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In this work we investigate experimentally the dynamics of two coupled optical excitable cells, namely, two
semiconductor lasers with optical feedback. We analyze the dynamics observed in terms of the statistical
properties of the time series and in terms of the phase space reconstruction from the data. We build a model
based on a simple set of deterministic equati@rsa two torug plus noise in order to capture the essential
features of the dynamics observed. We discuss the validity of our theoretical results in terms of families of
excitable systems and coupling terms.
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I. INTRODUCTION injection leading to thermo-optical pulsatiphl] and solid-
state laser with saturable absorlp&?].

Many systems in nature present a behavior known as ex- The coupling of excitable systems has been addressed
citability. A system is said to be excitable whenever it has aheoretically in the past, in an effort to understand the differ-
stable stationary state and reacts, after a perturbation, in twent kinds of synchronization regimes in arrays of noise-
qualitatively different ways: if the perturbation is smaller driven excitable units subjected to noige8,14]. In particu-
than a threshold, it evolves towards the initial state through #ar, noise-induced synchronization regimes have been studied
short excursion of its physical variables, while if the pertur-in two coupled excitable systems close to a codimension-two
bation exceeds the threshold, the system returns to the stalidfurcation (Andronov-homoclinic bifurcation This leads to
state performing a large excursion of the varialjlels complex scenarios as a consequence of the dynamical evo-

Among the systems presenting this behavior in naturelution of the system in a four-dimensional phase sgdég.
one of the paradigmatical examples is the neuron. A largén such a case, the two-dimensional character of each cell is
amount of research has focused on understanding which aggitical due to the proximity to the homoclinic bifurcation, as
the advantages of excitability in terms of computation ability,it occurs in the finite-dissipation excitable regime of the pen-
as well as to understand the dynamics of collective sets adlulumlike system discussed in R¢1.6]. As the dissipation
excitable unitd2,3]. of the cells is increased, a limit is reached for which the

In recent years, a simple optical device was identified aglynamics of each excitable unit is reduced to a one-
excitable: the semiconductor laser with optical feeddadk  dimensional manifolgwhich can be mapped to a cirgl@nd
Moreover, the onset of a characteristic dynamical state ofhen the phase space of the coupled set becomes a two torus.
this system(known as low frequency fluctuationsvas dis-  In this strong dissipation limit, the dynamics of two coupled
cussed in terms of an excitable dynamical skeleton plus noiseoise-driven excitable system can be fully understood in
[5]. According to this paradigm, the erratic dropouts presenterms of a deterministic skeleton plus noise scenario, as it
at the onset of the low frequency fluctuatioth$-F) are the  will be shown here.
consequences of the stochastic kicks that the system experi- In this work, we take the first steps towards the construc-
ences, which can drive it beyond the threshold. Supportingion of arrays of optical excitable cells by coupling two semi-
this scenario, the statistical properties of the interspike timeonductor lasers with optical feedback. The coupling is real-
distributions(some of them nontriviaglcan be fitted with a ized optically, injecting a fraction of the intensity emitted by
noise-driven excitable dynamical syst¢6j. Other elements one excitable system into the other. The coupling strength is
of confidence in this scenario come from the recent observecontrolled independently from the amount of feedback for
tion of coherence resonangg], and from the experimental each laser. In this way, the excitable properties of each unit
analysis of the response to external modulation of a paranmean be set independently from the degree of coupling be-
eter[8—-10. Recently, other laser systems have been identitween the two units.
fied as excitable: broad-area semiconductor laser with optical In such conditions, we are able to address the following

issues: How do two coupled semiconductor lasers with opti-
cal feedback behave? Can we explain this optical device in
*Email address: yaco@df.uba.ar terms of simple models of coupled excitable cells? We orga-
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APD2 O 7 APD1 =15.35 mA andl, ,=15.23 mA. The excitable regime is
gm o@ obtained, properly setting the pumping current and the feed-

back level of each lasé#,6]. We prepared our lasers in this
regime fixing the feedback to a level yielding to threshold
reduction of~15%, while pumping currents were varied in
BS4 BS3 the range* 0.05J,;, around the threshold value. In this range,
as a general characteristic, the lasers exhibit almost constant
intensity traces with sporaditess that 10 in 100us for the
highest current randomly distributed excitable pulses and
the pulsation rate tends to increase as the pumping current is
increased.

