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Oscillatory reactive dynamics on surfaces: A lattice limit cycle model

A. V. Shabunint? F. Baras’ and A. Provata*

IPhysics Department, Saratov State University, Astrachanskaya 83, 410071, Russia
2Institute of Physical Chemistry, National Research Center “Demokritos,” 15310 Athens, Greece
SCenter for Non-linear Phenomena and Complex Systems, Univeibite de Bruxelles, CP 231,

1050 Bruxelles, Belgium
(Received 22 February 2002; published 25 September)2002

Complex reactive dynamics on low-dimensional lattices is studied using mean-field models and Monte Carlo
simulations. Alattice-compatibleeactive scheme that gives rise to limit cycle behavior is constructed, involv-
ing a quadrimolecular reaction step and bimolecular adsorption and desorption steps. The resulting lattice limit
cycle model is dissipative and, in the mean-field limit, exhibits sustained oscillations of the species concen-
trations for a wide range of parameter values. Lattice Monte Carlo simulations of the lattice limit cycle model
show locally the emergence of sustained oscillations of the species concentrations. Random fluctuations of the
concentrations, clustering between homologous species, and competition between the various clusters/species
cause the in-phase oscillations of neighboring sites. Distant regions oscillate out of phase and spatial correla-
tions decay exponentially with the distance. The amplitude and period of the local oscillations depend on the
system parameters.

DOI: 10.1103/PhysRevE.66.036219 PACS nuni)er82.40.Bj, 05.70.Ln, 82.20.Wt, 02.50.Ey

[. INTRODUCTION namics at the macroscopic level, one can study more specifi-
cally the role of the reactive dynamics on the global behav-
When reactive processes are taking place on lowior, and consider the limit in which the reactant mobility is
dimensional supports, the usual mean-filtF) description  neglected. In this case, nontrivial effects of space dimension-
may become questionable in the sense that the MF does nality have been detected for various types of nonlinear kinet-
reproduce the observed behavior when the underlying micraes, showing important discrepancies from MF predictions
scopic processes are properly incorporated. This indicates 4n9-22.
intricate coupling between the microscopic level and the col- The emergence of instabilities seems thus to be highly
lective behavior described by the macrovariables. Such desensitive to the substrate dimensionality and geometry where
viations from the standard description of chemical kineticsthe reactive processes take place. In particular, for low-
have been detected in low-dimensional regular lattices, fracdimensional instabilities questions arise as to the persistence
tal aggregates or catalytic surfacgk], or for diffusion-  of unstable states and to their coupling with the spontaneous
limited reactions in low dimensiof2,3]. The origin of these spatial organization induced by the restricted geometry. The
phenomena is to be found in the spontaneous development afim of this paper is to study the complex behavior associated
inhomogeneous fluctuations that are enhanced by the ree the development of dimit cycle on lattices. Coupling
stricted geometry of the support. nonlinear oscillators in space automatically perturbs the
In the case of irreversible surface reactions, the spatigbhases of the local oscillators. This may give rise to destruc-
restrictions due to the support coupled to the nonlinear chative interference effects, resulting in the wiping out of the
acter of the reactive processes may induce substantial deviglobal oscillatory behavior on a macroscopic scale. This is
tions from MF. During the last two decades, numerical mod-precisely what has been observed in one-dimensi¢iia)
els have been proposed to explore the mesoscopic behavigpatially extended continuous media, where the desynchroni-
of such system§4—13] and new experimental results have zation of the local oscillators may lead to the disappearance
been obtained14-18. Some of these studies are based onof the global oscillation$23,24].
the minimal Monte Carlo model describing the catalytic oxi- To set up reactive lattice dynamics that exhibit complex
dation of CO on Pt that was introduced by Zffal.in 1986  phenomena, lattice compatibility conditions need to be ad-
[4-9]. Along the same lines are simulations with surfacedressed. The nonlinear reactive scheme involves at least two
restructurind 10,11] and superlattice orderirl@]. Similarly,  active chemical species. The nonequilibrium conditions are
the NO reduction on Pt has been studied using lattice gatypically associated with adsorption and desorption mecha-
models[12] on substrates with different propertigs3]. All nisms. This forces one to consider lattices with empty active
these studies predict the appearance of complex local pasites, mimicking open reactive systems. Concomitantly, a
terns, poisoning transitions, and periodic or chaotic oscillaconservation condition between adsorbed particles and free
tions. sites has to be fulfilled. The flux between the surface and the
To understand the effects induced by the microscopic dysurrounding gas yields thus a specific structure of the kinetic
equations, which has no analog in the fluid-phase macro-
scopic formulation. These features require developing spe-
*Corresponding author. Email address: cific kinetic models already at the MF level. The mesoscopic
aprovata@limnos.chem.demokritos.gr description that incorporates the lattice structure is then eas-
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ily implemented using Monte Carlo simulation techniques II. MODEL AND MEAN-FIELD BEHAVIOR
[4-9]. .

