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Coupled optical excitable cells
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In this work we investigate experimentally the dynamics of two coupled optical excitable cells, namely, two
semiconductor lasers with optical feedback. We analyze the dynamics observed in terms of the statistical
properties of the time series and in terms of the phase space reconstruction from the data. We build a model
based on a simple set of deterministic equations~on a two torus! plus noise in order to capture the essential
features of the dynamics observed. We discuss the validity of our theoretical results in terms of families of
excitable systems and coupling terms.
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I. INTRODUCTION

Many systems in nature present a behavior known as
citability. A system is said to be excitable whenever it ha
stable stationary state and reacts, after a perturbation, in
qualitatively different ways: if the perturbation is small
than a threshold, it evolves towards the initial state throug
short excursion of its physical variables, while if the pert
bation exceeds the threshold, the system returns to the s
state performing a large excursion of the variables@1#.

Among the systems presenting this behavior in natu
one of the paradigmatical examples is the neuron. A la
amount of research has focused on understanding which
the advantages of excitability in terms of computation abil
as well as to understand the dynamics of collective set
excitable units@2,3#.

In recent years, a simple optical device was identified
excitable: the semiconductor laser with optical feedback@4#.
Moreover, the onset of a characteristic dynamical state
this system~known as low frequency fluctuations! was dis-
cussed in terms of an excitable dynamical skeleton plus n
@5#. According to this paradigm, the erratic dropouts pres
at the onset of the low frequency fluctuations~LFF! are the
consequences of the stochastic kicks that the system ex
ences, which can drive it beyond the threshold. Suppor
this scenario, the statistical properties of the interspike t
distributions~some of them nontrivial! can be fitted with a
noise-driven excitable dynamical system@6#. Other elements
of confidence in this scenario come from the recent obse
tion of coherence resonance@7#, and from the experimenta
analysis of the response to external modulation of a par
eter @8–10#. Recently, other laser systems have been ide
fied as excitable: broad-area semiconductor laser with op
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injection leading to thermo-optical pulsation@11# and solid-
state laser with saturable absorber@12#.

The coupling of excitable systems has been addres
theoretically in the past, in an effort to understand the diff
ent kinds of synchronization regimes in arrays of nois
driven excitable units subjected to noise@13,14#. In particu-
lar, noise-induced synchronization regimes have been stu
in two coupled excitable systems close to a codimension-
bifurcation~Andronov-homoclinic bifurcation!. This leads to
complex scenarios as a consequence of the dynamical
lution of the system in a four-dimensional phase space@15#.
In such a case, the two-dimensional character of each ce
critical due to the proximity to the homoclinic bifurcation, a
it occurs in the finite-dissipation excitable regime of the pe
dulumlike system discussed in Ref.@16#. As the dissipation
of the cells is increased, a limit is reached for which t
dynamics of each excitable unit is reduced to a o
dimensional manifold~which can be mapped to a circle!, and
then the phase space of the coupled set becomes a two t
In this strong dissipation limit, the dynamics of two couple
noise-driven excitable system can be fully understood
terms of a deterministic skeleton plus noise scenario, a
will be shown here.

In this work, we take the first steps towards the constr
tion of arrays of optical excitable cells by coupling two sem
conductor lasers with optical feedback. The coupling is re
ized optically, injecting a fraction of the intensity emitted b
one excitable system into the other. The coupling strengt
controlled independently from the amount of feedback
each laser. In this way, the excitable properties of each
can be set independently from the degree of coupling
tween the two units.

In such conditions, we are able to address the follow
issues: How do two coupled semiconductor lasers with o
cal feedback behave? Can we explain this optical device
terms of simple models of coupled excitable cells? We or
©2002 The American Physical Society27-1
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nize the work as follows. In Sec. II we describe the expe
ment. Section III contains the analysis of the experimen
results. Section IV is devoted to the discussion of a sim
model that captures the essential dynamical features of
experimental results. In Sec. V we interpret the experime
results in terms of the solutions of the model. In Sec. VI
present our conclusions.

II. THE EXPERIMENT

The experimental setup is shown in Fig. 1. It consists
two quantum-well edge emitters SDL 5400 (L1 andL2) cho-
sen from the same wafer in order to work with two mos
similar elements. The light at the output is collimated us
two high numerical aperture collimators. The beams are
vided by means of two beam splitters BS1 and BS2 of 50%
of reflectivity. The reflected light on BS1 is directed towards
L2 and vice versa, which constitutes the coupling arm~dis-
tance between the lasers is 30 cm, time delay, 1 ns!. The
transmitted beams are focused onto two beam splitters (3
and BS4, R525%) in order to provide external feedbac
~external cavity length is 40 cm!. The transmitted beams o
BS3 and BS4 are used for detection after passing throu
optical isolators, in order to prevent feedback from the m
surement set. Two fast~bandwidth up to 2 GHz! photodiodes
APD1 and APD2 are used together with a 500-MHz digit
scope~Lecroy 7200A! in order to monitor the signal outpu

A neutral density filter~NDF! is used to set the couplin
strength. Since we want to avoid spurious back reflect
from one laser facet to the other one, we put in the coup
arm an optical device assuring unidirectional propagation
the injected beams. This device consists in twol/4-wave
plates at 45° with respect to the polarization direction of
lasers(0°), and alinear polarizer in between whose tran
mission axis is set at 0°. This device allows for injecti
from one laser into the other while it cuts down any ba
reflection of the injected beam.

