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We study the phenomenon of intermittency in an inhomogeneous lattice of coupled maps where the inho-
mogeneity appears in the form of different values of the map parameter at adjacent sites. This system exhibits
spatiotemporal intermittency as well as purely spatial intermittency accompanied by temporal periodicity in
different regions of the parameter space. Both types of intermittency appear as a result of bifurcations of
codimension two in such systems. We identify the types of bifurcations that are seen. The intermittency near
the bifurcation points and lines is associated with power-law distributions for the laminar lengths. The scaling
laws for the laminar length distributions are obtained. Two distinct types of scaling behavior characterized by
power laws with exponents that fall in two distinct ranges can be seen in the neighborhood of codimension-two
bifurcation points. Additionally we find two crossover exponents.
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[. INTRODUCTION curves intersect at various points in the parameter space in-
dicating the existence of bifurcations of codimension two.
The phenomenon of spatiotemporal intermittency hasSpatiotemporal intermittency is seen in the vicinity of these
been observed in a wide range of extended systems in tHeoints. (See Fig. 1 for space-time plots of spatiotemporal
laboratory as well as in a variety of theoretical models.intermittency) A temporally periodic structure with long-
Spatio-temporal intermittent behavior has been seen in thedange correlations appears in the neighborhood of the
retical models such as Coup]ed map |att|¢és_6], partia| codimension-two tangent-period dOUb”ng bifurcation which
differential equation§7,8], as well as in experimental sys- undergoes a further bifurcation to spatiotemporal intermit-
tems such as chemical reactiof®, Rayleigh-Benard con- tency[23]. The distribution of laminar lengths seen in the
vection in narrow channels and ann[di0,11], planar Cou- case of both spatial and spatiotemporal intermittency shows
ette flow [12], studies of fluid flows between rotating power-law behavior. Four distinct types of scaling behavior
eccentric cylinders such as the Taylor-Dga8] and Taylor-  are seen. Two of the exponents correspond to two distinct
Couette[14,15 flows, and the “printer’s instability’16]. A types of behavior. In addition, two exponents that appear to
variety of scaling laws have been observed in these systemB€ crossover exponents are seen. Exponents similar to those
However, there are no definite conclusions about their uniobserved by us are seen in several experiments and also in
versal behavior. Many of the observed phenomena have bedither models.
seen in experimenta| Systems where no Simp|e model is We define the model in Sec. I, and also carry out linear
available. It is therefore important to study spatiotemporaﬁtab”ity analysis for bifurcations from the synchronised fixed
intermittency in simple model systems which are amenabl@®0int. The plot of bifurcation lines in parameter space ob-
to theoretical and numerical analysis. Again, the conjecturéined from this analysis provides a good indicator of regions
that the transition to spatiotemporal intermittency falls in thewhere spatiotemporal intermittency can be found in the pa-
same universality class as directed percolafif] has been rameter space and is discussed in the same section. The dis-
the central issue in a long debate in the literafi&d,18,19. tribution of laminar lengths in the intermittent regions follow
Model studies can provide important pointers in this debatePower-law scaling behavior. This behavior is discussed in
We Study the phenomenon Of Spatiotempora| intermit_sec. Il. Our results and their implications are discussed in
tency in an inhomogeneous lattice of diffusively coupled lo-S€c. IV.
gistic maps. We shall take our definition of spatiotemporal
intermittency to be a region where a fluctuating mixture of
regular and turbulent regions is seen and scaling laws indica-
tive of long-range correlations are found in the distribution  We consider a lattice of coupled logistic maps such that
of laminar lengths. The inhomogeneity appears in the formmaps at even lattice sites have a given value of the map
of different values for the map parameter at distinct sitesparameter, say., and maps at odd lattice sites have a differ-
Such inhomogeneous lattices have been considered in th&t value of the map parameter, say. Our model is de-
case of pinning studie20] and in the context of control of fined by the evolution equations
spatiotemporal chad®1]. Our model shows spatiotemporal
intermittency in the vicinity of bifurcationg22] of codimen-
sion one and codimension two. t+1_ t € t t
In the case of bifurcations from the synchronised fixed Xa = (1= 0G) + E[f“’(xz“l)’Jrf’“(xz”l)]’
point, we find the bifurcation curves by local analysis. These @