Along these lines, two of the present authors have previ Iolrrégh;eearcl)};ssigi‘lc‘i,t Acr)lfS oabl:ginc}g—wglzl;tta;ﬁé,g aoshceill\llaetic(?;; in
ously introduced a lattice generalization of the Lotka- " P y 9

Volterra model under nonequilibrium conditions. The neWsurface reactions as resulting from the intrinsic nonlinearities
model was called the “lattice Lotka-VolterralLLV ). model of the reactive processes. They have sh_own t_hat a bimolecu-
[25]. The LLV model corresponds to an open reactive systenk&.lr La”9“.““”‘”'”$he'w°°d surface reaction with two empty
involving  bimolecular steps representing reaction,‘c"tes.s'.n its reaction stepAagst Bagst 2545+ Pg), non-
adsorption/influx, and desorption/outflux. Only two active equilibrium conditions associated with the adsorption steps

speciesX;, X,, and free sites participate in this scheme, (Agt S=Aqgs; By S=Byg9, and coverage independent pa-
rameters may lead to sustained oscillatory reaction rates. The

Ky subscripts “ads” and §” denote adsorbed and gaseous
X1+ Xy—2Xs, (1a phases, respectively. It appears that the two empty sites in the
reaction step induce a strong nonlinearity that plays the es-

k2 sential role in the emergence of the oscillations. In this

X1+ S5—-2Xy, (1b)  model, the limit cycle is characterized by a small basin of

attraction. Because of the smallness of the oscillations am-
plitude, the oscillatory behavior is very sensitive to any per-
turbation. In this respect, this model is not a good candidate

. . . . ) for a mesoscopic description which includes fluctuations.
Specifically, the lattice compatibility requirement dictates |, 5 heterogeneous catalysis the so-called vacancy models

that particles<; andX, may undergo the autocatalytic trans- haye been proposed to describe the oscillations observed in
formatlpn(la) when they are found in adjacen_t positions oNihe various reduction reactions of NO on Pt surfaces).

the lattice. An empty sit&s may adsorb a particlX;, pro-  These processes are typically associated with the use and
vided that there is anotheX, in a neighboring site(1b);  production of vacant sites. For instance, in the NCO re-
while a particleX, may desorb leaving an empty siro-  5ction, the dissociation of adsorbed NENto Nogsand Qgs
vided that there is another empty sSen the ne|gh_borhood requires the presence of one empty s®¢28]. With the

(1c). For the LLV model, the MF description predicts a con- formation and subsequent desorption of the gaseous products
tinuum of periodic oscillations whose frequency is fixed by, and CQ three sites are liberated. In this case, the struc-
the initial conditions. The lattice dynamics shows a radicallyyral transformation of the support is not essential for pro-
different behavior. Especially, on 1D lattice oscillations aréqucing oscillations. In the N®H, reduction, the reactive
suppressed altogethg25,26. However, on 2D supports, the gien involves three active chemical species and one vacant
system naturally selects a preferred frequency depending Qf}e[30,31. Thus reaction steps involving both the reactants
the intrinsic parameters and on the lattice geomE28,27.  anq the vacant sites are thus representative of some hetero-
_ Global and coherent oscillations are frequently observegeneous catalytic processes. To arrive to a tractable model
in catalytic reactions on metallic suppof6—31. Different  (containing a minimal number of representative variables
mechanisms could be involved in this phenomenon, such &agescribing such systems, starting from the full mechanism, a
a coupling between the chemical process and a structurgastic reduction is often adopted. The reaction steps may no
transformation of the metallic surface. Here we shall invesyonger be elementary but represent rather contractions of sev-
tigate the effects produced by a purely reactive process. Wgrg| elementary reactive processes which are excepted to be
will see that the intrinsic nonlinearities are sufficient to sus-t55t or negligible as compared to the others. Moreover they

tain osc_illations on a Iatti_ce without referring to any extra strongly depend on the specific type of surface reaction and
mechanism. Moreover, this study allows us to investigate ity the prevailing experimental conditions.

and how the Hopf bifurcation is realized on low-dimensional  Here we are interested in the generic reactive mechanisms
systems. ) . - . underlying the onset of oscillatory behavior in a lattice. For
To study the development of oscillatory instabilities trig- this purpose, we construct a minimal model exhibiting robust
gered by lattice dynamics, we introduce in the following sec-gystained oscillations that may be exhaustively studied at the
tion the lattice limit cycle(LLC) model that involves a \r evel and easily implemented on a lattice. This will allow
strong autocatalytic step coupled with adsorption and desorpys tg analyze the influence of the intrinsic nonlinear behavior
tion processes. The phase space of the LLC model is invegyq disentangle it from other factors such as diffusion, struc-
tigated for the parameter ranges where the dissipative perjya| transformation of the substrate or lateral interactions.
odic motion is exhibited. In Sec. I, Monte Carlo Thjs will help to clarify how the breakdown of the temporal

simulations on square lattice are presented. This outlinegymmetry induced by the limit cycle is affected by the spatial
how the MF behavior is modified when the process is realyastrictions of the support.

ized on a low-dimensional support. The effects of local fluc-  \ne consider three different speci¥s, X,, andS under-
tuations are also discussed. In Sec. |V, quantitative statistic@omg the following reactions:

features of the MC results are presented, such as the fre-

qguency of oscillations, clustering, and spatial organization.

