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Pattern formation induced by nonequilibrium global alternation of dynamics
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We recently proposed a mechanism for pattern formation based on the alternation of two dynamics, neither
of which exhibits patterns. Here we analyze the mechanism in detail, showing by means of numerical simu-
lations and theoretical calculations how the nonequilibrium process of switching between dynamics, either
randomly or periodically, may induce both stationary and oscillatory spatial structures. Our theoretical analysis
by means of mode amplitude equations shows that all features of the model can be understood in terms of the
nonlinear interactions of a small number of Fourier modes.
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[. INTRODUCTION forced chemical reaction-diffusion systefis3,14]. Perhaps
the most challenging manifestation of pattern formation due
Spatiotemporal pattern formation in nonequilibrium ex-to global modulation has occurred in granular materials,
tended systems plays a role in a huge number of physicalhere vertically vibrated granular layers exhibit spatial and
phenomena, and in the past few decades there has been coemporal patternind8,15. Our system differs from these
tinuous progress in the understanding of different mechaethers in one crucial respect, namely, that by itself each dy-
nisms that lead to such patterns. The mechanisms for patterramic exhibits no interesting behavior and, in particular, no
formation that have been studied most thoroughly and inerder, pattern formation, oscillatory behavior or instability of
voked most frequently include dissipative structures, ofterany kind. It is the alternation between uninteresting dynam-
involving an input of heat balanced by dissipation, or chemi-ics (generalizable to any periodic modulatjdhat is entirely
cal oscillations in dissipative open systefdd. Other well-  responsible for the appearance of patterns in our model.
known cases involve patterns formed by the temporal modu- Qur earlier work, based on a class of models associated
lation of a parameter in systems that undergo Hoplith the Swift-Hohenberg equatidi6,17, was mainly nu-
bifurcations[2,3], and noise-induced patterf¥,5]. merical. Herein we develop an analytic theory that captures,
In recent work we introduced a new mechanism for spaoften quantitatively but in any case qualitatively, all the fea-
tial and spatiotemporal pattern formation induced lyabal  tures of the pattern formation mechanism in all parameter
alternation between two dynamics, each of which by itselfregimes tested. The theory is based on a mode analysis of the
leads to a spatially homogeneous s{@g]. When the alter-  nonlinear problem and the retention of only a few modes
nation is periodic[6] the spatial patterns are stationary in whose evolution reproduces the principal behavior of the
some parameter regimes and oscillat@gminiscent of 0s-  system. Our detailed analysis is for a one-dimensional ver-
cillons in granular materialg8]) in others. Random alterna- sjon of the model, for which we also present simulation re-
tion leads to stationary patterfig]. sults for comparison. These simulations complement our ear-
We note that there are many nonlinear spatially distribHier two-dimensional simulations. We also outline the
uted systems in which external forcing leads to pattern forstraightforward extension of our theory to two dimensions.
mation, pattern selection, pattern stabilization, appearance of |n Sec. Il the general formalism, model system, and the
coherent structures, and other ordering effects. The externghportant parameters of the problem are laid out. Section IlI
forcing may be constantdc forcing, random(temporally  presents the numerical simulation results for the one-
and/or spatially, or periodic(again, temporally and/or spa- dimensional version of the model. The analytic theory and its
tially). The literature on global forcing (i.e., space- predictions are presented in Sec. IV, where comparisons with

independent forcing such as that considered in this papethe numerical results are also detailed. We conclude with a
usually focuses on periodic modulation. A few representativeshort summary and discussion in Sec. V.

examples include parametric pumping of electrons in a Pen-
ning trap which can lead to coherent collective phase-
bistable motion of the electrons’ center of m§8§ breather
stabilization in a sine-Gordon systgr0], kink and soliton
formation in lattices of coupled oscillatofd1], and reso- To illustrate the proposed mechanism, we consider a
nances in periodically forced oscillatory systefd®]. Par-  simple family of models that exhibit patterns. The over-
ticularly interesting contributions in this last category havedamped Langevin dynamics for a scalar fieddr,t) that
been a number of recent experimental studies in periodicallgepends on both spaceand timet reads in general