Il. THE MODEL AND LOCAL ANALYSIS
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FIG. 1. Space-time plot of a lattice of 2000 sites iterated for 100 iterates at the parameter yallie€39, e=0.48 (i.e., in the
neighborhood of the tangent-period-doubling pd)t A transient of 20 000 iterates has been discar@@dSpace-time plot of a lattice of
2000 sites iterated for 100 iterates at the parameter valedgs 66, e=0.39(i.e., in the neighborhood of the tangent-period-doubling point
F). A transient of 20 000 iterates has been discardedSpace-time plot of a lattice of 200 sites iterated for 25 iterates at the parameter
valuesy=0.66, e=0.39(i.e., in the neighborhood of the tangent-period-doubling pBintA transient of 5000 iterates has been discarded.

wheref «(X)=pux(1—x) is the logistic map angu, u'e boundary conditions with I8, the number of lattice sites
[0,4], x5; is the value of the variable at the even lattice site being even. It can be easily seen that the synchronized fixed
2i at timet, and O=<x=<1. In the case 0Kk, ,, the variable points of the system are given by =0 andx* =(u— ye
defined at odd lattice sites, the evolution equation is defined-1)/(u— ye).

by the evolution above withiZbeing replaced byi2-1 and Expanding the evolution equations about the synchro-
p and ' interchanged. We sgt’ = u—y and use periodic nized fixed point, the linear stability matrix has the form
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(1-afl00 11,00 0 0 0 1,00
S0 (A-afL0 S o ... o 0
0 gf;,(x) (1~ &)%) gf;,(x) 0 0
J= 0 0 gf;,(x) (1= ... 0 0 ., ®
0 0 (1 flX) gf;,(x)
S 100 0 S A C I S LALE

wherex=x*. It is clear that this matrix is of the block circulant form. Therefore, one can carry out similarity transformations
by which it can be put in a block diagonal forf4,25. This similarity transformation can be achieved by the mafjx
=Fy®l,. HereFy is a Fourier matrix of siz&l X N [26] andl, is an identity matrix of size X 2. The block diagonal form

is given by

M(6) O 0 0
0 M(6,) O 0
J = : : M(6|) : : , (3)
0 0 0 My, O
0 M(6n)

where each blockM (6)) is a 2x2 matrix of the form

(1-afl0  S(1+eMf,(x)
M(o=| . ; 4
S(+e M0 (1-af, (0

where,6,=[27(1—21)]/N, I=1,... N.
The eigenvalues of this matrix as a functionéfare given by

(L=e(f,+f, )={(1-e)?(f,—f )2+2€%(f, f/,)[1+cod 6) ]}

N O)= >

®)

Since the eigenvalues of the system lie betw®€@) and\ (7) [25] the bifurcations from the two synchronized fixed
points can be obtained by looking at the conditions at which these eigenvalues cross the unit circle. ljuwelfithese
conditions define a set of curves in the two parameterspace. Codimension-one bifurcations can take place at parameter
values along these curves. These curves intersect in several places where the equations are simultaneously satisfied. At thes
intersections two eigendirections become unstable, resulting in bifurcations of codimension two.

Thus, we need to consider the eigenvalues

0)- (L—e)(f +f )x[(1-e)%(f,—f )2 +4eX(f f )]
= 2

(6)
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TABLE I. We list the equations of the bifurcation lines plotted in Fig. 1 for bifurcations from the synchronized solutions dnythe
parameter space. We list the label of the bifurcation line, the equation of the bifurcation curve, the type of bifurcation that takes place, and
the fixed point from which the solution bifurcates in the table. Hére-0 andx} = (u— ye—1)/(u— ye). The abbreviation PD refers to
a period-doubling bifurcation.