The main results of this work are summarized in the con- kg

cluding section and new perspectives are suggested. 2X14+2X,—3X,+S, (2a)

k3
X,+S—2S, (10
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ka The conservation condition; +X,+s=const is automati-
X1+5—2Xy, (2b)  cally satisfied. In the sequel the constant will be chosen equal
K to one, corresponding to the interpretatiorxef x,, ands as
3 . . . .
X,+S—2S. (20) fractions of the overall lattice, respectively, occupiedXy

and X, particles or being empty. By eliminating(=1— X,

This scheme is quite similar to the lattice Lotka-Volterra —X,), one obtains the reduced system
model, except that the reaction step is quadrimolecular. As
already pointed out, this strong nonlinearity plays the driving dx, > 2

- illati i i i —— = — 2Ky XiX5+ KoX1 (1 — X1 — Xp)
role in the oscillation mechanism. The constraints arising dt 171727 B2 1772/
from the underlying lattice have been incorporated, in order
to secure conservation of the total number of sites. One of dx
thte species, sa$ will eventually represent the empty lattice d_tz = klxixg_ KaXp(1—X1—Xy). (4
sites.

The speciesX; and X, may undergo the autocatalytic , ) .

transformation(2a) once on the surface. Specifically, we This reduced system admits four steady state solutions:

stipulate that when a configuration of four nearest-neighbor

sites contains X, and 2X,, oneX; particle is transformed in P1=(0;0) (empty lattice, (58
X, and the other one desorbs leaving the corresponding site

vacant. The stef2b) represents cooperative adsorption of a P,=(0;1) (lattice poisoned byX;), (5b)
particleX; on an empty sit& provided that another particle

X, is found on a neighboring site. Similarly, st&fx) stands P;=(1;0) (lattice poisoned byX,), (50

for the cooperative desorption of a partickg, leaving an

empty siteS provided that there is another free site in its 3 [12 3 [ K2 3 [ K2

immediate vicinity. The resulting scheme describes an operp4:( \/_3[1+ K]+ \/—3[1—K]; \/_2[1+ K]

nonlinear reactive system submitted to influx>6f and out- kak kak 8k1ks

flux of X,. The constant&,, k,, andks represent the reac- 3 K2

tion rates. +4/—2 [1—K]), (5d)
The rate(or mean-fieldl equations associated with this 8kiks

scheme read

where the constari is only a function of the three reaction

dx :
d_tl = — 2k X35+ koXyS, rates:
(2kz+ksy)3
dx K=\ oo 2 41, (®)
d_t2 =kXDG—kaXes, € 2Tkikaks

To investigate the structure of the phase space near the
d_S:k W2 KX S KaXoS fixed points, we perform a standard linear stability analysis.
R The Jacobian matrix of the system has the form

— Ak x X5+ Ko(1—2X1— Xp) — 4k x3x,— KoXyq
J]= , 7
L] 2k X1 X5+ kX, 2k X3x— kg(1— X, — 2X5) @)
|
wherex; andx, take their stationary valug®a), (5b), (5¢), (2) The eigenvalues associated with the second fixed point
or (5d). P, areA;=0 and\,=Kk;. The eigenvector corresponding to
The phase portrait around the four fixed points has the\, is e=(0;1). The phase portrait in the vicinity of this

following shape: point has no robust character. There is an unstable manifold

(1) The eigenvalues associated with the first fixed pointalong the axix, and there is no stable manifold. Trajectories
P, areN;=k, and\,= —kj;. The corresponding eigenvec- tend to the fixed poinP, from the right side, and move away
tors aree;=(1;0) ande,=(0;1), respectivelyP, is thus a from it from the left side(see Fig. 1 Infinitesimal changes
saddle for all physically acceptablpositive values of the in the system equations shifts the eigenvalye=0, which
parameterk,, k,, andks. The attractive manifold directs can become positive or negative. As a result the phase space
along the axix, and the repelling manifold is along the axis portrait is modified near this point, which can become either
X, (see Fig. 1 saddle or unstable node. However, it remains unstable and
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FIG. 1. Phase portrait of the lattice limit cycle model. X,

the state that corresponds to this fixed pdthe specie,
occupy the whole lattigecannot be observed.

(3) The eigenvalues associated with the fixed p&inhas
one zero eigenvalugd ;=0 and a second eigenvalue= 1
—k, with corresponding eigenvect@=(1;0). The phase
portrait near this fixed point is again not robust. It has a Iy NENERARUEE
stable manifold along the axig and has no unstable mani- 0. 0 50 100 150 200 250 300
fold. Trajectories tend to the point from the bottorr, ( time
<0) and move away from the point from the top,t0)
(Fig. 1). As for the fixed pointP, infinitesimal changes of
nearPy. which can become saddle or stable node. Hence, et =10 (old ne andi,=300 dashed ines The ather
such situations where fluctuations drive the system, the Sta{)earameter values remain fixek;=0.5 andk;=0.8.
relating to this fixed pointthe moleculesX; occupy the

whole latticd can be observed since it can become stable.  (4) P4 is a nontrivial fixed point where botK; and X,
species are present on the lattice. Contrary to pdmtd,,

and P, the location of this fixed point and its type depends

FIG. 3. (a) LLC phase portraits andb) evolution of theX;
Sverage as a function of time for two different values of the pa-