IIl. GENERAL FORMALISM
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The field could, for instance, represent the concentration of a

chemical species at a given spatial position and time, or Zhe term ¢%/2 comes from the “1” in the coupling term

scalar function of the velocity in a fluid. The temporal evo- acting on the fieldsee Eq(3)]. That is,¢ is the solution of

lution of the field is driven by a local force that can be

derived from a local potentiaV/(¢) by its coupling with V'(¢)+¢=0. (5)

other locations, indicated by the operatyrand by fluctua-

tions (for example, thermal fluctuationmodeled by the ran-  Note that although/(¢) is monostableV(¢) may not be,

dom termé(r,t). We assume thai(r,t) is Gaussian distrib- and then one may wonder about the possibility of generating

uted, has zero mean value, and has a correlation functioa pattern, despite the fact that the local potential has only one

given by equilibrium point. However, this will not occur: by consid-
ering small fluctuations around the homogeneous state,

(E(rDE t))y=0"8(r—r")s(t—t"). )

=¢+4, and linearizing Eq.(1), the following evolution
A system such a$l) must satisfy two requirements for equ?‘ion for the Fourier componeﬁndipated t_)y a hatof
pattern formation: it must exhibit local multistability, that is, the field for the most unstable modks is obtained:

the local potential must have at least two stable equilibrium A ~

points, and it must have a morphological instabilitg], i.e., o(k*,t)=—=V"(¢)o(k*,1), (6)
|k|=0 cannot be the most unstable Fourier mode. A paradig- i oy~ ,

matic example is a phenomenological model for theWhich leads to unstable behavior only\f'(¢)<0. Slrlce
Rayleigh-Benard system near the convection threshold: th¥(¢) has only one equilibrium point, it follows that’(¢)
Swift-Hohenberg(SH) model [17]. A brief review of this >0 and thus no pattern arises even W(¢) is not
model should be useful to clarify the features of the mechay,onostaple. Moreover, it may happen thNgtp) and V(o)
nism we are about to present. are not monostable, yet no structure develops because

For the SH model the local potential and the coupllngv,,(¢)>0. Hence we arrive at the following conditions:
term read, respectively,

a b if V'(g)+¢=0, but

V"()>0, then no pattern develops; (7a)
—_ 2y2 L

Low=—(1+VE ® it V/($)+%=0 and

Note that the coupling operator determined amorphologi- o~

cal instability according to the classification criteria of Cross V'(¢)<0, thenapattern develops.  (7b)

and Hohenber{16], with |k*|=1 as the most unstable Fou-

rier mode. Throughout this paper we will consider the cou- . .

pling Lsy. As for the local potential, we can distinguish local potentialsVy(¢) andVy(¢):

different cases according to the value of the parametarsl . __ / 1 /

b. If a=0 andb=0, or if a0 andb=0, Vs (¢) has a e(r,t)=—AOVi(e(r,t)—[1-A(t)]Va(e(r,1))

single stable equilibrium point, and the system therefore does + Lo(r,t)+E&(r,t). (8

not develop(heterogeneouspatterns. For all other cases a

spatial structure develops; its shape depends on dimensiohlere A(t) is a dichotomous function of time that takes on

ality and on the symmetries satisfied by Et). If a=0 and the values 0 and 1. In this way eith€i(¢) or V,(¢) acts

b>0, the local potential has two stable equilibrium pointson the system atverysite at a given time. It is easy to check

and is symmetric with respect to the lige=0. Equation(1)  that Eq.(8) can be rewritten as

is then invariant under the transformatign—-— ¢, and in ) , ,

two dimensions the system shows the rolls that are charac- ¢(r,t)=—=V. (e(r,t))—u(t)V_(e(r,t))+ Lo(r,t)

teristic of the stationary structures associated with convec-

Consider now global switching mechanism between two

tion. On the other hand, & andb are different from zero, +E(rY), ©
Vsu(e) still exhibits two stable equilibrium points but the \yhere

inversion symmetryp« — ¢ is no longer satisfied by the

evolution equation. In this case a two-dimensional system ~ Vi(e) V(o)

shows localized stationary spots arranged in a hexagonal lat- Vile)=——%—— (10

tice pattern.

