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Multichannel intermittencies induced by symmetries
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Type-l intermittencies are common phenomena that are often observed in the neighborhood of periodic
windows when a control parameter is varied. These intermittencies usually have a single reinjection channel,
that is, a single type of laminar phase was observed. Recently, type-l1 intermittencies with two reinjection
channels were reported in several systems. In this paper, it will be shown that type-| intermittencies with
channels of reinjection are associated with the coexistennetable periodic orbits that are mapped into each
other under a symmetry. A procedure to build type-I intermittency witkinjection channels using threfold
cover of an image system is presented. Cases up=t8d are explicitly given with the covers of the centered
Rossler system.
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I. INTRODUCTION intermittency withn channels(or n/2, orn/3,...) can be
observed. The number of channels is equal to the number of
Intermittencies are often observed on the route to chaoslisconnected stable limit cycles that cover a stable limit
They were first described by Pomeau and Manneyille ~ cycle in a periodic window in the image dynamical system.
The original intermittencies were all characterized by a In Sec. Il we describe two-channel intermittency in the
single “reinjection channel.” A reinjection channel is a vir- Lorenz system. The main part of this paper is presented in
tual periodic orbit. This is an orbit that will be created in a Sec. Ill. Here we describe thefold covers of the centered
saddle-node bifurcation under a small change in control paRossler systemr{=2,3). We describe how the number of
rameter values. Before its creation, the virtual orbit trapg€injection channels is changed as the cover of this system is
nearby initial conditions and entrains the evolution in thedeformed by displacement. Our results are summarized in
neighbornood of the virtual orbit for many cycles. The aver-Sec. IV.
age residence time in the neighborhood of the virtual peri-
odic orbit increases with a canonical3 power law depen- Il. TWO-CHANNEL INTERMITTENCY
dence as the edge of the window is approached. IN THE LORENZ SYSTEM
Recently intermittency with two reinjection channels has
been reported in a number of systems, both driven and au-
tonomous: a five-dimensional model of an externally forced
laser with saturable absorbet,3]; a driven one-dimensional
model for the transition from periodic to chaotic motion in

The Lorenz system7]

5(= —oX+oy,

granular shear flowgt]; and a five-dimensional autonomous y=RX-y—xz, (1)
model of a laser with saturable absorlpér6]. Also, type-I )
intermittency with two reinjection channels has been re- z=—bz+xy

ported in two models of the Rayleigh-Bard convectiof5]: ) ) ) _ _ _
the celebrated Lorenz systefid]; and a nine-dimensional IS one of the first systems in which a type-I intermittency has
model of the Rayleigh-Benard convection recently intro-been investigated10]. The Lorenz system is equivariant,
duced by Reiterer and coworker8] to study high- i-€., it obeys the relation
dimensional chaos.

All the systems in which two-channel intermittency has v 10 =1(y%), @
been observed are equivariant. This means they are un-

changed under the action of some symmetry group. The Symvyherey Is the 3x3 matrix

metry raises the possibility thavirtual) periodic orbits can -1 0 0

occur in disconnected pairémore generally, multiplejs

Each member of the pair provides a distinct reinjection chan- y=| 0 -1 0 Q)
nel under suitable circumstances. 0 0 +1

In this paper the relation between symmetry and the exis-
tence of multichannel intermittency will be investigated. Wedefining a rotation symmetrR,(#) by 7 around thez axis.
will use then-fold covers of the Rssler systeni9] as bench- Depending on the control parameter values, the attractor is
mark models. These are covering dynamical systems invareither fully symmetric, i.e., globally unchanged under the
ant under the rotation group,, generated by the rotations action of the symmetry, or asymmetric. In the latter case, two
R,(2=/n) through 27/n about thez axis. We show that attractors coexist in the phase space, one being mapped to

1063-651X/2002/663)/03622@6)/$20.00 66 036220-1 ©2002 The American Physical Society



LETELLIER, WERNY, MALASOMA, AND GILMORE PHYSICAL REVIEW E 66, 036220 (2002

25 | ] 9000 T : : !