> on the values of the parameters. Depending on the param-
etersky, k,, andks this point can be(a) stable node(b)
30| stable focus, ofc) unstable focus. In Fig. 2, the bifurcation
- = k3=0-8 diagram in the parameters plank,(k;) at fixed value of
= 5 k;=0.8 is presented. Under the dashed Ifgis a stable
251 8 b node. On the dashed line both eigenvalues become equal and
"; § above the dashed line they are complex conjugate. There the
w0l ® fixed point becomes a stable focus. On the solid line the real
k Ss parts of these eigenvalues become positive, and the equilib-
1 g @ rium undergoes the supercritical Hopf bifurcation. As a re-
15 _R sult, P, becomes an unstable focus and in its vicinity a stable
stable focus limit cycle appears.
When the focus?, loses its stability, periodic oscillations
10 of the concentrationg; andx, are observed in the system.
At the moment of their creation, periodic oscillations have
05 infinitesimal amplitude and their form is harmortiEig. 3,
solid lineg. With gradual parameter changing the amplitude
______ gy g —————m =] of the oscillations increases and their form becomes nonhar-
00, ——— ;2' ofr”hle Lﬁo‘le - =, monic. For larger values of the paramekerthe amplitude of
k2 the oscillations becomes close to 0.5 and the form of the
limit cycle is trianglelike(Fig. 3, dashed lingsThe behavior
FIG. 2. LLC bifurcation diagram in the parameter spakg k,)  Of the system is characterized by long residences near the
for a constant value df;=0.8. equilibrium P followed by short bursts away from it. From

036219-4



OSCILLATORY REACTIVE DYNAMICS ON SURFACES. .. PHYSICAL REVIEW E 66, 036219 (2002

250 1.0 . . .
——= X, L=2°
X,, L=2
200 —— k2=0.4,k3=0.8 08 | X L=2 i
------------ k2=0.5, k3=0.8
——- k2=0.55,k3=0.8
<
150
3 2 06 :
g S
N &
100 S
3
g 0.4 .
o S k,=30, k,=0.5
R 02 k,=0.8 ]
o= T
0 0 50 100 150 200 250 300 \ A
k] 0.0 \\‘Il \\//’\\\’/,\\~lf‘\\__/""\._/"\v/ ,\\
o 1000 2000 3000 4000
FIG. 4. Oscillation period as a function of the parametgin time

the mean-field model for various valueslof andks FIG. 5. Temporal evolution of th¥; (solid line) andX, (dashed

. . . . line) coverages on a two-dimensional square lattice as obtained by
the reaction point of view the concentrationXf stays very Monte Carlo simulations: system size i$>22°. For comparison

close to 1 for a long time, then during the bursts it decreaseﬁ’]e dotted line represents the temporal evolutioiX pbn a smaller

approximately to zero. In Fig. 4, the dependence of the pesysiem of size $x 28. Parameter value, =30, k,=0.5, andks
riod of the oscillations on the parametdesis presented. In' —g g in all cases.

the same plot the black circles represent the period of small

oscillation at the point of appearance of the limit cycle. Un- ) .

limited increase of the period is observed, following approxi-and one particle of typ¥, are found then reactiofia) takes
mately a linear law. place: the chosen sit¢, and its neighbor occupied b, are
replaced by an empty sit8 and a particleX,, respectively,
with reaction probabilityp;=k;/(k;+k,+k3). The algo-
rithm then returns to stag@) for a new step to start.

In the preceding section, we have shown that the LLC (iv) If the chosen site contains af, particle and a ran-
scheme produces sustained oscillations at the MF level andomly chosen neighbor is free, thé desorbs and the site
seems to be a good candidate for keeping the same behaviisrvacated with probabilitpz=ks/(k;+k,+k3). This is the
when implemented on the lattice. The lattice simulations ar¢ealization of the desorption proce&s:). The algorithm re-
designed to emulate the “microscopic” picture where eachturns to stageii).
particle reacts locally with a finite number of neighbors on  (v) If the chosen node is empt$, and a randomly chosen
the surface and not with the mean field of all the particles, ageighbor contains aX, particle then a second, adsorbs on
implicitly assumed in the usual kinetic description. We as-the S site with adsorption probabilityp,=k,/(k;+k;
sume the existence of a hard core not allowing more than oné kz). This is the realization of the adsorption procékly).
reacting particle to be at the same lattice node and short (vi) In all other cases the lattice remains unchanged.
range interactions. The mesoscopic approach accounts thus (vii) The algorithm returns to stadg#) for a new reaction
for the random and local nature of the reactive process. event to start.

