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Decoherence and linear entropy increase in the quantum baker’s map
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We show that the coarse-grained quantum baker’s map exhibits a linear entropy increase at an asymptotic
rate given by the Kolmogorov-Sinai entropy of the classical chaotic baker’s map. The starting point of our
analysis is a symbolic representation of the map on a string giibits, i.e., arlN-bit register of a quantum
computer. To coarse grain the quantum evolution, we make use of the decoherent histories formalism. As a
by-product, we show that the condition of medium decoherence holds asymptotically for the coarse-grained
guantum baker’s map.
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I. INTRODUCTION grained bits in the symbolic representation of the map. In
order to prove this result, we first establish that the coarse-
The Kolmogorov-Sinai(KS) entropy of a classical dy- grained histories satisfy the condition of medium decoher-
namical systenjl] quantifies the asymptotic rate at which ence[16] in a suitable limit. Although the decoherent histo-
information about the initial conditions needs to be suppliedies approach has been used before for the investigation of
in order to retain the ability to predict the time-evolved sys-quantum dissipative cha¢82], to our knowledge this is the
tem state with a fixed accuracy. It can also be viewed as théirst time that the decoherence condition for histories has
asymptotic linear rate of entropy increase of the coarsebeen rigorously established for a chaotic quantum system.
grained evolution of the dynamical system. A positive KS  This paper is organized as follows. In Sec. Il, we review
entropy is one of the simplest and most general criteria fothe symbolic representation of the quantum baker’s map. In
classical chaos. Several generalizations of KS entropy t&ec. Ill, we use the formalism of decoherent histories to
guantum mechanics have been proposed as criteria for quaitroduce the quantum analog of coarse graining. Section IV
tum chaos. Referencd2-5] focus on linear entropy in- states and discusses the main results of the paper. We prove
crease, whereas Ref&—8] generalize the notion of unpre- those results in Sec. V.
dictability, inherent in the concept of KS entropy, to quantum
mechanics.
The dynamics of an isolated quantum system is unitary Il. THE QUANTUM BAKER'S MAP

and therefore entropy preserving. The entropy can grow only , i )
if there exists a source of unpredictability such as coarse 'N€ quantum baker's mg23,24is a prototypical quan-

graining, measurement, or interaction with a heat §agh tum map invenFed for the theoreticql investigation Qf guan-
The same is true classically, where, for example, the entrop{#™M chaos. During the last decade, it has been studied exten-
of a coarse-grained probability distribution increases undefiVely (see, e.g., Refl25] and references the,re)mln this
chaotic time evolution, even though the Liouville equationPaPer we consider a class of quantum baker’s maps defined
preserves the entropy of the exact, fine-grained distributiori? Ref. [26]. These maps admit a symbolic description in
Measurement as a source of unpredictability was used in th€rms of shifts on strings of qubitswo-state systemssimi-
definition of quantum dynamical entrop§], which has been 1ar to classical symbolic dynamidsl]. They can also be
conjectured to approach KS entropy in the classical limitderived from the semiquantum maps introduced in F2].
[5,10,11. A linear growth of entropy for an inverted quan- In Ref. [28], symbolic methogls have been applied to more
tum harmonic oscillator coupled to a heat bath has been e§€neral maps. The formulation and proof of the theorems
tablished in Ref[2]. Most results in this field are obtained Pelow is based on the development of the symbolic descrip-
numerically (see, e.g., Ref§12—15). In this paper we de- tion of the quantum baker’s map given in Reff85,29.

rive rigorous results using coarse graining as a source of Quantum baker’s maps are defined on theimensional
unpredictability. Hilbert space of the quantized unit squaB®]. For consis-

A systematic way to coarse grain unitary guantum dynam:‘ency of units, we let the quantum scale on “phase space” be

ics is provided by the decoherent histories formaligf—  277=1/D. FoIIo_vvinlg Ref.[24], we choose half-integer ei-
19]. In this formalism, the quantum analog of a coarse graingelnvalues q=(j+2)/D, j=0,...D-1, ) and pk":(k
ing of classical phase space takes the form sétof coarse- 132)/D, k=0,....D—1, of the discrete “position” and

grained histories The entropy of a set of coarse-grained “momentum” operatorsy andp, respectively, corresponding
histories has been defined and analyzed in R&86,20,2].  to antiperiodic boundary conditions. We further assume that
In this paper we give a rigorous proof that the entropy of theD =2", which is the dimension of the Hilbert space Mf
coarse-grained quantum baker’'s map exhibits a linear growttubits.

