to that of pure toluene at 20[°I2]. The solid
curve corresponds to a positive Rayleigh numBet+1700,

to be compared with the critical Rayleigh numbgy
=1750 in the first-order Galerkin approximation. The dashed
curve corresponds to a value of the Rayleigh number close to
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zero:R=0. The dotted curve corresponds to a large negativéensity will be actually proportional t§(q), as given by Eq.
Rayleigh numbeR=—25000. The dashed-dotted straight (22), only for g>L_ ', whereL was the thickness of the
line in Fig. 1 shows the exact asymptotic behavior for largescattered volume, or, in the geometry we are considering, the
a, (o+ 1)*15*4 as given by Eq(1) for the structure factor thickness of the laser beam. For extremely smaléffects

of the bulk fluid. From the results displayed in Fig. 1 we related to the small thickness of the beam, not discussed in

observe that at larger vaIuesEp,f ~S§E(<~J) is proportional to this paper, are expecte(_j to show up. These. effects cou]d ham-
er the actual observation by small-angle light-scattering ex-

q"*, independent of the Raylglgh_ nuLanei, |r_1 agreemen'F W'”ﬁeriments of the finite-size effects discussed in this section.
Eqg. (29). On the scale used in Fig. $yg(q) is asymptoti-  Fortunately, there is another experimental technique, namely,
cally almost indistinguishable from the exact asymptotic bequantitative shadowgraphy, which is more suitable for the
havior, confirming that the Galerkin calculation is an excel-observation of effects on the nonequilibrium structure factor
lent approximation method. Upon decreasepfSne(q)  due to the finite sizé& of the layer, and which we discuss in
goes through a maximum and for very small valuesgof the subsequent section.
S\e(0) decreases ag?, also independently oR, in agree-
ment with Eq.(29). For positiveR, Siz(q) develops a
prominent peak close tg.=3.12, which diverges af
—R., as will be further discussed in Sec. VI. For negative An alternative promising experimental technique for mea-
R, the maximum is relatively flat, in accordance with the suring the intensity of nonequilibrium fluctuations is quanti-
saturation effect of gravity on the nonequilibrium enhancetative shadowgraph analysi89—-43. Instead of a laser
ment, already contained in expressith for the structure beam, an extended uniform monochromatic light source is
factor of the fluid without any finite-size effects. Although employed to illuminate the fluid layer. Then many shadow-
there are some numerical differences, the physical behavigraph images of a plane perpendicular to the temperature
of SR(q) as a function of the wave number and the Ray_grqdlent are obtained Wlth_a charge-cpupled.dewc.e detector,
leigh number is similar to that earlier deduced for the case of/Nich measures the spatial distribution of intensify;),
free boundarief29]. Regardless of the detailed nature of the Werex| is a two-dimensional position vector in the imaging
boundary conditions, a major effect of the additive noisePl2ne. For each image, a shadowgraph sigi)) is defined
terms in the fluctuating Boussinesq equations is the appeafy
ance of (fluctuating patterns in the fluid, even below the (X))~
convective instability as discussed by some other investiga- I(XH):M’ (32)
tors[35,36. lo

Sengers and co-workers have measured the nonequilib- ) ) ) . o ,
rium fluctuations in liquid toluend10,11 and in liquid wherel is the umform intensity of the incident I|g.ht, when
n-hexane[12]. These experiments correspond to Rayleighthere are no fluctuations in the index of refraction of the

numbers from— 25 000 to— 300 000 at dimensionless wave SaMPple. In practicel, is obtained by averaging over many
numbers ranging frori= 640 down tcdj= 345. The experi- shadowgraph pictures. Very recently, Trainoff and Cannell

. s 44] have presen iled theoretical analysis of th
ments have provided an accurate confirmation of ghé [44] have presented a detailed theoretical analysis of the

q d f the intensity of ilibrium fluctuati . quantitative shadowgraph method based on physical optics.
ependence of the intensity of nonequilibrium fluctuations InThey studied not only the shadowgraph images produced by
this range of wave numbers.

Gigli d co-work h d the intensit luctuations below the convective threshold, but also the
glio and Co-Workers have measure € intensity 0shadowgraph images produced by deterministic patterns
nonequilibrium fluctua~t|ons for negative Rayleigh numbersabove the threshold. With a paraxial approximation for the
down to wave numberg of order unity with ultra-low-angle  propagation of light in the shadowgraph medium and a
light-scattering experimen{d4,15. They actually measured Fresnel approximation for the propagation of light in the air
the intensity of nonequilibriunconcentrationfluctuations in  pehind the cell, the spatial power spectrum of the shadow-

underlying hydrodynamic equations, thelependence of the (g|ated to the structure factor as defined by E2p), such
contribution of nonequilibrium concentration fluctuations to that[43,44],