BS1
—=HC HCerq—s

@ El Il. RESULTS

In this section we present the experimental results for the

FIG. 1. Experimental setup for coupled excitable lasers,, excitable lasers with bidirectional coupling.
semiconductor lasers; HC, high numerical aperture collimators; \We choose as observables the intensity output of the la-
BS’-S, beam Sp”tters; Ol’s, Op-tical- isolators; APD-’S, avalanche phO'SersJ 1 and| 2. The control parameters are the pump|ng pa-
todmdes; NDF, neutral density filter; Osc, oscilloscope; Fl, feed-gmeters 0:=J;/J;;) and the coupling intensity normalized
back isolator. to the intensity emitted by the laser8)(. In this work, 8 will

be kept smaller than 0.05.
nize the work as follows. In Sec. Il we describe the experi- |n order to analyze the effects of the coupling in our sys-
ment. Section Ill contains the analysis of the experimentatem, for3=0 we set); andJ, in such a way that the rate of
results. Section IV is devoted to the discussion of a Simpl%xcitame pu|ses obtained in each laser is the same. The ho-
model that captures the essential dynamical features of th@ogeneous situation cannot be obtained simply by setting
experimental results. In Sec. V we interpret the experimental, = J, due to unavoidable small construction differences in
results in terms of the solutions of the model. In Sec. VI wethe lasers or to differences in the feedback levels.
present our conclusions. When the coupling is enabled, agis sufficiently large
(typically larger than 10%), the drop frequency dramatically
increases up to 1-5 dropsg, depending on the pumping
current and the coupling strength.

The experimental setup is shown in Fig. 1. It consists of In Fig. 2(a) we present the time series for medium cou-
two quantum-well edge emitters SDL 5400,(andL,) cho-  pling, 8=0.007, and pumping parametgrs=1.04 andp,
sen from the same wafer in order to work with two mostly =1. We observe large segments of constant intensity, ran-
similar elements. The light at the output is collimated usingdomly distributed in time. In addition, the pulse amplitude
two high numerical aperture collimators. The beams are didoes not present important fluctuations. Notice that there are
vided by means of two beam splitters B&d BS of 50%  some pulses irl; that are synchronized with pulses in
of reflectivity. The reflected light on BSs directed towards within a time window of the order of the pulse width. In
L, and vice versa, which constitutes the coupling ddis-  addition, there are some pulseslin(l,) that have no coun-
tance between the lasers is 30 cm, time delay, )1 fise terpartinl, (I4). Itis important to remark that, when a pulse
transmitted beams are focused onto two beam splitterg (BSn one laser is accompanied by the occurrence of a pulse in
and BS, R=25%) in order to provide external feedback the other, the time lag between pulses can be much larger
(external cavity length is 40 cmThe transmitted beams of than 1 ns, which is the trip time between the ladsee Fig.

BS; and BS are used for detection after passing through2(b)].

optical isolators, in order to prevent feedback from the mea- In order to describe the time distributions of pulses,
surement set. Two faghandwidth up to 2 GHgphotodiodes we perform interpulse time histograms. We defing
APD; and APD, are used together with a 500-MHz digital ={t1(1), ... ,t;(N)} as the vector of the time values at
scope(Lecroy 7200A in order to monitor the signal output. which the pulses (1..,N) in 1, occur, and t,

A neutral density filteNDF) is used to set the coupling ={t,(1),...,t(M)} as the corresponding vector lof The
strength. Since we want to avoid spurious back reflectioninterpulse time distributions for each subsystem is calculated
from one laser facet to the other one, we put in the couplings the histograms of;(i)—t;(i—1) (with 1<i<N) and
arm an optical device assuring unidirectional propagation of,(j)—t,(j —1) (with 1<j<M), respectively. The results
the injected beams. This device consists in twd-wave are shown in Fig. &) in continuous and dashed lines figr
plates at 45° with respect to the polarization direction of theand|,. We first note that the distributions of the individual
lasers(0°), and alinear polarizer in between whose trans- signals show the characteristics of a distribution of randomly
mission axis is set at 0°. This device allows for injectiondistributed events; we remark that the exponential tail for
from one laser into the other while it cuts down any backlong time intervals and the cutoff for short-time intervals
reflection of the injected beam. resemble statistical distributions present in noise-driven ex-

The solitary laser thresholds were measured taljge  citable systems, where the cutoff is related to the so-called

Il. THE EXPERIMENT
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FIG. 3. Experimental time interpuldd) histograms of the in-
tensity time series of; (continuous ling and L, (dashed ling
dotted line, the joint series distributidisee definition in the text
(& Medium coupling 3=0.007); (b) low coupling (8=0.005).
Inset: zoom for short-time intervalghe vertical scale is linearThe
total number of pulses in each laser<950.

600 800 1000

FIG. 2. A segment of typical experimental time traces for
coupled excitable laserfgnedium coupling The signals are verti-
cally shifted for clarity. Up(continuous ling 1,; down (dashed
line), 1,. (b) Zoom of (a). The control parameters amg =1.04,
p,=1, andB=0.007 (see definitions op and B in the tex}.