of 1 bit per iteration, which equals the KS entropy of the The D=2N dimensional Hilbert space modeling the unit
classical baker's map. We show this to be true up to errosquare can be identified with the product spacéafubits
terms that decrease exponentially with the number of coarseda
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laj)=[£)@[€)® - - ®&y), D

wherej=3N £2N"! & e{0,1}, and where each qubit has
basis statef0) and|1). We can writeq; as a binary fraction,
qj=0.£1&,- - - én1. We define the notation

0.£16, ... &) =€ q;); (2

see Ref[26] for the reason for the phase fac®f”2. Mo-

PHYSICAL REVIEW E66, 036212 (2002

individual bits of a string, whereas upper indices will label
different strings. Bothy, andy, refer to thekth bit of the
string y. Furthermore, we introduce the notatign;=y;.;

— . I,r) s .
=YiYi+1---Y; for substrings. The operatcﬁ’@ is a projec-
tor on a 2*"-dimensional subspace labeled by the styng
The 2V~ '""-projectors defined by all possible bit strings
form a complete set of mutually orthogonal projectors, i.e.,
P("’)PS,’”=O if y#y' and EyPS'r):}L We can write each

o . I, ;
mentum and position eigenstates are related through thy " as a diagram,

quantum Fourier transform operatdt [24], i.e., F|q)
=[py)-

By applying the Fourier transform operator to theght-
most bits of the position eigensta@.&, - - - Enén- - - €1),
one obtains the family of stat¢26]

|€1- - &n-bnir €N
=2 M2aim(0&, '§11)|§n+1>® e® |§N>
®(|0>+62ﬂ-i(0.§11)|1>)®(|O>+e2ﬂ'i(0-§2§11)|1>)

®---@(]0)+e2m O &b 1)), ©)
where I=n<N-1. For givenn, these states form an ortho-
normal basis. The stai@) is localized in both position and
momentum: it is strictly localized within a position region of
width 1/2Y7 ", centered at positiog=0.£,,- - - &y1, and it
is crudely localized within a momentum region of width
1/2", centered at momentum=0.&,- - - &,1.

For eachn, 0O<n=N-1, a quantum baker’s map can be
defined by

Blér - &n-bnra &)= €1 Ensr-bnia ), @)

where the dot is shifted by one position. In phase-space lan-

guage, the majB takes a state localized afj,)= (0.5,

- E01,0£,---&1) to a state localized at q(,p’)
=(0.6p10---&N1,0£, 01 - - €11), while it stretches the state
by a factor of two in theq direction and squeezes it by a
factor of two in thep direction. Fom=N-—1, the map is the
original quantum baker’s map as defined in Re].

IIl. COARSE GRAINING

P =(00...0 y 00...O

——— \‘,_/) ’ (7)
l T

where the empty boxes indicatdeftmost andr rightmost
bits which are coarse-grained over. For simplicity, we will
always assume in the following thé&n andr<N—n. In
this casel andr acquire a more specific meaning as the
number of “momentum” and “position” bits ignored in the
coarse graining.

For a given dynamics, a string of projectors defines a
coarse-grained history. We define two types of historgs,
andhy. The historyh; is defined as

= (By",

L) )
hﬂ y PRI 7Pyk )

y2

(0C...04' 00...d,

1 T
2
00...0 42 00...0, ...

1 r

k
00...0 y* 0O0...0

l T

) ) (8

where 37=(y1, ... YY) is a sequence of strings. Since for
eachte{l,... k}, the projectorsPS’r) form a complete set

of mutually orthogonal projectors, the historigy;} are said

to form an exhaustive set of mutually exclusive histories.
They are a special case of the more general sets of histories
introduced in Refs[16,18,19.

We are now in a position to introduce coarse-grained sets The second type of histories considered here is defined by

of histories. Let us first simplify our notation slightly. For
fixed dimensionsN and n, the dot in the definition(3) is
redundant. Thus, we will write from now on

|€1---én=1&1- - &n . bnsr - €N 5

always keeping in mind the given values Wfand n. We
introduce a set of projection operators,

@y -2y by)(ag -ayby b,

a further coarse-graining of the historigg}}, consisting of a
summation over the firdt—1 projectors in Eq(8),

c — ir
he=(1,...,4, Py . ©
k—1 times

The histories{hf,} also form an exhaustive set of mutually
exclusive histories.