In the limiting case of 1D support, the quadrimolecular The time unit in the MC procedure is defined as the num-
step(2a) is not realizable: only the trivial frozen steady stateber of elementary MC steps equal to the total number of
(P3), corresponding to lattice poisoned bBy;, can be lattice sites. If the linear size of the systemnlListhen in one
reached. For 2D square lattices, each site has four neardgC time unit (L X L) attempts of reactive events take place.
neighbors and thus all three reaction steps are allowed. The As working parameter set for the simulations the rate con-
minimum dimensionality of the substrate should thus bestantsk,; =30, k,=0.5, andk;=0.8 are chosen for which, at
equal to 2. In the simulations all the reactants are immobiléghe MF level, the limit cycle presents a reasonably extended

[lI. MONTE CARLO LATTICE SIMULATIONS

on the lattice and diffusion effects are not considered. basin of attraction as seen in Fig. 5. The reaction probabili-
The Monte Carlo(MC) algorithm on a two-dimensional ties for each step are,=0.9585, p,=0.0160, andps
square lattice is summarized by the following steps: =0.02556. In the MC simulations the actual reactivity is

(i) Initially the lattice is filled at random with particles greatly limited by the environment and the global reactivity
X1, X5 according to a given initial condition. The lattice may rate A, defined asA= (number of efficient reactions

also contain empty siteS (number of MC stepsis of the order of 0.004 for this choice
(i) At every elementary MC step, one lattice site is cho-of parameters. In Fig. 5, the global concentrations of par-
sen at random. ticles X; (solid line) and X, (dashed ling as a function of

(i) If the chosen site is occupied by a partide and if  time are plotted, for a square lattice of siz&x2°. Sus-
amongst its four nearest neighbors two particles of tfpe tained oscillations are observed as predicted from the MF
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0.40 - - der reaction(2a), the X, regions propagate througk, do-
mains. Once a smakN, cluster appears, due possibly to local
fluctuations, it propagates fast within tg regions because
of the relatively large value of the kinetic constént Con-
comitantly, from the interior of this growing cluster indi-
vidual X, particles will start desorbing according to Egc).
The desorption process is slower than the growth ofXhe
clusters. Eventually the desorption of interngl particles
depletes slowly the cluster interiors. When sufficiently large
empty regions are produced; particles can be deposited.
This adsorption process takes place relatively infrequently,
due to the autocatalytic nature of the procé2s) and the
small value of the kinetic constakp. Once theX, regions
thus produced come into contact wiXy regions the same
oscillatory scenario is repeated.

1000 2000 300 4000 The different steps of this process are illustrated in the

time three snapshots of Fig. 7. The black sites and gray sites rep-

FIG. 6. Temporal evolution of th&; and X, coverages for a resent thex; and theX; particles, respectively. The empty

square lattice 2x2° (solid line and for a sublattice 2x 25 sites are depicted in White_. Figuréz_ﬂ corresponds to the
(dashed ling Same parameters as in Fig. 5. beginning of cluster formation. In Fig.(d) the clusters are

extending. We note that th¢, particles are distributed at the

description. These oscillations are robust under a widdorders of growing empty surfaces. Figur&)7shows that
choice of initial conditions. the clusters cover progressively a large extent of the surface,

The influence of the system size is illustrated in the samevhereupon destruction starts in their interior atadparticles
figure with the time dependence ¥f coverage. The solid start to adsorb forming; clusters.
line corresponds to a%x 2° lattice, while the dotted line From the previous discussion it is evident that the size of
corresponds to a %28 one. Although the system size the oscillatory regionsR depends on the competition be-
changes by a factor of 4, the amplitude and frequency of théween the three processes and on their relative rates. The size
global oscillations do not vary significantly. To test further R can change, grow or shrink, by appropriately changing the
the development of the oscillations we focus on the subrerelative velocities. Alternatively, the values lof, k,, andks
gions of the original system and record data simultaneouslydetermine the maximum cell siZ® within which the par-
both for the total system and for the subregion. Comparativéicles “intercommunicate,” oscillating in phase. If the system
results are presented in Fig. 6. The solid line corresponds teize is smaller than or equal R the entire system behaves
the time evolution of the concentration ¥ on the entire as a single oscillator. The systems of size greater tRan
lattice of size 2x 29 sites, while the dashed line representscontain more than one oscillators and thus negative “inter-
the time evolution ofX, in a small sublattice of size®2 ference” phenomena take place. In the limit of very large
x 25, A difference in the amplitude of oscillations is ob- systems of sizek>L,>R, many oscillators with different
served between the subregidlarger amplitude of oscilla- phases are randomly distributed and their phases are mutu-
tions) and the entire systertsmaller amplitude ally cancelled.

As the system size increases and exceeds a given param-As the value ofk, increases relatively t&, andks, the
eter dependent thresholthe linear lengti_,,>2! for the ~ behavior is characterized by abrupt “bursts” and slower de-
working parameter sgtglobal oscillations are hardly detect- cays ofX, (and similarly forX; andS). However, this effect
able and the system, at first sight, reaches a steady stateonly local, while globally the oscillations are smooth and
characterized by constant global concentrations. Howevestatistically symmetric. In Fig. 8 the concentrations<gfare
careful examination of subregions of sizex| (I<L,) presented as a function of time for rate constdqts 300,
shows that oscillatory behavior is still highly observablek,=0.5, andk;=0.8. The solid line corresponds to concen-
within the system, as was also indicated in Fig. 6. This inditration over the entire lattice of size®22° while the
cates that locally the system is coherent and small regionslashed line corresponds to a sublattice of size 2°. While
neighborhoods intercommunicate and oscillate inphase. Inn the entire lattice the oscillations are relatively smooth and
stead, distant regions are out of phase and when thgymmetric, in the sublatticelashed lingthe oscillations be-
ensemble on all local oscillators is considered, the local oseome nonsymmetric: for some time the sublattice concentra-
cillatory behavior is masked. tion of X, builds up abruptly, while the concentration Xf