According to this discussion, ¥/(¢) is monostable no andu(t)=2A(t)—1==*1.
patterns appear, and the steady state of tr_le system is spatially | et us assume tha¥ 1A¢) andV, ) are monostable
homogeneous. The homogeneous state is determined by tBgtentials. It is then clear according to conditioff that
equilibrium pointe of the effectivelocal potential neither of the two dynamics alone will lead to patterns. How-
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ever, we will show that the nonequilibrium process of alter- 2 (% 2 y 2

nation in time, either periodically or randomly, of two non- tini=— |- Jdyex;{ Vi(y) ﬁ dzexp( — _2VJ(Z) .
linear dynamics neither of which leads to patterns, may lead o7/ e @i o

to different kinds of oscillatory and stationary patterns. (14

Let tg denote the average time that the system spends in ) ) o
each dynamics. Then we expect thattif-=, that is, if The fluctuations should not dominate the dynamics, i.e., they

switching is slow, every site will reach the equilibrium point Must be small enough not to swamp the potential barrier in
V., . Indeed, we might be tempted to approximate BEd)

¢; appropriate to the potentid;(¢) that drives the system. sby the deterministic limit,

Therefore the field will oscillate between homogeneou
structures. However, if the switching process is sufficiently _

fast (later we will state the condition quantitativelythe fast o f ¢_dy +0(0?) (15)
variable u(t) can be replaced by its average valug(t) = '

~{u(t))=0. Therefore in that limit the system &fectively

driven by the potentialV.(¢). We stress that although Notice, however, that due to the absence of an inertial term
V1) are monostable and satisfy the conditioh associ- in the model, Eq(15) predicts the particle to be exponen-
ated withno pattern formationy , (¢) may in general satisfy yja|ly close to the equilibrium poing; after a finite time but

@ Vi(y)

either condition. In particular, i, (¢) are such that will only reach this point exactly in infinite time. For practi-
cal purposes, we can consider that the particle has “reached”
Vi'(ZDi)JF:Di:O and Vi”('{pi)>0, (1) the equilibrium pointZoJ- when it is located at a distance of

O(o?) from this point, so that the timg_; can, in fact, be
estimated by Eq(15) if the upper limit is replaced byp

+O(c?) [@— O(0?)] if the particle moves from right to left
[left to right]. Moreover, ifvj'(¢i) varies little in the interval

pattern formation will occur due to thglobal temporal al- (%i,%1) we arrive at the convenient estimate
ternation of two dynamics, neither of which alone leads to !

Vi(e.)+e.=0 and V.(p,)<0, (12

patterns. ~ ~
Next we show that nonlinearity is needed for such a pat- t = _Piei (16)
tern formation mechanism. Consider for a moment the qua- . Vj'((pi)-i- @

dratic local potentials, that idjnear local forces, V| (¢)
=C;¢—D;, whereC; andD; are constants. Since we want Note that this last expression does not diverge as does Eq.
these local potentials to satisfy E(L1), we must haveC; (15) sincevl-’(;i)vt'g}iaéo.

>0. ObviouslyV’ (¢)=(C1+C2)/2>0, which allows no On the other hand, the time that the system spends in one
pattern according to Eq12). We must thus conclude that of the two dynamicsts, reads as follows. If the dichotomous
pattern formation by the mechanism described herein is onlgwitching is periodicts is clearly the semiperiod of the sig-
possible with nonlinear forces. nal, ts="T/2. If the switching is random, we takk(t) to be
Given any particular choice o¥/; (¢) satisfying Egs. a dichotomous exponentially correlated random variable

(11) and(12), the formation of spatial structures can be un-wjith correlation timer. The correlation function of the as-
derstood in terms of the ratioof the two characteristic times  sociated random dichotomous variahlét) then is

of the system: the time that the system spends in each dy-

namics,ts, and the relaxation time to equilibrium statées, PN\ |t—t |7
s 9 &s (nOu(t))=e 007, (17)
ts The time that the system spends in each dynamics on aver-
=i (13 ageis thert,=2.

As commented above, if>1, the system will alternate
between homogeneous states, and<¥fl, a stationary pat-
The timet, is the smaller of; ., andt, .;, wheret; ;isthe  tern will be obtained. The case-1 is the most striking;
relaxation timeunder the action of Y, of the homogeneous when the switching is periodic, a resonance phenomenon be-
state associated with;. We can estimaté_; by focusing  tween the two characteristic times of the system may pro-
only on thelk| =0 mode and assuming that, when the potenduce oscillatory patterns. These patterns only occur under
tial switches fromV; to V;, the mode amplitude behaves as periodic switching, that is, random switching even with a
a Brownian particle |n|t|aIIy equilibrated in the effective lo- ratior~1 does not produceustainedosc”|atory patterns_
cal potentialV;(¢). When the local potential is switched, Although whenr=1 a collective oscillatorylike pattern may
this point, which up to that moment was stable, become®e found during a certain temporal window in the randomly
unstable. The relaxation time to the new homogeneous stagvitched system, the probability that(t) retains a given
associated witv; is the time taken by the Brownian particle value for a timet longer thant, is appreciabld O(e~t)].
to roll down the potential hill to the new equilibrium point During such an event the whole system can relax to a homo-
[18]: geneous state. Once a homogeneous state is regahedt
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FIG. 1. Effective local potential¥; () (solid curve andV,(¢)
(dotted curve with A;=A,=1. The mirror symmetry is broken if
AL#A,.

