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Stabilizing coupled map lattice systems with adaptive adjustment
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The adaptive adjustment mechanism is applied to stabilization of a general coupled-map lattice system
defined byx; ¢ 1="1(Xj ) + Ci(X; ¢, Xj—1¢) TD(Xj t,Xi—1;), Wwheref: R—R is a nonlinear map, an@;,D;:
R2—R are coupling functions that satisi@;(x,x)=0 andD;(x,x)=0, V xeR, i=1,2,...n. Sufficient
conditions and ranges of adjustment parameters that guarantee the local stability of a synchronized fixed point
are provided. Numerical simulations demonstrate the effectiveness and efficiency for this mechanism to stabi-
lize the system to an originally unstable synchronized fixed point or a periodic orbit.
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[. INTRODUCTION to the numerical simulations to illustrate the effectiveness
and efficiency of adaptive adjustment. Finally, concluding
Synchronizing, suppressing, and controlling spatiotemporemarks on other generalizations and possible future research
ral chaos(or turbulencé exhibited in distributed dynamical are offered in Sec. VI.
systems are of great practical importance both in experimen-
tal situations and in applications of plasma, laser devices,
chemical, and biological systems where both spatial and tem-
poral dependencies need to be considered. Due to the pres- Definition 1 A nonlinear process F(X)
ence of numerously more unstable spatial modes resulting:{f,(X),f,(X), ...f,(X)}, with X=(X1,X5, ... X,), is a
from spatial interactions, the control of spatiotemporal chaogoupled map lattice if
leading up to the control of turbulence, turns out to be much
more complicated than the similar practice for an one-
dimensional discrete system. Along with the rapid growth in
the interest of controlling chaos in genefal2], the issue of
controlling spatiotemporal chaos in particular has attracted x; ;. ;="f{(X)=f(X; )+ Ci(X; t,Xj+1¢) + Di(Xi ¢, Xi—11),
more and more attentions from physicists. Recent advances (D)
[3] include constant pinnings proposed by Parekh, Parthasa-
rathy, and Sinha, feedback pinnings by Hu and Qu, phase
space compression technique by Zhan and Shen, the linear*nt+1~
control based on the symmetry property by Grigoriev and
Cross and various delayed-feedback strategies by Pawheref: R—R is agenerating mapandC;,D;: R°>—R are
manandaet al. The adaptive control in general and in the coupling functionghat satisfy
presence of coexisting attractors in coupled-map lattices are
studied by Sinha and Gupfd]. An investigation of random _ _ -
coupling in coupled-map lattice and stabilizing effect for the Cix)=0,Di(xx)=0,¥xek, i=1,2,...n. ()
synchronized fixed point is offered by Sinf&, which in the
mean field sense has a certain similarity with adaptive ad- As to be seen in Sec. lll, Definition 1 covers htimoge-
justment mechanisrtAAM) discussed in this paper. neouscoupled-map lattice systemis the sense that they are
In this paper, the adaptive adjustment mechanism studiegenerated by a unique one-dimensional ags defined in
in Refs.[6,7] is applied to stabilize a general coupled-mapRef. [8]) which have been studied in the literature. A
lattice system. Sufficient conditions and ranges of adjustmertoupled-map lattice system defined by E#). is said to be
parameters that guarantee the local stability of synchronizedniformly coupled if C;=C and D;=D for all i
fixed points are provided. Numerical simulations are pro-=1,2,...n
vided to show the effectiveness and efficiency for this For a coupled-map lattice system, especially when the
mechanism to stabilize the system to an originally unstablsystem sizen is large, there always coexist more than one

Il. COUPLED-MAP LATTICE SYSTEMS

Xpp+1=F1(X)=1F(X10) + C1(Xq¢,Xo0) + D1(X14,Xn 1)

(X) = f(xn,t) + C:n(xn,t axl,t) + Dn(xn,t aXn—l,t)v

synchronized fixed point or a periodic orbit. fixed point (stable or unstab)eand periodic orbits. Among
In Sec. Il, a general coupled-map lattice system that covthese fixed points that are of most interest is the synchro-
ers all homogeneous coupled-map lattice systémsthe nized invariantX=(x,x, . .. x). Itis easy to check that con-

sense that they are generated by an unique one-dimensiorh':,{Ions in Eq.(2) ensure that the pomx so defined is a

map studied. Section Il then provides some sufficiency . ) . — = . L
conditions for the application of a simple uniformly adaptive synchronized fixed point, that, i¥=F(X) if and only if x