The development of the local oscillations is directly re-(not shown decays slowly, therX; spends sometime ap-
lated to the difference in the time scales of the three proproaching zero and then suddenly bursts up. This effect is
cesse$2a), (2b), and(2¢), and to the autocatalytic character predicted globally by the MKsee Fig. 3, dashed linesThe
of the chemical scheme. The creation of oteparticle re- comparison of the sublattice oscillatiofidashed linesin
quires the presence of tw¥, particles and twaX; in an  Figs. 6 and 8 shows that in the former casg=30) the
immediate neighborhood. This makes the reaction possiblsublattice oscillations are statistically symmetric, while in
only at the borders betweefy regions andX, regions. Un-  the latter k;=300) they have triangular form. This is in

X, coverage
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0.30 | l

0.20 |

X, coverage

0.10 |

FIG. 8. Temporal evolution ok, coverage for parameter values
k;=300, k,=0.5, andk;=0.8. On a large lattice 2x 2° (solid
line), smooth oscillatory patterns are observed, while locally, on a
sublattice of size 2x 25, sudden bursts followed by slow decays
are observed.

ties k;'s become of the same order of magnitude, then the
regions of “intercommunication” shrink and either a simple
statistical steady state is reached or even a frozen state is
reached.

IV. QUANTITATIVE DESCRIPTION

To interpret the spatial organization and temporal coher-
ence revealed in the preceding section, we evaluate the sta-
tistical properties of the datasets generated by the MC simu-
lations.

As a useful indicator for clustering we consider the
nearest-neighbor covariantkt) [25],

1
V(=13 2 orhor i), ®

r

wherer represents a given lattice site (), € is the set of

first neighbors ofr, and o;(t) denotes the state of siteat
timet. The variables takes the values 0, 1, ef 1 whenever

the siter contains a particle of the typ® X, or X,, respec-
tively.

It is easy to show that for a uniform random distribution
with equal mean coverage 1/3, without clustering effects, the
nearest-neighbor covariance is, on the average, equal to O.
Indeed, the produai,(t) oy, ;(t) can only take the values 0,

FIG. 7. Three different stages of cluster growth and destructiorl, or —1. For random lattices the value of on siter is

for a lattice of size $x 28, Snapshots$a), (b), and(c) correspond to
timest=215, 285, and 35%in MC units), respectively. Same pa-
rameters as in Fig. 5.

agreement with the MF resul(Fig. 3, dashed lingsndicat-

independent of the value+e. Thus the product takes the
value 0 with probability 5/9, the value 1 with probability 2/9,
and the value-1 with probability 2/9. Consequently, for a
large random distribution of;, X,, andSthe sum of all the
products is equal to zero.

ing that ask, increases the form of the oscillations changes When clustering takes place, most of the sites in a certain
gradually from the symmetric, nearly harmonic shape to-neighborhoodclustey have the same sign, thus the contri-
wards the triangular form. Finally, when the relative veloci- bution to the sunt8) within clusters is positive. The negative
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FIG. 9. Evolution of the covariance functidf(t) as a function
of time. Parameter values as in Fig. 5.

contribution appears only in the interface betw&grandX,
clusters. In Fig. 9, the covariancé(t) is presented as a
function of time, for a system of siz€X 28 sites and kinetic
constants; =30, k,=0.5, andk;=0.8. At the beginning of
the simulation, one starts with a completely random system
and as expected the value\#t) is close to zero. The initial
deviation from the value 0, in Fig. 9 is attributed to random
fluctuations. As the time increases the clusters<efform
and thusV(t) increases reaching values as high as 0.7. The
system passes sequentially from a state of high clustering tc
a state of low clustering, where the functivift) takes val-
ues as small as 0.2. Note that clusters of empty sites do nc
contribute to the value o¥/(t). The overall shape o¥(t) 0.0
presents the same oscillatory characteristics as the fraction: (?)
coverage. This behavior of(t) suggests that neighboring
partlcles Should oscmate |n phase AS we W|” see Shdny FIG. 10. (a) Normalized time-correlation function 0(2 SpeCieS
Fig. 11, the correlation length actually covers several layerscomputed for the entire lattice and for two sublattiogs. Corre-
of neighbors and thus nearest neighbors perform similar mq'ip?:f‘d";g power spectrum for the large system. Same parameters as
tion. In FIg. o.

