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Lattice Boltzmann model for incompressible flows through porous media
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In this paper a lattice Boltzmann model is proposed for isothermal incompressible flow in porous media. The
key point is to include the porosity into the equilibrium distribution, and add a force term to the evolution
equation to account for the linear and nonlinear drag forces of the medaenDarcy’s term and the Forche-
imer’s term. Through the Chapman-Enskog procedure, the generalized Navier-Stokes equations for incom-
pressible flow in porous media are derived from the present lattice Boltzmann model. The generalized two-
dimensional Poiseuille flow, Couette flow, and lid-driven cavity flow are simulated using the present model. It
is found the numerical results agree well with the analytical and/or the finite-difference solutions.
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[. INTRODUCTION known that unlike the conventional numerical methods based
on discretizations of macroscopic continuum equations,
Transport phenomena in a porous medium arise in maniBM is based on microscopic models and mesoscopic ki-
fields of science and engineering. In the past several decadgetic equations for fluids. The kinetic nature of LBM enables
flow in porous media has been studied both experimentalljt very suitable for fluid systems involving microscopic in-
and theoretically. Flow in porous media usually involvesteractions. Furthermore, the simple bounce-back rule for no-
three scales: the pore scale, the representative elementaij boundary condition makes it very suitable to simulate
Vo|ume(REV) scale, and the domain scale. The REV is de_the fluid flows in porous media. In fact, the lattice gas au-
fined as a minimum element at which scale characteristics dPmata(LGA) method, the ancestor of LBM, was already
a porous flow holds. The REV scale is much larger than th@pplied to study the flows in porous media early in 1980s
pore scale but is much smaller than the domain scale. 1h10,11, and LBM was applied to porous flow soon after its
classical studies, flow in porous media is usually modeled bgmergence in 198012]. Later studies confirmed the reliabil-
some semiempirical models due to the complex structure of By 0f LBM in modeling fluid flow in porous medif12-18.
porous medium based on the V0|ume_averaging at the REm these Studies, the fluid is modeled by the standard lattice
scale. Several widely used models have been introduced f&oltzmann equatiofLBE), and the interaction between the
the |iterature, such as the Darcy’ the Brinkman_extendealﬂd and solid is handled with the nO-Sllp bounce-back rule.
Darcy, and the Forchheimer-extended Darcy models. A reThis is the most straightforward way to apply LBM to po-
cent achievement in modeling flow in porous media is theous flows. The main advantage of this method is that de-
so-called generalized model, in which all fluid forces and thetailed local information of the flow can be obtained, which
solid drag force are considered in the momentum equatiofian be used to study macroscopic relations. However, the
[1-3]. The Darcy and the two extended modéBsinkman method at the pore scale needs detailed geometric informa-
and Forchheim@rmentioned above can be viewed as thetion, and the size of computation domain cannot be too large
limiting cases of the generalized model. Furthermore, due tglue to limited computer resources since each pore of the
its similarity with the Navier-Stokes equations, this modelMedium should contains several lattice nodes. For a large
can be used to solve transient flow in porous media. Due t§ow domain, the method may perhaps be unusable. Another
the complexity of the flows in porous media, analytical so-disadvantage associated with this approach is that the super-
lutions are difficult to obtain except for very few problems. ficial (i.e., the volume-averaggdelocity of the flow cannot
For genera| cases, On|y approximate solutions can be Okp.e hgh It is known that thEVOIUme'averaged VelOCity of the
tained numerically. Many numerical simulations have beerflow u~ eu;, whereu; andu refer to the pure and averaged
conducted in the past using conventional schemes based @rlocity of the fluid, respectively, andis the porosity of the
discretizations of the semiempirical modéBs-8. medium. As applied the standard LBM to the interstitial fluid
The lattice Boltzmann method.BM), a new method for in the pores of the medium, the fluid velocity cannot be too
simulating fluid flow and modeling physics in fluids, has alsohigh due to the low Mach number limit for LBM, and thus
been successfully applied to flow in porous medih Two  cannot be high, either, especially for a medium of low po-
approaches have been adopted in simulations of porous flovesity.
using LBM. In the first approach, the fluid in the pores of the  An alternative approach to apply LBM to porous flow is
medium is directly modeled by the standard LBM. It is well to model the fluid at the REV scale. This is accomplished by
including an additional term to the standard LBE to account
for the presence of a porous medium. For instance, Dardis
*Electronic address: pcihust@wuhan.cngb.com and McCloskey proposed a lattice Boltzmann model by in-
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troducing a term describing the no-slip boundary conditionwherep is the fluid densityu and p the volume-averaged
[19]. Spaid and Phelan proposed a mog@eferred to as SP  velocity and pressure, respectively, andan effective pa-
based on the Brinkman equation for single-component flowameterF represents the total body force due to the presence
in porous medig20]. Freed proposed a similar model by of a porous medium and other external force fields, and is
adding a force term to model flows through a resistance fielgjiven by

