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Multichannel intermittencies induced by symmetries
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Type-I intermittencies are common phenomena that are often observed in the neighborhood of periodic
windows when a control parameter is varied. These intermittencies usually have a single reinjection channel,
that is, a single type of laminar phase was observed. Recently, type-I intermittencies with two reinjection
channels were reported in several systems. In this paper, it will be shown that type-I intermittencies withn
channels of reinjection are associated with the coexistence ofn stable periodic orbits that are mapped into each
other under a symmetry. A procedure to build type-I intermittency withn reinjection channels using then-fold
cover of an image system is presented. Cases up ton53 are explicitly given with the covers of the centered
Rössler system.
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I. INTRODUCTION

Intermittencies are often observed on the route to cha
They were first described by Pomeau and Manneville@1#.
The original intermittencies were all characterized by
single ‘‘reinjection channel.’’ A reinjection channel is a vi
tual periodic orbit. This is an orbit that will be created in
saddle-node bifurcation under a small change in control
rameter values. Before its creation, the virtual orbit tra
nearby initial conditions and entrains the evolution in t
neighbornood of the virtual orbit for many cycles. The av
age residence time in the neighborhood of the virtual p
odic orbit increases with a canonical2 1

2 power law depen-
dence as the edge of the window is approached.

Recently intermittency with two reinjection channels h
been reported in a number of systems, both driven and
tonomous: a five-dimensional model of an externally forc
laser with saturable absorber@2,3#; a driven one-dimensiona
model for the transition from periodic to chaotic motion
granular shear flows@4#; and a five-dimensional autonomou
model of a laser with saturable absorber@4,6#. Also, type-I
intermittency with two reinjection channels has been
ported in two models of the Rayleigh-Be´nard convection@5#:
the celebrated Lorenz system@7#; and a nine-dimensiona
model of the Rayleigh-Benard convection recently int
duced by Reiterer and coworkers@8# to study high-
dimensional chaos.

All the systems in which two-channel intermittency h
been observed are equivariant. This means they are
changed under the action of some symmetry group. The s
metry raises the possibility that~virtual! periodic orbits can
occur in disconnected pairs~more generally, multiplets!.
Each member of the pair provides a distinct reinjection ch
nel under suitable circumstances.

In this paper the relation between symmetry and the e
tence of multichannel intermittency will be investigated. W
will use then-fold covers of the Ro¨ssler system@9# as bench-
mark models. These are covering dynamical systems inv
ant under the rotation groupCn , generated by the rotation
Rz(2p/n) through 2p/n about thez axis. We show that
1063-651X/2002/66~3!/036220~6!/$20.00 66 0362
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intermittency withn channels~or n/2, or n/3, . . . ) can be
observed. The number of channels is equal to the numbe
disconnected stable limit cycles that cover a stable li
cycle in a periodic window in the image dynamical syste

In Sec. II we describe two-channel intermittency in t
Lorenz system. The main part of this paper is presented
Sec. III. Here we describe then-fold covers of the centered
Rössler system (n52,3). We describe how the number o
reinjection channels is changed as the cover of this syste
deformed by displacement. Our results are summarized
Sec. IV.

II. TWO-CHANNEL INTERMITTENCY
IN THE LORENZ SYSTEM

The Lorenz system@7#

ẋ52sx1sy,

ẏ5Rx2y2xz, ~1!

ż52bz1xy

is one of the first systems in which a type-I intermittency h
been investigated@10#. The Lorenz system is equivarian
i.e., it obeys the relation

g•f~x!5f~g•x!, ~2!

whereg is the 333 matrix

g5F 21 0 0

0 21 0

0 0 11
G ~3!

defining a rotation symmetryRz(p) by p around thez axis.
Depending on the control parameter values, the attracto
either fully symmetric, i.e., globally unchanged under t
action of the symmetry, or asymmetric. In the latter case, t
attractors coexist in the phase space, one being mappe
©2002 The American Physical Society20-1
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the other under the action of theg matrix. This feature re-
sults from the fact that the rotation symmetryRz(p) is an
order-2 symmetry, i.e.,g25I whereI is the identity matrix.