200

et 4
LN w—

7000 -

H
175 | .
z vn+2 L /
5000
150 | k

§
Y

125 | ] 3000 | Y
100 . . ‘ .
-40 -20 g 20 40 1009 000 3000 5000 7000 9000
v'l
FIG. 2. The second-return map to a Poincaeztion of the
20 ¢ 1 image of the Lorenz system. Parameter value®,o(b)
=166.5,10,8/3).
190 |
, introduced by Miranda and Stofi#l] is used to mod out the
60 b rotation symmetry byr around thez axis. The image system
is
130 ¢ u=—(o+1)u+(c—Rv+vw+(1-0)p,
190000 0 2000 4000 6000 v=—(R-—o)u—(o+1)v—uw+(R+o)p—pw, (5)

v

FIG. 1. (a) The period-4 limit cycld.LRRobserved in the origi- V= — bw-t v
nal phase spack3(x,y,z) and(b) its image 01 in the image phase w= w 2’
spaceR3(u,v,w). Parameter valuesR(o,b)=(166.1,10,8/3).

the other under the action of the matrix. This feature re- “WNE'€ p=yu“tv”. Under this map the image of the
sults from the fact that the rotation symmetRy () is an period-4 orbitLLRR[Fig. 1(a@] is the period-2 orbit 01Fig.
order-2 symmetry, i.e4?=1 wherel is the identity matrix. b)) . i . .
In the work that follows, we explore ranges of control C_omputmg the f|_rst-retL_Jrn map to a PO'”_C?"@C“‘?” for
parameter values in which low-period windows exist. Thesé€ image system is equivalent to computing a first-return
windows are bounded on both sides by chaotic regions if"@p to the maximum as Lorenz did in his original paper
which the strange attractor exhibits the full symmetry of theSince the period-2 stable limit cycle 01 is associated with the
equivariance group. periodic window, a second-return map has to be computed
The first observation of an intermittent behavior was dondor the image system. The tangent bifurcatitfig. 2) is
for (R,o,b)=(166.1,10,8/3). For these control parametereasily exhibited although spurious intersections are difficult
values, a single stable limit cycld RRexists in the periodic  to avoid. Two tangencies are observed in the return map at
window. It is symmetric, i.e., left globally unchanged under »=2200 and »=5200. These correspond to the local
the action of the symmetrjFig. 1(a)]. Thus, a unique rein- maxima in the period-2 orbit OfFig. 1(b)]. As reported in
jection channel is observed for this virtual symmetric peri-Ref.[10], the intermittency in the Lorenz system occurs with
odic orbit. a single laminar phase associated with the virtual drbRR
Such an intermittency may be conveniently investigateqFig. 1(a)].
in the image of the Lorenz system, i.e., in a representation of |n the periodic window atR=100.795 there are two
the Lorenz dynamics obtained by modding out the symmetrysymmetry-related period-3 orbitd R and RRL (Fig. 3 cre-
Such a representation, the so-called image system, is localbfeq by simultaneous saddle-node bifurcations from the vir-
equivalent to the original dynamics but without any residualy 5| orhits. The key point is that the disconnected virtual
Symme”Y[g]- The_lmage system of thg Loren.z iystem Ma&Yorbits occur in a strange attract@fig. 4) that is globally
be 3obta|ned using a 21 mapping W, R*(X,Y,2)  jnvariant under the action of. The trajectory is “arbi-
—R°(u,v,w). The coordinatesy,v,w) are linear combina- iy~ reinjected into one of the two channels. Conse-
tions of elementary polynomials irx(y,z) that are invariant g ently, the laminar phases are associated with a trajectory
under the symmetry. The coordinate transformation visiting the neighborhood of either of the two symmetry-

u=Rex+iy)2=x2—y2, related virtual orbitsLLR or RRL Two different kinds of
o laminar phases can thus be distinguiskieig). 5). This mul-
Vo=[v=Im(x+iy)“=2xy, (4 tichannel type-l intermittency is therefore closely related to
w=z the symmetry property of the Lorenz system.
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FIG. 3. The coexisting asymmetric period-3 limit cyclesR %o 450 550 650
andRRLgenerated by the Lorenz system. The initial conditions are Time (s)
related by the y matrix. Parameter values: R(o,b) _ _ i ) o _
=(100.795,10,8/3). FIG. 5. Time series of the intermittent behavior with two rein-

jection channels in the Lorenz system. Parameter vallgt,b)