Line number Equation of line Type Fixed point
1 Y72 PD X
9y—40
2 5:3_—7 Tangent X3
4-y
3 *
3 =7 Tangent X7
4 = 3y—9 Tangent X}
7y—24
: —(8=Y+y)  [B—Y+7—8Uy—2)(y-4]" D o
= 2
21 y—4) 2y(y—4)
_ 2_ 1/2
6 o (By+8)—[(3y+8)"—64y] PD X
8y
_ _ _ A2 AN\2_ _ _ 1/
7 Ye 2:[(1 )(8— ) +{(1—-€)*(8—7)*~4(1—2¢)(16—4y)}'7] Tangent X5
4—ye 2(1—2€)(16—4vy)
_ _ A — _A\2(Q__ A N\2_ _ _ 1/2
8 Ye 2:[(1 €)(8—y)—{(1-e1(8— ) —41-2¢)(16—4y)} "] Tangent X5
4—ye 2(1-2€)(16—4y)
9 ye—2 [~(1- 8=y +{(1-€)*(8— ) —4(1—2¢)(16— 4y} PD X
4—ve 2(1—2€)(16—47) 2
_ —(1— A — _A2(Q__ N2 _ - 1/
10 y€e 2:[ (1-6)(8—y)—{(1- (8~ )"~ 4(1—2€)(16— 4y)}'?] PD x5
4—ye 2(1-2€)(16—4y)
and codimension-two points as can be seen from Table Il. In
addition to the phenomenon of spatiotemporal intermittency
, , seen near these points, the inhomogeneous lattice has regions
(1-e)(fL+f )= (1—e)(f, ') : P ; ge e 9
N ()= © L@ in parameter space where pure spatial intermittency accom-

2 panied by temporally periodic behavior can be seen, i.e., the
e s . . . temporal behavior is periodic, but spatially laminar and tur-
wheref , = (x*)=u(1—2x"), andx* is the synchronized pjent regions co-exist at any point in time. This phenom-
fixed point. Consider the parameter regime=4, O<€  onon has been discussed elsewtjass.

=1, O=y=4. All the eigenvalues are real in this parameter \yg pot the bifurcation curves for bifurcations from the
regime and cross the unit circle on the real axis-dt lead- synchronized fixed points in the-y space where € e<1

ing to tangent and period-doubling bifurcatiof®7]. The and 0= y=<4 in Fig. 2. The table indicates the type of bifur-

eq_uat|ons_for th_e blfurcatu?n curves in t@y space'ob- . cation that takes place along each curve. Sinee4 all the
tained by imposing these bifurcation conditions are listed in

Table |. eiggnvalues are real and tangent and period doubling bifur—
A rich variety of spatiotemporal behavior can be seen ipcations are seen v_vhere the.elgen.values Cross _the unit _C|rcIe
the neighborhood of the bifurcation curves. We concentrat@long_ the _real axis. The b|fur_cat|on gurl/e 1 is a period-
on regions that exhibit spatiotemporal intermittency where £°UPling bifurcation from the fixed point*=0.0 and the
fluctuating mixture of regular and irregular domains can befurves 2, 3, and 4 are tangent bifurcation curves from the
seen. Spatiotemporally intermittent solutions are possible aia@me fixed point. Curves 5, 6, 9, and 10 are period-doubling
many places in the parameter space, particularly in the neigtifurcations from the other fixed poinx*=(u—ye
borhood of the bifurcation curves and the vicinity of the —1)/(u— ye), whereas curves 7 and 8 are tangent bifurca-
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TABLE Il. We list the codimension-two points where bifurcation lines from the synchronized fixed points
intersect. Label 1 corresponds to a bifurcation from the fixed pdirt0 and label 2 to those from the fixed
pointx3 =(u— ye—1)/(— ye). The type of bifurcation involved and the manner in which the eigenvalue
crosses unit circle and the power-law expore(it) ~ ¢ are listed. The parameter values listed are the values
at which the spatiotemporal intermittency with the listed exponent is seen. This point is in the neighborhood
of the codimension-two point of column one. The range of the expofieis 1.9-2.2,¢, lies in the range
1.5-1.75, and; in the range 0.9-1.15. We also identify the nature of the intermittency, whether spatial or
spatiotemporalST). We note that the spatial intermittency near pdintsee *) is a mixture of temporal