refractory time[16]. We also notice that interpulse time dis- dium coupling regime we increase the pumping currents
tributions of both subsystems are quite similar in shape. (p;=1.06 andp,=1.03) so that the pulse rate is kept con-
In order to address the degree of correlation betweestant while coupling is decreased. As a result, each signal in
pulses inl; and those inl, we build a new vectort  Fig. 3(b) has approximately the same number of total events
={t(1), ... t(N+M)} with the elements of, andt,, in  (=~950) as in Fig. 8).
increasing order. In other words,contains the successive  We can see two main differences between the joint series
times where a pulse occurs, regardless of whether it comefistributions of Fig. 8) (weak coupling and Fig. 3a) (me-
from L, or L,. The histogram of (k) —t(k—1) (with 1<k  dium coupling: as the coupling is decreased, the empty re-
<N+ M) is shown in Fig. 8a) by the dotted line. From now gion between the two peaks in the distribution vanishes with
on we will refer to this curve as “interpulse time histogram a slight broadening of the short-time peak, and the slope of
of the joint series.” We find that there is one wide peak withthe long-time tail is increasefin absolute valugwith re-
almost the same exponential decay for long times as in thepect to the individual distributions.
distributions of the individual series. At short-time intervals, A useful tool for getting information on the system’s dy-
we observe the existence of a peak0 ns wide[see inset namics is the reconstruction of the phase space through time-
of Fig. 3@]. It is worth noting the absence of events be-delay embeddings of the time series. In Fig. 4 we show time-
tween 30 and 70 ns, which determines an “empty region"delay embeddings of the time series of both lasers. The fact
between the two peaks. that the trajectories almost collapse to a one-dimensional
In Fig. 3(b) we show the time interval distributions for the manifold allows us to infer that a good choice for the vari-
weak coupling regime3=0.005. It is important to mention ables describing the trajectories in the plane could be the
that the pulsation frequency decreasesfass decreased. phase variables defined as the anglég, §,) of the vectors
Thus, in order to compare these distributions with the meypointing from an adequate center to any point on the trajec-
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FIG. 4. Time-delay embedding of the time series. Continuous
line: I1; dashed linei,. The phase variablé is constructed as the
angle pointing from an adequate center to the trajectories. 8

tories in the plane. By this choice of the variables we obtain
an embedding on a two torus.

We then build the phase space,(6,) as follows.

(1) For each peak i, at timet,(i), the occurrence of a at
peak inl, is checked within a time window, i.e., we look for
to(j) such that

8.

t() —t=<ty(j) <ty (i) +t,, &) 4

for somej, t, being the refractory time that is the minimum
interpulse interval found in the individual seriéghich co- 4
incides with the time spent by, , to perform one complete
excursion.

(2) If (1) is verified for somg, the event is then called 2
“synchronization event” of type5;, S,, or S, depending on il
whethert,(j)—t;(1)>1 ns, t;(i)—ty(j)>1 ns, or|ts(j)
—t1(i)|<1 ns(we recall that 1 ns is the coupling time, i.e.,
the trip time between lasersThe latter is called “in-phase At
synchronization event.” In other words, a synchronization
event is of typeS; (S,) when a pulse i, (I,) anticipates

0.

its counterpart in, (1,) within the refractory time, with a S
time lag longer than the coupling time. Moreover, &p 4 ;
event is defined as the synchronization pair having a time lag S

equal to or smaller than the coupling delay. Each event
is displayed in the §;,0,) phase space between FIG. 5. Experimental phase embeddings for high pulsation rate
max{ty(i),t2(j)]—t, and maxkt;(i),to(j)]+t; . (~2 pulsesiisec) and decreasing coupling strength,, come

(3) If condition (1) is not verified for anyj, then the event from Fig. 4. Only synchronization events are displayed. The trajec-
is called “localization event” since for thigth pulse there is  tories on the phase space are grouped in families of different syn-
no counterpart in the other subsystem. The phase space re‘ﬁuonization types: crosses, “in-phase synchronizati@gpe S);
resentation of this type of event is trivial since it correspondghick dots I, anticipatingl ; (typeS,); dots, |, anticipatingl, (type
to one complete phase excursiondpwith 6, remaining in ~ S2)- (@ £=0.02,(b) 5=0.007, and(c) 5=0.005.

its stationary value. _ _ . We now concern ourselves with a qualitative description
The phase portraits corresponding to the synchronizatiogf the reconstructed phase portraits. We first define the frac-
events are displayed in Figs. 5 and 6. From Fig) %0 Fig.  tjon of localized eventgin L,) asy=(localization noy/(total
5(c) we have decreased the coupling strength, while the).
pumping currents have been increased in order to maintain |n Fig. 5a) a nonvisited region in the phase space can be
the same number of total events-950). Figures B) and identified between the regions filled wil, andS, events.
5(c) correspond to the parameter values of Figy and 3b),  This nonvisited region shrinks in Fig(® and almost disap-
respectively. In Figs. @—6(c) we explore lower coupling pears in Fig. k). In addition, they fraction increases from
levels, while the pumping current values follow the sameFig. 5(a) to 5(c) we calculatedy=0.28 in Fig. %a), 0.41 in
sequence as in Fig. 5; as a consequence, in F{gs-6(c) 5(b), and 0.58 in £c). Similar tendencies in the evolution of
the number of events is450. the phase space and localization fractions are observed from
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4 a) - - - - - - an increase in localized events. The statistical correspon-

dence in this mechanism relies on the distributions of the
joint series shown in Fig. 3. The presence of nonvisited re-
gions in the phase portraits is reflected by empty time re-
gions between the two peaks in the histograms of the joint
series[see Figs. G-b].