When the intermittent behavior is investigated in the im- ~ (100.799,10,8/3).
age system, the symmetry properties are modded out and the ) ) _
two-channel type-I intermittency does not present any differ/€turn map should present<3 tangencies with the bisector,
ence with the common type-I intermittency as observed ifhree points being associated with each asymmetric limit
any system without any symmetry properties. Indeed, &ycle observed foR=100.795(Fig. 3).
single type of laminar phase is observed as suggested by the

chaotic attractor of the image, which does not have any re- . THE Nn-FOLD COVER OF THE CENTERED

sidual symmetry(Fig. 6). Both asymmetric orbits of the ROSSLER SYSTEM

original phase spac&®(x,y,z) (Fig. 3 are mapped to the

same period-3 orbit in the image phase sp&éeu,v,w). We would like to be able to build type-I intermittencies

This is the effect of the 2: 1 mapping?¥, between the equi- with n reinjection channels. To do that, the $3ter system
variant Lorenz system and its image. The laminar phase iEL2] will be used as an image system. This choice results
described by a single virtual orbit, 011, which is the image offrom the bifurcation diagram of the Rsler system which is

both LLR and RRL quite well described13]. To this end, we will construct the
Since, in the image system, the stable limit cycle has a-fold cover of the Resler system.
period equal to 3, a third-return map to a Poincaeetion In general, then-fold coverx=F(x), of the image system

has to be computed in the image systéfig. 7). In such @ |, ), with a rotation symmetry around theaxis is con-
third-return map, three tangencies to the bisector are clearly;,cteq by using

identified at»=1000,1540, and 3200. They correspond to
the three periodic points of the limit cycle to appear.
Note that when the original Lorenz system is investigated, dx IXi % _

the third-return map is much more difficult to obtain. A third- dt du; dt T lox

Jgu\ 1
( ) }GJ(U)ZFi(X), (6)
ij

40 . . . . . .
-2000 -1000 O 1000 2000 3000 4000 5000
v

FIG. 4. Chaotic attractor, globally invariant under the action of  FIG. 6. Chaotic attractor generated by the Lorenz system pro-
the ¥ matrix, generated by the Lorenz system. Chaotic bursts fronjected in the image system without any residual symmetry. The
the two asymmetric laminar phasesR and RRLfollow this sym- image attractor is locally equivalent to the original one. Parameter
metric attractor. Parameter valueR, ¢,b) =(100.799,10,8/3). values: R,o,b)=(100.799,10,8/3).
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FIG. 7. Third-return map to a Poincasection of the image
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FIG. 8. Chaotic attractor generated by the twofold cover of the
Rossler system. Both attractors are globally invariant under the ro-
tation R,(w). (@ u=0.0, (b) w=-—1.5. Parameter values:
(a,b,c)=(0.432,2.0,4.0).

attractor. Three tangencies with the bisecting lines are observed.

They correspond to the image of both limit cycles observed in Fig.

3. Parameter valuesR(o,b)=(100.796,10,8/3).

with the obvious notationsx=(x,y,z)=(X1,X2,X3), U
=(u,v,w)=(uq,uU,,u3) for the variables, the notations
=(F4,F5,F3) and G=(G,,G,,G3) for the vector fields,
and Jdu/dx for the Jacobian of then—1 mapping
W:R3(x,y,2)—R3(u,v,w).

Following the procedure introduced in R¢8], the first

u=—ov—w,
v=utav+u, (9)
\}v=5(u+,u)+w(u—?:+,u).

