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Decoherence and linear entropy increase in the quantum baker’s map
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Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

~Received 12 July 2001; revised manuscript received 26 February 2002; published 23 September 2002!

We show that the coarse-grained quantum baker’s map exhibits a linear entropy increase at an asymptotic
rate given by the Kolmogorov-Sinai entropy of the classical chaotic baker’s map. The starting point of our
analysis is a symbolic representation of the map on a string ofN qubits, i.e., anN-bit register of a quantum
computer. To coarse grain the quantum evolution, we make use of the decoherent histories formalism. As a
by-product, we show that the condition of medium decoherence holds asymptotically for the coarse-grained
quantum baker’s map.
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I. INTRODUCTION

The Kolmogorov-Sinai~KS! entropy of a classical dy
namical system@1# quantifies the asymptotic rate at whic
information about the initial conditions needs to be suppl
in order to retain the ability to predict the time-evolved sy
tem state with a fixed accuracy. It can also be viewed as
asymptotic linear rate of entropy increase of the coar
grained evolution of the dynamical system. A positive K
entropy is one of the simplest and most general criteria
classical chaos. Several generalizations of KS entropy
quantum mechanics have been proposed as criteria for q
tum chaos. References@2–5# focus on linear entropy in-
crease, whereas Refs.@6–8# generalize the notion of unpre
dictability, inherent in the concept of KS entropy, to quantu
mechanics.

The dynamics of an isolated quantum system is unit
and therefore entropy preserving. The entropy can grow o
if there exists a source of unpredictability such as coa
graining, measurement, or interaction with a heat bath@9#.
The same is true classically, where, for example, the entr
of a coarse-grained probability distribution increases un
chaotic time evolution, even though the Liouville equati
preserves the entropy of the exact, fine-grained distribut
Measurement as a source of unpredictability was used in
definition of quantum dynamical entropy@5#, which has been
conjectured to approach KS entropy in the classical li
@5,10,11#. A linear growth of entropy for an inverted quan
tum harmonic oscillator coupled to a heat bath has been
tablished in Ref.@2#. Most results in this field are obtaine
numerically~see, e.g., Refs.@12–15#!. In this paper we de-
rive rigorous results using coarse graining as a source
unpredictability.

A systematic way to coarse grain unitary quantum dyna
ics is provided by the decoherent histories formalism@16–
19#. In this formalism, the quantum analog of a coarse gra
ing of classical phase space takes the form of aset of coarse-
grained histories. The entropy of a set of coarse-graine
histories has been defined and analyzed in Refs.@16,20,21#.
In this paper we give a rigorous proof that the entropy of
coarse-grained quantum baker’s map exhibits a linear gro
of 1 bit per iteration, which equals the KS entropy of t
classical baker’s map. We show this to be true up to e
terms that decrease exponentially with the number of coa
1063-651X/2002/66~3!/036212~11!/$20.00 66 0362
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grained bits in the symbolic representation of the map.
order to prove this result, we first establish that the coar
grained histories satisfy the condition of medium decoh
ence@16# in a suitable limit. Although the decoherent hist
ries approach has been used before for the investigatio
quantum dissipative chaos@22#, to our knowledge this is the
first time that the decoherence condition for histories h
been rigorously established for a chaotic quantum system

This paper is organized as follows. In Sec. II, we revie
the symbolic representation of the quantum baker’s map
Sec. III, we use the formalism of decoherent histories
introduce the quantum analog of coarse graining. Section
states and discusses the main results of the paper. We p
those results in Sec. V.

II. THE QUANTUM BAKER’S MAP

The quantum baker’s map@23,24# is a prototypical quan-
tum map invented for the theoretical investigation of qua
tum chaos. During the last decade, it has been studied ex
sively ~see, e.g., Ref.@25# and references therein!. In this
paper we consider a class of quantum baker’s maps defi
in Ref. @26#. These maps admit a symbolic description
terms of shifts on strings of qubits~two-state systems! simi-
lar to classical symbolic dynamics@1#. They can also be
derived from the semiquantum maps introduced in Ref.@27#.
In Ref. @28#, symbolic methods have been applied to mo
general maps. The formulation and proof of the theore
below is based on the development of the symbolic desc
tion of the quantum baker’s map given in Refs.@25,29#.

Quantum baker’s maps are defined on theD-dimensional
Hilbert space of the quantized unit square@30#. For consis-
tency of units, we let the quantum scale on ‘‘phase space’
2p\51/D. Following Ref.@24#, we choose half-integer ei
genvalues qj5( j 1 1

2 )/D, j 50, . . . ,D21, and pk5(k
1 1

2 )/D, k50, . . . ,D21, of the discrete ‘‘position’’ and
‘‘momentum’’ operatorsq̂ andp̂, respectively, correspondin
to antiperiodic boundary conditions. We further assume t
D52N, which is the dimension of the Hilbert space ofN
qubits.