The solitary laser thresholds were measured to beJth,1

FIG. 1. Experimental setup for coupled excitable lasers.L1,2,
semiconductor lasers; HC, high numerical aperture collimat
BS’s, beam splitters; OI’s, optical isolators; APD’s, avalanche p
todiodes; NDF, neutral density filter; Osc, oscilloscope; FI, fe
back isolator.
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515.35 mA andJth,2515.23 mA. The excitable regime i
obtained, properly setting the pumping current and the fe
back level of each laser@4,6#. We prepared our lasers in thi
regime fixing the feedback to a level yielding to thresho
reduction of'15%, while pumping currents were varied
the range60.05Jth around the threshold value. In this rang
as a general characteristic, the lasers exhibit almost cons
intensity traces with sporadic~less that 10 in 100ms for the
highest current!, randomly distributed excitable pulses an
the pulsation rate tends to increase as the pumping curre
increased.

III. RESULTS

In this section we present the experimental results for
excitable lasers with bidirectional coupling.

We choose as observables the intensity output of the
sers,I 1 and I 2. The control parameters are the pumping p
rameters (pi[Ji /Jth,i) and the coupling intensity normalize
to the intensity emitted by the lasers (b). In this work,b will
be kept smaller than 0.05.

In order to analyze the effects of the coupling in our sy
tem, forb50 we setJ1 andJ2 in such a way that the rate o
excitable pulses obtained in each laser is the same. The
mogeneous situation cannot be obtained simply by set
J15J2 due to unavoidable small construction differences
the lasers or to differences in the feedback levels.

When the coupling is enabled, andb is sufficiently large
~typically larger than 1023), the drop frequency dramaticall
increases up to 1–5 drops/ms, depending on the pumpin
current and the coupling strength.

In Fig. 2~a! we present the time series for medium co
pling, b50.007, and pumping parametersp151.04 andp2
51. We observe large segments of constant intensity,
domly distributed in time. In addition, the pulse amplitud
does not present important fluctuations. Notice that there
some pulses inI 1 that are synchronized with pulses inI 2
within a time window of the order of the pulse width. I
addition, there are some pulses inI 1 (I 2) that have no coun-
terpart inI 2 (I 1). It is important to remark that, when a puls
in one laser is accompanied by the occurrence of a puls
the other, the time lag between pulses can be much la
than 1 ns, which is the trip time between the lasers@see Fig.
2~b!#.

In order to describe the time distributions of pulse
we perform interpulse time histograms. We definet1
5$t1(1), . . . ,t1(N)% as the vector of the time values a
which the pulses (1, . . . ,N) in I 1 occur, and t2
5$t2(1), . . . ,t2(M )% as the corresponding vector ofI 2. The
interpulse time distributions for each subsystem is calcula
as the histograms oft1( i )2t1( i 21) ~with 1, i<N) and
t2( j )2t2( j 21) ~with 1, j <M ), respectively. The results
are shown in Fig. 3~a! in continuous and dashed lines forI 1
and I 2. We first note that the distributions of the individu
signals show the characteristics of a distribution of random
distributed events; we remark that the exponential tail
long time intervals and the cutoff for short-time interva
resemble statistical distributions present in noise-driven
citable systems, where the cutoff is related to the so-ca
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-
-
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COUPLED OPTICAL EXCITABLE CELLS PHYSICAL REVIEW E66, 036227 ~2002!
refractory time@16#. We also notice that interpulse time di
tributions of both subsystems are quite similar in shape.

In order to address the degree of correlation betw
pulses in I 1 and those inI 2 we build a new vectort
5$t(1), . . . ,t(N1M )% with the elements oft1 and t2 , in
increasing order. In other words,t contains the successiv
times where a pulse occurs, regardless of whether it co
from L1 or L2. The histogram oft(k)2t(k21) ~with 1,k
<N1M ) is shown in Fig. 3~a! by the dotted line. From now
on we will refer to this curve as ‘‘interpulse time histogra
of the joint series.’’ We find that there is one wide peak w
almost the same exponential decay for long times as in
distributions of the individual series. At short-time interva
we observe the existence of a peak'10 ns wide@see inset
of Fig. 3~a!#. It is worth noting the absence of events b
tween 30 and 70 ns, which determines an ‘‘empty regio
between the two peaks.