the structure factor in a liquid mixture is expected to be

similar to theq dependence of the contribution of nonequi- V [ on\2 Clﬁz

librium temperature fluctuations to the structure factor of a <|I(q|)|2>=?(ﬁ> sinz(i>8(q|,0), (32
one-component fluid37,3§. Giglio and co-workers have ap P 0

not only confirmed theg* dependence of the nonequilib-

V. CONSEQUENCES FOR SHADOWGRAPH
EXPERIMENTS

rium structure factor, but they have also observed the Crosé’yherev is Fhe sample volume illuminated by the light. In Eq.
(32), the sine term plays the role of an optical transfer func-

over to a region ofj close to unity where the nonequilibrium tion [43]. Trainoff and Cannell[44] have also evaluated

structure factor is independent qf in agreement with the  small modifications to Eq(32) due to experimental effects

flat range indicated in Fig. 1 foBR=(q) at large negative such as inhomogeneities in the illumination, angular spread

Rayleigh numbers. in the incident beam, or finite spectral bandwidth of the light
Before closing this section, we note that the scattered insource.
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FIG. 2. Nonequilibrium enhancement of the structure factor as a
function of q for positive Rayleigh number corresponding ¢o
=(R—R)/R.,=—0.02. Solid curveSk(q), given by Eq.(26), for
the case of two rigid boundaries. Dashed curve: eﬁ@(ﬁ),
given by Eq.(24), for the case of two free boundaries. The plots are
for a fluid with Prandtl numbeo=8.

FIG. 3. Double-logarithmic plot of the absolute value of the
difference between the critical wave numiagrand the position of

the maximum in the nonequilibrium structure facﬁp,v;,ax, as a
function of —e. The solid line is for the case of two rigid bound-
aries. The dashed line is for the case of two free boundaries. The
plots are for a fluid with Prandtl number=8.

We observe that, by applying a two-dimensional Fouriertion, we note that the height of the maximum is larger for the
transform to the shadowgraph sigifdD,41,43, one can de- case of two free boundaries. As mentioned earlier, “no-slip”
duce the structure factor of the fluid as a function of the waveboundary conditions are more realistic for a fluid layer be-
numberq at q, =0. Hence, there exists an equivalence between two rigid plates.
tween small-angle light scattering and shadowgraphy, in the Wu et al. [39] have used the shadowgraph technique to
sense that both methods yie®(q;=q,q, =0). For light —measure the nonequilibrium structure factor in a layer of
scattering,q is the scattering wave number, whereas forfluid carbon dioxide, at a pressure of about 3 MPa, near the
shadowgraphy is the modulus of the two-dimensional Fou- convective instability. Figure 3 in the paper of Wual.[39]
rier vector in the imaging plane. Thus, the characteristic feashows an experimental structure fac&() with a shape
tures of the nonequilibrium enhancement of the structure facv€ry similar to our solution displayed in Fig. 2. We shall
tor, shown in Fig. 1, also apply to shadowgraph experimentsake a quantitative comparison with the measurements of
Specifically, Vailati and Giglio[42] and Brogioli et al. Wu et al.in Sec. VII, when discussing the power of thermal
[43,49 have used the shadowgraph technique to measure td@ctuatlons. We conclude that our solution of the linearized

structure factor of the nonequilibrium fluctuations in some luctuating Boussinesq equations for the nonequilibrium

aqueous solutions, resulting from concentration gradients a: _;rur?ture faCtOFI.'g consistent W't? the chgracter(ljs'qc features
sociated with free diffusion. Indeed, the experimental struc? the nonequilibrium structure factor observed in experi-

o ' ' o ments for both negative and positive Rayleigh numbers.
ture factors exhibit the same characteristic features as the

structure factor of the nonequilibrium fluctuations in a binaryv|_ NONEQUILIBRIUM FLUCTUATIONS CLOSE TO THE

liquid mixture subjected to a concentration gradient resulting CONVECTIVE INSTABILITY
from an imposed temperature gradient as measured by light ) o N
scattering[14,15. The nature of thermal noise near the convective instability

has been the subject of studies by many investigd@s-

& - .~ 26,31. Hence, it is of interest to make a comparison of those
on thef parar?]ete;—(lR—th)/Ré \_Nhlcrg)'lr.nealsurﬁ; th; dis- results with our solution for the intensity of temperature fluc-
tance from the Rayleigh-Bard instability. In Fig. 2 We  5ii0ns for thermal nonequilibrium states. Zaitsev and
S_hOW the normalized nonequ_lll.brlum enha_mcement as a funGspiomis[31] were the first to compute thermal fluctuations
tion of q close toq, for two rigid boundaries, as calculated in a fluid layer subjected to a stationary temperature gradient
from Eq.(26) for e=—0.02, relative to the critical Rayleigh near the convective instability. Using linear perturbation
numberRE=1750 in the first-order Galerkin approximation. theory they found that the structure factor diverges Bs (
For comparison, we also show in Fig. 2 the normalized non—R) 1. The same divergence follows from our solutions,
equilibrium enhancement as a function gffor two free  both for the case of free boundaries and for the case of rigid
boundaries, as calculated from E4) for the samee boundaries. To reproduce this divergence we first calculate
=-0.02, relative to the critical Rayleigh numbe®  the wave numbers), ., andqR,,, of the fluctuations that are