The D52N dimensional Hilbert space modeling the un
square can be identified with the product space ofN qubits
via
©2002 The American Physical Society12-1
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uqj&5uj1& ^ uj2& ^ •••^ ujN&, ~1!

where j 5( l 51
N j l2

N2 l , j lP$0,1%, and where each qubit ha
basis statesu0& andu1&. We can writeqj as a binary fraction,
qj50.j1j2•••jN1. We define the notation

u0.j1j2 . . . jN&5eip/2uqj&; ~2!

see Ref.@26# for the reason for the phase factoreip/2. Mo-
mentum and position eigenstates are related through
quantum Fourier transform operatorF̂ @24#, i.e., F̂uqk&
5upk&.

By applying the Fourier transform operator to then right-
most bits of the position eigenstateu0.jn11•••jNjn•••j1&,
one obtains the family of states@26#

uj1•••jn .jn11•••jN&

[22n/2eip(0.jn•••j11)ujn11& ^ •••^ ujN&

^ ~ u0&1e2p i (0.j11)u1&) ^ ~ u0&1e2p i (0.j2j11)u1&)

^ •••^ ~ u0&1e2p i (0.jn•••j11)u1&), ~3!

where 1<n<N21. For givenn, these states form an ortho
normal basis. The state~3! is localized in both position and
momentum: it is strictly localized within a position region
width 1/2N2n, centered at positionq50.jn11•••jN1, and it
is crudely localized within a momentum region of wid
1/2n, centered at momentump50.jn•••j11.

For eachn, 0<n<N21, a quantum baker’s map can b
defined by

B̂uj1•••jn .jn11•••jN&5uj1•••jn11 .jn12•••jN&, ~4!

where the dot is shifted by one position. In phase-space
guage, the mapB̂ takes a state localized at (q,p)5(0.jn11
•••jN1,0.jn•••j11) to a state localized at (q8,p8)
5(0.jn12•••jN1,0.jn11•••j11), while it stretches the stat
by a factor of two in theq direction and squeezes it by
factor of two in thep direction. Forn5N21, the map is the
original quantum baker’s map as defined in Ref.@24#.

III. COARSE GRAINING

We are now in a position to introduce coarse-grained s
of histories. Let us first simplify our notation slightly. Fo
fixed dimensionsN and n, the dot in the definition~3! is
redundant. Thus, we will write from now on

uj1•••jN&[uj1•••jn .jn11•••jN&, ~5!

always keeping in mind the given values ofN and n. We
introduce a set of projection operators,

Py
( l ,r )[ (

a1 , . . . ,al
b1 , . . . ,br

ua1•••alyb1•••br&^a1•••alyb1•••br u,

~6!

where the bold variabley denotes the binary string
y5y1•••yN2 l 2r . Throughout this paper, lower indices lab
03621
he

n-

ts

individual bits of a string, whereas upper indices will lab
different strings. Bothyk and yk refer to thekth bit of the
string y. Furthermore, we introduce the notationyi : j5yi : j

5yiyi 11•••yj for substrings. The operatorPy
( l ,r ) is a projec-

tor on a 2l 1r-dimensional subspace labeled by the stringy.
The 2N2 l 2r-projectors defined by all possible bit stringsy
form a complete set of mutually orthogonal projectors, i.
Py

( l ,r )Py8
( l ,r )

50 if yÞy8 and (yPy
( l ,r )51. We can write each

Py
( l ,r ) as a diagram,

~7!

where the empty boxes indicatel leftmost andr rightmost
bits which are coarse-grained over. For simplicity, we w
always assume in the following thatl ,n and r ,N2n. In
this casel and r acquire a more specific meaning as t
number of ‘‘momentum’’ and ‘‘position’’ bits ignored in the
coarse graining.

For a given dynamics, a string of projectors defines
coarse-grained history. We define two types of histories,hy¢

andhy
c . The historyhy¢ is defined as

~8!

where y¢5(y1, . . . ,yk) is a sequence of strings. Since fo
eachtP$1, . . . ,k%, the projectorsPyt

( l ,r ) form a complete set
of mutually orthogonal projectors, the histories$hy¢% are said
to form an exhaustive set of mutually exclusive historie
They are a special case of the more general sets of histo
introduced in Refs.@16,18,19#.

The second type of histories considered here is defined
a further coarse-graining of the histories$hy¢%, consisting of a
summation over the firstk21 projectors in Eq.~8!,

~9!

The histories$hy
c% also form an exhaustive set of mutual

exclusive histories.

IV. MAIN THEOREMS

Starting from some initial stater0, the coarse-grained
evolution of the quantum baker’s mapB̂ is characterized by
a decoherence functional. For the histories$hy¢%, the decoher-
ence functional is given by
2-2
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D@r0 ,hy¢ ,hz¢#5Tr@Pyk
( l ,r )B̂Pyk21

( l ,r ) B̂•••Py1
( l ,r )B̂r0B̂†

3Pz1
( l ,r )

•••B̂†Pzk21
( l ,r ) B̂†Pzk

( l ,r )
#, ~10!

and for the histories$hy
c%, by

D@r0 ,hy
c ,hz

c#5Tr@Py
( l ,r )B̂kr0~B̂†!kPz

( l ,r )#. ~11!

