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Misleading signatures of quantum chaos
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The main signature of chaos in a quantum system is provided by spectral statistical analysis of the nearest-
neighbor spacing distributioR(s) and the spectral rigidity given by thi;(L) statistic. It is shown that some
standard unfolding procedures, such as local unfolding and Gaussian broadening, lead to a spurious saturation
of A;(L) that spoils the relationship of this statistic with the regular or chaotic motion of the system. This
effect can also be misinterpreted as Berry’s saturation.
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Quantum chaos has been an active research field since thgstems. In this example, Berry’s saturation takes place at
link between energy level fluctuations and the chaotic or inl =750, that is outside the figure. Let us suppose now that
tegrable properties of Hamiltonian systems was conjecturethe law giving the mean level density of the system was
[1,2], providing one of the fundamental signatures of quan-unknown. Then, a standard method to obtain the local mean
tum chaod3,4] in atoms, molecules, nuclei, quantum dots, level density at energ§ is to calculate the average density
etc. The secular or smooth behavior of the level density is @af a few levels around this energy. Using this method one
characteristic of each quantum system, while the fluctuationsbtains a very different behavior, namely; flattens
relative to this smooth behavior are related to the regular ostrongly atL =20, and afterwardd 5 is close to the Gaussian
chaotic character of the motion in all quantum systems. Twrthogonal ensembléGOE) line characteristic of chaotic
achieve the separation of the smooth and fluctuating partsystems. The latter behavior is not at all related to the Berry
the energy spectrum is scaled to a sequence with the sansaturation, that takes place at much highen this case, as
local mean spacing along the whole spectrum. This scaling ismentioned above. Instead, it is a spurious effect due to inap-
called unfolding [5]. Although this can be a nontrivial task propriate unfolding of the level spectrum, and it implies that
[6], the description of the unfolding details of calculations isstrong long-range correlations have been improperly intro-
usually neglected in the literature. duced by the procedure.

In this paper we show that, contrary to common assump- This first example illustrates the problem that can arise
tions, the statistics that measure long-range level correlationsith some reasonable unfolding methods currently used in
are strongly dependent on the unfolding procedure utilizedguantum chaos calculatioi9—13]. In order to understand
and some standard unfolding methods give very misleadings origin we shall analyze different unfolding procedures.
results in regard to the chaoticity of quantum systems. LongThe principal difficulty in the unfolding is the correct char-
range level correlations are usually measured by means @fcterization of the mean level density functipifa,E),
the Dyson and Mehta ; statistic[5]. On the other hand, we \yhere« stands for some parameters defining the functional

find that fshort-range. corr.ela}tlon.s, characterized by thePorm of; Having this function, the mean accumulated level
nearest-neighbor spacing distributiBis), are not very sen- density is given by
sitive to the unfolding method.
Let us consider a rectangular quantum billiard with a size
ratio a/b= . This is a well known example of a regular o E_
system. In general, for regular systems level fluctuations be- N(a,E)=f p(a,E")dE’. D
have like in a sequence of uncorrelated energy levels, and the o
A5(L) statistic increases linearly with. However, it was

shown by Berry[7] that the existence of periodic orbits in [ Rl AT T T T T T
the phase space of the analogous classical system leads to a AA
saturation ofAz(L) for L larger than a certain valukg, *r A ]
related to the period of the shortest periodic orbit. Figure 1 s [ /f
shows theA; behavior for a sequence of 8000 high energy bk £ 1
levels of the mentioned quantum billiard, calculated with two A
different unfolding procedures. The mean level density for [ Jasasasssssssssasssssssdy
this system is given by the Wey! laj]. Using this density Ry S NN N

0 50 100 150 200

to perform the unfoldingA 5 follows the straight line of level

spacings with Poisson distribution, characteristic of regular L

FIG. 1. Comparison of thA 5 statistic for a rectangular quantum
billiard using two unfolding procedures. Open triangles correspond
*Present address: Institut de Physique et Chimie desrMatede  to the smooth unfolding using the Weyl law, and filled triangles
Strasbourg, UMR 7504CNRS-ULP), 23 rue de Loess, 67037 correspond to the local unfolding method. The dashed line is the
Strasbourg Caex, France. Poisson limit and the dotted line is the GOE limit.
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The parameters are determined finding the valueg for  level density is assumed to be approximately linear in a win-

which the smooth functioiN(aq,E) is closest to the step dow ofv levels on each side d;, and is given by

function N(E) that gives the true number or levels up to

energyE. An alternative procedure, which often gives better ;L(Ei)_ 2v ' (5)

results, consists on assuming a functional shap&{er,E), B~ Eivy

or expanding it in some basis functions, and fit itNGE).
The unfolded energy levelare given by

whereL stands for local unfolding. More sophisticated is the
Gaussian broadeningmethod [8,13]. The level density