will, sooner or later it is very difficult for the system to

recreate an oscillatory pattern. Periodic switching clearly by

passes this difficulty.

lll. A PARTICULAR CASE: NUMERICAL SIMULATIONS

Let us now focus on the following particular family of

local potentials that satisfy the conditiofkl) and (12):

4 3

2
¢ @ ¢ _
Vide)=Aia 75— 5 %), (18)

whereA, , are positive constants. Then the potentialy ¢)
are

4 3 2

[ (3 ¢
Vt(@)—atf"'a:?_ar?_a:% (19
where
A, A
.= (20

There are two different cases according to the values, of
One is the symmetric casé);=A,, for which V()
=V,(—¢). Since it then follows thaV,(¢) is an even
function of ¢, the inversion symmetryp«— — ¢ is satisfied
by Eqg.(9) in the limit r—0. Away from this limit, the equa-
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FIG. 2. Spatiotemporal density plot of the field for the 1D sym-
metric caseA;=A,=1 with slow random switchingr(=4.5). A

clear alternation of homogeneous states is observed.

t,=1.3 when A;=1, A,=2. (22)

These values are in agreement with those found in numerical
experimentst, =2.49+10 2 andt,=1.386+10 3, respec-
tively. The approximate expressidi6) yields t,=1.8 and
t,=1.7, respectively.

In earlier work[6,7] we performed two-dimension&2D)
numerical simulations of Eq8) on 128< 128 lattices with
the local potentialg18). There we showed that stationary
patterns of appropriate symmetries are indeed observed for
r<1 and oscillatory patterns are seen whenl. Here we
perform complementary one-dimensior{dD) simulations.
The values of the relevant parameters are=10 3, Ax
=0.5, L,=64, ando=10 2. In order to avoid possible in-
stabilities arising from boundary effects we implement peri-
odic boundary conditions. As in the 2D case, we expect the
typical wavelength of the pattern to be=27/|k* |=2m and
the aspect ratio to be/\ ~10; that is, if a pattern develops,
we expect to find ten wavelengths inside the lattice. These
simulation results are compared to detailed theoretical results
in the following section.

The initial condition is taken to be random according to a
Gaussian distribution. As for the effect of the additive fluc-

tion is invariant under the transformation combinationtuations in the dynamics, only if the initial condition were

{¢—=—@,u——pu}. The other is the asymmetric cask,

chosen to be uniforrhe(r,0)=const for allr] would they be

#A,, for which the inversion symmetry is never satisfied.relevant, since in all other cases small fluctuations do not

We restrict our simulations to the representative cases
=A,=1 andA;=1, A,=2 (see Fig. 1

We first compute the relaxation tinte. Using Eq.(14)
with o?=10"2, we obtain

t,=2.2 when A;=A,=1,

play a significant dynamical role. Clearly, a uniform initial
condition does not produce patterns in the deterministic
problem regardless of the value of the control parameter

In Figs. 2 and 3 we show the results of typical simulations
for the symmetric 1D case with random switching. We
present a density plot of the field as a function of space and
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FIG. 3. Spatiotemporal density plot of the field for the 1D sym- k|G 4. Simulation results showing the 1D oscillatory patterns in
metric caseA;=A;=1 with fast random switchingr(=0.045).  the spatiotemporal evolution of the field for the symmetric case
The system is essentially driven by the potental, and a station- A,=A,=1. Switching is periodic withr =1.15. Figure 9 shows a

ary pattern develops. single spatial and temporal period of such a pattern.

time forr =4.5(Fig. 2, slow switchingandr =0.045(Fig. 3, . . .
o . : is, the spotlike structure presentsré rotational symmetry
fast switching. In the first case, a clear alternation between . . .
nd oscillates between the two possible square-glide-

homogeneous states is obtained, and in the second we see [fie .