If the off-diagonal elements of the decoherence functio
vanish, the set of histories is said to be decoherent~more
precisely, this is the condition of medium decoherence@16#!.
In this case, the diagonal elements can be interpreted
probabilities of the individual histories.

For both types of histories, the number of iterations of
map,k, is assumed to satisfy the inequalityk,r . In the fol-
lowing we assume that the initial state is proportional to o
of the projectors defined in Eq.~6!, i.e.,

~12!

wherex is some bit string of lengthN2 l 2r . We will now
establish the decoherence condition for both types of hi
ries and calculate the diagonal elements of the decoher
functional. For the coarse historieshy

c , it follows directly
from the cyclic property of the trace that the decohere
functional, Eq.~11!, satisfies the decoherence condition,

D@r0 ,hy
c ,hz

c#50 if yÞz. ~13!

For its diagonal elements, we have
Theorem 1.Fix two stringsx andy of the same lengthc,

i.e., uxu5uyu5c. For any two stringsa and b such thatuau
5ubu5k, wherek is a fixed number of iterations,k,r , we
have then

D@ra•x
( l ,r ) ,hy•b

c ,hy•b
c #522kdx

y2OS l 1r

2l 2kD , ~14!

wherea•x denotes concatenation of the stringsa andx and
similarly for y•b, and wheredx

y denotes the Kronecker delt
function.

Proof. See Sec. V C.
The parameterl is the number of coarse-grained mome

tum bits in both the histories and the initial state. TheO@( l
1r )/2l 2k# term can be neglected compared to 22k whenever
l is sufficiently large. Here and throughout the rest of t
paper, we will use the word ‘‘asymptotic’’ to mean the lim
of large l for fixed k and r. Since the decoherence conditio
is satisfied, we can interpret the diagonal elements of
03621
l
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decoherence functional~14! as probabilities. We see tha
there is no single dominant history. Instead, after thekth step
there are 2k different histories each having asymptotical
the same probability, 22k. These histories are defined by th
conditionx5y, i.e., a shift ofk binary positions to the left,

~15!

During this transformation the bits ofa are lost as they reach
the scale at which the momentum becomes coarse grai
At the same time,k unspecified~i.e., random! position bits
b1•••bk enter the relevant section of the string. At each s
the number of histories with significant probability double
as each history branches into two equiprobable histor
This means there is a loss of one bit of information p
iteration.

We now give a precise formulation of this informatio
loss. Since the set of histories$hy

c% is decoherent, we can
define its entropy@16,20,21#,

H~$hy
c%![2(

y
p~hy

c!log2 p~hy
c!, ~16!

where p(hy
c)5D@rx

( l ,r ) ,hy
c ,hy

c#. Using Theorem 1, we find
that

H~$hy
c%!5k1OS ~ l 1r !log2~ l 1r !

2l 2k D . ~17!

The results for the coarse historieshy
c presented above

depend in part on the fact that the decoherence conditio
trivially satisfied for these histories. We now move on to t
more interesting case of the less coarse-grained histo
$hy¢%, for which the decoherence condition is satisfied on
asymptotically. The following theorem establishes th
asymptotic decoherence and gives asymptotic values for
diagonal elements of the decoherence functional.

Theorem 2.Fix any integerg>1, any stringx of length
uxu5g, and any two ordered sequences of stringsy¢

5(y1,y2, . . . ,yk) and z¢5(z1,z2, . . . ,zk) such thatuyj u5uzj u
5g, j 51, . . . ,k, wherek is the number of iterations,k,r .
For sufficiently largel we have then
2-3
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where the second equality provides a somewhat redun
but more transparent formulation of the theorem.

Proof. See Sec. V C.
We see that the expression in the first parentheses is

for all off-diagonal elements of the decoherence function
This implies that in the limit of largel all off-diagonal ele-
ments of the decoherence functional vanish, which es
lishes the decoherence condition. The diagonal element
the decoherence functional can therefore be interprete
probabilities of the corresponding histories~see Ref.@17# for
a discussion of approximate decoherence!. Asymptotically,
only 2k diagonal elements are nonzero. Moreover, the e
terms are exponentially small. As in the case of the coa
histories considered above, there are 2k histories with as-
ymptotically equal probabilities. The number of such his
ries doubles after each step, resulting in a loss of informa
at the rate of 1 bit per step. The conditions satisfied by
histories with nonzero probabilities are also similar to t
previous case. Here, each of these histories is a sequen
k projectors and each of those projectors is related to
initial state via a shift according to the position of the pr
jector in the history,

~19!