adjustment mechanism. Detailed analysis for two commonitself is a fixed point of the generating mépthat is, f(x)
seen systems are presented in Sec. IV. Section V is devotedx. Moreover, ifx is an unstable fixed point df thenX is
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also an unstable synchronized fixed pointFef The con- Ci1(x,x) +Cj»(x,x)=0,
verse, however, need not be true. That is, evenisfa stable 3
fixed point of the generating maip the synchronized fixed Di1(x,x) +Dja(X,x) =0,

point X of the coupled-map lattice systef may still be : L n i
unstable. Such a situation occurs because of the increase ﬁ:@ ::ttivfgg i:cl :‘uniuzonc FD\)NCVE:{E ?eus (([e)c”ti)vgetgc;:e'fhtg? Se
dimensionality resulting from spatial interactions. This point PA P I 9

can be made clear by examining the Jacobian matrix evaldpent’J =1.2, respectively.

— _ SV d)_ o
ated from the synchronized fixed point. Let o=1'(x), o{?= Ciy(x,x), ando{?=D;y(x,x), for
At first, we notice that the condition®) would imply i=1,2,...n. Then the Jacobian matrix &fevaluated aX,
that, for anyx e R, the following identities: denoted by7=[jij]nxn, can be expressed as
|
[0+ 0'(1C) + 0'(1d) — 0'(1C) 0 e — U(ld) .
= - O RPN C i I C)
| — a'ff) 0 e — crgd) o+ off) + (rgd) i

It is well established in matrix analysis that a fixed pointof uniformly adaptive aﬂustmer(ﬁ) can force the system
X is unstable if the sum of absolute values of the diagonatoncerned to converge ¥ by adjusting the value of only.
elements of7 is greater than the system’s dimensiorthat  On the other hand, with the knowledge of exact valueX of

is, 2{_4[jii|>n, or, equivalently, and its Jacobian matrig(X), a feedback method has been
n g proposed recently to stabilize the fixed point through cross-
2, |o+a(@+a{>n. (4 dimensional feedbacks given in the following format:
1=

Therefore, even whejwr| is small, that isx is stable forf,

the synchronized fixed poirX of a coupled-map lattice can
still be unstable.

Xip1=(I—=M)F(X;) + MX¢,

whereM is annxn matrix determined from7(X) [9].
Il UNIFORMLY ADAPTIVE ADJUSTMENT: Unfortuna_tely, dgspite the fact that an ynstable fixed point
GENERAL ANALYSIS of the one-dimensional mafyx) can b(_a either of type | or
type Il only, the coupled map lattice given by E4), how-
Since the pioneering works by Cét al. [1], various al- ever, does have the possibility of possessing a type-Ill fixed
gorithms have been designed to stabilize or control the chggoint. This can be demonstrated with the following simple
otic dynamical systems in gener§2]. Most algorithms, example.
however, either requira priori knowledge about the system Example Consider a four-dimensional uniformly
such as the values and/or the derivatives of periodic orbits, dorward-coupled lattice system in the sense thfft = o(©
force the system to converge to the periodic orbits that arand¢{% =0, for alli. Then the Jacobian evaluated at a fixed
biased from the original system. The AAM method studied inpoint is given by
Refs.[6,7], however, overcomes such limitations and can be
applied without either prior knowledge of the system itself,

. o+oa© —40© 0 0
nor extra external control signals.

For a general multidimensional systed ,=F(X,), 3 0 o+ol® -l 0
whergx=(x_1,x2, oo Xp), an implementation of un_iformly J= 0 0 oto®© —g0©
adaptive adjustment means to modify the system into ©

-0 0 0 o+ a9

Xir1=F,=(1—y)F(X)+ X, ©)
) . . _which gives rise to four distinct eigenvalues;=o, \,
where y>0 andF(X,) is a coupled-map lattice defined in =54 25 \; =g+ 0@+ jo(©).
Definition 1 If X is a synchronized fixed point ¢, thenX Now assume thatr=f(x)< —1, that is, the fixed point
is also a synchronized fixed point Bf,. s of type | for the simple one-dimensional map, then the
It is shown in Refs[6,7] that, if the original fixed poinX coupled-map lattice has at least one characteristic root that is
of Eq. (1) is of either a type | or type Il, an implementation less than oneN;=o<—1). However\,=c+ 20 will
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be greater than unity it{9=1(1—¢), which makes the are satisfied for ali=1,2, ... n.