) ) ransformed lattices.

formation of & stationary pattern. For the asymmetric case, again no spatial structure devel-
Deterministic periodic switching leads to results similar to Y a9 P

o . ops wherr>1, and one obtains a simple alternation in time
those of random switching whers1 (alternation of homo- of homogeneous states. The casel leads to a hexagonal
geneous stat@sand r<1 (stationary patterns However, : 9 : AR 9 .

. ; stationary pattern, whether the switching is random or peri-
whenr=1 an oscillatory pattern develops. Figure 4 shows,

i . ' . dic. This is also the pattern that emerges in the 2D SH
again by means of a density plot of the field as a function o .
. ; . model in the absence a@f< — ¢ symmetry. When alterna-
space and time, the oscillatory structure that arises when

o . o7 X . tion is periodic, the case=1 leads to a hexagonal oscilla-
=1.15. Below we will explain in detail the spatiotemporal :

: . tory pattern. Here there are no symmetry requirements to
structure of this oscillatory pattern.

The 1D asymmetric cases\(#A,), periodically or ran- force alternation between glide-transformed lattices. Instead,
) asymme #1T Aa), PETI y we obtain truly localized excitations that resemble the oscil-
domly switched, differ only in minor details from the sym- . . :
. lons found inshakengranular materials and clay. Figure 5
metric cases. shows several snapshots over one period Agr=1, A
We recall[6] that for the 2D system, different symmetries ~ - P Per P2
. . =2, and r=0.95. The hexagonal oscillatory pattern is
determine the spatial arrangements and shapes of patterr(lz?éarl seen
For the symmetric cas&/, (¢) is exactly the SH potential y '
mentioned earlier, Eq3), with a=0 andb>0. Therefore,
drawing parallels with that model, one expects and indeed IV. MODE AMPLITUDE EQUATIONS
observes stationary roll-shaped patterns in the limit0, We now bresent a theoretical r0ach to the problem in
since Eq.(9) satisfies the inversion symmettwhether the € now present a theoretical approach lo the probie

aternation between dynamics is random or periodin the (28 ¢ T8 SRR U SEEAIS AL SARCTY T
other hand, ifr—o, alternation between homogeneous 9 P

states ensues, just as in the one-dimensional case. When tzljji:tr% rgﬁs\i,:ralalrecsgslzt mgf(tao?/feroizncczzliﬁguogr?oé?c tst]viitcohr;ﬁ-
switching is deterministic, the main difference is the exis- ' ’ P 9

tence of sustained oscillatory patterns whieal. Since in fnaast?oﬁaﬂgﬁznﬁﬁqchglﬁrﬁi??aeorgaegﬁzg%g t??hg?tégrsl for-
that case the contribution &f _(¢) can no longer be ne- ' :

; . / e Let us consider the following variant of our particular
glected, the inversion symmetry is not satisfied by B, choice of local potentialé18):
whetheru=1 or u=—1. Therefore, as in the SH model, a P '
spotlike pattern emerges. However, E9).is invariant under 4 3 )
the combined transformatiode« —¢, u« —u}. This v AL 8 29
leads to a square arrangement of the oscillatory pattern, that 1A @)=A1g & 4 Y3 Y Te) (22
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(X, 1)]rs1=Ao(1),

e(X,D)| <1 =A()e*+ AT (e ™. (23

4
LR B B I B B B O
L BN OB B B B O A
LR B IR B B B B O
L B IR B B B B R
I B O

spatial harmonic ok*, i.e.,k=2k*, which arises from non-

for the field:

2
</:<x,t>=Ao<t>+n§1 [An(D)eM™+A% (e ™). (24)

t+1/4

.
.
-
.
L
-
-
-
-

Substituting Eq(24) into Eq.(9) and neglecting all terms of
order ™ with |n|=3, we obtain the following evolution
equations for the mode amplitudeg(®), A.(t), and A(t)

value u(t)==1]:

t+1/2

Ap=[a(a,*a_)—1]Ag+(a_*a,)—e(a,+a_)

AL E LR L LY
A A AL 2Rl ]
AALEEELR R R
A A A L2 R 2
AL AR L L L L
LA A L B R 2N

X(6|A1|2Ag+6|A,|2A0+3AIAS +3AT2A,+AY)
—y(a_za, ) (AF+2|A2+2|A0%), (25

A=a(a,*a_)A;—3e(a,*+a_)(|A%A;
+AIAL+2|Ay2A1+ 2A0AT AY)

t+37/4

—2y(a-*a;)(AcA1 TATA,), (26)

A,=[a(a,+a_)—9]A,—3e(a,*a_)(2|A%A,
+AGAL+A|A+ AgAY)
—ya_*a,)(AT+2AA,). 27)

t+T

We assume that the;A&an be expanded in the parameters
a, &, andy,

A E B E B E B B
(R N RN N N N

.