In the work that follows, we explore ranges of contr
parameter values in which low-period windows exist. The
windows are bounded on both sides by chaotic regions
which the strange attractor exhibits the full symmetry of t
equivariance group.

The first observation of an intermittent behavior was do
for (R,s,b)5(166.1,10,8/3). For these control parame
values, a single stable limit cycleLLRRexists in the periodic
window. It is symmetric, i.e., left globally unchanged und
the action of the symmetry@Fig. 1~a!#. Thus, a unique rein-
jection channel is observed for this virtual symmetric pe
odic orbit.

Such an intermittency may be conveniently investiga
in the image of the Lorenz system, i.e., in a representatio
the Lorenz dynamics obtained by modding out the symme
Such a representation, the so-called image system, is lo
equivalent to the original dynamics but without any resid
symmetry@9#. The image system of the Lorenz system m
be obtained using a 2→1 mapping C2 :R3(x,y,z)
→R3(u,v,w). The coordinates (u,v,w) are linear combina-
tions of elementary polynomials in (x,y,z) that are invariant
under the symmetry. The coordinate transformation

C2[u

u5Re~x1 iy !25x22y2,

v5Im~x1 iy !252xy,

w5z

~4!

FIG. 1. ~a! The period-4 limit cycleLLRRobserved in the origi-
nal phase spaceR3(x,y,z) and~b! its image 01 in the image phas
spaceR3(u,v,w). Parameter values: (R,s,b)5(166.1,10,8/3).
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introduced by Miranda and Stone@11# is used to mod out the
rotation symmetry byp around thez axis. The image system
is

u̇52~s11!u1~s2R!v1vw1~12s!r,

v̇52~R2s!u2~s11!v2uw1~R1s!r2rw, ~5!

ẇ52bw1
v
2

,

where r5Au21v2. Under this map the image of th
period-4 orbitLLRR@Fig. 1~a!# is the period-2 orbit 01@Fig.
1~b!#.

Computing the first-return map to a Poincare´ section for
the image system is equivalent to computing a first-ret
map to the maximum as Lorenz did in his original paper@7#.
Since the period-2 stable limit cycle 01 is associated with
periodic window, a second-return map has to be compu
for the image system. The tangent bifurcation~Fig. 2! is
easily exhibited although spurious intersections are diffic
to avoid. Two tangencies are observed in the return ma
n.2200 andn.5200. These correspond to the localn
maxima in the period-2 orbit 01@Fig. 1~b!#. As reported in
Ref. @10#, the intermittency in the Lorenz system occurs w
a single laminar phase associated with the virtual orbitLLRR
@Fig. 1~a!#.

In the periodic window atR5100.795 there are two
symmetry-related period-3 orbitsLLR andRRL ~Fig. 3! cre-
ated by simultaneous saddle-node bifurcations from the
tual orbits. The key point is that the disconnected virtu
orbits occur in a strange attractor~Fig. 4! that is globally
invariant under the action ofg. The trajectory is ‘‘arbi-
trarily’’ reinjected into one of the two channels. Cons
quently, the laminar phases are associated with a trajec
visiting the neighborhood of either of the two symmetr
related virtual orbitsLLR or RRL. Two different kinds of
laminar phases can thus be distinguished~Fig. 5!. This mul-
tichannel type-I intermittency is therefore closely related
the symmetry property of the Lorenz system.

FIG. 2. The second-return map to a Poincare´ section of the
image of the Lorenz system. Parameter values: (R,s,b)
5166.5,10,8/3).
0-2
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When the intermittent behavior is investigated in the i
age system, the symmetry properties are modded out an
two-channel type-I intermittency does not present any diff
ence with the common type-I intermittency as observed
any system without any symmetry properties. Indeed
single type of laminar phase is observed as suggested b
chaotic attractor of the image, which does not have any
sidual symmetry~Fig. 6!. Both asymmetric orbits of the
original phase spaceR3(x,y,z) ~Fig. 3! are mapped to the
same period-3 orbit in the image phase spaceR3(u,v,w).
This is the effect of the 2→1 mappingC2 between the equi-
variant Lorenz system and its image. The laminar phas
described by a single virtual orbit, 011, which is the image
both LLR andRRL.