[21]. The SP model was later extended for multicomponent

system by combining this model with a multicomponent LB €V eF.

algorithm[22]. Recently, Martys improved the SP model by F=-1cu- W|U|qu €G, 2
introducing an effective viscosity in the Brinkman equation,

?nnoddter;eaicotl:ui;r?;?/o?/re]?j S\zzl;%gri:\llseo ggg;oﬁﬁ;;getgpbe \évhgrev is the shear visc_osity of the fluid that is not neces-
simple and a computationally efficient method to modeISarlly trﬁ sam(_an?sze. Gis t_hef body forcs |rr]1duced bybf”lm
flows in porous media. In this approach, the detailed struc.?Xtemaf (;]rce. N geonzje_ztrlc unctnb‘;} ar& t ehpermea I
ture of the medium is ignored, and the statistical propertie by Kdo t é por9us medium alrg relate .toaé € pzro&ty
of the medium are included into the model directly. There—base on rgungs7 experimental investigati¢as], and can
fore, the detailed flow information at the pore scale is often e expressed 427]

unavailable. However, this approach can be used for systems 175

of large size; and with appropriate models for the porous _ 3)
medium, the LBM can produce reasonable results. However, © J1506%°

although the Brinkman model has been widely used to de-

scribe flows in porous media, some limitations still exist in €392

this model. As pointed by Vafai and Kirf24], without a =—P (4
convective term, there is no mechanism for the development 1501 ¢€)?

of the flow field, and this will lead to a physically flawed and ) ) ) _
unrealistic situation. The nonlinear inertial term is not in- Whered, is the solid particle diameter. One can see that as

cluded in the Brinkman model either, and thus, is suitable fo€— 1, I-€., in the absence of porous medium, the generalized
low-speed flows only. momentum equatiofiLb) reduces to the Navier-Stokes equa-
In this paper, we will propose a generalized lattice Boltz-tion for f_ree fImd_rows. The second te.rm on the right side of
mann model for incompressible flows in porous media withEd: (1b) is the Brinkman term accounting for the presence of
the linear and nonlinear matrix drag components as well ag solid boundary. The boundary layer may be very thin in
the inertial and viscous forces taken into account. In thisSome problems, but its inclusion is important, especially for
model, the inertial force is included based on a recently deflows involving mass and/or heat transfer. The first and the
veloped technique[25], and the equilibrium distribution Second terms on the right side of E(®) are the linear
function is modified to account for the porosity of the me- (Darcy) and nonlineatForchheimerdrags due to the porous
dium. The model is applicable for a medium with both amedlum. The.q_uadranc nature of the nonhn_ear resistance
constant and a variable porosity, and can be used to transiefakes it negligible for low-speed flows, but is more note-
flows. Through the Chapmann-Enskog expansion, the genewqrthy in h!nderlng_ the fluid motion for high-speed flows.
alized Navier-Stokes equations for flow in porous media caYVithout this nonlinear term, Eq.(1b) becomes the
be derived from the model in the incompressible limit. Nu- Brinkman-extended Darcy equation. _
merical simulations of the generalized two-dimensic2a) The flow governed by Eql) is characterized by the po-
Poiseuille flow, Couette flow, and lid-driven cavity flow are rosity € and three nondimensional parameters: the Reynolds
carried out. It is found that the LBM results agree well with number Re, the Darcy number Da, and the viscosity rdtio
the analytical and/or the finite-difference solutions. as, respectively, defined as