synchronized fixed poink=(x,x,x,X) a type-Ill one. (i) If the inequalities o+ o{?+o(®+|o{?|+|a?)|
Fortunately, in most practical situations, the map lattice<—1 hold for alli=1,2,... n, there always exists £~

systems are relativelweaklycoupled[10] in the sense that =(y ,1] such that the local stability of the synchronized

the magnitude of|a(®|+|c@| is small relative to|o|,  fixed point of Eq.(5) can be guaranteed fareI'”, where

which suggests that a simple uniformly adaptive adjustment

can be implemented for a coupled-map lattice so as to stabi-  _ . 2

lize the synchronized fixed point. However, in real practice, ¥ ~ 1—m_|n[ 1-(o+ 09+ gD 4|0+ |0(d)|)] '
especially whem is large, it is impossible to verify whether ' ! ! ' '

a synchronized fixed point of a coupled lattice system is of jji) If the inequalitieso+ o9+ (9> 1+ ||+ ||
type IIl or not. It is also difficult to apply the sufficient con- hoig for all i=1,2, ... p, there always exists & =[1,
ditions given in Ref[6] directly, which are established for y") such that the local stability of the synchronized fixed

gen(_aral multidimensional systems. Therefore, it is of pr_agti-point of Eq.(5) can be guaranteed fare T'*, where
cal importance to derive some necessary and/or sufficient

conditions for a coupled-map lattice system defined by Eq. { 2 ]

(1), which leads us to Theorem 1. ¥y =1+min
Theorem 1(i) A synchronized fixed point of the coupled- i
map lattice system defined by E@) is locally stableif the

o+ O'i(c)+0'i(d)+ |(Ti(c)| + |0'i(d)| -1

Proof. With an implementation of uniformly adaptive ad-

inequalities i . . e
justment defined by Ed5), the Jacobian matrix d¥, evalu-
d d e ~ ~ . .
~1<o+ 0+ ol +[o]+]o{V]<1 (6)  ated atX and denoted by=[7;;]nxn, is thus given by
|
(1= (oto?+ai)+y (1-y)of? 0 (1-y)of”
3= (1=90{® (1=p(e+a@+o)+y (1-7)0{
(1-y)ol 0 (1-yo?  (1=y(o+toP+oP)+y
|
When y is given, a necessary condition for E() to U+Ui(c)+gi(d)<1 (8)
converge toX is =, |j;i|<n, that is,
and
n
d
2, [(1=9(o+o@+ () +y]<n. 1-(0+ 0@+ o(®)> 00| +] o). 9

However, if EQ.(9) is met, inequality(8) is also met.

o N, n ~
The stability ofX can be guaranteed ¥, |j;;| <1 holds Let 5 be the solution ot;(5 ) =hi(s ), that is,

for all i, that is,

(1= (0+ o+ 0f) 4 5] + |1 7)o + |1 7)o 1= a0+ =00~ (o+ o{%+ D) -1,
<1, (7)  which yields
fori=1,2,...n. 2
If the adjustment is restricted to the conventional range, o, = O @ © O (10
that is, 0<y<1, we can define/=1— &, with 1=6=0. 1=(o+0i?+ 017+ a7 +|0i?])
Let
Second we consider the generalized adjustment range,
gi(5):1_5(|0i(°)|+|0i(d)|)' that is, y>1. We can similarly definey=1+ 65, with §
=0.
hi(8)=1- 81 (0+ 09+ (). Now let
— d
Condition(7) holds for a particular if there exists a seg- 9i(8)=1- (o +]a(?]),
ment A; =(0,6; )C[0,1] such thatg;(6)>h;(6) for & ©. @
eA; . As illustrated in Fig. 1, this is only possible when hi(6)=|1-8(o+ i+ i —1)|.
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FIG. 1. lllustration of exis-
tence of A . (@) & >1 andA;
=[0,1]. (b) & <1 and A;
=[0,8; ].

Then similar reasoning can be carried out. Now conditin
holds for a particulari if there exists a segmend;
=(1,6)C[1) such thatg;(8)>h;(5) for se A", which
is only possible when

o+ O'i(C) + O'i(d)> 1+] a'i(c)| + | O'i(d)l. (11)

If 8" is the solution ofg;(8;")=h;(5"), then it can be
verified that

2
5= .
o+ O'i(c)+0'i(d)—1+|0'i(c)| +|0'i(d)|

We also notice that the restriction thét >0 is guaranteed
when condition(11) is satisfied.

Denote y, =1—4, and y; =1+, respectively. So
long as either Eqg9) or (11) is met, the local stability of the
synchronized fixed point can be easily guaranteed with
>max ¥ or y<min, ¥, respectively.