In Fig. 3~b! we show the time interval distributions for th
weak coupling regime,b50.005. It is important to mention
that the pulsation frequency decreases asb is decreased
Thus, in order to compare these distributions with the m

FIG. 2. A segment of typical experimental time traces
coupled excitable lasers~medium coupling!. The signals are verti-
cally shifted for clarity. Up~continuous line!, I 1; down ~dashed
line!, I 2. ~b! Zoom of ~a!. The control parameters arep151.04,
p251, andb50.007~see definitions ofp andb in the text!.
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dium coupling regime we increase the pumping curre
(p151.06 andp251.03) so that the pulse rate is kept co
stant while coupling is decreased. As a result, each signa
Fig. 3~b! has approximately the same number of total eve
('950) as in Fig. 3~a!.

We can see two main differences between the joint se
distributions of Fig. 3~b! ~weak coupling! and Fig. 3~a! ~me-
dium coupling!: as the coupling is decreased, the empty
gion between the two peaks in the distribution vanishes w
a slight broadening of the short-time peak, and the slope
the long-time tail is increased~in absolute value! with re-
spect to the individual distributions.

A useful tool for getting information on the system’s d
namics is the reconstruction of the phase space through t
delay embeddings of the time series. In Fig. 4 we show tim
delay embeddings of the time series of both lasers. The
that the trajectories almost collapse to a one-dimensio
manifold allows us to infer that a good choice for the va
ables describing the trajectories in the plane could be
phase variables defined as the angles (u1 ,u2) of the vectors
pointing from an adequate center to any point on the tra

FIG. 3. Experimental time interpulse~T! histograms of the in-
tensity time series ofL1 ~continuous line! and L2 ~dashed line!;
dotted line, the joint series distribution~see definition in the text!.
~a! Medium coupling (b50.007); ~b! low coupling (b50.005).
Inset: zoom for short-time intervals~the vertical scale is linear!. The
total number of pulses in each laser is'950.
7-3
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tories in the plane. By this choice of the variables we obt
an embedding on a two torus.

We then build the phase space (u1 ,u2) as follows.
~1! For each peak inI 1 at time t1( i ), the occurrence of a

peak inI 2 is checked within a time window, i.e., we look fo
t2( j ) such that

t1~ i !2t r<t2~ j !<t1~ i !1t r , ~1!

for somej, t r being the refractory time that is the minimu
interpulse interval found in the individual series~which co-
incides with the time spent byu1,2 to perform one complete
excursion!.

~2! If ~1! is verified for somej, the event is then called
‘‘synchronization event’’ of typeS1 , S2, or Sp depending on
whether t2( j )2t1( i ).1 ns, t1( i )2t2( j ).1 ns, or ut2( j )
2t1( i )u<1 ns~we recall that 1 ns is the coupling time, i.e
the trip time between lasers!. The latter is called ‘‘in-phase
synchronization event.’’ In other words, a synchronizati
event is of typeS1 (S2) when a pulse inI 1 (I 2) anticipates
its counterpart inI 2 (I 1) within the refractory time, with a
time lag longer than the coupling time. Moreover, anSp
event is defined as the synchronization pair having a time
equal to or smaller than the coupling delay. Each ev
is displayed in the (u1 ,u2) phase space betwee
max@t1(i),t2(j)#2tr and max@t1(i),t2(j)#1tr .

~3! If condition ~1! is not verified for anyj, then the event
is called ‘‘localization event’’ since for thisi th pulse there is
no counterpart in the other subsystem. The phase space
resentation of this type of event is trivial since it correspon
to one complete phase excursion inu1 with u2 remaining in
its stationary value.

The phase portraits corresponding to the synchroniza
events are displayed in Figs. 5 and 6. From Fig. 5~a! to Fig.
5~c! we have decreased the coupling strength, while
pumping currents have been increased in order to main
the same number of total events ('950). Figures 5~b! and
5~c! correspond to the parameter values of Fig. 3~a! and 3~b!,
respectively. In Figs. 6~a!–6~c! we explore lower coupling
levels, while the pumping current values follow the sam
sequence as in Fig. 5; as a consequence, in Figs. 6~a!–6~c!
the number of events is'450.

FIG. 4. Time-delay embedding of the time series. Continuo
line: I 1; dashed line:I 2. The phase variableu is constructed as the
angle pointing from an adequate center to the trajectories.
03622
n

g
t

ep-
s

n

e
in

e

We now concern ourselves with a qualitative descript
of the reconstructed phase portraits. We first define the f
tion of localized events~in L1) asg[~localization no.!/~total
no.!.