IV. MAIN THEOREMS

Starting from some initial stateq, the coarse-grained
evolution of the quantum baker’s mabis characterized by

where the bold variabley denotes the binary string adecoherence functionafor the historieghy}, the decoher-
y=VYi---Yn_i— - Throughout this paper, lower indices label ence functional is given by
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D[po,hy‘,hﬂ=Tr[P(y'k‘r)l§P§,L’f)1I§~ ”PSIF)BPOBT decoh_erencg functiong(ll4) as probabilities. We see that
there is no single dominant history. Instead, afterktiestep
xpg'l’f). ) .éTng{)léTng'r)], (100  there are b different histories each having asymptotically
the same probability, 2¢. These histories are defined by the
and for the historie$hS}, by conditionx=Yy, i.e., a shift ofk binary positions to the left,
C |Cy_ (,r)/k T\ kp(l.r)
Dlpohy M]=THPy " Blpo(BUP 0 Y o0 g oo 2y...2. O0...00,
If the off-diagonal elements of the decoherence functional L r
vanish, the set of histories is said to be decohefarire v (15
recisely, this is the condition of medium decoher ). —_—
Fn this zase, the diagonal elements can be inti[rripﬁted asgw Y Y B M ’
probabilities of the individual histories. t T

For both types of histories, the number of iterations of the
map, k, is assumed to satisfy the inequalkyr. In the fol-
lowing we assume that the initial state is proportional to 0néying this transformation the bits of are lost as they reach
of the projectors defined in E¢6), i.e., the scale at which the momentum becomes coarse grained.
At the same timek unspecified(i.e., random position bits

— plin = 9=(+r) p(ir) B1- - - By enter the relevant section of the string. At each step
Po =Pz = ® the number of histories with significant probability doubles,
= 9~ () (DD._,D > OJO. .,D) , as each history branches into two equiprobable histories.
_l’—/ “T’—' This means there is a loss of one bit of information per
iteration.
(12) We now give a precise formulation of this information
loss. Since the set of historighy} is decoherent, we can
wherex is some bit string of lengttN—|—r. We will now  define its entropy16,20,21,

establish the decoherence condition for both types of histo-

ries and calculate the diagonal elements of the decoherence

functional. For the coarse historiéé/, it follows directly

from the cyclic property of the trace that the decoherence H({h) = — hSlo he 16
functional, Eq.(11), satisfies the decoherence condition, (thyh) ; phy)log; p(hy), 18

Dlpo.hy,hz]1=0 if y#z (13 where p(h$)=D[p{"" ,hS,hS]. Using Theorem 1, we find
For its diagonal elements, we have that
Theorem 1Fix two stringsx andy of the same lengtk,
i.e., |x|=|y|=c. For any two stringsx and g8 such that «|
=|B|=k, wherek is a fixed number of iteration&<r, we (14 1)logy(1+1)
have then H({hg})=k+O — Q| (17

a-x 1 W) (14 The results for the coarse historib§ presented above
depend in part on the fact that the decoherence condition is

trivially satisfied for these histories. We now move on to the

similarly for y- 8, and wheres denotes the Kronecker delta more intere_sting case of the less co_a}rse-.grain_ed. histories

function. {hy}, for yvhlch the decohergnce condition is Sat'ISerd on_Iy
Proof. See Sec. V C. asymptot!cally. The followmg_ theorem es_tabllshes this
The parametef is the number of coarse-grained momen- &Symptotic decoherence and gives asymptotic values for the

tum bits in both the histories and the initial state. TOF| diaganal eleme_nts of t.he decoherence fun_ctlonal.

+1)/2 7] term can be neglected compared td‘@vhenever Theorem 2Fix any integery=1, any stringx of |engtr3

| is sufficiently large. Here and throughout the rest of thelX/=7, and any two ordered sequences of strings

paper, we will use the word “asymptotic” to mean the limit =(y%,y2 ... ¥5) andz=(z,2, ... %) such thatly!|=|Z|

of largel for fixed k andr. Since the decoherence condition =y, j=1, ... Kk, wherek is the number of iterationk<r.

is satisfied, we can interpret the diagonal elements of th&or sufficiently largd we have then

[+
Dlpl) . hS g.hS g1=27%5/-0

wherea- x denotes concatenation of the stringsandx and
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k k—1 .
T - 27 Y2 z; Tht1iny l+r—k
Dlpg", hg, he] = 27F (H%a‘) ( 6 i 6 ﬁl) 85 + Olgmarny)

k
Vi1 1 Yiy—k
j=1 j=1 7 K

k k-1 .
— -k zj T2: y%’)’ Lht1:v l + T - k/‘
- (H 6) | (6v%1_1 11 5) | (‘5> +Olgmmm) (18

j=1 j=1 R
diagonal step—~by—step shift kth shift
|
where the second equality provides a somewhat redundapiylvf), ...,P4" in the history. The boldface is used to indi-

but more transparent formulation of the theorem. cate the bits which are completely determined by the initial