A. Twofold cover

Inverting ¥, of Eq. (4) and injecting it in Eq.(6), the

step is to move the inner fixed point of the $ter system to covering equations of the Rsler systent9) are[9]

the origin of the phase spa®&(u,v,w). This is done using
the rigid displacementu(v,w)— (U+Ug,v +tvg,W+Wp). In

the translated coordinate system, the equations for this image

system(the Rasler system has no residual symmgtige
U=—v—W—vg—Wo,
v=u+av+uy+avy, 7)
w=b+w(u+Ug—Cc)+wou+Wg(Ug—C),

where ug= —av,=awy=(c— \Jc?—4ab)/2 are the coordi-
nates of the inner fixed point of the original &ber system.
This system may thus be rewritten as

u=—-ov-w,
v=u+av, (8
w=Dbu+w(u—c),

whereb=w, andc=c— u,.

. 1 ) 5
XZF[—P y+x(2ay*=2z)+uy],
p

Sl
y=—[p*x+y(2ax’+2)+ ux], (10)
2p

z=b(x?—y?+ pu)+z(x>—y?—c+ ),

wherep?=x?+y?. The chaotic attractor generated by these
covering equations is globally invariant under a rotation
symmetryR,(m) (Fig. 8. For (a,b,c)=(0.4,2.0,4.0) it re-
mains connected for=0.0 down tou=—4.0.

We would like to investigate the type-I intermittency ob-
served fora=~0.4091, just before the period-3 window.
When u=0, the rotation axis is located at the origin of the
phase spac&3(u,v,w). The period-3 limit cycle observed
in the image Resler system is thus “lifted” to a single sym-
metric period-6 orhit in the two-fold covéFig. 9a)]. Since
a single stable limit cycle exists, a type-I intermittency with
a single channel is observégig. 10a)].

In order to change the number of stable limit cycles that

In what follows, it will be necessary to move the rotation coexist in the covering phase space for a control parameter
axis in order to change the number of coexisting stable limitvalue corresponding to a periodic window, it is sufficient to

cycles. Indeed, thpeeling bifurcation(introduced in Ref[9]
and later described in terms of periodic orbitdlows to

displace the rotation axis along theaxis[9]. Indeed, when
the rotation axis intersects the chaotic attractor, the flow of

change the topology of the covers and, consequently, ththe cover is deformed like the deformation of an apple skin

connectivity properties of the orlid, both stable and vir-

when the apple is peeled. Hence the ngmeling bifurca-

tual, that cover periodic orbits in the image. When the origintion for the global bifurcatio9]. The chaotic attractor of the

of coordinates is displaced along thieaxis by a quantity
equal tou, the equations for the image Bsler system are

cover is thus peeled around the rotation axis. But let us de-
scribe what happens to the period-3 orbit whenghgaram-
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FIG. 10. Time series of the variable corresponding to the case
where one orbit(a) and two orbits(b) are associated with the
period-3 window. In the first case, an intermittency with a single
channel is observed. In the second case, two channels are identified
and, consequently, two different laminar phases are described. Pa-
rameter values:g,b,c)=(0.409109,2.0,4.0).

[Fig. 9b)]. The topological inde,, of this pair of periodic
orbits is equal to 2, as in the image space.

As u continues to decrease, the rotation axis cuts the
image period-3 orbit a second time. At=—3.0[Fig. 9c)]
N,=1 and the period-3 image orbit is lifted to a single sym-
metric period-6 covering orbit. Finally, after the third cross-
ing, at u=—4.5[Fig. 9d)] N,=0 and the period-3 image
orbit is lifted to a pair of symmetry-related cover orbits.
However, these orbits are embedded in two asymmetric
symmetry-related strange attractors.

In this sequence, there is a single reinjection channel for
n=0.0 andu= —3.0[Figs. 9a) and 9c)] since the covering
orbit is connected in a symmetric strange attractor. There are
two reinjection channels at= — 1.5 since the cover consists
of two disconnected symmetry-related orbits in a symmetric
connected attractor. Finally, there is one reinjection channel
(in each attractgr at w=—4.5, since the cover of the
period-3 orbit consists of two symmetry-related orbits, but
the covering attractor is itself not connected. It consists of

FIG. 9. Transformation of the period-3 orbits generated by thelO @Symmetric symmetry-related attractors, each containing

twofold cover of the Resler under the peeling bifurcation whan

one of the two symmetry-related orbits. Th@) time series

is varied. The location of the rotation axis is designated by the

symbol X. Parameter valuesa(b,c)=(0.4096,2.0,4.0).