In Fig. 5~a! a nonvisited region in the phase space can
identified between the regions filled withS1 andS2 events.
This nonvisited region shrinks in Fig. 5~b! and almost disap-
pears in Fig. 5~c!. In addition, theg fraction increases from
Fig. 5~a! to 5~c! we calculatedg50.28 in Fig. 5~a!, 0.41 in
5~b!, and 0.58 in 5~c!. Similar tendencies in the evolution o
the phase space and localization fractions are observed

s

FIG. 5. Experimental phase embeddings for high pulsation
('2 pulses/msec) and decreasing coupling strength.u1,2 come
from Fig. 4. Only synchronization events are displayed. The tra
tories on the phase space are grouped in families of different
chronization types: crosses, ‘‘in-phase synchronization’’~type S);
thick dots,I 1 anticipatingI 2 ~typeS1); dots,I 2 anticipatingI 1 ~type
S2). ~a! b50.02, ~b! b50.007, and~c! b50.005.
7-4
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COUPLED OPTICAL EXCITABLE CELLS PHYSICAL REVIEW E66, 036227 ~2002!
Figs. 6~a! to 6~c!, which correspond to a different number
total events. In Fig. 6~b!, however, the unvisited region a
most disappears. In this case theg values were calculated t
be g50.17 in Fig. 6~a!, 0.54 in 6~b!, and 0.74 in 6~c!.

It is important to note that there are no systematic cro
ings between branches of trajectories corresponding to
ferent types of events, which allows us to build confidence
our low-dimensional embedding of the signals.

It is also worth mentioning that the quantity ofSp events
decreases as the coupling is reduced. As a general conclu
we state that, for a given pulse rate, the nonvisited regio
the phase space between the regions filled withS1,2 events
contracts as the coupling strength is decreased, together

FIG. 6. Experimental phase embeddings for low pulsation r
('1 pulse/msec) and decreasing coupling strength.~a! b50.01,
~b! b50.003, and~c! b50.001. Definitions of the symbols are i
Fig. 5.
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an increase in localized events. The statistical corresp
dence in this mechanism relies on the distributions of
joint series shown in Fig. 3. The presence of nonvisited
gions in the phase portraits is reflected by empty time
gions between the two peaks in the histograms of the jo
series@see Figs. 3~a–b!#.

IV. THE MODEL

We are now concerned with the description of the expe
mental results by means of a simple dynamical model. O
strategy is to establish the essential model features need
duplicate the main experimental observations. The requ
ments are the following.

~1! The dynamical model has to be representative withi
family of excitable systems. In the case of systems close
parameter space to a linear singularity~i.e., close to a local
bifurcation!, the procedure to find the simplest equation re
resentative of the phenomenon is algorithmic. This sim
equation is known as normal form. In order to describe
citability, this procedure cannot be applied since it involve
global property of the flow~a reinjection of the dynamics
into the neighborhood of the stationary state after a la
excursion within the available region of the variables of t
problem!.

~2! The model has to be as simple as possible in term
phase space dimensionality. We recall that the experime
data seem to be well described by two variables~the phase
variablesu1 andu2). Therefore, we choose 2 as the dime
sion of the deterministic skeleton of our model.

~3! The coupling terms to be proposed have to be rep
sentative, within a family of coupling terms, of the observ
dynamical evolution. This means that, given two excita
cells, different coupling terms lead to different phase sp
structure, and therefore to distinct qualitative changes as
parameters are changed~i.e., bifurcations!. Thus, the cou-
pling terms have to be chosen in such a way that they
able to fit the experimental phase space structure, toge
with the statistical properties of the time series.

~4! Since the synchronization is a consequence of inte
tion between the subsystems via the pulses, it is desirab
fit the observed pulse shape with the model in order to c
ture the dynamics of the mutual excitation. In our case,
deal with asymmetrical pulses, i.e., pulses that have an i
tion slope faster than the recuperation tail, as can be
served from the experimental data@see Fig. 2~b!#.

Points~1!–~3! are linked to the topological properties o
the model solutions, while point~4! attempts to fit the metric
properties of the experimental phase portraits that are rel
to some statistical observables.

Our approach to fulfilling the requirements is based
Adler’s equation. This equation plays well the role of a d
namical system that is simple and displays excitability. T
system describes the dynamics of an angular variableu ac-
cording to

u̇5m2cos~u!, ~2!

e

7-5
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with mPR. For m,1, the system presents two fixed poin
one unstable and another one stable@at uu,s56 arccos(m)#.
For m.1, the system displays no fixed points, and the
namics consists in self-sustained oscillations. The transi
between these two regimes is known asAndronov bifurca-
tion. Recent studies showed that the statistical propertie
the interspike time distribution of the dropouts in a semico
ductor laser with optical feedback at the onset of LFF can
explained in terms of the system being close to an Andro
bifurcation in the presence of noise. For this reason, we
this system as the inspiration for a simple caricature to mo
the behavior of each laser.