To characterize the temporal coherence within the system, ag we have seen in Fig. 6, the oscillations’ amplitude of

the qoarse-_grained normalized time-correlation functionhe coarse-grained variabig is strongly reduced for a large
C() is considered, system as compared to a smaller one. On the other hand, the
larger the region, the smaller the variance to the mean,

Amplitude

rier

Fou

00 0.01
Jfrequency v

1N 1 (6L7), will be. These two effects counterbalance in the ex-
C(n)= NE m[éﬁ(ti)—(m] pression ofC(7).
=t ! In Fig. 10@), the time correlation of th¥, coarse-grained
X[&(ti+ 1) — ()], (9)  variable is presented for three different valuesl.ofa) L

xL=2%9x2° which corresponds to the full latticésolid
wherel denotes the set of nodes belonging to a subregiofin€); (b) 111, =2°x2° which represents one quarter of
and the lattice(dotted ling; and(c) 1,X1,=27% 27, which is one
sixteenth of the latticddashed ling The three curves are
practically identical, which indicates high temporal coher-
L) =2 oi(t) (10)  ence for the entire system or in a subregion, at the level of
rel the scaled variable,/(5¢2)Y2. Figure 1@b) depicts the
power spectrum associated to the correlation funcGgmn).
is the average value of the variable in the coarse-graininghe system exhibits a single preferred frequency, indepen-
regionl, <6§,2) is the corresponding variance. The average, indently of the size and in accordance with the MF limit cycle
Eq. (9), is taken ovelN time steps. behavior.
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TABLE |. Oscillation period(in MC units) and surface activity 1.0
measured in MC simulations as a functionkaf
Ky MC period q Activity (A) 08 k=30., k,=0.5,
20 470+ 15 0.0080 k=08
25 51720 9.4 0.0071 0 1
30 590+ 20 14.6 0.0064 A'
35 633+ 15 8.6 0.0058 %
40 693+ 30 12.0 0.0052 oal
45 750+ 30 114 0.0048 ’
50 815+ 30 13.0 0.0043
02 |
To investigate further the correspondence between the MF
and its lattice counterpart, we estimate the oscillation period
for several values ok;, keeping the other rate constants %% 50 100 150
equal: The parameters set is chosen for comparison with th Y

solid line of Fig. 4 k;=0.8 andk,=0.4). As can be seen in FIG. 11. Spatial-correlation functio@(p) as a function op for

Fig. 4, the limit cycle MF period, as obtained by direct inte- a two-dimensional lattice 2< 2° divided into 512 slices. Same pa-
gration of Eqs(3), grows linearly withk;. The system used rameters as in Fig. 5.

in MC simulations has linear size=21° and its dynamical

evolution is recorded over310* MC steps, after the system constant, the size that thé, clusters reach becomes rather
has reached the steady state oscillatory regime. For largéarge before reactive steggb) and(2c) come into play. The
values ofk;, the system size is too small for appearance ofsystem is then covered by a few lar¥e clusters and some
the full oscillatory regime. The MC period of the concentra-isolatedX;. Consequently, the length of the boarderlines be-
tion oscillations is obtained by computing the Fourier transtween clusters where reactions occur is highly reduced. The

form of the time-correlation function. The quantity ac-  inefficiency of the reactive process reflected by the law
counts for the change in the peri@dof the MC oscillations, value is due to the fact that the entire lattice is practically
with respect to variations in the reaction r&tge invaded by one species and that the size of the reactive area
tends to zero.
q P—-P’ 1) This type of non-MF behavior has already been detected

experimentally[18]. Using scanning tunneling microscopy
(STM) visualization techniques, Wintterliet al. have found

In the MC simulations the values gfhave a certain disper- deviat.ions from MF in the CO .oxidation on Pt. By recording
sion about 10%, due to the width of the corresponding peak§ TM images during the reaction of adsorbed oxygen atoms
in the Fourier spectrum. The MC values gfare randomly ~and CO molecules on a small area of12f) (17 nm X 18
dispersed around the mean vaige-11.5 and no general nm) In a pure CO.atmosphere, they havg obseryed that the
tendency ofg is observed with increasing values kof. The reaction is not taking place randomly b_ut is restricted to the
~ . ) , boundaries between Qand CQ4 domains. By measuring
valueq corresponds to a linear increaseRofith respect 10 e rate of disappearance of adsorbed atomic oxygen, they
ky, which is consistent with the mean-field results. have concluded that the reaction rate is no more given by the
We have also recorded the surface activiby reactivity

2 IS ) ) usual MF but is, rather, directly proportional to the length of
rate A, which is defined as the number ofactive events o houndaries.
(i.e., events that have actually changed the lattice configura- T4 further characterize the spatial coherence in the sys-

tion) divided by the total number of attempise., the total o we compute the spatial correlation function that is de-
number of elementary MC stepsn surface reactions, a re- fined as

active attempt will lead to the change of state of a chosen N

lattice if the local configuration of its neighbors is appropri- 1 Xo Xo

ate. The substrate restrictions imply that the reactivity rate is Clp)= NLY tzl E oy (ti)‘fr‘+5(ti)' (12)

not only related to the reaction probabilities. On the contrary, ' '

in the MF approximation, reactions take place at every tim

step with a prescribed rate. In the definition we adopted, th R

reactivity A is a global quantity that accounts for all the lattice siter contains aX, particle or not. To evaluate this

elementary reactive events. function, it is useful to adopt a coarse-grained description in
In Table I, we observe that the surface activityis re-  which the lattice is divided along one direction lirslices.

duced wherk, is increased. This seems to be in contradic-The correlation function is then evaluated for the global

tion to what one would expect, since increase of any of thevariable along the chosen direction. Owing to the averaging

three reaction constants should favor the lattice reactivitywithin each slice one obtains, in this way, a smooth behavior.