-
-

.
L

Ll
-

.
L

-
L]

-
L ]

-
-

-
-

.
-
-
-
-
-
-
-

FIG. 5. Snapshots of the 2D field for the asymmetric case with
A;=1, A,=2, andr=0.94 through a full period of the forcing
function. The localized excitations are arranged in a hexagonal pat-
tern. where k=0(a,&,7). The leading order for the\; then

yields the equations:

A=A+ AV +0(a?,82,97), 28

where we have introduced the parameters:, andy in the
nonlinear terms of the potential. For the moment, we will
consider these parameters to be smpil(a)=0(¢)
=0O(y)], and such tha¥;(¢) and V. (¢) satisfy the re-
quired stability condition$11) and(12) for pattern formation AD=0. (30)
under alternation of dynamics. Since the limits1 andr

<1 will, respectively, produce alternation between homoge-
neous states and stationary patterns with typical wavelength
N =2x/K* =2, the most unstable modes will tke=0 and
k=k* =1 as we move from one limit to the other, that is, we Equation(29) can be solved completely by requiring thag A
expect solutions dominantly of the form should be a continuoug-periodic function. The result is

AP=-AO+(a_+a,). (29

AL = —9AD). (31)

036216-6

However, the phenomenology observed in the oscillatory
patterns is not well described by considering only these two
modes or a linear combination of them. In order to reproduce
these structures it is necessary to include the first Fourier

linear interactions. Hence we introduce the following ansatz

[+ corresponds to the dichotomous variable taking on the
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a_+a,{1-e [1—-tanKT/4)]} if te[0,T/2]

AO(t)= . 2
o (V a_—a,{l+e [1—tanhT/4)—2e™]} if te[T/2T]. (32
|
The term A®) relaxes to zero rapidly in the long-term tem- a—2yla_| ,
poral evolution, and hence we can neglect it. Under this as- Al()==*Rg | ——=——(a-)

sumption, the next order for Areads

4 tani(T/4) 1
—

112
+(ay)? ] vV t. (36

Bs(a;_fa,)AgO)Jr y(a_*a,)
K K

AS=—9All—(A[")?

(33 We do not include the analytic expression fof( because
it is complex and not particularly illuminating. We do note

As for A, Eq. (30) indicates that we must consider its next that it can written in the form

order, Ay (1) =A%(1)F(1), (37

- AP whereF (t) is a continuoud-periodic function. Therefore, if
A(11)=%{a(a+ +a_)—3e(a, +a_)(|AY12+(AD)?) Al(t)_>((),) then also é(t)_,g_
Despite the fact that the theory is perturbative in the pa-
—2y(a_xa, AP} (34  rametersa, £, andy, and so are the expressiof8?), (36),
and (37), we argue that the results can be applied at least
At the same time, E(q.30) suggests that a reasonable simpli- qualitatively even wherwm=¢=vy=1, that is, to the local
fication is to neglect the temporal dependence &P Ay  potentials used in the numerical simulations. We again begin
substituting((A{)?) for (A{)? and(AQ)) for A by first discussing the symmetric cage,=A,=1, i.e.,a,
=1, a_=0. In the limitr<1 we expect a stationary pat-
1(T tern, such asp(x,t)=A, cosx; hence the mode amplitudes
(A= ff AP (t)dt=a_, Ao(t) and Ay(t) must go to zero, as actually occurs in the
0 theory. Moreover, in that limit Eq26) reduces to the Stuart-
Watson equatiof19], and the steady state of;&) can be
((Ago))2>= %fT(Ago)(t))zdt exactlycomputed:
° A=113, (39)
4 taniT/4)
1- f) . (39  whichis exactly the value found using the approximate equa-
tion (36). At the other extreme, in the limit>1 we expect
. A(t) and t) to go to zero since the system alternates
Equations(33) and(34) can be solved completely by us- bégw)een hopﬁgo)gene%us states. That is theycase for(&@)s.

ing the resul{32) and requiring that Ashould be a continu- and(37). Also note that Eq(32) indicates thats(x,t) indeed
ousT-periodic function. The resulting expression foy(#) is switches between-a(*)=—1 anda(") =1 for all x.