eter is progressively decreased. When the rotation axis ig

displaced toward the left side of theaxis (u=—1.5), it

intersects a segment of the orbit in the image space

R3(u,v,w). One revolution of the image periodic orbit does
not encircle the rotation axis anymd€ig. 9b)]. We intro-
duce a topological indexi\,, that defines the number of

times the orbit encircles the rotation axis. This index is de-

creased by 1 each time the rotation axis passes through the FIG. 11. Chaotic attractor generated by the threefold cover of
period-3 image orbit. After the first intersection, the period-3the Rasler system fofa) «=0.0 and(b) u=—1.15. Parameter

image orbit is lifted into a symmetric pair of period-3 orbits

values: @,b,c)=(0.432,2.0,4.0).
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FIG. 12. At (a,b,c)=(0.4096,2.0,4.0) the Rsler system has a
stable period-3 orbit(a) This is lifted to three coexisting discon-
nected symmetry-related period-3 orbits f@=0.0 and(b) one
single symmetric period-9 orbit foz = —1.15.

for one (u=0.0) and two = —1.5) reinjection channels
are shown in Figs. 1@) and 1@b).

B. Threefold cover

A similar process can be observed in the threefold cove
of the centered Rssler system. The rotation is now by an
angle 27/3. Following the same procedure as for the twofold
cover, the dynamical equations can be obtained using th,

coordinate transformation

u=Rex+iy)3=x3-3xy?
W,=| v=Im(x+iy)*=3x%y—y? (1)

W=Z.

PHYSICAL REVIEW E 66, 036220 (2002

4000

=2 L

0 1000 2000 3000 5000 6000

FIG. 13. Time series of the variable corresponding to the case
where three orbits are associated with the period-3 window.
Three channels are identified and, consequently, three different
laminar phases are described. Parameter valuesb,d)
=(0.409109,2.0,4.0).

IV. CONCLUSION

Type-l intermittency occurs when a trajectory in a strange
attractor enters a neighborhood in phase space that generates
near recurrent behavior. Such neighborhoods are typically
pssociated with virtual orbits: periodic orbits about to be cre-
ated by a saddle-node bifurcation. Intermittency typically oc-
curs on the other side of the edge of a periodic window
defined by the saddle-node bifurcation, and can only be ob-
Served easily near relatively low-period windows.

Multiple reinjection channels can exist when two or more
virtual low-period orbits exist for the same control parameter
values. The easiest way to enforce this condition is through a
symmetry. We have studied the relation between the number
of reinjection channels and symmetry in this work. In par-
ticular, we have looked at-fold covers of the Rssler sys-

The chaotic attractor generated by the threefold cover of theem that are invariant under the rotation grdlip generated

centered Rssler system is shown in Figs.(aland 11b) for
two different values ofu.

by R,(27/n). Periodp orbits in the image system can lift to
n periodp orbits in the cover, one periadp orbit, or other

When the rotation axis is displaced, the attractor generintermediate cases, depending on the symbolic dynamic
ated by the threefold cover is deformed as shown in Figname of the image orbit and some topological indkix ) of
11(b). Since this is a threefold cover, upto three limit cyclesthat orbit. Whenm disconnected orbits cover the original

may coexist in the cover spad&(x,y,z) [Fig. 12a)]. De-

orbit and when the covering attractor is connected.ein-

pending on the location of the rotation axis, three period-3ection channels are observed in type-I intermittency in the

[Fig. 12a)] or one period-9Fig. 12b)] limit cycles are ob-

covering dynamical system. Since multistability phenom-

served. In both cases, the limit cycles are embedded in agnon naturally arises when considering networks of identical
attractor globally invariant under the rotation symmetryoscillators( [14—17 among othersthat have inherent sym-

R,(27/3). Consequently, depending qgm, one or three

metry properties, such systems typically possess a variety of

types of laminar phases may be observed. An example withoexisting attractors that can be good candidates for multi-

the three types of laminar phases is shown in Fig. 13.

channel intermittencies induced by symmetries.
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