0>

IV. THE MODEL

We are now concerned with the description of the experi-
4 mental results by means of a simple dynamical model. Our
strategy is to establish the essential model features needed to
duplicate the main experimental observations. The require-
ments are the following.

(1) The dynamical model has to be representative within a
family of excitable systems. In the case of systems close in
parameter space to a linear singulafitg., close to a local
bifurcation, the procedure to find the simplest equation rep-
resentative of the phenomenon is algorithmic. This simple
equation is known as normal form. In order to describe ex-
citability, this procedure cannot be applied since it involves a
global property of the flow(a reinjection of the dynamics
into the neighborhood of the stationary state after a large
excursion within the available region of the variables of the
4 problen).

(2) The model has to be as simple as possible in terms of
phase space dimensionality. We recall that the experimental
data seem to be well described by two varialitbe phase
variables#, and 6,). Therefore, we choose 2 as the dimen-
sion of the deterministic skeleton of our model.

(3) The coupling terms to be proposed have to be repre-
sentative, within a family of coupling terms, of the observed
dynamical evolution. This means that, given two excitable
cells, different coupling terms lead to different phase space
structure, and therefore to distinct qualitative changes as the
parameters are changéde., bifurcation$. Thus, the cou-
pling terms have to be chosen in such a way that they are
. . . . . . . able to fit the experimental phase space structure, together
4 3 2 A 0 1 2 3 4 with the statistical properties of the time series.

01 (4) Since the synchronization is a consequence of interac-

FIG. 6. Experimental phase embeddings for low pulsation ratet!on between the subsystems via the pulses, it is desirable to

(=1 pulsefzsec) and decreasing coupling strengd. 8=0.01, fit the observed. pulse shape with thg m_odel in order to cap-
(b) B=0.003, and(c) B=0.001. Definitions of the symbols are in ture thg dynamics c_>f the mutua] excitation. In our case, we
Fig. 5. deal with asymmetrical pulses, i.e., pulses that have an igni-

tion slope faster than the recuperation tail, as can be ob-

Figs. 6a) to 6(c), which correspond to a different number of served from the experimental ddtsee Fig. 2)].

0,

0,

total events. In Fig. @), however, the unvisited region al-  Points(1)—(3) are linked to the topological properties of
most disappears. In this case thevalues were calculated to the model solutions, while poiri4) attempts to fit the metric
be y=0.17 in Fig. 6a), 0.54 in Gb), and 0.74 in €c). properties of the experimental phase portraits that are related

It is important to note that there are no systematic crossto Some statistical observables. _ _
ings between branches of trajectories corresponding to dif- Our approach to fulfiling the requirements is based on
ferent types of events, which allows us to build confidence infAdler’s equation. This equation plays well the role of a dy-
our low-dimensional embedding of the signals. namical system that is S|mplg and displays eXC|tap|I|ty. This
It is also worth mentioning that the quantity 8f events ~ Systém describes the dynamics of an angular varidlze-
decreases as the coupling is reduced. As a general conclusiérding to
we state that, for a given pulse rate, the nonvisited region in
the phase space between the regions filled \Bith events )
contracts as the coupling strength is decreased, together with 0=u—cog0), 2
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1 creased, the functiofi(#) becomes nonsymmetric with re-
08 | spect to thed=0 axis. For instancea=0.8 corresponds to
06 | two different rates for the dynamical evolution of the pulse:
the negative slope df(8) governs the ignition of the pulse,
041 while the recuperation is ruled by the positive slope before
02 returning to the stable statéor ©<1), which is smoother
% oF than the escape. These two distinct slopes for the ignition
0o | and the recuperation lead to the asymmetry of the pulse, as
| can be clearly seen in Fig. 7.
04 1 Model (3) (for a>0) is topologically equivalent to
06 Adler’s equation €=0). In particular, there also exist two
08 | fixed points foru<1, which now read
1 L W 2
0 2 4 6_ 8 10 12 14 16 18 20 0. = arcco au 1
Time (arb. units) su 24 12 a2
FIG. 7. Solutions of mod€(3). Continuous linea=0.8; dashed
line, a=0 (Adler's equation. Inset: vertical axis, f(0). + 2 2\(f2 2 52 4 .2 _
x=cos(®). Notice the asy?nmetry of the pulses wher 0, relétizle N \/1+(f0 w)(fotp” al(pn” &) ] bo.
to the different rates in the ignition and recuperation slopes of the
vector field, contrasting to the Adler’s case. )

and for u>1 the system develops self-oscillations after the

with uw e R. For u<1, the system presents two fixed points, Andronov bifurcation that takes place at=1.