£; :W(a’OaEi)- ?) p(E)=2,8(E—E;) is substituted by an average level density
These dimensionless variables constitute a quasiuniform - -1 (E-E)?
: i pe(E)= 2 exp -, ®)
spectrum with constant mean level density equal to 1. The N T 22

unfolded spacing sequence is then
whereG stands for Gaussian broadening. The sum runs over

si=eivi—eil, 3 allthe energy levels, but only those satisfyji- E;| < o do
suited to study the short-range spectral correlat[&is ods are different, both depend on a parametar o that

The A5 statistic is used to investigate the long-range corneasures, in a real or effective way, how many neighboring

relations. It is defined for the intervph,a+L] in the cumu- ~ 1€Vels are used to calculate the local mean density.
lative level density as The atomic nucleus is an example of a quantum system

more complex than the quantum billiard. In most nuclei,
1 a+L level fluctuations are in agreement with GOE predictions at
As(a,L)= Eminj [Me)—Ae —B]°de, (4)  all energies, showing that the motion is chaotic. However, it
AB -2 has recently been observed that single closed shell nuclei are
less chaotic than expecté¢dll,14]. One of the most regular
nuclei at low energy is®”Ca. Analysis of the shell-model
level spectruni14] shows that the nearest-neighbor spacing
Wistribution P(s) is close to the Poisson limitthe Brody
parametef5] is w=0.25) for levels up to 5 MeV above the
yrast line. As the excitation energy is increas@{s) ap-

whereM(e) is the step function that gives the true number or
unfolded levels up te. The functionA;(L), averaged over
intervals, measures the deviations of the quasiuniform spe
trum from a true equidistant spectrum. Therefdrg(L) is
related to thespectral rigidity WhenA;(L) is nearly flat, the

rigidity is strong(2]. In the limiting case of a harmonic os- proaches the spacing distribution of a chaotic system. Nev-

cillattor, tZe ?pectrtum is co?ple(t;egErigid a?%(';r)] islconl- ertheless, other statistics indicate that the dynamics is still
stant and close 1o zero. For spectra, the 1evels afg.; fully chaotic. TheA(L) statistic is very sensitive to the
strongly correlated and ;(L)~InL. By contrast, for Pois-

tra the level lated. th ¢ >~ dynamical regime of motion, and therefore it is generally
son spectra the levels are uncorrelated, the spec oS considered to be a reliable statistic to detect chaos in quan-
andAz(L) increases linearly with.

F | unfoldi d . tum systems. However, we shall now show that itdepen-
or some systems a natural unfolding procedure existyence can be very misleading if local unfolding or similar
because(E) (we drop the indexx from now on is known  methods are used.

from an appropriate statistical theory or by a well checked Consider the fullpf shell-model spectrum of’Ca. If we

empirical ansatz. For example(E) is a semicircle for large perform a careful global unfolding, using fE(E) an Edge-
GOE matrices5], it often has Gaussian form with Edge- worth expansion up to fourth order around a Gaussian form
worth corrections for large nuclear shell-model matriggls  [5), the resultingA,(L) is close to the GOE limit for very
and follows the Weyl law in quantum billiards8]. In all  small L values, but it increases linearly instead of logarith-
those cases it is possible to unfold the level spectrum propmically for largerL values, as can be seen in Fig. 2. We have
erly, but it should be noted that it is a delicate operation. Ifchecked that this behavior is not spurious, i.e., it is not the
the calculated mean level densip(E) is not accurate effect of cumulative errors mentioned above. Besides unfold-
enough, the unfolding procedure will introduce accumulatedng with the global mean density, we determing¢E) di-
errors in\(e) in Eq. (4), leading for largel to a spurious  rectly using an expansion in Chebyshev polynomials and fit-
increase of\;(L) above the true value. For example, in mostting it to the cumulative step functioN(E). This unfolding
nuclear shell-model spectra, a Gaussian density withouhethod gave a result very similar to the open triangles
Edgeworth corrections will provide distorted results of thisshown in Fig. 2. Thus, except for very sméllvalues, the
kind for L>50. In general, this effect can hide any Berry spectral rigidity is intermediate between those of GOE and
saturation in a system. Poisson limits, giving a clear signature of nonchaotic motion
In the present paper, we deal mainly with systems whergn this semimagic nucleus.
there is no natural choice for the_mean level density function.  On the other hand, when the Edgeworth expansion around
In those cases, the local value ofE) is usually estimated a Gaussian form fails to reproduce the smooth global shell-
from a set of neighboring levels. The simplest method, callednodel level density, as it happens sometirfted, local un-
local unfolding has been widely usefP—12]. The mean folding or Gaussian broadening are current methods to deter-
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FIG. 2. A; for the complete]=10 level sequence of a shell- S

model calculation for®“Ca in thepf shell. For smooth unfolding
made by an Edgeworth expansion in the cumulants, the r@qeén
triangles lies between Poissofdashed linpand GOE(dotted ling
limits. Filled triangles correspond to local unfolding with a 2
=10 window.