= 277%/4 for free boundaries. We observe that the main dif-maximally enhanced for the case of free boundaries and for
ference between the solutions for free and rigid boundaries ighe case of rigid boundaries, respectively. The quaﬁﬁr%

that for the case of free boundaries the position of the maXiwas already evaluated in a previous publicafiaé], where
mum is incorrectly displaced to lower values®f In addi-  we showed that it has an expansion of the form

For positive Rayleigh number§y(q) strongly depends
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- - 81 & (N2—1)(1+2N?)2(1—cosNm)
Fac e 1+ — > 2+ 0(€
Umax= Yc 4 &=, NZ[(1+2N2)3—27]2 € (6 )

2

For the case of two rigid boundaries, we find from from E2Q) that the position of the maximunﬁff]ax, close to the
instability may be expanded as

{1+2.847< 10 *€?}. (33

14 (9°+102 q*+3849°+4104
(qC ) qC ‘k]C 6+O(62)

~R ~R
Omax=dc) 1+ 535 = =
. [ 2TRTGA(302+34)  Qlo+5

31168 1+ — ot 34

e o+0515°) 89
|

where, inside the curly brackets in E§4), the critical wave 1 —-116 = 1—cosN

numberqf=3.1165 corresponds to the first-order Galerkin SIEIE(Qmax):_O,+1 [ 547727 6 &, NZ[(1+2N2)3— 27]

approximation for two rigid boundaries. It is interesting to
note that the difference between the wave nunthgy, cor-

responding to the maximum and the critical wave nunther
has a quadratic dependence on the distantethe instabil-
ity for the case of free boundaries, while this difference deor the case of two rigid boundaries, substituting E2f)
pends linearly ore for the case of two rigid boundaries. In into Eq. (26) we conclude that the structure factor, in the
the case of free boundaries, the maximum in the structuréirst-order Galerkin approximation, diverges when the con-
factor moves tolarger wave numbers ag goes to lower vective instability is approached, such that

negative valuegaway from the instability In the case of

+0(e) . (35

rigid boundaries, the maximum in the structure factor moves — ~ 1 5 —1
i SNe(Umad=—"—1{ —g — *+0(1) (36)
to smallerwave numbers as goes to lower negative values. NE(Oma 5 | 6RR € .
In Fig. 3, we have plotted on a double-logarithmic scale the ot = ¢
absolute value of the differendgma—dc| as a function of e

— € for two rigid boundarieqsolid line) and for two free _
boundaries(dashed ling The curves displayed in Fig. 3 In both cases, we recover the linear divergenc&gf as a
were obtained numerically from Eq&4) and(26), confirm-  function of (R—R;)"* obtained by Zaitsev and Shilomis
ing the linear dependence anfor rigid boundaries as op- [31] and confirmed by Swift and Hohenbef§2,26. Ex-

posed to a quadratic dependence eofor free boundaries. tremely close to the instability nonlinear effects will cause
a smearing out of the transition, but this effect will only

Even more significantly, the effect is orders of magnitude i c
larger for rigid boundaries than that for free boundaries. be noticeable for very small' values df?|$2'9>.< 10
. , ~ [22,26,49-5] Hence, observation of the linear divergence

It is interesting to note that the wave nuUMITRE, COIMe- ¢ the intensity of the fluctuations is possible in experiments
sponding to the maximum intensity of the fluctuations cannof3g| peviations from linear fluctuation theory have been ob-
be identified with the wave numbey, corresponding to the served by Schereat al.[52] in the case of electroconvection.
maximum growth rate of perturbations around the steady For the case of two free boundaries, the approximation
conductive state evaluated by other investigafdi—48, scheme used by Zaitsev and Shlioif84] and by Swift and
although both become equal tp at R=R.. This issue is Hohenberg[22] is equivalent to retj;\inirlg only the terid
discussed in more detail in the Appendix. =1 in the series expansioi24) for SE,E(q). Note that, for

Having determined the position of the maximum, we canN=1, whenR is close toR; and g is close toq., the
study the divergence in the height of the maximum as thelenominator in the term\f(q)) given by Eq.(11) ap-
convective instability is approached. For the case of two freg@proaches zero. Therefore, close to the convective instability
boundaries, we substitute E§3) into Eq.(24) and conclude the term withN=1 is much larger than the terms with any
that the structure factor, which is proportional to the intensityother value ofN. Consequently, wheR<R; and q=q,
of the scattered light, diverges when the convective instabiltruncating the serie$24) at N=1 yields a very good ap-
ity is approached, such that proximation. We thus deduce from our solution for the case
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TABLE I. Values of the parameters in the SH approximation, @8§), for the nonequilibrium structure

factor.
Re ac E(z) H(U)
4 T 2 8 1
Free? 2 _ - £ —0.117 ==
2 —657 2 32 a2 o+l
o 28(30%+ 34 5 2
Rigid ° 1750 3.1165 R S R —~2q°
qC 27Rc 6 qCU+ 5
Rigid © 1708 3.1163 0.062