Since, in the image system, the stable limit cycle ha
period equal to 3, a third-return map to a Poincare´ section
has to be computed in the image system~Fig. 7!. In such a
third-return map, three tangencies to the bisector are cle
identified atn.1000,1540, and 3200. They correspond
the three periodic points of the limit cycle to appear.

Note that when the original Lorenz system is investigat
the third-return map is much more difficult to obtain. A thir

FIG. 3. The coexisting asymmetric period-3 limit cyclesLLR
andRRLgenerated by the Lorenz system. The initial conditions
related by the g matrix. Parameter values: (R,s,b)
5(100.795,10,8/3).

FIG. 4. Chaotic attractor, globally invariant under the action
the g matrix, generated by the Lorenz system. Chaotic bursts f
the two asymmetric laminar phasesLLR andRRL follow this sym-
metric attractor. Parameter values: (R,s,b)5(100.799,10,8/3).
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return map should present 233 tangencies with the bisecto
three points being associated with each asymmetric li
cycle observed forR5100.795~Fig. 3!.

III. THE n-FOLD COVER OF THE CENTERED
RÖSSLER SYSTEM

We would like to be able to build type-I intermittencie
with n reinjection channels. To do that, the Ro¨ssler system
@12# will be used as an image system. This choice res
from the bifurcation diagram of the Ro¨ssler system which is
quite well described@13#. To this end, we will construct the
n-fold cover of the Ro¨ssler system.

In general, then-fold coverẋ5F(x), of the image system
u̇5G(u), with a rotation symmetry around thez axis is con-
structed by using

dxi

dt
5

]xi

]uj

duj

dt
5F S ]u

]xD 21G
i j

Gj~u!5Fi~x!, ~6!

e

f
m

FIG. 5. Time series of the intermittent behavior with two rei
jection channels in the Lorenz system. Parameter values: (R,s,b)
5(100.799,10,8/3).

FIG. 6. Chaotic attractor generated by the Lorenz system p
jected in the image system without any residual symmetry. T
image attractor is locally equivalent to the original one. Parame
values: (R,s,b)5(100.799,10,8/3).
0-3
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with the obvious notationsx5(x,y,z)5(x1 ,x2 ,x3), u
5(u,v,w)5(u1 ,u2 ,u3) for the variables, the notationsF
5(F1 ,F2 ,F3) and G5(G1 ,G2 ,G3) for the vector fields,
and ]u/]x for the Jacobian of then→1 mapping
C:R3(x,y,z)→R3(u,v,w).

Following the procedure introduced in Ref.@9#, the first
step is to move the inner fixed point of the Ro¨ssler system to
the origin of the phase spaceR3(u,v,w). This is done using
the rigid displacement (u,v,w)→(u1u0 ,v1v0 ,w1w0). In
the translated coordinate system, the equations for this im
system~the Rössler system has no residual symmetry! are

u̇52v2w2v02w0 ,

v̇5u1av1u01av0 , ~7!

ẇ5b1w~u1u02c!1w0u1w0~u02c!,

whereu052av05aw05(c2Ac224ab)/2 are the coordi-
nates of the inner fixed point of the original Ro¨ssler system.
This system may thus be rewritten as

u̇52v2w,

v̇5u1av, ~8!

ẇ5b̃u1w~u2 c̃!,

whereb̃5w0 and c̃5c2u0.
In what follows, it will be necessary to move the rotatio

axis in order to change the number of coexisting stable li
cycles. Indeed, thepeeling bifurcation~introduced in Ref.@9#
and later described in terms of periodic orbits! allows to
change the topology of the covers and, consequently,
connectivity properties of the orbit~s!, both stable and vir-
tual, that cover periodic orbits in the image. When the ori
of coordinates is displaced along theu axis by a quantity
equal tom, the equations for the image Ro¨ssler system are

FIG. 7. Third-return map to a Poincare´ section of the image
attractor. Three tangencies with the bisecting lines are obser
They correspond to the image of both limit cycles observed in F
3. Parameter values: (R,s,b)5(100.796,10,8/3).
03622
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u̇52v2w,

v̇5u1av1m, ~9!