However, ask,; is getting larger, whilek, and k; remain Figure 11 depicts the results of the numerical evaluation

T ki—kp

he variableaif2 takes the value 1 or 0, accordingly, as the
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of Eq. (12) for a 2°x 29 lattice divided in 512 slices. Average tations propagate with rates depending on the system param-
is taken overN=5x10* MC time steps. One observes a eters and on the lattice characteristics.
decrease, which turns out to be exponential, with a charac- From preliminary investigations, the frequency and am-
teristic correlation length of about 15 lattice sites. This fur-plitude of the local oscillations depend not only on the pa-
ther confirm the persistence of large clusters of homologousgmeters of the system but seem to depend strongly on the
particles. It also fixes the mean intrinsic size of such clusteriocal properties of the latticeaverage number and distribu-
all along the reactive process. tion of nearest neighbor site#\ first extension of the present
work would be the realization of the reaction scheme on
hexagonal lattice, where the immediate neighborhood con-
tains exactly four sites, the same exact number of sites re-
It is now well known that, in many situations, the local quired for the multiparticle reaction stépa). Also, of inter-
surface constraints lead to deviations from the usual mearfSt would be the LLC realization on a lattice with locally
field description. While typical instabilities such as thosevariable number of nearest neighbors. The coupling between
leading to transitions to multiple states are fairly well under-th€ dynamics generated by a minimal model such as the LLC
stood from this standpoint, the case of symmetry-breakin%'th transitions between lattice geometries would also be
transitions such as those leading to limit cycle remains in- orth Investigating, since in some experimental situations,
triguing. It is important to understand how the nonlinear dy_transformauons between different support geometries are ob-
namics that tends to break down the temporal symmetry ir?erved[lG].

the bulk is affected by the spatial restrictions. In order to A second direction extending the present work would be

understand these aspects, mesoscopic Monte Carlo simulra?:inVEStigat.e the role play_ed by diﬁusion_and_its ir_1terference
’ th the oscillatory behavior. Two opposite situations could

?;}ogztaari}d the macroscopic MF approach need to be compar%}%ppen. Diffusion could lead to the homogenization of the

We constructed a minimal model that is tractable at thd €actants distributions or, on the contrary, favor the sponta-
MF level and may be directly implemented in the lattice neous clustering of homologous partlcles. A deep under-
simulations. This allows to study thgeneric aspectsf com- standing of transport processes on restricted supports re-

plex dynamical behavior associated with the limit cycle. Inquires careful modeling of diffusion at the microscopic level.

our work, the incidence of the kinetics is thus studied inde-n S0Me cases, the mobility of the reactants may be modeled

pendently of other factors whose influence will be consid-2s an actiyated process associated V\.’ith the jump of par}icles
ered in subsequent investigations. This representative mongm on”stlrge to opel of llatsl negrestt nelghb?rs. I‘r“boftﬂf?r Smljé"'
is not related to a specific surface reaction, but contains thiions, & r? par |cles elonging 1o a surface “bath™ cou
necessary complexity to generate the desired phenomenorfnove Synchronously. .

The LLC model describes an open reactive system under Our results confirm further the idea that the support may

nonequilibrium conditions. The reactive scheme involves adm°d'fy the MF behavior both statically and dynamically.

sorption, desorption, and reaction steps, under the Conditioﬁepresentatwe low-dimensional models, which exhibit com-

that the total number of on-lattice interacting particles plusplex p:hfnom?na atft?he M';f Ie;/el, ;N'" f][e'lpi. us tof caonstrupt ?
the empty lattice sites be conserved throughout the procesg(.)mp. ete picture of the etiects of restriction of dynamica
reactive processes on low-dimensional supports. In this re-

In the MF description LLC is a dissipative system. For a t th f | illati dch is of il
large range of parameter values all the phase space traject%Qec » the case of complex osciflations and chaos IS of specia

ries sink into a limit cycle; the MF concentrations oscillate in Interest.
time with constant amplitude. The amplitude and the period
of the oscillations depend only on the various system param-
eters. The authors would like to thank Dr. G. Kalosakas for
When the LLC model is realized on a lattice, the picturehelpful discussions and Professor G. Nicolis for valuable
changes radically. On square latti2D), clustering of ho- ideas and for a critical reading of the manuscript. One of us,
mologous particles is observed and local oscillations appeaA.S., acknowledges financial support from the NATO Sci-
The lattice is divided into subregions that oscillate in phaseence Program. This work was supported, in part, by NATO
while distant oscillating subregions are out of phase. Consecollaborative Research Grant No. CGR 973016, by the Bel-
quently, for large enough systems, the local oscillators argian Federal Office for Scientific, Technical and Cultural Af-
active while the global oscillations are suppressed. The defairs within the framework of the “Ples d’ Attractions Inter-
velopment of the local oscillations is attributed to excitationsuniversitaires” program, and by the European Commission
of random lattice sites due to local fluctuations. These excibG12 Grant No. PSS*1045.
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