one unstable and another one stdaled,, s= = arccosf)]. To describe the dynamics of two optical excitable cells,

For u>1, the system displays no fixed points, and the dy~ye pegin by coupling Eq3) for the two cells in the manner
namics consists in self-sustained oscillations. The transitioisussed in Ref17]

between these two regimes is known Aasdronov bifurca-
tion. Recerjt stydles_shpwgd that the statlst|ca_l properties of 6,=m—f(6,)+ esin(6,— 6,) (8
the interspike time distribution of the dropouts in a semicon-
ductor laser with optical feedback at the onset of LFF can be
explained in terms of the system being close to an Andronov

bifurcation in the presence of noise. For this reason, we Usghere the functional form of the coupling corresponds to the

this system as the inspiration for a simple caricature to modeansiation into angular variables of a simple restitutive cou-

the behavior of each laser. _ . pling in the Euclidean variablesst0). The coupling terms
The excitable pulses emerging fraf2) are symmetric in  gre representative, within a family, of a phase space structure

shape, as shown in Fig. 7. In order to account for requirezonsistent with what is observed in the experiment. We also

ment(4), we introduce a slight modification of this equation odified the parameten introducing a new parameter

such that we can achieve asymmetric pulses. The new modg_] Yo e witﬁ ca co(resttant to be geterminerc)i This r?wreans

reads K - .
that the effect of the coupling is reflected not only in the

0=,u— t(0) 3) restitutiye coupling terms, but t_her_e is also a constant term
' proportional to the coupling which is added.
with Before describing the solutions of modegB) for
a>0, it is of fundamental importance to remark that the

1 sin( 6+ 6,) resulting phase space structure is topologically equivalent to

f(0)=+ 1+ acos 0+ 0y (4)  that obtained from Adler’s equatiom&0). In other words,

0 0 we find the same organization of the invariant manifolds, and
and the same bifurcations as the coupling parameter is changed.
Working with a>0 matches some metric features present in
the experimental results, with respect to the curvature of the

0,=—F(6,)+ esin(0,— 6,), 9

=

fo= , (5) invariant manifolds on the two tori, and also matches more
1-a closely the statistical properties that arise as noise is added to
the system. Besides that, the bifurcation points take different
o= arccog—a). (6)  values with respect to the case=0. Despite these differ-

The constant$, and 6, are such thaf(0)=1 is a maxi- ences, all the results we will show here concerning the model
mum. Figure 7 shows the functidi{#) for two parameters (8) for a>0 are equivalent to those wién=0.
a, together with the dynamical evolution £ cos(@), which We begin the description of the dynamical responses of
we suggest to be related to the measured variable in thine system(8) by noticing that,= 6, is an invariant set.
experimenithe intensity. In the cas@ =0, Adler’s equation ~ Within it, both cells behave as an excitable syst€Bn
is duplicated and the pulse shape is symmetricaAs in-  Hence, two fixed points exist, namel, .= (6, s,6,s), re-
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4 b) T T T T T T T
i 3t i
| )t |
| 1t o |
i 0r i
g N
1 F i
i or 1 FIG. 8. Invariant manifolds of
| | | the fixed points in the model of
-3 coupled excitable cell$Eq. (8)].
-4 e The parametey is kept fixed at
4 -4 -3 2 -1 0 1 2 3 4 0.9, anda=0.8.(a) e=0.1; (b) €
4 . . . . . . . ~0.27= ¢, (at the heteroclinic bi-
J 3t d | furcation; (c) €=0.3, where the
saddlesé, g coexist with an un-
1 27 A stable periodic orbit(d) e=0.55,
8 1r o . beyond the pitchfork bifurcation
| ol o ] that takes place at.~0.49.
1 qF _
1 af _
1 3f _
_4 | | | | | | | _4 | [ | | [ | [
-4 -3 =2 -1 0 1 2 3 4 -4 -3 =2 -1 0 1 2 3 4
61 6

placingu— u in the Eq.(7). The other eigenvectors of these located along the invariant axis, and coexist with a periodic
fixed points will be perpendicular to the invariant direction Orbit that winds around the phase spake. 8(d)].

(by symmetry. The fixed point atd;= 6,= 6 is always a In previous works[4,6], the dynamical evolution of the
stable node, while the fixed point &;= 6,= 6, will be un-  intensity of semiconductor lasers with optical feedback, in

stable in the transverse direction as long ese.=—[a  the LFF regime, was explained in terms of a deterministic
+cos@,+ )2 fo [L+acos@,+ 6%, becoming a repul- Skeleton and noise. Even the detailed structure of the inter-

sor. In this regime, two saddle fixed points exist outside theSPike time distribution and its evolution as the parameters
invariant subspace, namelg, s [see Fig. &)]. The stable Were Changed could be exp_lalned in this way. In_ the same
manifolds of these fixed points are part of the unstable maniSPirit, we interpret the experimental results described in the
fold of ¢,. The fixed pointsé, s, calculated numerically, preceding section in terms of the determ|n|st|p structure of
exist for e<e,, and they are born in the direction perpen- the flow of two coupled excitable cells plus noise.