The excitable pulses emerging from~2! are symmetric in
shape, as shown in Fig. 7. In order to account for requ
ment~4!, we introduce a slight modification of this equatio
such that we can achieve asymmetric pulses. The new m
reads

u̇5m2 f ~u!, ~3!

with

f ~u!5
1

f 0

sin~u1u0!

11a cos~u1u0!
~4!

and

f 05
1

A12a2
, ~5!

u05 arccos~2a!. ~6!

The constantsf 0 andu0 are such thatf (0)51 is a maxi-
mum. Figure 7 shows the functionf (u) for two parameters
a, together with the dynamical evolution ofx[cos(u), which
we suggest to be related to the measured variable in
experiment~the intensity!. In the casea50, Adler’s equation
is duplicated and the pulse shape is symmetric. Asa is in-

FIG. 7. Solutions of model~3!. Continuous line,a50.8; dashed
line, a50 ~Adler’s equation!. Inset: vertical axis, f (u).
x[cos(u). Notice the asymmetry of the pulses whena.0, relative
to the different rates in the ignition and recuperation slopes of
vector field, contrasting to the Adler’s case.
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creased, the functionf (u) becomes nonsymmetric with re
spect to theu50 axis. For instance,a50.8 corresponds to
two different rates for the dynamical evolution of the puls
the negative slope off (u) governs the ignition of the pulse
while the recuperation is ruled by the positive slope bef
returning to the stable state~for m,1), which is smoother
than the escape. These two distinct slopes for the igni
and the recuperation lead to the asymmetry of the pulse
can be clearly seen in Fig. 7.

Model ~3! ~for a.0) is topologically equivalent to
Adler’s equation (a50). In particular, there also exist tw
fixed points form,1, which now read

us,u5 arccosH a m2

f 0
21m2 a2 F21

6A11~ f 0
22m2!~ f 0

21m2 a2!/~m4 a2!G J 2u0 ,

~7!

and form.1 the system develops self-oscillations after t
Andronov bifurcation that takes place atm51.

To describe the dynamics of two optical excitable ce
we begin by coupling Eq.~3! for the two cells in the manne
discussed in Ref.@17#,

u̇15m̃2 f ~u1!1e sin~u22u1!, ~8!

u̇25m̃2 f ~u2!1e sin~u12u2!, ~9!

where the functional form of the coupling corresponds to
translation into angular variables of a simple restitutive co
pling in the Euclidean variables (e.0). The coupling terms
are representative, within a family, of a phase space struc
consistent with what is observed in the experiment. We a
modified the parameterm introducing a new parameterm̃
[m1c e, with c a constant to be determined. This mea
that the effect of the coupling is reflected not only in t
restitutive coupling terms, but there is also a constant te
proportional to the coupling which is added.

Before describing the solutions of model~8! for
a.0, it is of fundamental importance to remark that t
resulting phase space structure is topologically equivalen
that obtained from Adler’s equation (a50). In other words,
we find the same organization of the invariant manifolds, a
the same bifurcations as the coupling parameter is chan
Working with a.0 matches some metric features presen
the experimental results, with respect to the curvature of
invariant manifolds on the two tori, and also matches m
closely the statistical properties that arise as noise is adde
the system. Besides that, the bifurcation points take differ
values with respect to the casea50. Despite these differ-
ences, all the results we will show here concerning the mo
~8! for a.0 are equivalent to those witha50.

We begin the description of the dynamical responses
the system~8! by noticing thatu15u2 is an invariant set.
Within it, both cells behave as an excitable system~3!.
Hence, two fixed points exist, namely,uu,s5(uu,s ,uu,s), re-

e

7-6
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FIG. 8. Invariant manifolds of
the fixed points in the model o
coupled excitable cells@Eq. ~8!#.

The parameterm̃ is kept fixed at
0.9, anda50.8. ~a! e50.1; ~b! e
'0.275eh ~at the heteroclinic bi-
furcation!; ~c! e50.3, where the
saddlesuA,B coexist with an un-
stable periodic orbit;~d! e50.55,
beyond the pitchfork bifurcation
that takes place atec'0.49.
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placingm→m̃ in the Eq.~7!. The other eigenvectors of thes
fixed points will be perpendicular to the invariant directio
~by symmetry!. The fixed point atu15u25us is always a
stable node, while the fixed point atu15u25uu will be un-
stable in the transverse direction as long ase,ec[2@a
1cos(uu1u0)#/@2 f0 @11acos(uu1u0)#

2, becoming a repul-
sor. In this regime, two saddle fixed points exist outside
invariant subspace, namely,uA,B @see Fig. 8~a!#. The stable
manifolds of these fixed points are part of the unstable m
fold of uu . The fixed pointsuA,B , calculated numerically
exist for e,ec , and they are born in the direction perpe
dicular tou15u2.