Proof. See Sec. V C. . i ) condition for those histories with asymptotically nonzero
We see that the expression in the first parentheses is Z€fobability. Such histories satisfy the step-by-step shift con-

for all off-diagonal elements of the decoherence functional yition denoted on the diagram by the arrows and lines: for
This implies that in the limit of largé all off-diagonal ele- example, the substring,- - -x, is shifted onto the substring

ments of the decoherence functional vanish, which estaﬁ. ) 'y%/—l' For the entire history, therefore, there are okly

lishes the decoherence_ condition. The d‘agon"’." elements dependent bits which can be chosen arbitrarily, given the
the decoherence functional can therefore be interpreted B y

orobabilities of the corresponding historiese Ref[17] for ep-by-step shift constraint. We recover the coarse-histories

@ disussion of approxmate decsherongeympoicaly, S N B0 e hon L e
only 2K diagonal elements are nonzero. Moreover, the erroP . y y proj 19 g
rest of the trajectory.

terms are exponentially small. As in the case of the coarse The entroby of the approximately decoherent set of histo-
histories considered above, there areHstories with as- ries{hz} is by P y
y

ymptotically equal probabilities. The number of such histo-
ries doubles after each step, resulting in a loss of information

at the rate of 1 bit per step. The conditions satisfied by the

histories with nonzero probabilities are also similar to the H({hh=—2 p(hy)log, p(hy), (20
previous case. Here, each of these histories is a sequence of y

k projectors and each of those projectors is related to the

initial state via a shift according to the position of the pro-

herep(hy) =D[p{"" 'h:,h;]. It follows then from Theorem
jector in the history, w p(hy) =Dl px y:hy] W

2 that
ga...d 1Ty ... Ty 2Ty 1 0a...d y
l r . (I+r—=k)log,(1+r—k)
% H({hg})=k+O 20K . (2
00...0 yiyd... ¥yl ¢ 00...0
S—_ Y291 Iy o
] ” In the limit of largel, for any fixed number of iterationg,
Ny the entropy of the coarse-grained quantum baker’'s map ap-
proaches the value d&fbits, i.e., 1 bit per iteration, which is
00...0 y¥i...y2 y2 ,v200...0, the KS entropy of the classical baker’s map. Due to khe
Rl’_/ T — term in the denominator, the bound on the error term is not as
iy tight as in Eq(17). We believe that this bound can be further
improved.
/ V. PROOFS OF THE MAIN THEOREMS
00, .0 yllc o yk yk o _yk O0...0 . A. Auxiliary results and definitions
< - y—kIy—k+1 Y N e
! T We will need the Dowker-Halliwell inequalitj17],

(19) IDLpx, Nk Ny 112=<Dlpx, hjwy - hyao1PLex» ik hi 1,

(22)
In this diagram the first line represents the initial condition
p&"r). The subsequent lines correspond to the projectorand the trivial inequality
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Dl px, hyay Ny 1<Dlpx. Njk-1).hyk—1y],  (23)  over the “momentum” and “position” changes in time: after
the kth step onlyl —k momentum bits are coarse grained
where we assume that the fikst 1 projectors in the history over compared td in the initial statep{"" ; as for the posi-

X 1

hy coincide with those irhy 1), tion, r+k bits are coarse grained over after tkth step
1 i} L 1 compared ta in the initial state.
i = (mya, . mg)=hy-1)=(ma, .. . Ty 1), By contrast, the historiels; andhy defined in Sec. Il are

(24 more natural in that they have a constant level of coarse
graining over both “momentum” and “position” bits: the
same set of projectordP{""} appears at all times
=1, ... k, with the same coarse-graining parameteaadr
as in the initial statg{"" .