#The values for two free boundaries are exact.
bValues based on a first-order Galerkin approximation.
‘Exact values obtained from the literatJ6].

of free boundaries that the nonequilibrium structure factor, agyhere we have introduced the functibi{c) of the Prandt|
measured in Iow-ang_le light scattering or shadowgraph eXnumber and, following Hohenberg and Swii26], the pa-
periments, can be written as rameteré; (see Table)l Equation(39) is the so-called Swift-
850 ~5 Hohenberg(SH) approximation to the nonequilibrium struc-
ETNE q — (37) ture factor[ 22,26]. It is worth noting that Eq(39) is valid for
m?(o+1) (q°+ 7%)°—R? both free or rigid boundaries, but the numerical values of the
constantsR;, q., andé 2, and the amplitude functioH (),
do depend on the boundary conditions. In the first two rows
Pof Table 1 we present the values obtained for the constants

and for the functiorH (o) in the solution of the linearized

st (q)=

where the equilibrium contribution in E§23) has been ne-
glected. This is usually called the most-unstable-mode a
proximation in the literatur¢22,31]. Because of the factor

N?7? in the denominator of the series expansi@d), the o B _ ione for f d riaid bound
most-unstable-mode approximation actually continues to bgu_ctuatmg oussinesq equations for free and rigid bound-
aries. In the third row of Table | we present, for the case of

an excellent approximation for arbitrary Rayleigh numbers,” "’ . .
. Pp . ~ y Ray _g_ rigid boundaries, the numerical values of the paramd®grs
especially for relatively smatj. For the case of rigid bound- ~

aries, the first-order Galerkin approximation, E@6), al-  Yc: and£3, obtained from the literaturg26]. In the case of

ready represents a most-unstable-mode approximation. ndree boundaries, we find eixact analytical agreement between
glecting the equilibrium contribution, as was done in Eg.the values oR;, q., and¢j displayed in Table | and the
(37), we obtain from Eqs(20) and(26) for rigid boundaries, corresponding literature valug26]. For the case of rigid
boundaries, comparing the second and the third rows of
s{sﬁE Table I, we see a fairly good agreement between the numeri-

k()= 2110(a2+ 12 cal literature values and the analytical values obtained here
(q~ )(q ) based on a first-order Galerkin approximation.
(9%2+12)2+360
27 VII. POWER OF THERMAL FLUCTUATIONS

To further compare our results with the SH model, we
consider the behavior of the vertical average of the power of
(38  the thermal fluctuations,sT?), close to the instability. The

. . . mean-square amplitud&T?) of the temperature fluctuations
Comparing Eq.(37) for free boundaries with Eq.38) for can be related to the structure factor by E®), such that

rigid boundaries, the similar structure of both expressions is

evident, as was already mentioned in Sec. Ill. 1L
The denominator in the last term of E(7) for free <5T2>:_f dz{6* (x,z,t)- 6(x),Z,1))

boundaries, as well as the denominator in the last term of Eq. LJo

(38) for rigid boundaries, are zero when the Rayleigh num-

X —— = ——.
28(q%+10)[(g?+12)%+360]— 279°R

2
ber and thg dim_e_nsionless wave nuinbir are equql to the _ 21 . Edezf d q28(q,z,z). (40)
corresponding critical valueR=R; andq=q.. Expanding, ap LJo (2m)
in both cases, the denominator in powersgéfaroundq?, _ _
one obtains Due to the horizontal translational symmetry of the problem,
this quantity does not depend on the poinin the horizontal
- S F(o) plane at which is evaluated on the tirhat which is calcu-
S(q)= R W 22 L (39 lated. For the case of “slip-free” boundary conditions, sub-
¢ &(a°—0g) e stituting z=z' in Eq. (10) for S(q,z,z') causes a problem

036305-11



JOSEM. ORTIZ de ZARATE AND JAN V. SENGERS

PHYSICAL REVIEW E66, 036305 (2002

associated with the short-range equilibrium contribution,with the short-range equilibrium part when substituting

8(z—2'); but since the quantity Eq22) that is experimen-
tally observed actually depends on a double integrat and

=Zz'. We also note that the integration apof Ag(q) is
complicated, and since we are really interested only in the

z', this problem is not relevant. Therefore, we can safelyasymptotic behavior close to the instability, we prefer to use

neglect the equilibrium contribution in the calculation of
(8T?). Substituting Eq(10) into Eq.(40), we thus obtain for
the case of two free boundarig29],