periods.
Codimension-two points Exponent Parameter region Eigenvalue Type Nature
A {1 vy=1.18¢=0.63 1-1 T1-PD1 Spatial
B y=1.6=0.66 -1,-1 PD1-PD2 Transient
C {1 v=1.99¢=0.48 1-1 T1-PD2 Spatial
D 4 v=2.6,=0.969 +1-1 T2-PD2 Spatial
E 4 vy=25€=.35 1-1 T1-PD2 Spatid
F 4= v=0.66¢=0.39 1-1 T1-PD2 STI

tions from this point. These bifurcation lines intersect at vari-correspond to a tangent bifurcation frorf =0.0 and a
ous points in the parameter space indicating the existence giriod-doubling bifurcation from x* =(u—ye—1)/(un
codimension two bifurcations. Spatiotemporal intermittency— ye) intersect at point. The space-time plots of the spa-
is seen in the neighborhood of several of these codimensioniotemporal behavior at points andF can be seen in Figs.
two points. These are indicated by the lettdrsF in Fig. 2. 1(a)-1(c). We note that all the codimension-two points
We note that pointsA and D are points which lie on the where spatiotemporal intermittency is seen are tangent-
intersection of tangent and period-doubling lines 2 and Jperiod—doubling points, as the phenomenon near the period-
wherex* =0.0 goes unstable and lines 8 and 10 where theloubling-period-doubling poinB disappears after a tran-
fixed pointx* = (u—ye—1)/(u— y€) goes unstable. These sient.
two points show the phenomenon of pure spatial intermit- The space-time plot of Fig.(&) (i.e., pointF) looks quite
tency which has been discussed in detail elsew28k The  different from the space time plots seen in Figp)1We also
point B where the two period doubling lines 1 and 9 corre-note that there are several codimension-two points where no
sponding, respectively, to the pointg =0.0 andx* =(u spatiotemporal intermittency is seen in the neighborhood.
—ye—1)/(n— ve) intersect is a period-doubling, period- Notably, the intersections of line 3 with other lines show no
doubling point. The spatiotemporal intermittency seen here ispatiotemporal intermittency and intersections that corre-
a transient phenomenon. The tangent line 2 from the fixedpond toy values greater than 3 do not show any intermit-
point x* =0 intersects with the period-doubling line 9 from tent behavior in their neighborhood.
X*=(u—7ye—1)/(n—ye) at the codimension poiniC The plot of bifurcation curves in parameter space provides
whereas it intersects with the line 6 from the same fixeda good indicator of the regions where spatiotemporal inter-
point at the codimension-two poift Lines 4 and 5, which mittency can be seen. However, bifurcations from higher pe-
riod solutions can give rise to further structure in this param-
1 - —— . s — eter space and regions where spatiotemporal intermittency
a St can be seen may be more extensive than that predicted by

3\ ~ "+ i
7 \ ST i, L

8)\ ey this phase diagram.

IIl. SCALING LAWS FOR SPATIOTEMPORAL
INTERMITTENCY

The behavior of the distribution of laminar lengths is an
important statistical characterizer of spatiotemporal intermit-
tency[4,3]. The length of the laminar bursts, i.e., the number
of consecutive sites that follow periodic behavior before be-
ing interrupted by chaotic bursts is calculated. The distribu-
tion for this length shows a power-law behavior wigl)

25 s a5 +  ~|"¢ whereP(l) is the probability for a laminar length of
sizel (see Figs. 3 and)4This shows the presence of long-
FIG. 2. We plot the bifurcation lines in parameter space forfange spatial correlations in the lattice.

