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Misleading signatures of quantum chaos
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The main signature of chaos in a quantum system is provided by spectral statistical analysis of the nearest-
neighbor spacing distributionP(s) and the spectral rigidity given by theD3(L) statistic. It is shown that some
standard unfolding procedures, such as local unfolding and Gaussian broadening, lead to a spurious saturation
of D3(L) that spoils the relationship of this statistic with the regular or chaotic motion of the system. This
effect can also be misinterpreted as Berry’s saturation.
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Quantum chaos has been an active research field sinc
link between energy level fluctuations and the chaotic or
tegrable properties of Hamiltonian systems was conjectu
@1,2#, providing one of the fundamental signatures of qua
tum chaos@3,4# in atoms, molecules, nuclei, quantum do
etc. The secular or smooth behavior of the level density
characteristic of each quantum system, while the fluctuati
relative to this smooth behavior are related to the regula
chaotic character of the motion in all quantum systems.
achieve the separation of the smooth and fluctuating pa
the energy spectrum is scaled to a sequence with the s
local mean spacing along the whole spectrum. This scalin
called unfolding @5#. Although this can be a nontrivial tas
@6#, the description of the unfolding details of calculations
usually neglected in the literature.

In this paper we show that, contrary to common assum
tions, the statistics that measure long-range level correlat
are strongly dependent on the unfolding procedure utiliz
and some standard unfolding methods give very mislead
results in regard to the chaoticity of quantum systems. Lo
range level correlations are usually measured by mean
the Dyson and MehtaD3 statistic@5#. On the other hand, we
find that short-range correlations, characterized by
nearest-neighbor spacing distributionP(s), are not very sen-
sitive to the unfolding method.

Let us consider a rectangular quantum billiard with a s
ratio a/b5p. This is a well known example of a regula
system. In general, for regular systems level fluctuations
have like in a sequence of uncorrelated energy levels, and
D3(L) statistic increases linearly withL. However, it was
shown by Berry@7# that the existence of periodic orbits i
the phase space of the analogous classical system lead
saturation ofD3(L) for L larger than a certain valueLs ,
related to the period of the shortest periodic orbit. Figur
shows theD3 behavior for a sequence of 8000 high ener
levels of the mentioned quantum billiard, calculated with tw
different unfolding procedures. The mean level density
this system is given by the Weyl law@8#. Using this density
to perform the unfolding,D3 follows the straight line of level
spacings with Poisson distribution, characteristic of regu
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systems. In this example, Berry’s saturation takes place
Ls.750, that is outside the figure. Let us suppose now t
the law giving the mean level density of the system w
unknown. Then, a standard method to obtain the local m
level density at energyE is to calculate the average densi
of a few levels around this energy. Using this method o
obtains a very different behavior, namely,D3 flattens
strongly atL.20, and afterwardsD3 is close to the Gaussia
orthogonal ensemble~GOE! line characteristic of chaotic
systems. The latter behavior is not at all related to the Be
saturation, that takes place at much higherL in this case, as
mentioned above. Instead, it is a spurious effect due to in
propriate unfolding of the level spectrum, and it implies th
strong long-range correlations have been improperly in
duced by the procedure.

This first example illustrates the problem that can ar
with some reasonable unfolding methods currently used
quantum chaos calculations@9–13#. In order to understand
its origin we shall analyze different unfolding procedure
The principal difficulty in the unfolding is the correct cha
acterization of the mean level density functionr̄(a,E),
wherea stands for some parameters defining the functio
form of r̄. Having this function, the mean accumulated lev
density is given by

N̄~a,E!5E
2`

E

r̄~a,E8!dE8. ~1!

FIG. 1. Comparison of theD3 statistic for a rectangular quantum
billiard using two unfolding procedures. Open triangles correspo
to the smooth unfolding using the Weyl law, and filled triangl
correspond to the local unfolding method. The dashed line is
Poisson limit and the dotted line is the GOE limit.
©2002 The American Physical Society09-1
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The parametersa are determined finding the valuesa0 for
which the smooth functionN̄(a0 ,E) is closest to the step
function N(E) that gives the true number or levels up
energyE. An alternative procedure, which often gives bet
results, consists on assuming a functional shape forN̄(a,E),
or expanding it in some basis functions, and fit it toN(E).

The unfolded energy levelsare given by

« i5N̄~a0 ,Ei !. ~2!

These dimensionless variables constitute a quasiunif
spectrum with constant mean level density equal to 1. T
unfolded spacing sequence is then

$si5« i 112« i%, ~3!

and the nearest-neighbor spacing distributionP(s) is well
suited to study the short-range spectral correlations@5#.

The D3 statistic is used to investigate the long-range c
relations. It is defined for the interval@a,a1L# in the cumu-
lative level density as

D3~a,L !5
1

L
min
A,B

E
a

a1L

@N~«!2A«2B#2d«, ~4!

whereN(«) is the step function that gives the true number
unfolded levels up to«. The functionD3(L), averaged over
intervals, measures the deviations of the quasiuniform sp
trum from a true equidistant spectrum. ThereforeD3(L) is
related to thespectral rigidity. WhenD3(L) is nearly flat, the
rigidity is strong@2#. In the limiting case of a harmonic os
cillator, the spectrum is completely rigid andD3(L) is con-
stant and close to zero. For GOE spectra, the levels
strongly correlated andD3(L); ln L. By contrast, for Pois-
son spectra the levels are uncorrelated, the spectrum issoft,
andD3(L) increases linearly withL.