K Ve

Il. GENERALIZED MODEL FOR POROUS FLOW Re=—-, Da=r5, =7, ®)
The generalized model for isothermal incompressible o )

fluid flow in porous media was proposed by several groupshere L and U are the characteristic length and velocity,

In this work we take the form proposed by Nithiarasual.  'espectively. For a given medium, the ratio between the lin-

[3], which is applicable for a medium with both a constant€@r and the nonlinear drags is about

and a variable porosity. The model can be expressed by the

following generalized Navier-Stokes equation: Feul /\/RN
— JDaRe. (6)
V.u=0, (1@ Therefore, for the cases in which the Reynolds number or the

Darcy number is small, the nonlinear drag can be neglected,
5 1 and the general model reduces to the Brinkman-extended
u u Darcy model. On the other hand, for large Re or Da, how-
— +(u- _|l=_= 4 2u+F 1 ) ) ¢ )
at (u V)< e) pV(Ep) VeV u+F, (1b) ever, the nonlinear drag must be considered.
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Ill. LATTICE BOLTZMANN MODEL FOR THE . 2
e-u uui(gg-—cgl)
GENERALIZED NAVIER-STOKES EQUATIONS feD=gp| 1+ "

S

(10

s 2eC

The LBM originates from the lattice-gas automata

method, and can also be viewed as a special discrete schemg in the standard LBM, the volume-average fluid denpity

for the Boltzmann equation with discrete velocities. In LBM, gnq velocityu are defined by the volume-averaged DFs,
the fluid is modeled by a single-particle distribution function

(DF). The evolution of the DF is governed by a lattice

Boltzmann equation: P:Ei fi, PUZZ ef;. (11)
fi(x,t)— fi(eq)(x,t) Through the Chapman-Enskog procedure, we can obtain the
fi(x+ed,t+o)—fi(x,t)=— - » (1) following macroscopic equations from the LBE) in the

limit of small Mach numbersee the Appendix for detajts

where f;(x,t) is the DF for the particle with velocitg at ap
position x and timet, §; is the time incrementr is the EJrV-(pU):O, (123
nondimensional relaxation time ariéf? is the equilibrium

distribution function(EDF). The EDF must be defined ap- a(

X pu) puu
propriately such that the mass and momentum are conserved ——— +V ( )
and some symmetry requirements are satisfied in order to
describe the correct hydrodynamics of the fluid. For ex-
ample, in theDnQb[28] models, the EDF is defined by

—~V(ep)+ V-[pre(Vu+uv)],
(12b)

where p=c2p/e and ve=c3(r—0.5)5,. If p~po=const,
the above equations reduce to the generalized Navier-Stokes
cq e-u uu(eg—cil) equation(1) with F=0.
fim"=wip| 1+ ?+ B a— (8) For general cases whefe: 0, the LBE must be modified
s s to account for the total force. This is done by adding a force