L L L
0 0.5 1 15

2
Y

bifurcations from the two fixed pointg* =0 and x*=(u— ye We observe that power-law scaling is seen in extensive
—1)/(u—ye) for 0.01<y=<4.0, O<e<1. The equations of the regions of the parameter space. Four distinct types of scaling
bifurcation lines can be found in Table I. behavior were seen in the parameter space. We plefl)n
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FIG. 3. (a) shows the plot of IP(I) vs Inl at the parameter
values y=1.99, e=0.48 for 10000 lattice sitegplus sign$ and

5000 lattice sitegcrossey each iterated for 100 000 iterates. An
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FIG. 4. (a) shows a plot of IfP(l) vs Inl at the parameter values

initial transient of 5000 iterates has been discarded. A straight liney=1.0, e=0.64 for 10 000 lattice sitelus signg and 5000 lattice
of slope— 1.1 can be fitted to the data. An average over 25 randonsites(crossep each iterated for 100 000 iterates for 25 initial con-

initial conditions has been taken. The laminar lendthse in units
of lattice spacing here and in all subsequent grapghs.shows
In P(l) vs Inl at the parameter valueg=0.66, e=0.39 for 10 000
lattice sites(plus signg and for 5000 lattice sitegasterisky each

ditions. An initial transient of 10 000 iterates has been discarded. A
straight line of slope-1.33 can be fitted to the data up to the third
decade(b) shows InP(l) vs Inl at the parameter valueg=1.0 €
=0.425 for 10 000 lattice sitgplus signg and for 5000 lattice sites

iterated for 100 000 iterates for ten initial conditions. An initial (crosseseach iterated for 100 000 iterates for 25 initial conditions.
transient of 10 000 iterates has been discarded. A straight line ofn initial transient of 10 000 iterates has been discarded. A straight

slope —2.0 can be fitted to the data up to the third decade.

line of slope—1.66 can be fitted to the initial part of the data.
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against I for four typical values in the parameter space in € T T T T T
Figs. 3a) and 3b) and 4a) and 4b). It is clear that four
distinct exponents can be seen. Each figure shows plots ¢
In P(I) versus I for a distinct parameter value, for two lat- 51 7
tice sizes 5000 and 10000 as indicated in the figure captions
(A constant value has been added to the data of lattice siz
10000 to shift it upwardsWe find that a good fit to the data 4r (a) .
is obtained for the valueg§;=1.1, {,=1.33, {3=1.66, and
{r=2.0. The power lawg; and{r can be seen in Figs(®
and 3b), whereas power law$, and {5 are seen in Figs. & 3| 1
4(a) and 4b). We note that the power lawg:, ¢,, and{s i
are only seen up to the third or fourth decade and the distri-
bution falls off faster than a power law thereafter, whereas 2 [}
the power law; maintains it is behavior over a much longer y
stretch. '\+
An indication of the regions where power laws are seen 1| % 7
can be obtained by looking at the bifurcation lines where the ¥
synchronized fixed points become unstable as plotted in Fig
2 and in the neighborhood of their intersection points. We 0 bt -
observe four distinct ranges for the exponents. Thes€ are 0 10 20 30 40 50 60
which lies between 0.9 and 1.18, which takes values be- |
tween 1.2 and 1.35;5 which lies between 1.5 and 1.75, and 10 ¢ : : : : :
{r which takes values between 1.9 and 2.2. L+
It is clear from Fig. 8a) that theP(l) for the exponent; |+
shows power-law behavior over a rangd ghlues from 1 to 1F
a few hundred lattice sites whereas @) for the exponent T
{r [Fig. 3(b)] exhibits power-law behavior over values I * 1
ranging from 1 to a few decades. The difference between the 0.1 F T+ b -
two types of behavior can also be seen in the space-time [ + ]
plots of Fig. 1. It is interesting to note that the power l&aw 0.01 i +++ ]
is seen in the neighborhood of the codimension-two points= [ + ]
A—E whereas the exponetit is seen in the neighborhood of & I *
the codimension-two poirft. As can be seen from the space- ~  0.001 +++
time plots, the laminarity for the power law;, can be I +
checked to very high accuracy, and has been checked to a - * 1
accuracy of 10° for these plots. However, the laminarity in 0.0001 [ o E
the neighborhood of the power lage is checked to the | * ]
value 10! due to the presence of large variations that can 16-05 [ +++ ]
again be seen on the space-time plots. Thus the spatial co [ + ]
relations are far stronger in the vicinity of tldg points than I +
in the vicinity of the{g points. 1e-06 L 1 L Ly
A similar phenomenon is seen even in the case of the 0 10 20 30 40 50 60
exponents shown in Fig. 4. In the case of Figg)4the ¢, I
exponent is a sustained power law over a somewhat larger