ẇ5b̃~u1m!1w~u2 c̃1m!.

A. Twofold cover

Inverting C2 of Eq. ~4! and injecting it in Eq.~6!, the
covering equations of the Ro¨ssler system~9! are @9#

ẋ5
1

2r2
@2r2y1x~2ay22z!1my#,

ẏ5
1

2r2
@r2x1y~2ax21z!1mx#, ~10!

ż5b̃~x22y21m!1z~x22y22 c̃1m!,

wherer25x21y2. The chaotic attractor generated by the
covering equations is globally invariant under a rotati
symmetryRz(p) ~Fig. 8!. For (a,b,c).(0.4,2.0,4.0) it re-
mains connected form50.0 down tom524.0.

We would like to investigate the type-I intermittency o
served for a'0.4091, just before the period-3 window
Whenm50, the rotation axis is located at the origin of th
phase spaceR3(u,v,w). The period-3 limit cycle observed
in the image Ro¨ssler system is thus ‘‘lifted’’ to a single sym
metric period-6 orbit in the two-fold cover@Fig. 9~a!#. Since
a single stable limit cycle exists, a type-I intermittency wi
a single channel is observed@Fig. 10~a!#.

In order to change the number of stable limit cycles th
coexist in the covering phase space for a control param
value corresponding to a periodic window, it is sufficient
displace the rotation axis along theu axis @9#. Indeed, when
the rotation axis intersects the chaotic attractor, the flow
the cover is deformed like the deformation of an apple s
when the apple is peeled. Hence the namepeeling bifurca-
tion for the global bifurcation@9#. The chaotic attractor of the
cover is thus peeled around the rotation axis. But let us
scribe what happens to the period-3 orbit when them param-

d.
.

FIG. 8. Chaotic attractor generated by the twofold cover of
Rössler system. Both attractors are globally invariant under the
tation Rz(p). ~a! m50.0, ~b! m521.5. Parameter values
(a,b,c)5(0.432,2.0,4.0).
0-4
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eter is progressively decreased. When the rotation axi
displaced toward the left side of theu axis (m521.5), it
intersects a segment of the orbit in the image sp
R3(u,v,w). One revolution of the image periodic orbit doe
not encircle the rotation axis anymore@Fig. 9~b!#. We intro-
duce a topological index,Na , that defines the number o
times the orbit encircles the rotation axis. This index is d
creased by 1 each time the rotation axis passes through
period-3 image orbit. After the first intersection, the period
image orbit is lifted into a symmetric pair of period-3 orbi

FIG. 9. Transformation of the period-3 orbits generated by
twofold cover of the Ro¨ssler under the peeling bifurcation whenm
is varied. The location of the rotation axis is designated by
symbol3. Parameter values: (a,b,c)5(0.4096,2.0,4.0).
03622
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@Fig. 9~b!#. The topological indexÑa of this pair of periodic
orbits is equal to 2, as in the image space.

As m continues to decrease, the rotation axis cuts
image period-3 orbit a second time. Atm523.0 @Fig. 9~c!#
Na51 and the period-3 image orbit is lifted to a single sym
metric period-6 covering orbit. Finally, after the third cros
ing, at m524.5 @Fig. 9~d!# Na50 and the period-3 image
orbit is lifted to a pair of symmetry-related cover orbit
However, these orbits are embedded in two asymme
symmetry-related strange attractors.