FIG. 3. Comparison of the nearest-neighbor spacing distribution
P(s) for anN=10 000 GOE level spectrum, calculated with differ-
ent unfolding methods. The thin line histogram is obtained for local
unfolding with 2v =18, and the thick line histogram for global un-
folding with the semicircular mean level density. The Gaussian
broadening unfolding methothot shown for figure clarity gives
mine the local mean level density. Figure 2 also shows theery similar results as well. The solid line is the Wigner surmise.
results using local unfolding with=5 in %2Ca. TheA,
statistic follows closely the line obtained with the smoothby GOE, up to very largé values. The local unfolding was
unfolding up toL=2v, but for largerL it saturates to a Performed using two different windows, with=9 and
roughly constant value. This is the same behavior that wag=21. The calculated\; coincides now with GOE predic-
observed in the quantum billiard system described abovdions only up toL=2v, then it leaves the GOE trend and
Moreover, since the\; values are rather close to the GOE saturates to a constant value. The Gaussian broadening un-

limit when v =5 is used, it follows thaf?Ca is a fully cha- folding was performed for=1 MeV ando=2 MeV. In
otic system, i.e., we arrive to a wrong conclusion. the central part of the spectrum these values correspond to

This example is then very enlightening. First, it iIIustrateswmdowS containing .about 10 and 20 states, respectively.
. L Therefore, the effective number of states that affect the av-
that, contrary to common practice, thg(L) statistic should

be calculated up to high values, because otherwise one cantrage level density is about the same as in the local unfolding

. . . ) ase. Again, we see the sa saturation forL values
miss relevant information on the system dynamics. Secon§ g ma

it sh h bl h 4 h h | reater than the window used in the unfolding.
It shows the problems that can arise when the mean level gjniary Fig. 5 shows the spectral rigidity for 10000

density function is not known and one has to rely on localgnergy levels generated with Poisson statistics and a uniform
unfolding. For smallL values, up toL=10, the results are density p(E)=1. The smooth unfolding gives; values
essentially independent of the unfolding method, and th lose to Poissoﬁ predictions, but local unfoldin93 With 2
A;(L) statistic indicates that the system is quite chaotic. FOH and 21 leads again to tr;e same saturation behavibr ob-
larger L values, the locally unfolded spectrum seems to besérved in ,previous cases for=2v. In fact, for the small
fully chaotic. On the contrary, the globally unfolded spec-\,inqow with four spacings, thé, of the Poisson spectrum
trum reveals strong deviations from the GOE limit. This Sig'closely follows GOE predictions.
nal of nonchaotic motion irPCa is realistic and fully in Looking for deeper insight into the spurious, satura-
agreement with the behavior of the wave function localiza-
tion lengths[14]. T
To avoid any uncertainties on the real behavior of the I

v AL ce0s0e00000e
mean level density(E), and therefore on the calculated 3h A‘éﬁé?fff‘::f(::(:ffffq
level fluctuations, we can study GOE and Poisson level spec- o : ..fﬂ LELLELEELLLLLLLLLLL
tra, the paradigmatic cases of chaotic and regular systems, o ¥ ]

O i

respectively. We consider a GOE matrix with dimenshn
=10000, and compare the spectral fluctuations obtained by

three different methods: Smooth unfolding made with the o T S

semicircle law, local unfolding, and Gaussian broadening un- ° 50 100 150 200

folding. As Fig. 3 shows, all these methods yield almost L

indistinguishable results for the(s) distribution, and in per- FIG. 4. Comparison of the spectral rigidity for &= 10 000

fect agreement W'th_the Wigner surmise. The behavior of thesoE evel spectrum, calculated with different unfolding methods.
short-range correlations is not affected by the method of Unppen triangles correspond to the smooth unfolding. Filled circles
folding. and squares correspond to the local unfolding with window size

However, Fig. 4 shows a completely different scenario forz, =42 and 2 =18, respectively. Open circles and squares to the
the A3 behavior of a GOE energy level spectrum. For theGaussian broadening unfolding foer=2 ando=1 MeV, respec-
smooth unfolding, the spectral rigidity behaves as predictedvely.
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ing procedures. Open triangles correspond to the smooth unfolding "~ 0.1 0.2 0.3 0.4 0.5 0.6
Filled circles, squares, and triangles correspond to the local unfold- K

ing with window size 2 =42, 2v=18, and 2 =4, respectively.