SESte 1 D f:~

_azsz((J'-l- 1) 27 =1

9%qdq

(1%

The integral in Eq(41) can be performed analytically, but

the result is long and not particularly interesting. Asymptoti-

cally close to the convective instability we find

Se(She)e 1 243
a?pPL(o+1) 4m2 272 —€

(372)=

(42

In Eq. (42), the symbol &)¢). means that the normalized

amplitude of the nonequilibrium enhancement has to be

evaluated at the critical temperature gradient. Using E3)s.

the SH approximant to the first-order Galerkin, which is
easier to handle. Moreover, we have checked numerically
that for a Prandtl number=_8 and fore within —0.01 from

the instability, the difference betweéaT?) calculated with
the SH approximation and the same quantity calculated with
the full Galerkin approximation, is less than 1%. Thus, we
substitute Eq(39) into Eq.(40), taking into account that Eq.
(39) is obtained through a double integrationoandz’ [see

Eq. (22)] while Eq. (40) requires us to first substitute=z’

and then to average vertically. Evaluating the asymptotic be-
havior of the resulting integral close to the instability, we
obtain

SN H(o) 6 o 1
a?p’L LR, S E2\—€ (2m)?
F222

T £o4
—+arctar( ote

—

(577)=

X

and(3), neglecting the contribution of the adiabatic tempera-

ture gradient, and using again the thermodynamic relation

a’Dr=[(y—1)/y]\1%7/T, we rewrite Eq.(42) as

(ATg2 3 0?2 1

pLv? B4z o+l NEr

(6T?)=kgT

(43

to the critical Rayleigh number. The behavior of the power o
the thermal fluctuationg,5T?), has been studied by several
authors[39,41] in the framework of the standard SH model;
asymptotically close to the instability this quantity is ex-
pressed af39,41]]

(ATo)? oqc.c® 1

5T =kgT ,
(0T =ke pL? 2£,70R3 V—e¢

(44)

wherec=30.\R., &, andr, are dimensionless parameters

0_2

(ATy? 1
pLv? 4¢3R, (0+0.513 [—¢’

kgT (45

where we have substituted the functiéh(c) quoted in
Table | for the case of rigid boundaries. Comparing &&)
with the result obtained by substituting into E@4) the

?parameters corresponding to rigid boundaries in the standard

SH approximatior(cf. Table | of Hohenberg and Swif26])
we observe the following.

As in the case of free boundaries, we recover the diver-
gence of(6T?) as 14/—e, predicted by the standard SH
model and confirmed experimentally by Vet al. [39].

We also recover, in good approximation, the same kind of
dependence of 6T%) on the Prandtl number: a factor
o?l(o0+0.515), to be compared with?/(o+0.5117) pre-
dicted by the standard SH model.

The prefactor for the total power of the thermal noise

appearing in the standard SH model. These parameters dealculated with our model, Ed45), for rigid boundaries is

pend on the boundary conditions, angalso depends on the 3% smaller than the same quantity calculated with the stan-
Prandtl number. Numerical values of these parameters, fatard SH model. This small difference shows that the Galer-
free and rigid boundaries, can be found in Table | of Hohenkin approximation proposed is this paper is a very good ap-
berg and Swift[26]. Substituting into Eq(44) the values proximation indeed.

found in that table for free boundaries, we obtain exact nu- The experimental data presented by ‘\&tual. [39] were
merical agreement with our current E@3). We conclude reanalyzed by Bodenschaét al. [41] who concluded that
that, for the case of free boundaries, our exact solution fothe experimental results were consistent with the predictions
S(q), when evaluated close to the instability, shows perfecof the SH model. Since our first-order Galerkin differs only
agreement with the standard SH model, not only for the de3% from the SH model, we conclude that our approximation
pendence of the structure factor gnbut also for the mag- Yields also a satisfactory representation of these experimental
nitude of the amplitude of the nonequilibrium fluctuations. results.

For the case of rigid boundaries, we consider the diver- Many author§23-26 have represented tliedependence
gence of( 5T?) at the convective instability obtained in the Of the structure factor near the instability in terms of a
first-order Galerkin approximation, E(L9). We first observe Lorentzian profile centered gt with a width proportional to
that, since the Galerkin approximation is a single-mode ape, and Wuet al. [39] have analyzed their experimental data
proximation, we do not encounter any problems associateth terms of such a Lorentzian profile. We remark that both
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T T J T our theoretical prediction the®(q) should exhibit a cross-
N over from aq~* behavior for largelq to ag? behavior for

s

10 small g.
10°
VIIl. CONCLUSIONS
N
In this paper we have applied the Galerkin method so as
3‘@% to calculate the static structure factor of a nonequilibrium