. . . term into the LBE,
where w; is the weight andt, is the sound speed. Boib;

and cg depend on the underlying lattice. For tix2Q9 fi(x,t)— FCD(x,t)
model, the discrete velocities are given by=0, and g fi(x+ed,t+ o) —fi(x,t)=— . + &iF; .
=\i(cosé ,sing)c with \;=1, 6;=(i—1)w/2 fori=1-4, (13)

and \;=+2, 6,=(i—5)7/2+ /4 for i=5-8. Herec

=8,/ 6; and &, is the lattice spacing. The weights are given Recently it is shown that in order to obtain correct equations
by wo=4/9, w;=1/9 fori=1-4, w;=1/36 fori=5-8, and  of hydrodynamics, the force terf, must be chosen appro-
cs=c/\/3. In LBM, the fluid densityp and velocityu are  priately and the fluid velocity must be redefin5]. A suit-
defined by the DFs, i.ep=3;f;, pu=3,ef;. It can be able choice for flow in porous media governed by Ef.is
shown that the Navier-Stokes equations can be derived froi® take

the LBE (7) through a Chapman-Enskog expansion proce-

dure in the incompressible limit. 1\le-F uF:(aa—cgl)
To model incompressible fluid flow in a porous medium Fi:‘“ip( 1- 2_7) o2 + ec? : (14)
governed by the above generalized equations in the LBM s s
framework, we first propose a LBE for a medium with po- Accordingly, the fluid velocity is defined as
rosity e, but the linear and nonlinear drag effects of the
medium as well as the external force are neglected tempo- 5,
rally (i.e., F=0). The LBE reads PUIZ &fi+ 5 pF. (15

— — fi(x,t)—f;(CD(x,t) Note thatF also contains the velocity. Equatiqi5) is a

fi(x+ed;,t+ ) —filx,t)=— + (9 nonlinear equation for the velocity. Thanks to the qua-
dratic nature of the equation, the velocitycan be given
explicitly by

T

where f;(x,t) and f;(¢? are the volume-averaged DF and
EDF at the REV scale, respectively. Note that the averaging

%
is only of conceptual significance, just as what is done in the U= —=—, (16)
standard LBE where the averaged particle numioerthe Cot \Ca+Ca|V]

distribution function is used to replace the Boolen number ) . i
in LGA. No averaging is needed in practical simulations. InWherev is a temporal velocity defined as
what follows, the overbars will be omitted for the sake of s
convenience. To include the effect of the porous medium, the _ t
' V= fi+ = €pG. 1
EDF is now defined as P Z aliTger a7
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The two parameters, andc, are given by A. Poisedille flow
We first apply the GLBE to the Poiseuille flow in a 2D
1 14 O v 6 Fe 18 channel of widthH filled with a porous medium of porosity
Coma|tTeq k] @Tey K (18 ¢ The flow is driven by a constant for@along the channel
direction. As the flow is fully developed along the channel,
Following the approach in Ref25], we can obtain the the st_rea.mW|se velocityx¢direction satisfies the following
following macroscopic equations from the LRE): equation:
d%u v F
p _ Tl G- —u-—Su?=0 (20
—e V- (pw)=0, (199 ea? o KUK
d(pu) puu with u(x,0)=u(x,H) =0, and the lateral velocity component
o +V-(T> =—Vp+V- [pro(Vu+uV)]+F, v is zero everywhere.

(195 The Reynolds number of the Poiseuille flow is defined by
Re=Hug/v, whereu is the peak velocity of the flow along

where the velocity is given by E416). In the incompress- the centerline in the Brinkman mode&dee below given by
ible limit, Egs.(19) reduce to the generalized Navier-Stokes
equationg1). By now, we have derived a generalized lattice ﬂ

Boltzmann equatioiGLBE) for flows in porous media. It is 2

noted that ag=1, the GLBE reduces to the standard LBE

for flows in the absence of porous media. wherer = \/m

_If we setF.=0 in the present model, we can obtain a |, simulations, the porosity is set to be 0.1, Re changes
simplified lattice Boltzmann equatioSLBE) for the  fom 0.01 to 100. and Da changes from$0to 1. The
Brinkman-extended Darcy model. Note that this simplified|yice ysed is a 8080 square mesh, and the relaxation time
model is different from the SP modg20] and the improved 5 set to be 0.8. Periodic boundary conditions are applied to

version[23] in several ways, although they all use a forcehe entrance and the exit, and the nonequilibrium extrapola-
term to represent the presence of the porous medium. Firgfs, schemg31] is applied to the top and bottom walls for
in the present simplified model, the force is included into the,q_gjin houndary condition. The velocity field is initialized to