In this diagram the first line represents the initial conditi
rx

( l ,r ) . The subsequent lines correspond to the projec
03621
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Py1
( l ,r ) , . . . ,Pyk

( l ,r ) in the history. The boldface is used to ind
cate the bits which are completely determined by the ini
condition for those histories with asymptotically nonze
probability. Such histories satisfy the step-by-step shift c
dition denoted on the diagram by the arrows and lines:
example, the substringx2•••xg is shifted onto the substring
y1

1
•••yg21

1 . For the entire history, therefore, there are onlyk
independent bits which can be chosen arbitrarily, given
step-by-step shift constraint. We recover the coarse-histo
case considered above if we chooseyg2k11

k
•••yg

k as inde-
pendent and record only the very last projector, ignoring
rest of the trajectory.

The entropy of the approximately decoherent set of his
ries $hy¢% is

H~$hy¢%!52(
y¢

p~hy¢!log2 p~hy¢!, ~20!

wherep(hy¢)5D@rx
( l ,r ) ,hy¢ ,hy¢#. It follows then from Theorem

2 that

H~$hy¢%!5k1OS ~ l 1r 2k!log2~ l 1r 2k!

2l 22(k21k) D . ~21!

In the limit of largel, for any fixed number of iterations,k,
the entropy of the coarse-grained quantum baker’s map
proaches the value ofk bits, i.e., 1 bit per iteration, which is
the KS entropy of the classical baker’s map. Due to thek2

term in the denominator, the bound on the error term is no
tight as in Eq.~17!. We believe that this bound can be furth
improved.

V. PROOFS OF THE MAIN THEOREMS

A. Auxiliary results and definitions

We will need the Dowker-Halliwell inequality@17#,

uD@rx , hy¢(k) ,hz¢(k)#u2<D@rx , hy¢(k) ,hy¢(k)#D@rx , hz¢(k) ,hz¢(k)#,

~22!

and the trivial inequality
2-4
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D@rx , hy¢(k) ,hy¢(k)#<D@rx , hy¢(k21) ,hy¢(k21)#, ~23!

where we assume that the firstk21 projectors in the history
hy¢(k) coincide with those inhy¢(k21) ,

hy¢(k)5~py1
1 , . . . ,pyk

k
!⇒hy¢(k21)[~py1

1 , . . . ,pyk21
k21

!,
~24!

and similarly forhz¢(k) . We also introduce the characterist
function

Dy; r
( l 2k,k)[Tr@Py

( l 2k,k)B̂kr ~B̂†!k#. ~25!

In Ref. @25#, we proved the relation

Tr@Py
( l 2k,k)B̂krx

( l ,0)~B̂†!k#5dx
y2OS l

2l 2kD , ~26!

whererx
( l ,0)[22 l Px

( l ,0) . In terms of the characteristic func
tion, it takes the form

Dy; rx
( l ,0)

( l 2k,k)
5dx

y2OS l

2l 2kD . ~27!

This relation was used to prove that the coarse-grained q
tum evolution approaches the shiftlike symbolic behavior
the classical baker’s map to any required accuracy. We
show that this result also implies the existence of a se
decoherent histories.

In the following, it will be convenient to introduce two
additional types of histories. As before, we shall always
sume the initial state Eq.~12!. We definetype-1 historiesby

hy¢(k)
1

[~Py1
( l 21,r 11) ,Py2

( l 22,r 12) , . . . ,Pyk
( l 2k,r 1k)

!. ~28!

Histories of this type are motivated by the symbolic dyna
ics of the quantum baker’s map. They consist of project
that are ‘‘shifted’’ one bit per step relative to the initial sta
~12!. Using our diagrammatic notation we have

~29!

Type-2 historiesare defined by coarse graining type-1 his
ries,

~30!

Type-1 and type-2 histories are useful for seeing how cl
the map is to a classical shift. Histories of this type, howev
are somewhat artificial because the level of coarse grain
03621
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over the ‘‘momentum’’ and ‘‘position’’ changes in time: afte
the kth step onlyl 2k momentum bits are coarse graine
over compared tol in the initial staterx

( l ,r ) ; as for the posi-
tion, r 1k bits are coarse grained over after thekth step
compared tor in the initial state.

By contrast, the historieshy¢ andhy
c defined in Sec. III are

more natural in that they have a constant level of coa
graining over both ‘‘momentum’’ and ‘‘position’’ bits: the
same set of projectors$Py

( l ,r )% appears at all timest
51, . . . ,k, with the same coarse-graining parametersl andr
as in the initial staterx

( l ,r ) .
In the following, we refer to the historieshy¢ and hy

c as
type-3 and type-4 histories, respectively, denoting them b
hy¢(k)

3 and hy
4 , respectively. The histories of each type a

mutually exclusive and form an exhaustive set.

B. Lemmas

We now prove three lemmas for type-1 and type-2 his
ries, establishing, in the limit of largel, the decoherence
condition and giving the diagonal entries of the decohere
functional.

Lemma 1.For a fixed number of iterationsk, in the limit
of large l any two type-2 historieshy

2 and hz
2 satisfy the

asymptotic relation

D@rx
( l ,r ) , hy

2 ,hz
2#5Tr@Py

( l 2k,r 1k)B̂krx
( l ,r )~B̂†!kPz

( l 2k,r 1k)#

5dy
zFdx

y2OS l 1r

2l 2kD G . ~31!