—_ —
S, >
O ~
ol oind sl s oumd ool oo ool e el oyl ol 2

fluid from the linearized random Boussinesq equations, for
both negative and positive values of the Rayleigh number,
E using “no-slip” boundary conditions. Explicit expressions
- for the nonequilibrium enhancement of the structure factor in
— rrrT—— the Galerkin approximation have been presented. The conse-
0.1 1 10 100 guences for low-angle light-scattering and shadowgraph ex-
q periments have been elucidated. The resulting expression
e~ reproduces thg 4 dependence of the nonequilibrium struc-
FIG. 4. Normalized nonequilibrium enhancem&f(q) of the e factor predicted theoreticalf2—4] and confirmed ex-
s_tructure factor of a fluid withr=8, as a fun_ctior_1 of th.e_ dimen- perimentally[10—13 for negative Rayleigh numbers, it ac-
sionless wave number near the convective instabilitz=(R  onts for the saturation of the nonequilibrium enhancement
—Ro)/Re=—0.01] for rigid boundaries. The solid curve represents ¢ yhq intensity of the fluctuations at small wave numbers

the first-order Galerkin approximation given by E(®6). The bserved by Giglio and co-workefd4,15,42,43 and it is
dashed curve represents the corresponding SH approximation wit§ e

. ) onsistent with the experimental observation by Ahlers and
the parameter values listed in the second row of Table I. The dotte o-workers[39,41,53 of the structure factor close to the
line represents the exact expression for the nonequilibrium structure®™W P uctu

factor of the bulk fluid, which should be the correct asymptotic limit convective mStab,'“_ty' We havg_thys prOVIded.a unified ap-
for large proach for describing nonequilibrium fluctuations for both

negative and positive values of the Rayleigh number, pro-

the exact solution for free boundaries and the first—orde%'d%d thatR< RFt.hA.majlor c:;glus[[cr)]n IS tTat flluct.uatmg hi’{ ¢
Galerkin solution for rigid boundaries do not yield a Lorent- rodynamics with simpie additive thermal noise Is enougn to

zian profile close to the instability. Moreover, a Lorentzianaccount for the nonequilibrium structure factors measured

does not recover the proper asymptotic behavior, implied b xperimentally. Hence, at least for the case of Rayleigh-

in Eqs. (27)~(30), for either smalq or largeq. It even leads enard convection, it.does not appear necessary to look for
to an apparent divergence when one tries to calculate théancy sources of noise, such as multiplicative, correlated,

; . . — or colored noisd35,54.
S%V;r:s?ofrfgf VJgJ:éu\?éggrs@%yé%tegratlrﬁ(q) over all two The nonequilibrium structure factor obtained here for the

The SH approximation has been widely used in the litera C@5€ of two rigid boundaries exhibits qualitatively the same

ture to study the fluctuations close to the convective ins’[abilp(:“havIor as that deduced from an exact result derived for the

ity. We conclude this section by comparing the SH approxi-Case of two free boundaries in a previous publicafi8).

. _4 . e .
mation with the Galerkin approximation derived in this ]:I'hetz typicalq dlvertge(;zcz of thg nonefqumbrt'lum sltructurﬁ
paper. To do so, we have plotted in Fig. 4 the Galerkin ap—aC Or Crosses over 1o iependence for extremely small
imation for th ilibri h R (T of scattering angles. Separating both behaviors there is a maxi-
proximation for the nonequilibrium enhancem@(a) of  min the scattered intensity, indicating that fluctuations
the structure factofsolid curve, together with the corre-

. e . with a particular wave vector are maximally enhanced. As
sponding SH approximation calculated with Eg89) and the

X , the convective instability is approached the height of the
parameter values listed in the second row of Takjgashed maximum diverges. The wave numbeg., of the fluctua-
curve. Both curves correspond ®=8 ande=—0.01. For ximu IVErges. wave nu thax uctu

reference, we have also plotted in Fig. 4 the exact result fopons that are maximally enhanced is close to the critical

the bulk structure factor. A simple examination of this figureWave numbem_ for the convective instability and depends

shows that, although SH represents the maximum of th&N the actual boundary conditions considered. Fluctuating
structure factor quite well, it does not reproduce the propePatteérmns do appear in a fluid subjected to a stationary tem-
asymptotic behaviors for large or smal.l Although the SH perature gradient below the convective instability, even for

o ~_4 ~ nhegative Rayleigh numbers. To address the question how
approximation goes ag " for largeq, the prefactor multi-  hese fluctuating patterns below the Rayleighh@el insta-

plying this q dependence is smaller than the correct valuepility evolve into convection rolls above the instability re-
which should be ¢+1)~%. We note that the Galerkin ap- quires a theoretical approach that goes beyond the linearized

proximation is, instead, only a few percent off. In the limit of Boussinesq equations considered in the present j&8@gr
small g, the SH approximation reaches a finite constant

value, while the Galerkin approximation goes to zeraas
Recent measurements obtained by Oh and Af&Skfor the
nonequilibrium structure factor of sulfur hexafluoride below The authors are indebted to G. Ahlers and D. S. Cannell
the Rayleigh-Beard instability turn out to be consistent with for some valuable comments. The research at the University
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On comparing Eq(A2) with Eg. (33), we already observe
APPENDIX: WAVE NUMBER OF MAXIMUM GROWTH quite clearly the difference between the wave number of
RATE OF HYDRODYNAMIC PERTURBATIONS maximum growth rate of hydrodynamic perturbations,,