LBE based on the method proposed by Gemal. [25], 1 zerg at each lattice node with a constant density.0,
which can produce correct hydrodynamics. But in the origi-

nd the distribution function is set to be its equilibriumt at
nal SP model, the force is introduced based on the method (gt 9

. =0. We first tested the velocity profiles for different values
Shan andZCh(g[QQ]. However, this approach produces errors ¢ pa and Da. It is found that as the flow reaches the steady
of order 7%|F|? [30]. In the improved SP moddR3], the

o state, the streamwise velocity componans uniform along
force is included based on the method proposed by Martyg,q channel, and another velocity componeris of order
et al. [30]. However, we have recently shown that this aP-0(10"1) over the whole field. Note that E€R0) is a non-
proach also produces undesirable erf@s. Another differ- |inear equation and it is difficult to obtain the analytical so-

ence between the present SLBE and the improved SP mod tion. Instead, we solved it using a second-order finite-

lies in the definitions of the equilibrium distribution func- difference scheme with a uniform mesh of size 1000 inythe

tions. In the latter model, the EDF is the same as the one Rirecti PR s

: ' ) irection, and the boundary condition is specifiedués,0)
standard LBM, but in the present SLBE, the porosity of the=u(x H)=0. In Fig. 1 the numerical results of the present
porous medium is included in the EDF explicitly. These faCtiL '

L . i S attice Boltzmann model are compared with the finite-
indicate that the present GLBE is superior to the original an ifference results. Excellent agreement can be observed be-
improved SP models even in the Brinkman limit in theory.t

. . . ween the LBM results and the finite-difference solutions,
What is more important, the two SP models are not Su'tabl'\?vhich confirms the validity of the present LBM

for flows with high Reynolds numbers and Darcy numbers, The nonlinear inertial effect due to the porous medium

as indicated by EQ6). (Forchheimer termis also studied. In the absence of this
term, the flow at steady state is described by the following

Up=—~ 1—cosh?! , (22)

IV. NUMERICAL RESULTS Brinkman-extended Darcy equation:
To validate the present lattice Boltzmann model, we ap- )
plied it to three 2D problems: the generalized Poiseuille flow Ve 3_U LG i4 —0 (22
driven by a constant force, the plane Couette flow between € gy2 K u=0.

two parallel plates, and the lid-driven flow in a square cavity.
Since no a@nalytu_:al solutions are available _for these prpb:l_he analytical solution of Eq22) can be written as
lems, the simulation results are compared with the analytica
and/or finite-difference solutions for each problem. In our
simulations, unless otherwise noted the viscosity ratio is as- _GK{[_~ coslir(y—H/2)]

; u= , (23
sumed to be unity. v coshrH/2)
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FIG. 2. Peak velocity of the generalized Couette flow for differ-

FIG. 1. Velocity profiles of the generalized Poiseuille flow for
gnt Reynolds and Darcy numbers.

different Reynolds and Darcy numbers. Symbols represent GLB

solutions and solid lines represent finite-difference solutions. moving along thex direction with a constant velocity,

wherer = \velKvg. As has been pointed in Sec. Il as the instead_of a constant force_. The_ReynoIds number of this
Reynolds number or the Darcy number is large, the nonlineag€neralized Couette flow is defined by -ReU,/v. At
inertial resistance must be considered. In Fig. 2, the peaRi€ady state, the flow still obeys EQO), but with u(x,0)

velocity of the flow is plotted, respectively, against the Rey-— 0 U(X,H)=Uo. Then this one-dimensional ordinary equa-
nolds number and the Darcy number. The dashed lines in tHin iS solved with a second-order finite-difference scheme
figure represent the results from the SLBE for the BrinkmanWith & uniform mesh of size 1000, and the finite-difference
extended Darcy equation, while the solid lines are thesolution will serve as an “exact sqlutlon for comparisons.
present LBM results for the generalized equation. As can bd N€ present GLBE is applied to this Couette flow for differ-
seen from Fig. @), for a fixed Darcy number (1), the ent Reynolds and Dallrcy. numbers. The computations are
effect of the nonlinear drag becomes more pronounced witRaSed on a 8080 lattice in all cases, and the initial and
an increase in Re. Specifically, the results indicate that, th@oUndary conditions are the same as used in the Poiseuille