In the following, we refer to the historiels; and hf, as
In Ref.[25], we proved the relation ty3pe—3 andtype-4 historiesrespectively, denoting them by

h> . and h, respectively. The histories of each type are

¥(K) y: ' :
mutually exclusive and form an exhaustive set.

and similarly forhy,, . We also introduce the characteristic
function

DY KO=Ti P{~kHBkp (BT, (25

KA A I
Tr[ P k’”ka&"O)(B*)k]—éi—O(Zlk), (26)

| | B. Lemmas
where p{9=2""P{"9 "|n terms of the characteristic func-

tion, it takes the form We now prove three lemmas for type-1 and type-2 histo-

ries, establishing, in the limit of large the decoherence

| condition and giving the diagonal entries of the decoherence
DU =Y~ o( ) . (27)  functional.
Y Px 27k Lemma 1For a fixed number of iteratiorlg in the limit

_ _ _ of large | any two type-2 historied and h? satisfy the
This relation was used to prove that the coarse-grained quaRsymptotic relation

tum evolution approaches the shiftlike symbolic behavior of
the classical baker's map to any required accuracy. We will pp,(.0 h)2/'hf]:Tr[pg*k,r+k)|§kpg(l,r)(|§’r)kpgfk,r+k)]
show that this result also implies the existence of a set of

decoherent histories. l+r
In the following, it will be convenient to introduce two =8) &-0 S« |- (3D
additional types of histories. As before, we shall always as- . ] ) )
decoherence functional for type-2 histories. First, we have
1 p(-1r+1) 5(-2r+2) (1=K, r+k) _di i
hy=(Pyt P s PR ). (28 ':lztztgreooff diagonal elements of the decoherence functional
Histories of this type are motivated by the symbolic dynam-
ics of the quantum baker’'s map. They consist of projectors D[pg(l,r) ’ hf, ,h§]=0, h§¢h§, (32)

that are “shifted” one bit per step relative to the initial state
(12). Using our diagrammatic notation we have
which immediately follows from the mutual orthogonality of

hi = (O0...000 ¢' O...0 the projectors{P{ %"*¥} and the cyclic property of the
(k) < ) 4 ) proj y yclic property
-1 r+1 trace. Second, we see that there is only one diagonal element
O . 00 yg 0o..a, ... which is close to one,
S——— R
-2 T+2
I +r
- . DLp{", hﬁ,hﬁ]zl—O(F). (33
.0y 000...0). (29
I—k r+k

o ) o ~ Relation(32) implies the decoherence condition, and there-
Type-2 historiesare defined by coarse graining type-1 histo-fore the diagonal elements of the decoherence functional can

res, be interpreted as probabilities of individual histories. Equa-
5 (I—kr k) tion (33) identifies the “dominant history” — the history
h'y =(4,...,1, Py ' ) (300  which in the limit of largel can be assigned unit probability.
b1 vimes The “error” term O[ (I+r)/2 ~X] arises in the proof of the

lemma as a consequence of the estimations performed in the
Type-1 and type-2 histories are useful for seeing how closelerivations of Eq(27). We therefore acknowledge that the
the map is to a classical shift. Histories of this type, howeverpound on the absolute value of this error term can probably
are somewhat artificial because the level of coarse graininge improved.
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Proof. Equation(31) can be considered as a generalizationUsing the triangle inequality for the distance meas{8®)
of Eq. (27). The proof closely follows the arguments in Ref. we have from Eqs(40) and (42)
[25] (Sec. IV B. We will prove that

d(@s1,B Loo[BT =027~ (21 41),
I+r) - -
2I k|’

which implies
the rest of the lemma follows from mutual orthogonality of

TI‘[P(l kl’+k)Bk (, r)(BT)k] 1 O

the projector¢ P{! "9} and from normalization. Equation L4t
(26) becomes T P{ MOk 0BTk )= 1 — O( = k)
A B (N 1 1B A (44)
TP 9Bp{t * 1< UBT=1-0| —. (39
2 By induction this completes the proof of E@®4) for any k.
; |
We perform the change the variables Lemma 2.For a fixed number of iterationk the off-
K+r=xk, | —k=\—k, (36) diagonal elements of the decoherence functional for type-1
histories can be made arbitrarily small by choosing suffi-
and obtain ciently largel. More precisely,

I+r
Tr P(' kk+r)B (| k+lrrk-1)gty—q_ O( 3 | B | +r 11
[ 1= x| 37 IPLo Wy o)l =0| S| hi#hZ. @9

which is equivalent to ] o
Proof. Let us consider a sequence of histories

N N [+r h: ., ...h such that the strings 37(k—1)
=o-(UN1-0| — y(1)” Yoy
TleBex-1B']=2 1 O(2Ik> o B8 T coincide with the firstk—1 strings from
y(K)=Y%, ... Y. We estimate the difference
where  we introduced auxiliary  matrices oy
=2-(+nNpl-kr+k) The above equation can be rewritten in (0 p (—kr+k)
oo . - D[ (k) ’ (k)] D, @n
terms of the distance measure induced by the Euclidian norm Yy Y Px
31], I—k,r+k
[ ] <D[p(| ") h y(k— 1)1 (k 1)] D( (| I;)+ )
d(p,p")=\Tr(p—p’)?, (39 p(-ktlrtk-1)