In Sec. VI we derived an expression for the wave numbe@nd the wave numbeq,,, of fluctuations maximally en-
Qmax COrresponding to the maximum enhancement of the inhanced. From E¢33) we see thaf|., does not contain the
tensity of the nonequilibrium fluctuations, as a function ofterm linear ine in the case of free boundaries.
e=(R—R,)/R. and of the Prandtl number. Another inter- For the case of rigid boundaries, the maximum growth
esting quantity is the wave numbay,, corresponding to the rate cannot be calculated analytically, but has been evaluated

maximum growth rate of perturbations around the quiescen'?um?r'ca"y by Domguez-Lermaet al. [48].' However, it is
conductive hydrodynamic state in the fluid laj80,33,46— possible to calculate analytically a Galerkin approximation to

) ~ ~ ~ o) the linear growth rate, much in the spirit of the calculations
48]. While both gmay and g, approachq. ase—0""", the  hregented in the main text of the paper. To perform this ap-
two wave numbers differ for finite negative valueseoénd proximate analytical calculation we consider the determinis-
this difference depends on the Pran~dtl number. tic Boussinesq equatiorighus 6T=6Q=0), Fourier trans-

To illustrate the difference betwe@p,.,, the wave num-  formed in the horizontal plane, but not in time, so that from
ber of maximum enhancement of fluctuations, and the wavggs. (5) in the main text we obtain
numberq,,, corresponding to the maximum growth rate,
we first consider the case of two free boundaries, for which

there exists a well-known analytic expression fo{q)) E[’Dw(t,q”,z)]=v[D2W(t,qH,z)]—qfag@(t,q”,z),
=g(aH)v/L2, the dimensionless linear growth rate of the (A3a)
most unstable modg80,33
~ J
== (@f+ 7% (o+1) 5 0.0, 2)=D+[Do(t,q,2) ] = VTow(t,q;,2),
ag(qp)= 20 (A3b)
=2
w!1— \/1_ 4o 1-— qiR _ where the differential operatdP was defined in Eq(8).
(o+1)2 (qf +7?)* Now we look for approximate solutions to the deterministic

Egs. (A3) whose dependence on the vertical coordirmie
expressed in terms of the same Galerkin polynomials used in
Sec. lll for the solution of the stochastic Boussinesq equa-

Note that we are using the notatig(q|) for the linear tions. Thus we consider perturbations of the form
growth rate, instead of the traditional to avoid confusion

with the Prandtl number. We observe in Eél) that the )
condition of marginal stabilityy(q;) =0 is the same condi- w(t, g ,z)=exr{g(q)t]w0(q”)(5— Z_) ,
tion obtained in the main text from an analysis of the sto- L 2
chastic Boussinesq equations for the case of two free bound-

aries. Thus, to have the possibility of the linear growth rate , 2

to be zero, the Rayleigh numbBrhas to be larger than the _ f_2

critical Rayleigh number for free boundarieR,=277%/4. 6t.q1.2) exp[g(q)t]eo(q”)( L 2)' (A4)
At R=R. the growth rate reaches the value zero at a single

finite value of the wave numbeq =0c=m/\2. For R which, evidently, do fulfill the no-slip boundary conditions,
<R, the maximum growth rate given by E@\1) is always  Eqs. (12). To calculate an approximate solution to E43)
negative, independent ef or g ; this means that the con- of the form given by Eq(A4), we substitute Eq(A4) into
ductive solution is stable. F&®>R, there are values aij Eqg. (A3), and project the first resulting equation onto the first
for which the corresponding growth rate is positive, indicat-Galerkin polynomial and the second equation onto the sec-
ing that an instability develops in the system. A plot of Eq.ond Galerkin polynomial. After switching to dimension-
(A1) shows that foR=<R, there is a maximum of the growth less variables, we obtain the following set of linear alge-

rate for a particular vaIuE”=E]m. At R=R., the maximum braic equations for the dimensionless amplitu@aga“)
is located aty. and the value of the growth rate at the maxi- = (L/D+)wq(qy) and @o(qy) = (agL3/vD1) 6o(q)):

(A1)
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g(a(af+12)  (qf'+24qf +509) af
630 630 140 (Vvo(a|))
- _ - |=o0, (A5)
R g(qp (af+10) |\ Go(ay)
1400 30 | 300

where the dimensionless growth rate is agging»/L2. To have a solution of EqA5) different from zero, the determinant
of the matrix has to be zero. From the corresponding secular equation, we solve for the linear grogthokrgening