dicular to 6,= 6,. Let us study then the solutions of

Let us discuss the different dynamical scenarios that can

be found, as is increased, fop fixed. Fore<e,, the four 01=p—1(01)+esin(6,— 6,)+V2D& (Y, (10
fixed points described above coexist in the phase space. At L
e=en<e€., a heteroclinic bifurcation takes place, in which a 0,=u—1(65)+ esin(0,— 6,)+ 2D E,(1), (12

branch of the unstable manifold of the fixed poi#i} be-
comes one of the branches of the stable manifoldzofand ~ where &,(t) and &,(t) are independent white noise terms
a branch of the unstable manifold 6§ becomes one of the with zero mean and variance one, abdaccounts for the
branches of the stable manifold 6f [see Fig. &)]. At this  amplitude of the stochastic terms.
value of the coupling parameter, an unstable periodic orbitis We performed numerical simulations for parameter values
born (with infinite period. of the deterministic part of the equations above correspond-
Notice that before the heteroclinic bifurcation, no trajec-ing to the situations displayed in Figs@8and §c). In Fig.
tory along the unstable manifold df, (6g) performs an 9 we show the time series obtained with parameters of the
excursion in@, (6,). After the heteroclinic bifurcation, in deterministic part of the equations as in Figc)8 with pa-
turn, a branch of the unstable manifold &f feeds the stable rameterﬁ taken to be 0.98. Notice that even if the determin-
manifold of the stable fixed point after a complete excursionistic parts of the equations have a unique fixed point attrac-
along bothé, ,[see Fig. &)]. The same occurs for the fixed tor, the evolution of the stochastically driven system is quite
point 65 . complex.
At e= €. the two fixed points outside the invariant axis  Following the same data analysis protocol as in Sec. I,
collide with the fixed point a®, in a pitchfork bifurcation. we build an interpulse time histogram for the independent
Further increasing the coupling, the only fixed points areseries as well as for the mixed series for two coupling pa-
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FIG. 9. Time series of the model of coupled excitable cells with
noise [Eq. (10)]. x=cos(@). The traces are vertically shifted for b)
clarity. Up (continuous ling x4; down (dashed ling x,. Parameters
are ©=0.98, D=3x10"3, and €=0.16 (¢>¢,~0.13), corre- ) M\
spor)ding to the detgrministic regime of FigcB Nlotic.e the com- 100 \”\; 0 1'0 2'0 20 ’:o“ 50
plexity of the solution, even when the deterministic part of the [ Time
equation has a unique fixed point attractor.

Counts

rameters: high couplinge.>0.16> ¢, corresponding to the 10 |
case of Fig. &)], shown in Fig. 10g), and low coupling
[0.05<e¢,, corresponding to the deterministic skeleton of
Fig. 8@)], shown in Fig. 1(b). For these two regimes we

keepﬁ=0.98 fixed, which is achieved choosig=0.182, 1 L. L L L '
and u=0.951 in the high coupling regime, apd=0.971 in 0 100 Tirrzl‘()eo(come'pofjtin flor(l)itS) 500 e00
the low coupling regime. 9

The distributions have the same features as in the experi- gig. 10, Theoretical time interpuls@) histograms calculated

ment: (i) the long-time decay slope in the mixed series dis-rom the model of coupled excitable cells plus noise. Continuous
tribution is larger than those of the individual series for low (gashed line, interpulse distribution of co8{;); dotted line, the
coupling, while for large coupling they remain clos;) joint series distribution(a) high coupling €=0.16); (b) low cou-
there is an empty time interval between the two peaks of thgling (8=0.05). Inset: zoom for short-time intervalthe vertical
joint series distribution, which vanishes as the coupling isscale is linear The other parameters ajg=0.98 andD=3
decreased(iii) the peak corresponding to short times in the x 10-3. The total number of pulses in each subsystens 2000.
joint series distribution broadens as the coupling is de-

creased. . o _that are triggered close t6,, which evolve around the in-

In Fig. 11(a), we display the projection of the numerical variant axis in the form of, synchronized pulses. In Fig.
integration fore=0.16 in the @,,6,) space, with the same 11(h) we show thelocalization events. These events corre-
method used in Sec. lll, together with the deterministic in-spond to trajectories that, after crossing the excitable thresh-
variant manifolds of the fixed pOintS. We recall that theo|d' also cross the unstable periodic orbit before being at-
events displayed in this phase portrait are of t§geynchro-  tracted towards the unstable manifold of the saddle. These
nizatior). BESides, the fraction of localized events was Cal'noise_induced Crossings of an unstable invariant set occur
culated to bey=0.16. rarely, and then the fraction of localized events is small. It is