; ; P ow. In Fig. 3, the LBM velocity profiles, together with the
effect of the nonlinear drag is negligible for Re.1. When inite-difference solutions, are plotted as a function of Re and

Re>0.1, however, the effect of the nonlinear drag become% .
significant and increases nearly exponentially with Re. Simi- a. Good agreement is found between the LBM and the

: N X finite-difference solutions.
larly, Fig. 2b) also indicates that for a fixed Reynolds num- To study the effect of the nonlinear drag force, we applied

b_er (_Rezo.l)_, the e_ffect of th_e nonlinear drag becomes MOT&,0th the GLBE and SLBE to this Couette flow at=R#0 for
significant with an increase in Da. various values of Da. In the case Bf=0, the Couette flow

B. Couette flow has the following analytical solution:

The Couette flow is also a channel flow similar to the sinh(ry) (24)

Poiseuille flow, but the flow is now driven by the upper plate U=to sinh(rH)’
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FIG. 3. Velocity profiles of the generalized Couette flow for
different Reynolds and Darcy numbers. Symbols represent GLBE o8l
solutions and solid lines represent finite-difference solutions.

wherer =\/ve/Kv,. In Fig. 4(a), the velocity profiles from
the SLBE are present. For comparison, the GLBE results areﬂI
also shown. One can observe that the SLBE solutions agretx
well with the analytical solutiori24) in the Brinkman limit. S oot
To further demonstrate the nonlinear drag effect, the value of
the velocity at the midway of channel is measured for differ-
ent values of Re and Dai(x,H/2)/u, against the Darcy
number and the Reynolds number are drawn in Figb) 4 002r
and 4c), respectively. From the figure, we can see that the 0
nonlinear drag effect increases both with the Darcy number

0.2k

0.16

014

o
=
=

—~ 012

Re=0.1,e=0.1

Solid line: GLBE
Dashed line: SLBE

and the Reynolds number. For small Da and/or Re, the
GLBE and SLBE produce almost identical results. But as Da
or Re increases, the nonlinear drag force hinders the flow
greatly, and it should not be neglected any more.

The porosity is set to be 0.1 for<Oy<H/2 and 1.0 for

FIG. 4. (a) Velocity profiles of the Couette flow against Rey-

We also applied the GLBE to a modified Couette flow nolds number. The symbot represents the SLBE result, the solid
where a permeable medium is positioned in the channel suqfhe represents analytical solution from Eg4), and the dashed line
that there is a gap between the medium and the upper wallepresents GLBE resultb) Velocity at the midway of the center

against Darcy numberc) Velocity at the midway of the center

H/2<y<H. As Re and Da are small, the nonlinear dragagainst Reynolds number.
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FIG. 5. Velocity profiles of the Couette flow for different vis- b
cosity ratios. Solid lines are the approximate analytical solutions 04
from Eq. (25).