Let us discuss the different dynamical scenarios that
be found, ase is increased, form̃ fixed. Fore,ec , the four
fixed points described above coexist in the phase space
e5eh,ec , a heteroclinic bifurcation takes place, in which
branch of the unstable manifold of the fixed pointuA be-
comes one of the branches of the stable manifold ofuB , and
a branch of the unstable manifold ofuB becomes one of the
branches of the stable manifold ofuA @see Fig. 8~b!#. At this
value of the coupling parameter, an unstable periodic orb
born ~with infinite period!.

Notice that before the heteroclinic bifurcation, no traje
tory along the unstable manifold ofuA (uB) performs an
excursion inu2 (u1). After the heteroclinic bifurcation, in
turn, a branch of the unstable manifold ofuA feeds the stable
manifold of the stable fixed point after a complete excurs
along bothu1,2 @see Fig. 8~c!#. The same occurs for the fixe
point uB .

At e5ec the two fixed points outside the invariant ax
collide with the fixed point atuu in a pitchfork bifurcation.
Further increasing the coupling, the only fixed points a
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located along the invariant axis, and coexist with a perio
orbit that winds around the phase space@Fig. 8~d!#.

In previous works@4,6#, the dynamical evolution of the
intensity of semiconductor lasers with optical feedback,
the LFF regime, was explained in terms of a determinis
skeleton and noise. Even the detailed structure of the in
spike time distribution and its evolution as the paramet
were changed could be explained in this way. In the sa
spirit, we interpret the experimental results described in
preceding section in terms of the deterministic structure
the flow of two coupled excitable cells plus noise.

Let us study then the solutions of

u̇15m̃2 f ~u1!1e sin~u22u1!1A2Dj1~ t !, ~10!

u̇25m̃2 f ~u2!1e sin~u12u2!1A2Dj2~ t !, ~11!

where j1(t) and j2(t) are independent white noise term
with zero mean and variance one, andD accounts for the
amplitude of the stochastic terms.

We performed numerical simulations for parameter valu
of the deterministic part of the equations above correspo
ing to the situations displayed in Figs. 8~a! and 8~c!. In Fig.
9 we show the time series obtained with parameters of
deterministic part of the equations as in Fig. 8~c!, with pa-
rameterm̃ taken to be 0.98. Notice that even if the determ
istic parts of the equations have a unique fixed point attr
tor, the evolution of the stochastically driven system is qu
complex.

Following the same data analysis protocol as in Sec.
we build an interpulse time histogram for the independ
series as well as for the mixed series for two coupling
7-7
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rameters: high coupling@ec.0.16.eh , corresponding to the
case of Fig. 8~c!#, shown in Fig. 10~a!, and low coupling
@0.05,eh , corresponding to the deterministic skeleton
Fig. 8~a!#, shown in Fig. 10~b!. For these two regimes w
keep m̃50.98 fixed, which is achieved choosingc50.182,
andm50.951 in the high coupling regime, andm50.971 in
the low coupling regime.

The distributions have the same features as in the exp
ment: ~i! the long-time decay slope in the mixed series d
tribution is larger than those of the individual series for lo
coupling, while for large coupling they remain close;~ii !
there is an empty time interval between the two peaks of
joint series distribution, which vanishes as the coupling
decreased;~iii ! the peak corresponding to short times in t
joint series distribution broadens as the coupling is
creased.

In Fig. 11~a!, we display the projection of the numeric
integration fore50.16 in the (u1 ,u2) space, with the same
method used in Sec. III, together with the deterministic
variant manifolds of the fixed points. We recall that t
events displayed in this phase portrait are of typeS~synchro-
nization!. Besides, the fraction of localized events was c
culated to beg50.16.

We begin the interpretation of the phase space by no
that the excitable threshold is the union of the stable ma
folds of uA anduB . Let us focus on an event that is triggere
in the regionu2,u1. The events triggered close touA will
evolve following closely the branch of the unstable manifo
of uA corresponding tou̇1.0 ~which is contractive in the
transverse direction!. This is evidenced by a high density o
flux around this invariant manifold. This manifold depar
from the unstable periodic orbit~it changes direction rapidly
around u1'p), giving rise to an unvisited region in th
phase portrait. These events are of typeS1 (u1 anticipating
u2). The same occurs for theS2 events. There are also even

FIG. 9. Time series of the model of coupled excitable cells w
noise @Eq. ~10!#. x[cos(u). The traces are vertically shifted fo
clarity. Up ~continuous line!, x1; down~dashed line!, x2. Parameters

are m̃50.98, D5331023, and e50.16 (e.eh'0.13), corre-
sponding to the deterministic regime of Fig. 8~c!. Notice the com-
plexity of the solution, even when the deterministic part of t
equation has a unique fixed point attractor.
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that are triggered close touu , which evolve around the in-
variant axis in the form ofSp synchronized pulses. In Fig
11~b! we show thelocalization events. These events corre
spond to trajectories that, after crossing the excitable thre
old, also cross the unstable periodic orbit before being
tracted towards the unstable manifold of the saddle. Th
noise-induced crossings of an unstable invariant set oc
rarely, and then the fraction of localized events is small. I
worth noting that the unstable periodic orbit sets a determ
istic bound for the maximum time delay betweenS pulses,
i.e., the maximum time lag forS events corresponds to
trajectory evolving along the unstable periodic orbit.