This lemma summarizes two important properties of
decoherence functional for type-2 histories. First, we ha
that the off-diagonal elements of the decoherence functio
are zero,

D@rx
( l ,r ) , hy

2 ,hz
2#50, hy

2Þhz
2 , ~32!

which immediately follows from the mutual orthogonality o
the projectors$Py

( l 2k,r 1k)% and the cyclic property of the
trace. Second, we see that there is only one diagonal elem
which is close to one,

D@rx
( l ,r ) , hx

2 ,hx
2#512OS l 1r

2l 2kD . ~33!

Relation~32! implies the decoherence condition, and the
fore the diagonal elements of the decoherence functional
be interpreted as probabilities of individual histories. Equ
tion ~33! identifies the ‘‘dominant history’’ – the history
which in the limit of largel can be assigned unit probability
The ‘‘error’’ term O@( l 1r )/2l 2k# arises in the proof of the
lemma as a consequence of the estimations performed in
derivations of Eq.~27!. We therefore acknowledge that th
bound on the absolute value of this error term can proba
be improved.
2-5
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Proof.Equation~31! can be considered as a generalizat
of Eq. ~27!. The proof closely follows the arguments in Re
@25# ~Sec. IV B!. We will prove that

Tr@Py
( l 2k,r 1k)B̂kry

( l ,r )~B̂†!k#512OS l 1r

2l 2kD ; ~34!

the rest of the lemma follows from mutual orthogonality
the projectors$Py

( l 2k,r 1k)% and from normalization. Equation
~26! becomes

Tr@Py
(l2k,k)B̂ry

(l2k11,k21)B̂†#512OS l

2l2kD . ~35!

We perform the change the variables

k1r 5k, l 2k5l2k, ~36!

and obtain

Tr@Py
( l 2k,k1r )B̂ry

( l 2k11,r 1k21)B̂†#512OS l 1r

2l 2kD , ~37!

which is equivalent to

Tr@%kB̂%k21B̂†#522( l 1r )F12OS l 1r

2l 2kD G , ~38!

where we introduced auxiliary matrices %k

[22( l 1r )Py
( l 2k,r 1k) . The above equation can be rewritten

terms of the distance measure induced by the Euclidian n
@31#,

d~r,r8![ATr~r2r8!2, ~39!

which is unitarily invariant and obeys the usual triangle
equality. We have

d~%k11 ,B̂%kB̂
†!5ATr@%k112~B%kB

†!# u
2

5ATr %k11
2 1Tr %k

222 Tr~%k11B̂%kB̂
†!

5O~22 l 2(r 2k)/2Al 1r !, ~40!

where we used the equality Tr%k
252l 1r /22(l 1r )52l 1r for

any k.
We shall prove Eq.~34! by induction. The casek51 of

Eq. ~34! follows directly from Eq.~37!. Assuming that Eq.
~34! is true for some value ofk we have, as in the previou
equation,

d~%k ,B̂k%0@B̂†#k!5ATr %k
21Tr %0

222 Tr~%kB̂
k%0@B̂†#k!

5O~22 l 2(r 2k)/2Al 1r !. ~41!

We now use the unitary invariance of the distance meas
~39! to get

d~B̂%kB̂
†,B̂k11%0@B̂†#k11!5O~22 l 2(r 2k)/2Al 1r !.

~42!
03621
m
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Using the triangle inequality for the distance measure~39!
we have from Eqs.~40! and ~42!

d~%k11 ,B̂k11%0@B̂†#k11!5O~22 l 2(r 2k)/2Al 1r !,
~43!

which implies

Tr@Py
( l 2k21,k111r )B̂k11ry

( l ,r )~B̂†!k11#512OS l 1r

2l 2kD .

~44!

By induction this completes the proof of Eq.~34! for any k.
j

Lemma 2.For a fixed number of iterationsk the off-
diagonal elements of the decoherence functional for typ
histories can be made arbitrarily small by choosing su
ciently largel. More precisely,

uD@rx
( l ,r ) ,hy¢(k)

1 ,hz¢(k)
1

#u5OS l 1r

2l 22kD , hy¢
1
Þhz¢

1 . ~45!

Proof. Let us consider a sequence of histori
hy¢(1)

1 , . . . ,hy¢(k)
1 , such that the strings y¢(k21)

5y1, . . . ,yk21 coincide with the firstk21 strings from
y¢(k)5y1, . . . ,yk. We estimate the difference

D@rx
( l ,r ) , hy¢(k)

1 ,hy¢(k)
1

#2Dy; rx
( l ,r )

( l 2k,r 1k)

<D@rx
( l ,r ) , hy¢(k21)

1 ,hy¢(k21)
1

#2Dy; rx
( l ,r )

( l 2k,r 1k)

5D@rx
( l ,r ),hy¢(k21)

1 ,hy¢(k21)
1

#2Dy;rx
( l ,r )

( l 2k11,r 1k21)

1OS l 1r

2l 2k11D , ~46!

where we first used inequality~23! and then Eq.~27!. For the
casek51 we haveD@rx

( l ,r ) ,hy¢(1)
1 ,hy¢(1)

1
#5Dy; rx

( l ,r )
( l 21,1)

and there-

fore by induction we have

D@rx
( l ,r ) ,hy¢(k)

1 ,hy¢(k)
1

#<Dy;rx
( l ,r )

( l 2k,r 1k)
1OS l 1r

2l 22kD . ~47!