03F

effect is negligible, and the velocity can be predicted by the o2r
Brinkman equation. It has been shown that the velocity pro- oal
file is linear in the gap, and exponentially decaying in the

porous mediun32]: & P
= 0.1
u=a+b(y/H—1/2) (H/2<y<H), g
-02 Da=10%¢=0.99
u=aexpr(y/H-1/2) (0<y=<H/2), (25 —oaf
x: Re=400

where r=+ev/(Kvy,), a=2rKuy/(2rK+e), and b o4 o: Re=1000
=2eUy/(2rK+€). In Fig. 5, velocity profiles are plotted for o5}

J=1 and 4 at Re0.01 and D& 0.001. The good agreement L
between the simulation and analytical solutions is clearly % o1 o0z os o4 0/:'|
shown. The GLBE correctly captured the discontinuity of the X

velocity gradient at the interface without incorporating the  FIG. 6. Velocity profiles through the cavity center. Solid lines

L L L L
0.6 0.7 0.8 0.9 1

stress boundary condition in simulations. are GLBE solutions, and symbols are benchmark solutions in Ref.
[33]. (@) u component along the vertical line through the cavity
C. Lid-driven cavity flow center.(b) v component along the horizontal line through the cavity
center.

The lid-driven cavity flow without porous medium has

been used as a benchmarking problem for many numerica}e 5150 included for comparison. One can see that the GLBE
methods due to the simple geometry and complicated flow,|tions agree well with the benchmark solutions for the
behaviors. In this section we apply the GLBE to the fluid ;5565 considered.

flow in a square cavity of heigtt filled with a porous me- The GLBE is also applied to the cavity flow with small
dium. The left, right, and bottom walls of the cavity are 5 es ofe and Da €=0.1, Re=10). In Fig. 7, the velocity
fixed, and the upper wall moves from left to right with a yqfijes through the cavity center are plotted for different
constant velocity up. The nonequilibrium extrapolation parey numbers. For comparison, the flow is also solved by a
scheme{31] is again applied to the four walls for velocity finite_gifference scheme based on a X586 mesh. Clearly,
boundary conditions, and the flow field is initialized by set-{he | BE solutions agree well with the finite-difference solu-
ting p=1.0 andu=0. tions for these cases. It is also seen that as Da decreases, the

It is known that ase—1, the generalized Navier-Stokes o ndary layer near the moving lid becomes thinner, and the
equation will reduce to the standard Navier-Stokes equation,grex in the cavity becomes weaker.

We will first apply the GLBE to the cavity flow in this case
to verify it. In simulations, we set Ba10* and Re=400 and
1000. The lattice size is fixed at 12828. The relaxation
time is set to be 0.5174 and 0.5263 for-R&€00 and 1000, In this paper a lattice Boltzmann model has been pro-
respectively. In Fig. 6, the velocity profiles through the cav-posed for incompressible fluid flows in porous media. The
ity center are plotted. The benchmark solutions of R88]  influence of the porous medium is incorporated into the

V. SUMMARY
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tion between the fluid and the solid, like the model proposed
in Ref. [19]. From this point of view, one perhaps can di-
rectly deduce the drag force due to the porous medium from
the boundary rule which is used in the LBM at pore scale,
and thus the connection between the LBMs at both the pore
and the REV scale is built up. This needs further study and is
beyond the present study.

Numerical simulations of several 2D generalized Poi-
seuille flow, Couette flow, and lid-driven cavity flow have
been carried out to validate the present model. It is observed
that the present model produces satisfactory solutions for
these problems compared with the analytical or the finite-
difference solutions. Numerical results also indicate that the
nonlinear drag force due to the porous media plays an im-
portant role for high-speed flows, and it should not be ne-
glected.

Finally, the present model can only be used to isothermal
single-phase fluid flows. Extensions for modeling the prob-
lems of convective heat transfer and multiphase flow both
with and without a phase change will be considered in future
studies.