Oscillonlike patterns are expected in the intermediate re-

=(a )?+(a,)?

03 gime, where both alternation and spatial structure are rel-
evant. Therefore the quantity
max{ A.(t)Ay(t)] for te(0,T) (39
02

as a function ofT estimates the regime where oscillatory
patterns are most likely to appear. We represent(Bg). in
Fig. 6. The maximum of the function is aroud~3. We
o1} ] take this value of the period to be the resonance value of the
two characteristic times involved in the system, ires,1, so
thatt,~1.5. This value is in agreement with the one already
found in numerical simulations and also in theoretical calcu-
0 ) . lations.
0 2 4 6 We now compare the results found in the 1D numerical
T simulations with the theoretical predictions. The three panels
FIG. 6. The maximum in the resonance parametghAas a in Flg 7 deplCt the theoretical and numerical values obtained
function of the periodr gives the alternation period most likely to for Ag(t), Ay(t), and Ay(t) for the cases>1, r=1, and
produce oscillatory patterns. r<1, respectively. In both theory and simulationg(#) os-

max[A(DA,(t)]
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FIG. 7. Theoreticalupper portion of each paneind numericallower portion values of the coefficients of the three modes retained in
the expansion, Eq24), for the cases>1 (T=10, first panel r=1 (T=4.45, second panelandr <1 (T=10 2, third panel. In the first
panel the only contribution to the dynamics comes fromkhed mode, that is, homogeneous states alternating in time. In the third panel
only the constant contribution of tHe=1 mode becomes relevant, leading to a stationary pattern. The theoretical approach neglects the
oscillations of the A(t) mode, which are evident in the second panel.

cillates around zero with an amplitude that decreases anfl,(t) in the numerical simulations exhibits oscillations
tends to zero as the peridddecreases. The mode amplitude around a constant value. We have neglected these oscillations
A,(t) fluctuates around zero in the regimes1 andr>1, in our theoretical approach. They are not fundamental to the
and presents oscillations in the intermediate regime whergpatiotemporal behavior af(x,t) as we will see below. We
oscillons are found. Finally, At) shows a constant value if stress again that these comparisons between theory and
r<1 orr>1; however, in the intermediate oscillon regime, simulations use perturbative theoretical expressions applied
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FIG. 10. Theoreticalupper pangland numericallower panel
density plots of the field for the symmetric case with fast periodic
switching (T=10"2, r<1). The stationary pattern is captured
quantitatively by the theory.

FIG. 8. Theoreticalupper pangland numericallower panel
spatiotemporal density plot ap(x,t) for the symmetric casé;
=A,=1 with slow periodic switching T=10, r>1). The alter-

nation of homogeneous states is captured quantitatively by thgtatlonary pattern appears. The agreement between theory
theory. and simulations is essentially quantitative. The intermediate
regimer =1 yields an oscillatory pattern in qualitative agree-
well beyond the perturbative regime. Nevertheless, the qualiment with the pattern obtained from the simulations.
tative agreement is clear and becomes quantitative in the For the asymmetric casé);#A,, we briefly note that
perturbative regime. again theory and simulations agree qualitatively showing all
The qualitative agreement can be further ascertained bjhe phenomenology as a function of the ratioaThe quanti-
using Eq.(24) to reconstruct the fielg(x,t). The results are tative agreement, however, is not as good as in the symmet-
shown in Figs. 8—10, wherg(x,t) is depicted by means of ric case.
density plots for the cases>1 (Fig. 8), r=1 (Fig. 9), and The spatial arrangement of the patterns obtained for the
r<1 (Fig. 10. As said before, even when neglecting thetwo-dimensional case can be inferred from our theory as fol-
oscillations of A(t), the theory reproduces the behavior of lows. The structures arise form the nonlinear interactions be-
the field as a function of the period. Wher 1 alternation  tween modek; of magnitudek;|=k* =1. Therefore, let us
between homogeneous states is obtained, and with a  consider

o(r,)= > AjeliT+AT ek, (40)
[kjl=1

Substitution of Eq.(40) into Eq. (9) leads to the evolution
equation for the modes 4 [20]. We particularly highlight
the following nonlinear mode interactions:

Two modes: (a_*a;)A;nALL, (41

Three modes: (a,*a_)AqjAjAT ; modal self-interaction

(423

Three modes: (a,*a_)A;jA;,AT,, modal interaction.
(42b

The modes involved in the interactiortd1) are those for

which ky,+k,=Kk;, that is,ky,, k,, andk; lie apart byw/3.