Off-diagonal elements can be estimated using Eq.~22!,

uD@rx
( l ,r ) ,hy¢(k)

1 ,hz¢(k)
1

#u2

<D@rx
( l ,r ) ,hy¢(k)

1 ,hy¢(k)
1

#D@rx
( l ,r ) ,hz¢(k)

1 ,hz¢(k)
1

#,

~48!

and therefore using Eqs.~47! and ~27! we have Eq.~45! as
required. j

It follows from this lemma that, in the limit of largel,
2-6
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type-1 histories satisfy the decoherence condition, and th
fore, within this limit the diagonal elements of the decoh
ence functional define consistent probabilities. The n
lemma estimates these probabilities.
03621
e-
-
t

Lemma 3.For a fixed number of iterationsk and for suf-
ficiently large l the diagonal elements of the decoheren
functional for type-1 histories approach either one or ze
More precisely,
rly zero
er of the
its
mas.
D@rx
( l ,r ) , hy¢(k)

1 ,hy¢(k)
1

#[Tr@Pyk
( l 2k,r 1k)B̂•••Py1

( l 21,r 11)B̂rx
( l ,r )B̂†Py1

( l 21,r 11)
•••B̂†Pyk

( l 2k,r 1k)
#5dyk

x dyk21
x

•••dy1
x

1OS l 1r

2l 22kD .

~49!

Similar to the case of type-2 histories, we have that, except one dominant history, all type-1 histories have nea
probabilities. Further comparison of the results for type-1 and type-2 histories reveals a noticeable difference in the ord
error terms:O@( l 1r )/2l 22k# for type-1 histories andO@( l 1r )/2l 2k# for type-2 histories. We do not have any evidence of
importance: it may well be just a consequence of the particular choice of the methods used in the proofs of the lem

Proof. For anyk we can write a decomposition of unity15(ykPyk
( l 2k,r 1k) and therefore directly by definition~27! we have

that

Dyk; rx
( l ,r )

( l 2k,r 1k)
5Tr@Pyk

( l 2k,r 1k)B̂krx
( l ,r )~B̂†!k#

5Tr@Pyk
( l 2k,r 1k)B̂1B̂k21rx

( l ,r )~B̂†!k211B̂†#

5Tr@Pyk
( l 2k,r 1k)B̂Pyk21

( l 2k11,r 1k21)B̂k21rx
( l ,r )~B̂†!k21Pyk21

( l 2k11,r 1k21)B̂†#1F~yk,yk21!, ~50!

where

~51!
-

Because

(
a

D
a;rx

( l ,r )
( l 2k11,r 1k21)

51, ~52!

we have

Dyk21;rx
( l ,r )

( l 2k11,r 1k21)
1 (

aÞyk21
D

a;rx
( l ,r )

( l 2k11,r 1k21)
51, ~53!
which together with Eq.~31! gives

(
aÞyk21

D
a;rx

( l ,r )
( l 2k11,r 1k21)

512dyk21
x

1OS l 1r

2l 2kD . ~54!

The functionF defined in Eq.~51! is non-negative. We there
fore have
2-7
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0<F~yk,yk21!<12dyk21
x

1OS l 1r

2l 2kD . ~55!

This means that

F~yk,yk21!5OS l 1r

2l 2kD for x5yk21. ~56!

Applying this knowledge to Eq.~50! and using Eq.~31! we
have
E

.

03621
Tr@Pyk
( l 2k,r 1k)B̂Pyk21

( l 2k11,r 1k21)

3B̂k21rx
( l ,r )~B̂†!k21Pyk21

( l 2k11,r 1k21)B̂†#

5dyk
x

1OS l 1r

2l 2k21D for x5yk21. ~57!

On the other hand
~58!
-

.

which together with Eq.~57! gives

Tr@Pyk
( l 2k,r 1k)B̂Pyk21

( l 2k11,r 1k21)

3B̂k21rx
( l ,r )~B̂†!k21Pyk21

( l 2k11,r 1k21)B̂†#

5dyk
x dyk21

x
1OS l 1r

2l 2k21D . ~59!

Repeating the same arguments by induction we arrive at
~49!. j

C. Proof of Theorems 1 and 2

Proof of Theorem 1.In the notation of this section, Eq
~14! becomes

D@ra•x
( l ,r ) ,hy•b

4 ,hy•b
4 #5Tr@Py•b

( l ,r )B̂kra•x
( l ,r )~B̂†!k#

522kdx
y2OS l 1r

2l 2kD . ~60!