=D[p{"".h:, ,.h:
o . . Lo N1y Mye-1)] =Dy 0
which is unitarily invariant and obeys the usual triangle in- Px

equality. We have l+r

+0 2|—k+1

: (46)

d(Qk+1,BeiBN =Tk 1—(Be BN

—\Tr 02, ,+Tr 02—2 Tr(@,1BoBT) where we first used inequali(\Z3) and then Eq(27). For the

(1,r) _n{(-11 _

—0(2- 12,5 T). (40) casek=1 we haveD| py ht 1y (1)]—Dy; o0 and there
fore by induction we have

where we used the equality pr2=2'*7/220"1=2!"1 for
any k.

[+r
We shall prove Eq(34) by induction. The cas&=1 of Dlp{" hy(k), y(k)] ;I NNRE e - @D
Eq. (34) follows directly from Eq.(37). Assuming that Eq. ' 2
(34) is true for some value df we have, as in the previous ) . )
equation, Off-diagonal elements can be estimated using (28),
d(ox.B ea[BT1M = VTr o2+ Tr 02—2 Tr(e\B*eo[BTY) DLy hy(k)’ z(k)]|
_ —1—(r—k)/2 [ [
=027 I+, (41) <D[p{" hy(k)' Y(k)]D[pS‘ " hz(k)’ z(k)]
We now use the unitary invariance of the distance measure (48
(39 to get
and therefore using Eq$47) and (27) we have Eq(45) as
d(Bo BT, B o[BI H)=0(27 '~ =02 +T), required. ]
(42 It follows from this lemma that, in the limit of largé
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type-1 histories satisfy the decoherence condition, and there- Lemma 3For a fixed number of iterationsand for suf-
fore, within this limit the diagonal elements of the decoher-ficiently large| the diagonal elements of the decoherence
ence functional define consistent probabilities. The nexfunctional for type-1 histories approach either one or zero.

lemma estimates these probabilities. More precisely,
[+r
. ht (I=kr+ka (1-1r+1)a (I,0RTp(—-1r+1)  Atpl—kr+kq_
Dlpx™ N » y(k)] T Pl B-- Py Bp{ "BTP .--B'Pl, 1= S 6X1+O —.
(49

Similar to the case of type-2 histories, we have that, except one dominant history, all type-1 histories have nearly zero
probabilities. Further comparison of the results for type-1 and type-2 histories reveals a noticeable difference in the order of the
error terms:O[ (I +r)/2'~2K] for type-1 histories an®[ (1 +r)/2' %] for type-2 histories. We do not have any evidence of its
importance: it may well be just a consequence of the particular choice of the methods used in the proofs of the lemmas.

Proof. For anyx we can write a decomposition of unity= EyKPSK_ “I*%) and therefore directly by definitiof27) we have
that

(I K,r+k) Tr[P(I kr+k)Bk (!, r)(BT)]

yk ﬂlr
=T PG TOBIBR (I (B 1B
:Tr[Pi/lkfk,r+k)BP§,Ik:If+1,r+kfl)ék71p§<|,r)(BT)kflpi,L:Ilﬁl,rJrkfl)éT]+F(yk,ykfl), (50)
where
F(y*,¢* )
hermitian
_ (l—k,r+k)r A pl—k+1,r+k—1) Pk—1 77 Hivk—1 p(—k+17r+k—1) At
=Tr [P} > Y BpYkrtrtkel phelyan (Bhyk-1 pl Bt ]
aFyk-1 p#yk-1
l~k+1,r+k-1) Rk—1 ) Btyk—1 p(l—k+1r+k-1
Do D T [RETTHNEM (B R )
atykl gAyk-1
I—k+1r4+k=1) k-1 _(,r) PTVE—1 p(—k+1,r+k—
- Z Tr[P((, +lr+k-1) g lp,f,l, )(Bf) 1Pc(! +1,r+ 1)]
aFyk-!
(I=k+1,r4+k—1)
D . .
D Dy pun g
A
|
Because which together with Eq(31) gives
2 Dgpk+)1r+k 1) —1, (52) e
@ X 2 D(I k+1r+k 1) —1— 5;( 1+O . (54)
we have ary <t 2"

pU-k+lrtk=1) 2 D(I k+lr+k H_q

Dy, (00 , (53  The functionF defined in Eq(51) is non-negative. We there-

a#yk fore have
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| +r Tr P(Ifk,r+k)ép(lik+1,r+kfl)
O=F(y Y H=1-5) 1+ ek (55) [Py et
XEk—lp)((l,r)(éq‘)k—lpilLilf+1,r+k71)BT]
This means that
[+r .