We begin the interpretation of the phase space by notingyorth noting that the unstable periodic orbit sets a determin-
that the excitable threshold is the union of the stable manii'stic bound for the maximum time de|ay betwegrplﬂses’
folds of 65 and 6. Let us focus on an event that is triggered j e., the maximum time lag foB events corresponds to a
in the region#,< 6,. The events triggered close #, will  trajectory evolving along the unstable periodic orbit.
evolve following closely the branch of the unstable manifold | et us now analyze the situation for low coupling,
of 6, corresponding td91>0 (which is contractive in the =0.05. The phase portrait of the synchronized events is
transverse directionThis is evidenced by a high density of shown in Fig. 11c), together with the underlying determin-
flux around this invariant manifold. This manifold departs istic skeleton. In this case, thefraction was calculated to be
from the unstable periodic orbiit changes direction rapidly 0.63.
around 6,~ ), giving rise to an unvisited region in the We can explain the large fraction of localized events from
phase portrait. These events are of tyfhe(6, anticipating the deterministic skeleton. As in the preceding case, the sys-
0,). The same occurs for tH® events. There are also events tem only develops complete excursionginor 6, as long as
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which constitutes the typ8; event. We can also explain the
. existence of events of tyg8,, with trajectories crossing the
. threshold close t@,.

Let us study the features of the phase portrait. Notice that
the trajectories of Fig. It) are spread all over the phase
space. In contrast to the case &o¥ ¢,,, we see that there are
no unvisited regions, i.e., there are no empty regions between
i those filled withS; and those filled withS, events. This
7 feature can be interpreted with the deterministic skeleton
plus noise scheme. Specifically, it was shown that the exis-
tence of a nonvisited region is a consequence of the presence
of an unstable periodic orbit that rapidly rejects the unstable
branch of a saddle, giving rise to &event. Now, this pe-
riodic orbit no longer exists, and therefore there is no under-
lying mechanism capable of separating in phase space the
regions filled withS; trajectories from those filled witls,

7 trajectories.

V. COMPARISON WITH EXPERIMENT

i In order to compare the experimental results with the dy-
namical model, we establish a relation between the control
4 parameterg and B with the parameters of the model,and

e. For a laser with feedback, it has already been shown that
the excitable threshold is essentially controlled by the pump-
ing parameter §), which is related to the parameter of the
Andronov bifurcation4,6] given by . in the case of model

T (3). Therefore, we relateo~u. Now, in the case of two

. coupled excitable lasers, we have found that the pulse fre-
_ quency for the two cells depends on both the pumping pa-
rameter and the coupling parameter, namely, the frequency
increases with botlp and 8. In model (10), the excitable

threshold is essentially governed py(at least in the range
of parameters used in this workend therefore the pulsation

1 2 3 4 frequency depends qa. If we relate~ e, then the proposal

0
0, m=pu+c € becomes justified ifc is properly chosen. In
particular, we have already mentioned that our chaice

% 10-3 Svnchronizafi tésymbols. for e—0.16 (high =0.182 yields ©=0.951 in the casee=0.16, and u
- (8 Synchronization eventésymbol$ for €=0.16 (hig =0.971 in the case=0.05, in such a way thai=0.98. For

coupling. Families for different synchronization-types are calcu- . . .
lated with the same method as in Fig. 5. Crosses, “in-phase synt-he these values qt, the solitary excitable cellset=0) are

chronization” (type S); dots, S, , events.(b) Localization events almost stable, i.e., they show very few drops on a long time
(dot§ for e=0.16. (c) Synchronization eventésymbols for e ~ Scale, exactly as in the experimental case.

=0.05 (low coupling. Lines: the invariant manifolds of the deter- Let us compare Figs. 1d) and 11c) with Figs. §b) and
ministic part of the equations. 5(c). In both cases, a decrease in the coupling strength has

the effect of filling the unvisited regions. Furthermore, we
it crosses the union of the stable manifolds of the saddlesuggest that the region of high density@fflux in Fig. 5(b)
Taking this into account, and since the unstable manifolds offor #;<<0 and#,>0) can be the fingerprint of the presence
0,5 feed the stable manifold of the stable fixed point afterof the unstable manifold of the saddle, as can be seen in Fig.
only one excursion irg; or 6,, the trajectories will mostly 11(a). In addition, the fraction of localized events increases
end at the node in an event of type yielding a largey  as the coupling strength is decreased, and the order of mag-
fraction. Moreover, th&events represented in Fig.(tlcan  nitude of y is comparable between experiment and model.
also be interpreted in terms of the geometry of the phas&@he same behavior can be observed in Figa)-65(c).
space. In order to do this, let us focus on an event of §pe In conclusion, the main effect of reducing the coupling
Due to the effect of noise, the system will eventually crossstrength of two coupled excitable cells in the presence of
the threshold close to the fixed poiéif . Now, if the noise noise is to shrink the unvisited region in phase space, to-
causes the trajectory to cross tlfergen branch of the stable gether with increasing the fraction of localized pulses. This
manifold of 65 before it reaches the node, then it will evolve can be completely understood in terms of a deterministic
up to it performing a subsequent complete excursio,in  skeleton plus noise as a consequence of a global heteroclinic