Introducing a pair of auxiliary strings (x̄,ȳ) such thatux̄u
5uȳu5k we have from Eq.~31!
q.

Tr@Pȳ•y•b
( l 2k,r 1k)

B̂kra•x• x̄
( l ,r )

~B̂†!k#5da•x• x̄
ȳ•y•b

1OS l 1r

2l 2kD . ~61!

We redefine the variables by substitutingr for r 1k,

Tr@Pȳ•y•b
( l 2k,r )

B̂kra•x• x̄
( l ,r 2k)

~B̂†!k#5da•x• x̄
ȳ•y•b

1OS l 1r

2l 2kD . ~62!

We now perform the summation overȳ as explained in the
Appendix to get

Tr@Py•b
( l ,r )B̂kra•x• x̄

( l ,r 2k)
~B̂†!k#5dx• x̄

y•b
1OS l 1r

2l 2kD . ~63!

Performing a further summation overx̄ and using the equal
ity

ra•x
( l ,r )522k(

x̄
ra•x• x̄

( l ,r 2k) , ~64!

we derive Eq.~60! as required. j
Proof of Theorem 2.In the notation of this section, Eq

~18! becomes
D@rx
( l ,r ) ,hy¢(k)

3 ,hz¢(k)
3

#[Tr@Pyk
( l ,r )B̂Pyk21

( l ,r ) B̂•••Py1
( l ,r )B̂rx

( l ,r )B̂†Pz1
( l ,r )

•••B̂†Pzk21
( l ,r ) B̂†Pzk

( l ,r )
#

522kS )
j 51

k

dyj
zj D S )

j 51

k21

d
y
1:g21
j 11

y2:g
j

d
y
1
j

xj 11D d
y
1:g2k
k

xk11:g1OS l 1r 2k

2l 22(k21k)D . ~65!
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Before we present a formal proof of the theorem it is helpful to illustrate the idea behind the proof using our dia
Introduce an auxiliary variable

r 8[r 2k. ~66!

The idea is to represent every projectorPyj
( l ,r ) in Eq. ~65! as a sum of shifting projectorsPȳ1: j •yj

• ỹk2 j

( l 2 j ,r 81 j ) . Any history hy¢(k)
3

therefore becomes

~67!
er
in
iv

e

where we used black boxes to indicate the bits which w
summed over to make the fixed projectors out of the slid
ones. Then we can use the results on sliding histories g
by Eqs.~49! and ~45!.

Now we proceed with a formal proof of the theorem. L
$uj% j 51

k be a set ofk strings such that for anyj 51, . . . ,k the
length uuj u5g1k. We have from Eqs.~49! and ~45!

Tr@Puk
( l 2k,r 81k)B̂•••Pu1

( l 21,r 811)B̂rv
( l ,r )

3B̂†Pw1
( l 21,r 811)

•••B̂†Pwk
( l 2k,r 81k)

#

5~duk
v duk21

v
•••du1

v !~dwk
v dwk21

v
•••dw1

v !1OS l 1r 8

2l 22kD ,

~68!

wherev is a string of lengthuvu5g1k. We write eachuj

and eachwj as a concatenation of three strings,

uj5 ȳj
•yj

• ỹj , wj5 z̄j
•zj

• z̃j , ~69!

where the lengthsuȳj u[uz̄j u[ j and uỹj u[uz̃j u[k2 j for j
51, . . . ,k, so thatuyj u5uzj u5g. We also definek different
representations ofv,

v5 x̄j
•xj

• x̃, ~70!
03621
e
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en

t

where ux̃u[k, and ux̄j u[ j for j 51, . . . ,k. Summation over

$ȳj% j 51
k and over$z̄j% j 51

k contains 2k
21k terms and therefore

we have

Tr@Pyk
• ỹk

( l ,r 81k)
B̂•••Py1

• ỹ1
( l ,r 811)

B̂rv
( l ,r 8)

3B̂†Pz1
• z̃1

( l ,r 811)
•••B̂†Pzk

• z̃k
( l ,r 81k)

#

5~dyk
• ỹk

xk
• x̃ dyk21

• ỹk21
xk21

• x̃
•••dy1

• ỹ1
x1
• x̃

!~dzk
• z̃k

xk
• x̃ dzk21

• z̃k21
xk21

• x̃
•••dz1

• z̃1
x1
• x̃

!

1OS l 1r 8

2l 2(k213k)D . ~71!

Changing the variables tor[r 81k we have

Tr@Pyk
• ỹk

( l ,r )
B̂•••Py1

• ỹ1
( l ,r 2k11)

B̂rv
( l ,r 2k)B̂†Py1

• ỹ1
( l ,r 2k11)

•••B̂†Pyk
• ỹk

( l ,r )
#

5~dyk
• ỹk

xk
• x̃ dyk21

• ỹk21
xk21

• x̃
•••dy1

• ỹ1
x1
• x̃

!~dzk
• z̃k

xk
• x̃ dzk21

• z̃k21
xk21

• x̃
•••dz1

• z̃1
x1
• x̃

!