Let us now analyze the situation for low coupling,e
50.05. The phase portrait of the synchronized events
shown in Fig. 11~c!, together with the underlying determin
istic skeleton. In this case, theg fraction was calculated to be
0.63.

We can explain the large fraction of localized events fro
the deterministic skeleton. As in the preceding case, the
tem only develops complete excursions inu1 or u2 as long as

FIG. 10. Theoretical time interpulse~T! histograms calculated
from the model of coupled excitable cells plus noise. Continuo
~dashed! line, interpulse distribution of cos(u1(2)); dotted line, the
joint series distribution.~a! high coupling (e50.16); ~b! low cou-
pling (b50.05). Inset: zoom for short-time intervals~the vertical

scale is linear!. The other parameters arem̃50.98 and D53
31023. The total number of pulses in each subsystem is'2000.
7-8
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it crosses the union of the stable manifolds of the sadd
Taking this into account, and since the unstable manifold
uA,B feed the stable manifold of the stable fixed point af
only one excursion inu1 or u2, the trajectories will mostly
end at the node in an event of typeL, yielding a largeg
fraction. Moreover, theSevents represented in Fig. 11~c! can
also be interpreted in terms of the geometry of the ph
space. In order to do this, let us focus on an event of typeS1.
Due to the effect of noise, the system will eventually cro
the threshold close to the fixed pointuA . Now, if the noise
causes the trajectory to cross the~larger! branch of the stable
manifold ofuB before it reaches the node, then it will evolv
up to it performing a subsequent complete excursion inu2,

FIG. 11. Theoretical phase embeddings form̃50.98 andD53
31023. ~a! Synchronization events~symbols! for e50.16 ~high
coupling!. Families for different synchronization-types are calc
lated with the same method as in Fig. 5. Crosses, ‘‘in-phase
chronization’’ ~type S); dots, S1,2 events.~b! Localization events
~dots! for e50.16. ~c! Synchronization events~symbols! for e
50.05 ~low coupling!. Lines: the invariant manifolds of the dete
ministic part of the equations.
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which constitutes the typeS1 event. We can also explain th
existence of events of typeSp , with trajectories crossing the
threshold close touu .

Let us study the features of the phase portrait. Notice t
the trajectories of Fig. 11~c! are spread all over the phas
space. In contrast to the case fore.eh , we see that there ar
no unvisited regions, i.e., there are no empty regions betw
those filled withS1 and those filled withS2 events. This
feature can be interpreted with the deterministic skele
plus noise scheme. Specifically, it was shown that the e
tence of a nonvisited region is a consequence of the pres
of an unstable periodic orbit that rapidly rejects the unsta
branch of a saddle, giving rise to anS event. Now, this pe-
riodic orbit no longer exists, and therefore there is no und
lying mechanism capable of separating in phase space
regions filled withS1 trajectories from those filled withS2
trajectories.

V. COMPARISON WITH EXPERIMENT

In order to compare the experimental results with the
namical model, we establish a relation between the con
parametersp andb with the parameters of the model,m and
e. For a laser with feedback, it has already been shown
the excitable threshold is essentially controlled by the pum
ing parameter (p), which is related to the parameter of th
Andronov bifurcation@4,6# given bym in the case of mode
~3!. Therefore, we relatep'm. Now, in the case of two
coupled excitable lasers, we have found that the pulse
quency for the two cells depends on both the pumping
rameter and the coupling parameter, namely, the freque
increases with bothp and b. In model ~10!, the excitable
threshold is essentially governed bym̃ ~at least in the range
of parameters used in this work! and therefore the pulsatio
frequency depends onm̃. If we relateb'e, then the proposa
m̃5m1c e becomes justified ifc is properly chosen. In
particular, we have already mentioned that our choicec
50.182 yields m50.951 in the casee50.16, and m

50.971 in the casee50.05, in such a way thatm̃50.98. For
the these values ofm, the solitary excitable cells (e50) are
almost stable, i.e., they show very few drops on a long ti
scale, exactly as in the experimental case.

Let us compare Figs. 11~a! and 11~c! with Figs. 5~b! and
5~c!. In both cases, a decrease in the coupling strength
the effect of filling the unvisited regions. Furthermore, w
suggest that the region of high density ofS1 flux in Fig. 5~b!
~for u1,0 andu2.0) can be the fingerprint of the presen
of the unstable manifold of the saddle, as can be seen in
11~a!. In addition, the fraction of localized events increas
as the coupling strength is decreased, and the order of m
nitude of g is comparable between experiment and mod
The same behavior can be observed in Figs. 6~a!–6~c!.