-4 3 =2 -

FIG. 11. Theoretical phase embeddings for0.98 andD =3
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bifurcation that changes the topology of tti@gep branches can be interpreted in terms of two coupled excitable cells.
of the unstable manifolds of the saddles. As a consequence This was achieved by studying phase variables of the inten-
the bifurcation, these branches change from evolving on theity dropouts, together with the interpulse time distributions,
torus performing an excursion in both variables, to perform4n comparison with a model of two modified coupled Adler
ing an excursion in a single variable. The bifurcation annihi-equations in the presence of noise. The agreement of the
lates the unstable periodic orbit responsible for the “repul-experimental results with the model was verified in two dis-
sion” of trajectories in the phase space, and also for the lowinct ways: from the fingerprints of deterministic invariant
fraction of localized events that arigéor e>en) as rare  gets in the phase portraits, and from the evolution of statisti-
n0|s_e-|ndu§:e_d crossings of the periodic O_Yblt- _ cal features, such as the fraction of localized evdptse
Finally, it is important to say that the simple existence Ofpulse in one cell with no counterpart in the othand histo-

an unstable penodp orbit |s_not a sgfﬂment condmon for th? rams of time between pulses, as the coupling parameter was
existence of nonvisited regions. It is also required that thi aried

unstable set should be sufficiently repulsive in the transverse Even if our model was built to fit the features of the

direction. In our case, this is manifested by the rapid separa; . nt. th metrv of the ph : ivalent t
tion of the unstable manifold from the unstable periodic or-SXperment, the geometry ol the phase space Is equivaient to

bit, as seen foe=0.16[Fig. 11(@]. From the point of view two coupled Adler equations. Then we can clgim that our
of the pulse shape, this can be seen as a consequence of ffr ults can be adapted to a large class of excnable_systems
two different rates in the ignition and in the recuperation of VI an Andror_mv blfurcatlo_n. Moreover_, we are W_orklng on
the excitable excursion: as two pulses become synchronize{?ndapt.Ing the simple dynamical mechamsmg described here 1o
with a time lag, the larger starts to develop faster compare ).(tpﬁ'n rtlhs case of othtgr excitable paradigms such as the
with the slow recuperation tail of the leader, which is mani- : fNug -'f.agc]jutrﬂotetﬂua 'OQS'I ing d ical .
fested as the sudden inflection of the unstable manifold of ''c Vered that the underlying dynamical processes in-
the saddles. If we consider the coupled Adler equafian vqlved in our paradigm are Va“.d for a Ia_rge f_amlly of_cou-
=0 in (3)], the fact that the pulse shape is symmetric makegl'g?j :‘(racr)lgsé:c-:rhel'r?ngtglr?r:scf)nu?rl:ggcﬁfeds'g]ntzlc?o\r,\éqr:gtgsdf?)-r

it necessary to increase the coupling parameter much furth ﬁ’ upling ' : :

above the heteroclinic bifurcation point in order to separat : . .
sufficiently the unstable manifold from the unstable periodicIng the systent8) in Cartesian coordinatdsee Ref[17] for

orbit. As a consequence, both sets become far apart at any® Adler casg it is easy to demonstrate that the coupling

point, and then the localization fraction decreases dramatic™™mS Pf?se”t in Eq8) are derived from restitutive coupling

cally. In fact, it turns out that in trying to fit the nonvisited terms inx andy. We would like to remark that the resulting
regions by means of two coupled Adler equations, the locai@ngular coupling terms turn out to be the same for direct
ization fraction falls dramatically below 0.01, which is not Euclidean coupling terms of the formx{,y;,X,,y,)=f
consistent with the experimental results, where we obtained- € (X,,Y,,X1,Y1), f being the vector field for the un-
approximately 20% of localization events together withcoupled system. Furthermore, a different angular coupling
empty regions in the phase spader large coupling. By  but with the same bifurcations as E®) arises from direct
contrast, in the model we build to fit the experiment, we areEuclidean coupling of only the excitatory varialyleln sum-
able to find values ofy close to the experimental one for mary, we claim that the basic results presented here, in terms
large coupling, coexisting with empty regions in the phaseof underlying dynamical structure, belong to a large class of
portraits. Indeed, as shown in Fig. (&l focusing onS;  excitable systems and coupling terms, provided the dissipa-
events, the unstable manifold of the saddle stays close to tH®n of the two-dimensional excitable cell is large enough;
unstable periodic orbit up t6,~ = when it is suddenly re- the work by Hu and Zhou15] points in the direction of
pelled upwards. This situation makes it possible to have agoupled excitable cells in the presence of noise with finite
importanty fraction as early crossings of the unstable peri-dissipation.

odic orbit, compatible with large nonvisited regions. Accord-

ing to these considerations, requiremé#x of Sec. IV to

build a suitable model is justified. ACKNOWLEDGMENTS
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