FIG. 6. Comparison of the power spectrum for the level spacing
sequence® , s, ands,, of 10000 uncorrelated levels with uni-

tion, we may consider the sequence of nearest level spacinéﬁ_"m density_. The locally unfolded spacingsare calculated with a

as a physical signal, and apply Fourier analysis techniques t§indow of size 2 =42 that corresponds &, =0.15.

its study. The indexin Eqg. (3) is considered as the analog of

a discrete time, and, is the value of the signal at this time. o ) )

Obviously, the analogy is only formal and the discrete time isfion reduction is progressive, the spurious long-range corre-
dimensionless. The Fourier analysis is performed by mean/gtions become stronger asincreases beyond the window
of a fast Fourier transform. The frequencies obtainedkare Size 2. Itis precisely this phenomenon what has previously
=2mn/d, wheren is an integer andl is the total number of Peen detected by tha; statistic, namely, the strong long-
spacings. Frequencies beyond the Nyquist frequencyange correlations leading to a saturation of theare ob-
reached ah=d/2, have no physical meaning. served forL=2v. .

We have chosen a system with Poisson statistics and uni- In summary, we have shown that the correct behavior of
form level distribution to illustrate the idea, because theAs is strongly modified by some commonly used unfolding
smooth density in this case is constant. Therefore, the funddrocedures when the exact shape of the mean level density is
mental assumption of the local unfolding method, namelynot known. Methods such as local unfolding or Gaussian
that the mean density is approximately linear within a win-broadening introduce spurious long-range correlations in the
dow, is exactly fulfilled. From the real nearest-neighbor levelunfolded level spectrum, leading to a saturatiomgfL). In
spacing sequencg we obtain:(a) the average spacing se- these methods the(E) is calculated from the levels inside
quenceD, calculated with the local constant density of Eq. an energy window arouné. The spurious behavior of the
(5) for v=21, (b) the sequence of smoothly unfolded spac-Aj; statistic is observed fdr larger than the window size. In
ingss, and(c) the sequence of locally unfolded spacirsgs  general it gives misleading signatures of quantum chaos, and

Since for this spectrum(E)=1, we have mean spaciriy  for small windows the behavior of; may be close to the

=1 and therefores=S. GOE limit. Furthermore, the spurious saturationof can
Figure 6 displays the power spectrum of these three segasily be misinterpreted as Berry’s saturation. _
quences for frequencies upke=0.6. ForD, , it has a maxi- For systems intermediate between regular and chaotic, the

mum neark=0 and decreases smoothly afterwards, becomtraditional spectral statistic®(s) and Az(L) for small L

ing zero at some threshold frequenky= m/v. However, values may be close _to_the GOE limit, and strong deviations
this behavior is a spurious effect, because the real mea®f A3 from GOE predictions only appear for largenvalues.
spacingD is constant and consequently its power spectrum id hus if the local mean level density is not known from a
zero for all frequencie&# 0. Therefore the local unfolding Statistical theory or a good empirical ansatz, the analysis of
procedure introduces spurious low frequency component8n€rgy Ievgl fluctuations based on local gnfoldmg or similar
into the D, signal. Comparing the power spectra®f and methogis will not lead to cqrreqt conclusions on t_he system
s, it is seen that they are very similar at low frequenciesdynamics. In many cases it will be very convenient to go
except for the damping of the former. The power spectrs of peyond level statistics ar_1d study properties of the wave func-
ands, are also very similar, except that the low frequencynons,. _such as localization length, transmon strengths and
components are missing in the latter. These results clarify thifansition strength sun{d.5], to have a reliable overview of
deficiencies of local unfolding. It becomes apparent that thétatistics related to quantum chaos.

procedure is filtering out low frequency fluctuations from the

spectrums, and improperly including them i, . More- We want to acknowledge useful discussions with D.
over, by reducing or eliminating fluctuations of frequency Weinmann. This work was supported in part by Spanish
smaller thark,, the procedure is introducing long-range cor- Government grants for Research Project Nos. BFM2000-
relations with wavelengths greater than.As this fluctua- 0600 and FTN2000-0963-C02.
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