_ 1 (@+10[o+A®G)] { \/ oA [ 27R H
q)=-= ~ = 1- 1-————| 28— = ~ e~ ) (A6)
F=2 T AG) o+ A@E" (G+10)(qf + 2407+ 504)
[
where the functiorA(q)) is given by 35(02+12)%(92+10)?

a(o)=—=5 =4 A2
1205(61 988"+ 165 73@2+ 16 132 820

~ a)_(aﬁ+10)(aﬁ+12) (A7) 21(G2+12) o +5(q2—4)
= _ y L
(Gt + 24a7 + 504 2ot5
0.3390+0.063 o
Actually there are two solutions for the growth ragg); in ~ o0+0515

Eq. (A6) we have displayed the larger one. We observe from

Eq. (A6) that the condition of marginal stabilig(q)=01is o growth rate has been investigated numerically by
the same condition, E¢21), obtained in the main text from Dominguez-Lermaet al. [48] for the case of rigid bound-

an analysis of the stochastic Boussinesq equations in the..c \\ho have proposed for the coefficiertts) in Eq.
first-order Galerkin approximation. We recall that for Eg. (A8) :[he empirical equation

(21) to hold, the Rayleigh numbédR has to be larger than a
critical Rayleigh numbeR.=1708, which is the first-order 0.295

Galerkin approximation to the critical Rayleigh number for a(0)=0.0494+ ———o0. (A10)
rigid boundaries. AR=R, the growth rate reaches the value

zero at a single finite value of the wave numbﬁw;ﬁc In Fig. 5 we have plotted (o) as a function of the Prandtl
=3.1163. ForR<R., the maximum growth rate, given by
Eqg. (A6), is always negative, independentmfora”, mean-
ing that the conductive solution is stable. F®rR; there
are values ofg; for which the corresponding growth rate
9(q)) is positive, so that the conductive solution becomes
unstable.

A plot of Eq. (A6) is qualitatively very similar to a plot of
Eqg. (A1) for the case of free boundaries; it shows that for
R=R, there is a maximum of the growth rag{q) for a
particular valuegy=q,,. At R=R;, the maximum is located
at q. and the value of the growth rate at the maximum is
zero. Taking the derivative aj(q) with respect tog, we
can deduce form EqA6) an analytical expression for the
position of the maximum aR=<R;. Specifically, we obtain

The wave number corresponding to the maximum of the

FIG. 5. Values of the linear coefficiert(o) in the expansion,
Eq. (A8), for the maximum wave numbey,, of the hydrodynamic
o perturbations. Solid curve, obtained analytically from a Galerkin

Um=0c[1+ a(0)e+O(€%)], (A8)  approximationEq. (A9)]. Dotted curve, calculated numerically by
Dominguez-Lermaet al. [48]. Dashed curve, linear coefficient in
the expansion, Eq(34), for the wave numbef|,,, of maximum

where some long algebraic calculations yield enhancement of fluctuations.

036305-15



JOSEM. ORTIZ de ZARATE AND JAN V. SENGERS PHYSICAL REVIEW BE66, 036305 (2002
number. The solid curve represents E49), obtained here =<R. significant differences do appear between their posi-
analytically using a Galerkin approximation and the dottections. To show these difference we have added in Fig. 5, as a
curve represents the empirical relationship, EfL0), pro-  dashed curve, the value ef() deduced from Eq(34) for
posed by Donnguez-Lermeet al. [48]. A simple inspection  the wave numbeq,,,, of fluctuations maximally enhanced.
of Fig. 5 shows that the Galerkin method provides a verwye observe in Fig. 5 that the difference is important and it
good approximation for the wave number of the maximumincreases with the Prandtl number. As commented before,
growth rate of hydrodynamic perturbations; for the range ofys gifference is mathematically due to the fact that the wave
Prandtl numbers displayed in the f|gure_, the dlffe_renqe be‘numberqm of maximum growth rate is obtained from solv-
tween the value ot(o) from our Galerkin approximation i, the deterministic Boussinesq equations, while the wave
and from the numerical results of Donguez-Lermzt al. is numberq,ax Of fluctuations maximally enhanced is obtained
less than 2%. f : : : .

rom solving the stochastic Boussinesq equations. We con-

We can compare Eq$A8)—(A10) for the wave number . . .
: . : _ clude that the quantity experimentally accessible for shadow-
Am OF Maximum linear growth rate of hydrodynamic pertur graph of light scattering below the instability, is the wave

bations with Eq.(34) in the main text for the wave number - _ _
Qmax Of fluctuations maximally enhanced. We observe thatNUmber gmay of fluctuations maximally enhanced and not

although atR=R; both maxima are located af,, for R Om-
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