1OS l 1r 2k

2l 2(k213k)D . ~72!

We now perform a summation over$ỹj% j 51
k and$z̃j% j 51

k ~the

total of 2k22k terms! to get
2-9
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Tr@Pyk
( l ,r )B̂•••Py1

( l ,r )B̂rv
( l ,r 2k)B̂†Pz1

( l ,r )
•••B̂†Pzk

( l ,r )
#

5~d
yk

xk
• x̃1:kd

yk21
xk21

• x̃1:k21
•••d

y1
x1
• x̃1!

3~d
zk

xk
• x̃1:kd

zk21
xk21

• x̃1:k21
•••d

z1
x1
• x̃1!1OS l 1r 2k

2l 22(k21k)D .

~73!

By construction for anyj 52, . . . ,k, strings (xj
• x̃1: j ) and

(xj 21
• x̃1: j 21) have the same lengthg, and the firstg21 bits

of the string (xj
• x̃1: j ) coincide with the lastg21 bits of the

string (xj 21
• x̃1: j 21). Formally, we write

~xj
• x̃1: j !1:g215~xj 21

• x̃1: j 21!2:g . ~74!

Using this fact and noticing thatuyj u5uuj u2uȳj u2uỹj u5g, we
have

d
yk

xk
• x̃1:kd

yk21
xk21

• x̃1:k21
•••d

y1
x1
• x̃15dyk

xk
• x̃S )

j 51

k21

d
y
1:g21
j 11

y2:g
j

d
y
1
j

x1
j D .

~75!

Equation~73! therefore becomes

Tr@Pyk
( l ,r )B̂•••Py1

( l ,r )B̂rv
( l ,r 2k)B̂†Py1

( l ,r )
•••B̂†Pyk

( l ,r )
#

5dyk
xk
• x̃dzk

xk
• x̃S )

j 51

k21

d
y
1:g21
j 11

y2:g
j

d
y
1
j

x1
j D S )

j 51

k21

d
z
1:g21
j 11

z2:g
j

d
z
1
j

x1
j D

1OS l 1r 2k

2l 22(k21k)D . ~76!

We see that the product ofd functions in the right-hand side
of this equation is nonzero only ifyj5zj , j 51, . . . ,k. Using

this fact and the identitydyk
xk
• x̃

5dy
1:g2k
k

xk

d
y

g2k11:g
k

x̃1:k we have

Tr@Pyk
( l ,r )B̂•••Py1

( l ,r )B̂rv
( l ,r 2k)B̂†Py1

( l ,r )
•••B̂†Pyk

( l ,r )
#

5dy
1:g2k
k

xk

d
y

g2k11:g
k

x̃1:k S )
j 51

k

dyj
zj D S )

j 51

k21

d
y
1:g21
j 11

y2:g
j

d
y
1
j

x1
j D

1OS l 1r 2k

2l 22(k21k)D . ~77!

After summing overx̃1:k and noticing that( x̃rv
( l ,r 2k)

52krx
( l ,r ) , wherex[ x̄j

•xj , we finally obtain

Tr@Pyk
( l ,r )B̂•••Py1

( l ,r )B̂rx
( l ,r )B̂†Pz1

( l ,r )
•••B̂†Pzk

( l ,r )
#

522kS )
j 51

k

dyj
zj D S )

j 51

k21

d
y
1:g21
j 11

y2:g
j

d
y
1
j

x1
j D dy

1:g2k
k

xk

1OS l 1r 2k

2l 22(k21k)D , ~78!

which is equivalent to Eq.~65!. j
03621
APPENDIX

In this appendix we show how sums of a certain type c
be calculated up to a correction term bounded in abso
value. Letx andy be two binary strings of the same lengthl.
Consider the expression

Tr@Px ry#5dx
y1O~ f !, ~A1!

where$Px% is a set of mutually orthogonal projectors,ry is a
density matrix andf is a function that does not depend onx.
Naively calculating the sum over the firstk bits of x we
would have

(
x1:k

Tr@Px ry#5dxk11:l

yk11:l 12kO~ f !, ~A2!

where the error term is effectively increased by the factor
2k. We will now show, however, that the error term does n
grow, i.e., we have the improved bound

(
x1:k

Tr@Px ry#5dxk11:l

yk11:l 1O~ f !. ~A3!

By definition, Eq.~A1! implies that there exists a constantk
such that

uTr@Px ry#2dx
yu<k f . ~A4!

Considering the casex5y we find that

Tr@Py ry#>12k f . ~A5!

Noticing that Tr@Px ry#>0 for anyx, we have

(
x1:k

Tr@Px ry#>12k f when xk11:l5yk11:l .

~A6!

Because of the normalization condition(xTr@Px ry#51 this
implies that

(
x1:k

Tr@Px ry#<k f when xk11:lÞyk11:l . ~A7!

Combining Eq.~A6! and Eq.~A7! it follows that

U(
x1:k

Tr@Px ry#2dxk11:l

yk11:lU<k f , ~A8!

which is equivalent to Eq.~A3!.
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