However, the original system is stable if and onlysjf
defined by Eq.(10) is greater than unity for all, which
implies that

o+ 0O+ oD+ |al9+ o> - 1. (12
Together with condition(9), we obtain a sufficiency condi-
tion for the stability of the unadjusted systefh) as (6),
which completes the prooQED

Remark The sufficient conditions offered in Theorem 1
are independent of the system size

IV. SOME SPECIAL SYSTEMS

The sufficient conditions offered in Theorem 1 are for a

lattice system defined by E@l) is said to beconsistently
coupledif all coupling derivatives carry the same sign, i.e.,
o{9(P=0 ando{?{?=0 (and hencero{"=0) for all
ihi=12,...n.

Consider a synchronized fixed point of EJ) that has
uniform coupling derivatives and is consistently coupled
concurrently, then(©¢(®>0 holds true. For such a fixed
point, Theorem 1 can be simplified to:

Theorem 2 For a synchronized fixed poin of Eq. (1)
that has uniform coupling derivatives and is consistently

coupled, the local stability oK is guaranteed if thécou-
pling) derivatives reside in the following regimes:

(a) regimeS formed by|o+20°9|<1 and|o|<1;

(b) regimeA formed bys(°>0 ando< —1-25(9 in
which the stability is guaranteed for=ly> v, ;

(c) regimeB formed byo“¥>0 ando>1, in which the
stability is guaranteed for< y<<vy, ;

(d) regime C formed by ¢(°9<0 ando>1-20(?, in
which the stability is guaranteed foly<<vy_; and

(e) regimeD formed byo(*?<0 ando<—1, in which
the stability the stability is guaranteed forly>1y_;
where

o+20D+1 q o+1
L |
Proof (Omitted.

Remark The stability regimes and the range of adjustment
parameters that guarantee the stability depend on only the
sum of the coupling derivatives°®, not each individual
derivative.

Figure 2 depicts the stability regimes defined in Theorem

general coupled-map system. They can be made weaker for

some special systems.
Definition 2 A synchronized fixed point of a coupled-map
lattice system defined by Edl) is said to haveuniform

coupling derivatives if o(9=C;;(X)=0c® and o®
=D;1(X)=¢@, foralli=1,2, ... n. For convenience, if a

synchronized fixed point has uniform coupling derivatives,

we shall denote their sum ag® = (9 + (@),

Apparently, auniformly coupled-map latticelefined by
C;=C andD;=D will have uniform coupling derivatives at
all synchronized fixed points.

Definition 3 A synchronized fixed point of a coupled-map

As a direct application of Theorem 2, we consider a
simple diffusive coupling structure with periodic boundary
conditions,

Xitr1=(L—a=B)f (X )+ af(X 1)+ BF(X 1),
(13

where the coupling constants obeyB=0 and o+ 8<1.
Such a system is among the most studied, see [Rgaind
references therein for detailed discussion.
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o+ 200D = -1

1<y <y
c=1
2 o(cd
o+ 20l =1

FIG. 2. Stability regimegunder uniformly AAM) for synchro-
nized fixed points with uniform and consistent derivatives.

We can reexpress E@L3) as
Xit+1= (X ) F C(Xi ¢, Xi—10) F D(Xj 1, X = 14)s
with
C(Xi,t.Xi—10) = — a(f(X; ) = f(Xi—10)),
D(Xi . Xi—10) == BEX )= F(Xi—1p))-

If the derivative of a fixed point of is o, then at the
synchronized fixed poinX=(x,x, ... x), we have ¢(©
=—aco, 0 W=-Bc, ando9 @ =aBo?>0. And hence,
Theorem 2 can be directly applied wit°? = — e, where

e=a+p.

If 0<0, the inequalityc(°®>0 implies a synchronized
fixed point of system(13) can be stabilized through a uni-
formly adaptive adjustment ifr, 8, and o satisfy the in-
equality (1-2€)o<—1, which is possible only wher

PHYSICAL REVIEW E 66, 036222 (2002

1<y<ygy

FIG. 3. Stability regimes foK; ;1= (1—¢€)f(X; ) + af(X_1y)
+ Bf(Xi+11), Wheree=a+ .

. _o(1-2e)+1
YTV h(1m2e -1

On the other hand, iiv>0, we must haver(°9<0.
Therefore, the stabilization can be achieved when (1
+2€)o>1 with

o+1

1<'y<7+=0__1.

An original stable regime is given dy1—2¢)o|<1 and
|o|<1.

Figure 3 depicts the stabilization regimes for the closed
coupled system specified by E@.3), where the sum of the
coupling parameters plays a critical role.