F(yy“H=0 2| ” for x=y* 1, (56) =5)+0 = for x=y< 1, (57)
Applying this knowledge to Eq(50) and using Eq(31) we
have On the other hand

hermitian

T [P(l kr+k)(BP(l k+1,r+k— 1)Bk_1pg,r)(Bf)k-lpélk—_l:+1,r+k—1)gf)]
<Tr [BP(l k+1,r+k— 1)Bk-1p(z,r)(Bf)k—1ps(’i——llc+1,r+k—1)é]\]
—Tr [P(l k+1,r+k— I)Bk_l (z,r)(BT)k——l]

l+7r
T
= s + Ol (59)
|
which together with Eq(57) gives |41
(I—kr+kga k(lr) Tk Yy B
R Tr[ Py B*p —(B )>1=05,51t0 ) (61
Tr[PS{*k,r+k)BP§Lill<+l,r+kfl) y'y-B XX ol -
w Bk~ 1p(|,r)(|§f)k—1P§L—ll<+ 1vf+k—1)§‘r] We redefine the variables by substitutindpr r + Kk,
X -
I+ TPL KBk LT BB = 7Ly o Sl J
25;5;(,14—0@ . (59 I’[ P a.x-x )] a-X-X | k|* ( )
Repeating the same arguments by induction we arrive at E§Ve now perform the summation ovgras explained in the
(49). ] Appendix to get
. ZK) A , [+r
C. Proof of Theorems 1 and 2 ™ Py_’;,)kagf;_xl()(BT)k]= 5?5_*_0 I—k) _ (63)
Proof of Theorem 1In the notation of this section, Eq.

(14) becomes ) . — .
Performing a further summation overand using the equal-

Lol h5 5.0 g1 =Tr Py PB 06 (BN ity
Ir) — o—k (1,r—k)
:2k5¥_o(l+_r). (60) plR=2"¥3 Poxx (64)
2|—k X
. . o — —  we derive Eq(60) as required. [ |
Introducing a pair of auxiliary stringsx(y) such that|x| Proof of Theorem 2In the notation of this section, Eq.
=|y|=k we have from Eq(31) (18) becomes
DLp{™" hl o 1=TIPEVBPENB. - PGB IBTPGY. . BTPAIBTPL"]

k )
:2‘k(H JJ)( Il Jyf!&'”)a;,t”:uo

j=1 y1 -1 Vi 1iy—k

I+r—k
22000 | (63
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Before we present a formal proof of the theorem it is helpful to illustrate the idea behind the proof using our diagrams.
Introduce an auxiliary variable

r'=r—k. (66)

(| Jr +J)

The idea is to represent every projecﬁyj‘ ) in Eqg. (65 as a sum of shifting prolectorE . Any h|storyh

therefore becomes

hw = (0...00000 ' 000000, O,

l r
O...00000 42 00o00o...d, ...,

l T

0...00000 * 000000...0 )

! r
_ 1
= (0...00000 y' wes. m...0,

,,.l

!
2
O...0000m 2 mm. . m00...0,

-1 r’+1
0..000um ¢*m. . m000...0,
| —— N, o’
-2 r'+2
k
O..0um. =y QDDDQD...@), (67)
-k r'+k=r
|
where we used black boxes to indicate the bits which wergyhere|x|=k, and|x/|=j for j=1, ... k. Summation over

summed over to make the fixed projectors out of the shdmgw }] L and Over{ZJ}J | contains 2 K terms and therefore
ones. Then we can use the results on sliding histories give, e have

by Egs.(49) and (45).