range ofl values than the power lag seen in Fig. &). We v=0.25, €=0.45 for 10 000 lattice sites iterated for 100 000 iter-
note that the scaling exponeniisand {5 ,Can be regarded as ates for five initial conditions. The function fitted i$(x)
cross-over exponents as the behavior crosses over fromg g exp(-0.36¢). (b) shows the plot of IR(1) vs | for the same
power-law to exponential behavior. The exponénis seen  yata.

along line 2 where there are many codimension-two intersec-

tions so that the scaling behavior ds in the neighborhood ted line given in the figure caption. Since the exponefys

of the tangent-period-doubling points along the curve, movesand {; are crossover exponents, it is unsurprising that the
away from{; to the valuel,, and comes back t§,; as the  power law is sustained over just a few decades. Again, the
next codimension-two point is encountered. However, theexponent{3, which is the exponent for cross-over to expo-
value{; is encountered along line 6 when the scaling behavnential behavior, shows power-law behavior over a shorter
ior moves away frong; to exponential fall off. We show the range ofl-s than ¢, which shows sustained power-law be-
exponential fall off in Figs. &) and 8b). Figure 3a) is a  havior over a slightly larger range dfvalues due to its
plot of P(I) against and Fig. %b) plots InP(l) against. The  proximity to bifurcation points where; behavior, which
behavior seen can be fitted by the exponential funcfitii-  corresponds to stronger spatial correlations, is seen. We also

FIG. 5. (a) shows the plot ofP(l) vs| at the parameter values

036210-7



ASHUTOSH SHARMA AND NEELIMA GUPTE PHYSICAL REVIEW E66, 036210 (2002

2 | | | | | | | | |

In P(l)
&

14 ! ! ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8 9 10

In |

FIG. 6. Plots of InP(l) vs Inl at two parameter values. The upper &ghich corresponds to the power lafy) is for the parameters
v=1.99, ¢=0.48 for 10 000 lattice sitefplus signg, 5000 lattice sitegcrossel and 2000 lattice siteGsterisks Each lattice has been
iterated for 100 000 iterates after discarding 10 000 iterates for 25 initial conditions. The low#roset for the power lawg) is for the
parameter valuey=0.66, e=0.39 for 10 000 lattice site&ircles, 5000 lattice siteghollow boxe$, and 2000 lattice sitefilled boxes.
Each lattice has been iterated for 100 000 iterates after discarding 10 000 iterates for ten initial conditions.