V. NUMERICAL SIMULATIONS

Now we examine a case of E(L.3) with the most studied
logistic equation

fi(x)=4x(1—x)

as a coupling map. We simulate a coupled-map lattice with a
system sizen=100 andae= 8= €/2. f|(X) has a unique non-

trivial fixed point ofx=3/4, at which the derivative is given

<1/2. The range of the adjustment parameter is determineby a=f’(?)= —2. The discussion in the last section sug-

by gests that when (22¢€)o<—1, that is,e<e* =1/4, a uni-

w5°f (a) e=1/5, v = 2/5 ) () e=1/2,7v=2/5

0.8 0.8

06 0.6 FIG. 4. Quick convergency
achieved with uniformly AAM:

0.4 0.4 around the guaranteed regime.

0.2 0.2

: ON : ‘ : ON : ‘
0] 50 100 150 200 ¢+ O] 50 100 150 200 t
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(a) e=4/5,v=2/5 ”5"-1' (b) e=4/5,7y=1/5

1
T49,t

0.8 0.8

] “ ) T51,¢
ol |
y \'\‘ H‘ I 2508 0.6

0.4 H ' 0.4
\

0.

(=]

FIG. 5. Quick stabilization
achieved with uniformly AAM:
Beyond the guaranteed regime.

0.2 0.2
ON ON
0] 50 100 150 200 t O] 50 100 150 200 t
formly adaptive adjustment with a parameter range Theoretically, since AAM is designed to operate under no
e[y_,1] would stabilize the system to the synchronizedprior information about the system, and all fixed points and
fixed point given byX=(3/4,3/4 . . . .,3/4), where periodic orbits(including the synchronized fixed pojnare
' ’ ’ “generic” to the adaptive adjustment mechanism, an imple-
1—4e mentation of AAM might stabilize all these fixed points si-
Y-=3"2¢ multaneously, provided the range of adjustment parameters

overlap. The final state that the adjusted system converges

Computer simulations for severak,(y) combinations are will depend on the exact state of the system when AAM is

presented in Fig. 4 and Fig. 5, where the first 100 iterationd/'99¢red on.

. . : : -« Finally, we point out that, even for very strong coupling
are carned.out without adaptive adjustments and the adjus{hat is in fact far beyond the stability regimes guaranteed in
ments are implemented after the 100th step.

. g . . . Fig. 3, an implementation of uniform adaptivity can still hel
The case depicted in Fig(&) is assumed with a relatively . gcoupled-mglp lattice to stabilize to sorﬁe fi>¥ed poiimist P
weak couplinge=1/5. Wheny=2/5, the system converges nqcessarily synchronizedr periodic orbits. This can be

to the synchronized fixed point just in a few iterations. Thegeen for the case=4/5> ¢* illustrated in Fig. 5. With an
effectiveness and efficiency of adaptive adjustment is C|ear|)§djustment parameter=2/5, the system will then converge
demonstrated in Fig. (), where the coupling is not only o 3 fixed point. This fixed point, however, is not a synchro-
strong but also beyond the theoretical guaranteed raege (nized one. Figure () plots three nearby trajectoriegsg,
=1/2>€*=1/4). We can see that the convergence to thex,,, andxs;,. Wheny decreases to 2/5, a typical trajectory
synchronized fixed point is again quickly achieved with theconverges to a two periods cycle, which is depicted in Fig.
same adjustment coefficient. 5(h).

In the real applications of coupled-map lattice systems, a
synchronized fixed point may not be of any particular impor- VI. CONCLUDING COMMENTS

tance. Therefore, as most studies shown in Ra}f. people We have proven in theory that a uniformly adaptive ad-

are more concerned with the stabilization issue rather thaﬂjstment can be utilized to stabilize a coupled-map lattice
the control issue. This is justified by the fact that there al-gystem. The necessary and sufficient conditions for the sta-
ways coexist numerous stable and/or unstable fixed pointgjjity of a synchronized fixed point in particular are identi-

(periodic orbitg in a coupled-map lattice system. This is es-fied. Simulations conducted have shown such stabilization
pecially true when the system sireis large. For a general turns out to be very effective and efficient. Stabilization of an
multidimensional system, when more than one stable fixe@riginal unstable coupled-map system is usually achieved
point or periodic orbits are present: which one of them, thesoon after the adaptive adjustment is triggered on.

system will converge generally depends on the initial states Further research would be applying AAM to the case
of the system. It would be difficult to enforce a system towhere only global variables rather than local variables are
converge to any particular state, should no additional inforobserved. The generalization of the same mechanism to
mation be utilizedat least the numerical values of this fixed adaptive pinnings of some boundary variables deserves fur-

point). ther study as well.
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