In this sequence, there is a single reinjection channel
m50.0 andm523.0 @Figs. 9~a! and 9~c!# since the covering
orbit is connected in a symmetric strange attractor. There
two reinjection channels atm521.5 since the cover consist
of two disconnected symmetry-related orbits in a symme
connected attractor. Finally, there is one reinjection chan
~in each attractor! at m524.5, since the cover of the
period-3 orbit consists of two symmetry-related orbits, b
the covering attractor is itself not connected. It consists
two asymmetric symmetry-related attractors, each contain
one of the two symmetry-related orbits. Thex(t) time series

e

e

FIG. 10. Time series of thex variable corresponding to the cas
where one orbit~a! and two orbits~b! are associated with the
period-3 window. In the first case, an intermittency with a sing
channel is observed. In the second case, two channels are iden
and, consequently, two different laminar phases are described
rameter values: (a,b,c)5(0.409109,2.0,4.0).

FIG. 11. Chaotic attractor generated by the threefold cove
the Rössler system for~a! m50.0 and~b! m521.15. Parameter
values: (a,b,c)5(0.432,2.0,4.0).
0-5
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for one (m50.0) and two (m521.5) reinjection channels
are shown in Figs. 10~a! and 10~b!.

B. Threefold cover

A similar process can be observed in the threefold cov
of the centered Ro¨ssler system. The rotation is now by a
angle 2p/3. Following the same procedure as for the twofo
cover, the dynamical equations can be obtained using
coordinate transformation

C3[Uu5Re~x1 iy !35x323xy2

v5Im~x1 iy !353x2y2y3

w5z.

~11!

The chaotic attractor generated by the threefold cover of
centered Ro¨ssler system is shown in Figs. 11~a! and 11~b! for
two different values ofm.

When the rotation axis is displaced, the attractor gen
ated by the threefold cover is deformed as shown in F
11~b!. Since this is a threefold cover, upto three limit cycle
may coexist in the cover spaceR3(x,y,z) @Fig. 12~a!#. De-
pending on the location of the rotation axis, three period
@Fig. 12~a!# or one period-9@Fig. 12~b!# limit cycles are ob-
served. In both cases, the limit cycles are embedded in
attractor globally invariant under the rotation symmet
Rz(2p/3). Consequently, depending onm, one or three
types of laminar phases may be observed. An example w
the three types of laminar phases is shown in Fig. 13.

FIG. 12. At (a,b,c)5(0.4096,2.0,4.0) the Ro¨ssler system has a
stable period-3 orbit.~a! This is lifted to three coexisting discon-
nected symmetry-related period-3 orbits form50.0 and ~b! one
single symmetric period-9 orbit form521.15.
ns
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IV. CONCLUSION

Type-I intermittency occurs when a trajectory in a stran
attractor enters a neighborhood in phase space that gene
near recurrent behavior. Such neighborhoods are typic
associated with virtual orbits: periodic orbits about to be c
ated by a saddle-node bifurcation. Intermittency typically o
curs on the other side of the edge of a periodic wind
defined by the saddle-node bifurcation, and can only be
served easily near relatively low-period windows.

Multiple reinjection channels can exist when two or mo
virtual low-period orbits exist for the same control parame
values. The easiest way to enforce this condition is throug
symmetry. We have studied the relation between the num
of reinjection channels and symmetry in this work. In pa
ticular, we have looked atn-fold covers of the Ro¨ssler sys-
tem that are invariant under the rotation groupCn generated
by Rz(2p/n). Period-p orbits in the image system can lift t
n period-p orbits in the cover, one period-np orbit, or other
intermediate cases, depending on the symbolic dyna
name of the image orbit and some topological index (Na) of
that orbit. Whenm disconnected orbits cover the origin
orbit and when the covering attractor is connected,m rein-
jection channels are observed in type-I intermittency in
covering dynamical system. Since multistability pheno
enon naturally arises when considering networks of ident
oscillators~ @14–17# among others! that have inherent sym
metry properties, such systems typically possess a variet
coexisting attractors that can be good candidates for m
channel intermittencies induced by symmetries.

FIG. 13. Time series of thex variable corresponding to the cas
where three orbits are associated with the period-3 wind
Three channels are identified and, consequently, three diffe
laminar phases are described. Parameter values: (a,b,c)
5(0.409109,2.0,4.0).
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