note that while the exponents and {; appear to indicate of the curves. All the results above are obtained for bifurca-
crossover behavior, they still fall in distinct ranges. No sus-ions from the synchronized fixed points. Bifurcations from
tained spatiotemporal intermittency is seen along other lineshigher spatial temporal periods can also give rise to spa-
The phenomena discussed above have been observed tatemporal or spatial/temporal intermittency in many addi-
lattices of different sizes. We show the power Idy for  tional regions of parameter space. This question is presently
three different lattice sizes (10000 lattice sites, 5000 latticainder investigation.
sites, and 2000 lattice sitem Fig. 6. It is clear that data for
different lattice sizes fall on the same curve. The longest
laminar lengths seen are of the order of 10% of the lattice
size so that finite size effects are not seen. Even in the cases We have shown that both spatial and spatiotemporal inter-
of the scaling law{r, where the power-law behavior is seen mittency can arise in a inhomogeneous coupled map lattice.
over a much shorter range b¥alues, the data for different The phenomenon of intermittency is more widespread in in-
sizes of lattice fall on the same curve as can be seen in Fidlomogeneous lattices than in the case of homogeneous lat-
6. Figure 7 shows the power lawg for 50 000 and 100000 tices. The presence of pure spatial intermittency accompa-
iterates and;g for 100 000 and 150 000 iterates for a lattice nied by temporally periodic behavior is an unusual feature
of 10000 sites. The power law is the same in the linear partthat arises in the case of the inhomogeneous system under

IV. DISCUSSION AND CONCLUSIONS
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2 to note that exponents similar to those observed by us have
been seen in quasi-one-dimensional fluid experiments. An
ok 4 exponent that falls in the same range as our expofiehias
been observed in the case of Rayleigh-Benard convection in
ol i an annulusg[11], whereas exponents that fall in the same
range a<, have been seen for convection in a channel and
for the Taylor-Dean experimeritl4,13. It would also be
4r 7 interesting to see if exponents similar to ours are seen in the
— case of fluid systems with inhomogeneities. A situation in
T 6| - which there is a regular array of inhomogeneities as in our
£ model could be one where an array of heating elements
sl ] maintained at a desired profile of temperatures is introduced
in a fluid. The inhomogeneity could also be in the form of
obstacles to the fluid flow or the existence of a vortex lattice.
-10 | 7 The plot of bifurcation curves in parameter space for bi-
furcations from synchronized fixed point solutions forms a
12 F i rough phase diagram which indicates regions where spa-
tiotemporal intermittency can be found. Spatiotemporal in-
1 . . . . . . . L 4 termittency can be found in the vicinity of the bifurcation

0 1 2 3 4 5 6 7 8 9 10 curves and in the vicinity of the intersections of these curves.
Secondary bifurcations and bifurcations from higher period
solutions can provide further structure to this phase diagram.
FIG. 7. Plot of InP(l) vs Inl at the parameter valuesg=1.99,  The analogy of the transition to spatiotemporal intermittency
€=0.48 for 10000 lattice sites, 50000 iteratgsus sign$ and  with second-order phase transitions is being explored further.
100000 iterategcrosses for 25 initial conditions each. The plot The conjecture that the transition to spatiotemporal inter-
also shows IP(l) vs Inl at the parameter valuey=0.66, ¢  mittency falls in the same universality class as directed per-
=0.39 for 10000 lattice sites, 100000 iteratémxes and for  colation[17] has been the central issue in a long debate in
150 000 iteratesasterisk§ for ten initial conditions. An initial tran-  the literature[4,3,18,19. Much work on coupled map lat-
sient of 10000 iterates has been discarded. tices has shown that this conjecture is very hard to verify due
to the presence of long-range correlations. Our model could
study[23]. The intermittency arises as a result of bifurcationsbe useful for comparisons of the critical behavior of spa-
of codimension one and two. Such bifurcations are also ofiotemporal intermittency with those of directed percolation
interest in the case of other spatially extended sys{@@8s and in discussions of universality properties. We hope our
The distributions of laminar lengths seen exhibit four dis-analysis will be useful for the understanding of intermittent
tinct kinds of power-law scaling behavior characterized byphenomena arising in other spatially extended systems as
exponents which fall in four distinct ranges. It is interestingwell, and in discussions of their genericity and universality.
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