In conclusion, the main effect of reducing the couplin
strength of two coupled excitable cells in the presence
noise is to shrink the unvisited region in phase space,
gether with increasing the fraction of localized pulses. T
can be completely understood in terms of a determini
skeleton plus noise as a consequence of a global heteroc

n-
7-9
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bifurcation that changes the topology of the~larger! branches
of the unstable manifolds of the saddles. As a consequenc
the bifurcation, these branches change from evolving on
torus performing an excursion in both variables, to perfor
ing an excursion in a single variable. The bifurcation anni
lates the unstable periodic orbit responsible for the ‘‘rep
sion’’ of trajectories in the phase space, and also for the
fraction of localized events that arise~for e.eh) as rare
noise-induced crossings of the periodic orbit.

Finally, it is important to say that the simple existence
an unstable periodic orbit is not a sufficient condition for t
existence of nonvisited regions. It is also required that t
unstable set should be sufficiently repulsive in the transve
direction. In our case, this is manifested by the rapid sep
tion of the unstable manifold from the unstable periodic
bit, as seen fore50.16 @Fig. 11~a!#. From the point of view
of the pulse shape, this can be seen as a consequence
two different rates in the ignition and in the recuperation
the excitable excursion: as two pulses become synchron
with a time lag, the larger starts to develop faster compa
with the slow recuperation tail of the leader, which is ma
fested as the sudden inflection of the unstable manifold
the saddles. If we consider the coupled Adler equation@a
50 in ~3!#, the fact that the pulse shape is symmetric ma
it necessary to increase the coupling parameter much fur
above the heteroclinic bifurcation point in order to separ
sufficiently the unstable manifold from the unstable perio
orbit. As a consequence, both sets become far apart at
point, and then the localization fraction decreases dram
cally. In fact, it turns out that in trying to fit the nonvisite
regions by means of two coupled Adler equations, the loc
ization fraction falls dramatically below 0.01, which is n
consistent with the experimental results, where we obtai
approximately 20% of localization events together w
empty regions in the phase space~for large coupling!. By
contrast, in the model we build to fit the experiment, we
able to find values ofg close to the experimental one fo
large coupling, coexisting with empty regions in the pha
portraits. Indeed, as shown in Fig. 11~a!, focusing onS1
events, the unstable manifold of the saddle stays close to
unstable periodic orbit up tou1'p when it is suddenly re-
pelled upwards. This situation makes it possible to have
importantg fraction as early crossings of the unstable pe
odic orbit, compatible with large nonvisited regions. Accor
ing to these considerations, requirement~4! of Sec. IV to
build a suitable model is justified.

VI. CONCLUSIONS

In this work we have shown that two lasers with feedba
in the excitable regime, coupled by mutual optical injectio
e
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can be interpreted in terms of two coupled excitable ce
This was achieved by studying phase variables of the in
sity dropouts, together with the interpulse time distributio
in comparison with a model of two modified coupled Adl
equations in the presence of noise. The agreement of
experimental results with the model was verified in two d
tinct ways: from the fingerprints of deterministic invaria
sets in the phase portraits, and from the evolution of stat
cal features, such as the fraction of localized events~one
pulse in one cell with no counterpart in the other! and histo-
grams of time between pulses, as the coupling parameter
varied.

Even if our model was built to fit the features of th
experiment, the geometry of the phase space is equivale
two coupled Adler equations. Then we can claim that o
results can be adapted to a large class of excitable sys
with an Andronov bifurcation. Moreover, we are working o
adapting the simple dynamical mechanisms described he
explain the case of other excitable paradigms such as
FitzHugh-Nagumo equations.

We verified that the underlying dynamical processes
volved in our paradigm are valid for a large family of co
pling terms. The angular coupling used in this work is d
rived from coupling terms in the Cartesian coordinates
the Euclidean representation of an Adler-like equation. W
ing the system~8! in Cartesian coordinates~see Ref.@17# for
the Adler case!, it is easy to demonstrate that the couplin
terms present in Eq.~8! are derived from restitutive coupling
terms inẋ and ẏ. We would like to remark that the resultin
angular coupling terms turn out to be the same for dir
Euclidean coupling terms of the form (ẋ1 ,ẏ1 ,ẋ2 ,ẏ2)5f
1e (x2 ,y2 ,x1 ,y1), f being the vector field for the un
coupled system. Furthermore, a different angular coup
but with the same bifurcations as Eq.~8! arises from direct
Euclidean coupling of only the excitatory variabley. In sum-
mary, we claim that the basic results presented here, in te
of underlying dynamical structure, belong to a large class
excitable systems and coupling terms, provided the diss
tion of the two-dimensional excitable cell is large enoug
the work by Hu and Zhou@15# points in the direction of
coupled excitable cells in the presence of noise with fin
dissipation.
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