Now we proceed with a formal proof of the theorem. Let
{ul}|_, be a set ok strings such that for any=1, ... kthe Ty p;'k'L,Jrk)B. . p('lvt'l’f Dgpl
length|u!l| = y+k. We have from Eqs(49) and(45) ' v

XBTP(I i +1) IABTP("L’“()]
Tr[Pﬂk—k,rwk)B. N Pfjll—l,r’+1)épg,r) ’

K% k1% kx k1% Lx
XBTPU;U,H)“.BTP\(Ab:k,rwk)] :(%k&ké;k*l.yk*l-- 5X yl)(5x zk5x =1k 1-..5)1(111)
A%
I+
I +1 +O<2|—(k2r+3k>)' 7
= (SSk1- - 8o1) (Boko—1- - Sun) +O ek

(68)  Changing the variables to=r’ +k we have

wherev is a string of lengthv|=y+k. We write eachu’ (N A e k+1) (gt e k+1) At
and each as a concatenation of three strings, TPy B Py Bp B'Py BIPuH
_ k.; 1';'( 1.; k.; k— 1'; l';
ul =§Jr'yj .—9], Wj =E’P~Zi 'Ej, (69) —(5;k.§,k5;k—1,§,k—1' e 5§1.§1)(5§k.§k5§k—1.§k—1' e 5;(1.”21)
. o [+r—k
where the lengthgy'|=|Z|=j and |y/|=|Z|=k—]| for j +0 ol —(kZ+3K) | * (72)

=1,...k, so that]y/|=|2Z|=v. We also define different
representations af,
We now perform a summation ovéy‘}"_l and{z‘}J , (the

v=x-x"%, (70)  total of 2% termg to get

036212-9



ANDREI N. SOKLAKOV AND RUDIGER SCHACK

T PS8 PGB OBTPGY. . BTPL]
K3 k=13 13
_(5;( X1Ak5;k71 X1:k—1, . 5;1 Xl)
K Xpae X X1 L I+r—k
X(é)z(k 5)( o 5)Z<1 )+0O m .

(73

By construction for anyj=2, ... Kk, strings Q(i-ilzj) and
(x"*l-;(l:j,l) have the same length, and the firsty— 1 bits
of the string &' - x, ;) coincide with the lasty— 1 bits of the
string (X ~*-Xy.;_1). Formally, we write

(Xi-;‘(1:1)1:3/—1:(inl';‘(lii—l)zw' 749
Using this fact and noticing thay| = |u'|— [yl - [y/| = y, we
have

g g X X1 s x 2y
s g L
(79
Equation(73) therefore becomes
Tr[P(l’r)IA3~ . P(Il'r)ép(l’r_k)BTP(I;L’r)- . éTP(U)]

Hﬁl

l'y—l

[+r—k
0 2l —2(k%+k) | °

We see that the product éffunctions in the right-hand side

i

_1;[51231 5)

'y—l

(76)

of this equation is nonzero onlny 2z, j=1,... k. Using
this fact and the |dent|t3b”;k = 5;} 5 ykxl * we have
y—k+1:y
LA L0a  (r-Kated, At
T P8 PGB OBTRSY. . BTRPL)
- k p k-1 J.
— & o s 5}
yky k yk k+1iy 1:[1 y ];Il y11+7171 Vi
[+r—k

After summing overx;., and noticing thatE;pf,” k)

=2%p{""  wherex=x-xI, we finally obtain

TI‘[ PS{,F)B . Pyjl"r)ép(lyr)BTP(!l’r) . éTP(|,I’)]
k )
_ j X
e
j=1 = Yiiyo1
I+r—k
+0 m s (78)
which is equivalent to Eq(65). [ |

PHYSICAL REVIEW E66, 036212 (2002

APPENDIX

In this appendix we show how sums of a certain type can
be calculated up to a correction term bounded in absolute
value. Letx andy be two binary strings of the same lendth
Consider the expression

TPy py]= 65+ O(f), (A1)

where{P,} is a set of mutually orthogonal projectofs,is a
density matrix and is a function that does not depend xn
Naively calculating the sum over the firktbits of x we
would have

> TH[Pypyl= 821+ 240(f), (A2)

X1:k

where the error term is effectively increased by the factor of
2%, We will now show, however, that the error term does not
grow, i.e., we have the improved bound

> TPy pyl= 82 +0(f).

X1:k

(A3)

By definition, Eq.(Al) implies that there exists a constant
such that

| I[Py py]— &Y <«f. (A4)
Considering the case=y we find that
TPy p,]=1— «f. (A5)
Noticing that TfP, p,]=0 for anyx, we have
gk THPypy]=1—«f  when Xi11=Yi:11-
(A6)

Because of the normalization conditial Tr[ P, py]=1 this
implies that

2 TPypyl<«f  when Xii1i#Yiess- (A7)
1:k
Combining Eq.(A6) and Eq.(A7) it follows that
Yk+1:1
X% THPypy]— 8 1 <«f, (A8)

which is equivalent to Eq(A3).
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