ACKNOWLEDGMENT

This work was supported by the Hong Kong RGC Ear-

a) .
08
081
0.7
06
Re=10, e=0.1
E 05|
> _2
oak +: Da=10
: -3
x: Da=10
oar o: Da=10""
0zl Solid: Finite difference
0.1
—%.2 ofa Of4 016 018 1I 1.2
u(H/2,y)
b —
01F
0.05
a
T
\:., oos. Re=10,e=0.1
+: Da=10'2
-0.1 _3
x: Da=10
0: Da=10‘4

-0.15[

Solid: Finite difference

L L L L
01 0.2 03 0.4

FIG. 7. Velocity profiles through the cavity center. Symbols rep-
resent GLBE solutions and solid lines represent finite-difference
solutions.(a) u component along the vertical line through the cavity
center.(b) v component along the horizontal line through the cavity
center.

model by introducing a newly defined equilibrium distribu-
tion and adding a force term into the LBE. In the present
model, both the linear and the nonlinear drag effects of the
medium are considered, and it is applicable to porous flows
over a wide range. Another attractive feature of the present
model is its ability to model automatically the interfaces be-
tween different media without invoking any additional
boundary conditions. This feature enables the present LBE
more useful in simulating flows in a medium with a variable
porosity. Furthermore, the present model is very close to th
standard LBM: a simple equilibrium distribution with a
simple force term. Therefore, its advantagesy., computa-
tion efficiency, parallism, and capability to handle interfaces
between different fluidsover the solvers for the generalized
Navier-Stokes equations are just as those of the standard
LBM over the solvers for the Navier-Stokes equations. Fur-
thermore, the interaction between the fluid and the medium
is modeled by the force term in the present model. This is, in
fact, equivalent to implement an effective boundary condi-
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APPENDIX: DERIVATION OF THE MACROSCOPIC

EQUATIONS FROM THE LBE

In this appendix we derive the macroscopic equations
from the LBE(9). TheD2Q9 model is taken as an example.
o With the definition of the EDF(®? | one can easily obtain
XO/i'l 06 o7 0808 the following moments:

2 f*9=p, (A1)
2 &f*=pu, (A2)
1
2 80"V =clp+ Zpualy, (A3)

Z Qaaﬁa ‘yfi(eq): Cgp(ua(sﬁy+ UB5a7+ uyb‘alB)-

(A4)

The macrodynamical behavior arising from the LE& can

Be found from a multiscaling analysis using an expansion
parametein, which is proportional to the ratio of the lattice
spacing to a characteristic macroscopic length. To do so, the
following expansions are introduced:

fi=fO+NF DA @ 4 (A5)

&—x J +\? i V=\V A6
ot "ty o, Tl (A6)
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Expandingf;(x+¢é;,t+ 6, in Eq.(9) aboutx andt, and  whereIl(?) is the zeroth-order momentum flux tensor given
applying the above multiscaling expansions to the resultingy I10)==S;e .6 4f(”=c2p3, 5+ pu,uz/e. The first-order
continuous equation, one can obtain the following equationgnomentum f|uxH(1)EziQin(1) can be simplified using
in the consecutive order of the parameter Eqgs.(Al1). After some standard algebra, we obtain that

o) )\0 f(o):f(Eq) , A7
( ) | | ( ) HS};:—C§T5tP(V1aUB+Vlﬂua)! (A].Z)
(1)

O(Y: Dyff?=— .

(A8) where the terms of ordéd(M?) have been neglected. Here

M =u/cg is the Mach number.
£(2) The macroscopic equations on the=\2t time scale are

1
1- 2—7) DyfM=— AL (A9)  derived by taking moments of EGA9). With the aid of Egs.
(A11), the final equations can be written as

#©

at,

O(\?): +

J
whereDli:IwLe,-Vl.
1

ap
Note that from the definitions gf andu [Eq. (11)] and IZZO’ (A13a)
the moment equations Eq8A1l) and (A2), one can obtain
that
d(pu)
ot~ Vi lpre(Vautuvy)], (A13b)
> =0, X ef®=0 for k=1. (A10) 2
I I
. . . where
Taking moments of Eq(A8), we can obtain the macroscopic
equations on theé; = et time scale anc;= ex space scale: 1
op ve= ( T 5) c3d;. (A14)
——+V-(pu)=0, (Alla)
aty
p Combining the macroscopic equations on theand t,
(pu) +V,-1®=0 (Al1b) scales, one finally obtains macroscopic equations given by
aty Eqg. (12.
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