This favors a hexagonal pattern if the symmetries of the sys-

tem support this pattern. The three-mode interactions, on the
FIG. 9. Theoreticalupper paneland numericallower panel ~ Other hand, favor a square pattern or a roll pattern depending

density plot of the field for the symmetric case with intermediateOn the symmetries that must be fulfilled.

periodic switching T=4.5, r=1). The oscillatory pattern is cap- First consider the cage<1 leading to stationary patterns.

tured qualitatively by the theory. Since the adiabatic elimination of the fast variabje,
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—(u)=0, is equivalent to neglect of the terms in Eqs(41)  capturediin many cases even quantitativetje behavior in
and (42), it follows that the contribution of the two-mode all parameter regimes. The three modes that are included in
interaction plays no role in the symmetric case siace this theory are the uniform modé+€0), the most unstable
=0. The three-mode interactions must always be taken intenode k=k* =1), and the first Fourier spatial harmonic of
account. In the symmetric case no particular regular arrangehis unstable modek&2k*). The analytic results lead to
ment arises from the three-mode interactiof® because all periodic alternation of homogeneous states for largsta-
the modes obey the inversion symmeiry-> — ¢. This then  tionary patterns for smatl, and in the case of periodic alter-
leads to a roll-shaped pattern. On the other hand, in theation to oscillatory patterns for intermediate
asymmetric cas@_+0 and the inversion symmetry is no  We have also outlined the way in which this theory can
longer satisfied. The two-mode interacti@i) then becomes easily be extended to the 2D system, where more than three
relevant. As a result, the pattern is hexagonal. modes need to be considered. Here one has to include all
We now move to the case=1, i.e., oscillatory patterns. modes with a wave vector of unit magnitude as well as a
For the asymmetric case, the contribution of the two-modesubset of two-mode and three-mode interactions that domi-
interactions again leads to a hexagonal pattern, but now iate the dynamics. The number of modes is still small and
oscillates in time. In the symmetric case, recall that the in-analytically tractable.
version symmetrytogether witha time-translational symme- The alternation mechanism has thus been presented nu-
try, t—t+T/2, is observed; that is, E¢Y) remains invariant merically and understood analytically for certain classes of
under the combined transformatiofp«— —¢,u< —u}. models based on the Swift-Hohenberg equation. One can en-
Therefore the field oscillates between two glide-transformedision many other situations in which a global alternation
structures. We note that ffi=1 or if u=—1 the system between homogeneous or even chaotic dynamics may lead to
does not present inversion symmetry, so we expect a spotlikgpatiotemporal pattern formation. We stress again the most
pattern for this oscillatory structure. However, the combinednteresting aspect of this mechanism, namely, that the alter-
symmetry transformation forbids a hexagonal pattern. As anation isglobal. A parallel theory for an entirely different
result, only the modal interactions wherein, and k; are  class of models of the reaction-diffusion type has been de-
separated byr/2 are allowed, producing a square pattern thatveloped[21]. The minimal feature that is required for any
oscillates between the two possible glide-transformed strucalternation mechanism to lead to pattern formation is that the
tures. most unstable mode of the system corresponds to a nonzero
eigenvectok, whose magnitude determines the length scale
of the pattern. In the Swift-Hohenberg-type model consid-
V. DISCUSSION AND CONCLUSIONS ered here this nonzero-wave-vector instability is due to the

The global alternation of two dynamics, each of which particular form of the coupling. In reaction-diffusion systems

leads to a homogeneous steady state, can produce stationdfjh ordinary diffusive coupling, one requires at least two
or oscillatory patterns upon alternation. The appearance @oupled fields to obtain a nonzero-wave-vector instability

spatial or spatiotemporal patterns depends on the ratib

the alternation time and the relaxation time of the system in

the slower of the two dynamics. Random alternation leads to

stationary spatial patterns, while periodic alternation may ACKNOWLEDGMENTS
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