For some systems a natural unfolding procedure ex
becauser̄(E) ~we drop the indexa from now on! is known
from an appropriate statistical theory or by a well check
empirical ansatz. For example,r̄(E) is a semicircle for large
GOE matrices@5#, it often has Gaussian form with Edge
worth corrections for large nuclear shell-model matrices@5#,
and follows the Weyl law in quantum billiards@8#. In all
those cases it is possible to unfold the level spectrum p
erly, but it should be noted that it is a delicate operation
the calculated mean level densityr̄(E) is not accurate
enough, the unfolding procedure will introduce accumula
errors inN(«) in Eq. ~4!, leading for largeL to a spurious
increase ofD3(L) above the true value. For example, in mo
nuclear shell-model spectra, a Gaussian density with
Edgeworth corrections will provide distorted results of th
kind for L.50. In general, this effect can hide any Ber
saturation in a system.

In the present paper, we deal mainly with systems wh
there is no natural choice for the mean level density functi
In those cases, the local value ofr̄(E) is usually estimated
from a set of neighboring levels. The simplest method, ca
local unfolding, has been widely used@9–12#. The mean
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level density is assumed to be approximately linear in a w
dow of v levels on each side ofEi , and is given by

r̄L~Ei !5
2v

Ei 2v2Ei 1v
, ~5!

whereL stands for local unfolding. More sophisticated is t
Gaussian broadeningmethod @8,13#. The level density
r(E)5( id(E2Ei) is substituted by an average level dens

r̄G~E!5
1

sA2p
(

i
expH 2

~E2Ei !
2

2s2 J , ~6!

whereG stands for Gaussian broadening. The sum runs o
all the energy levels, but only those satisfyinguE2Ei u&s do
significantly contribute tor̄G(E). Although these two meth-
ods are different, both depend on a parameterv or s that
measures, in a real or effective way, how many neighbor
levels are used to calculate the local mean density.

The atomic nucleus is an example of a quantum sys
more complex than the quantum billiard. In most nucl
level fluctuations are in agreement with GOE predictions
all energies, showing that the motion is chaotic. However
has recently been observed that single closed shell nucle
less chaotic than expected@11,14#. One of the most regula
nuclei at low energy is52Ca. Analysis of the shell-mode
level spectrum@14# shows that the nearest-neighbor spac
distribution P(s) is close to the Poisson limit~the Brody
parameter@5# is v50.25) for levels up to 5 MeV above th
yrast line. As the excitation energy is increased,P(s) ap-
proaches the spacing distribution of a chaotic system. N
ertheless, other statistics indicate that the dynamics is
not fully chaotic. TheD3(L) statistic is very sensitive to the
dynamical regime of motion, and therefore it is genera
considered to be a reliable statistic to detect chaos in qu
tum systems. However, we shall now show that itsL depen-
dence can be very misleading if local unfolding or simil
methods are used.

Consider the fullp f shell-model spectrum of52Ca. If we
perform a careful global unfolding, using forr̄(E) an Edge-
worth expansion up to fourth order around a Gaussian fo
@5#, the resultingD3(L) is close to the GOE limit for very
small L values, but it increases linearly instead of logarit
mically for largerL values, as can be seen in Fig. 2. We ha
checked that this behavior is not spurious, i.e., it is not
effect of cumulative errors mentioned above. Besides unfo
ing with the global mean density, we determinedN̄(E) di-
rectly using an expansion in Chebyshev polynomials and
ting it to the cumulative step functionN(E). This unfolding
method gave a result very similar to the open triang
shown in Fig. 2. Thus, except for very smallL values, the
spectral rigidity is intermediate between those of GOE a
Poisson limits, giving a clear signature of nonchaotic mot
in this semimagic nucleus.

On the other hand, when the Edgeworth expansion aro
a Gaussian form fails to reproduce the smooth global sh
model level density, as it happens sometimes@11#, local un-
folding or Gaussian broadening are current methods to de
9-2
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mine the local mean level density. Figure 2 also shows
results using local unfolding withv55 in 52Ca. TheD3

statistic follows closely the line obtained with the smoo
unfolding up to L.2v, but for largerL it saturates to a
roughly constant value. This is the same behavior that
observed in the quantum billiard system described abo
Moreover, since theD3 values are rather close to the GO
limit when v55 is used, it follows that52Ca is a fully cha-
otic system, i.e., we arrive to a wrong conclusion.

This example is then very enlightening. First, it illustrat
that, contrary to common practice, theD3(L) statistic should
be calculated up to highL values, because otherwise one c
miss relevant information on the system dynamics. Seco
it shows the problems that can arise when the mean l
density function is not known and one has to rely on lo
unfolding. For smallL values, up toL.10, the results are
essentially independent of the unfolding method, and
D3(L) statistic indicates that the system is quite chaotic.
larger L values, the locally unfolded spectrum seems to
fully chaotic. On the contrary, the globally unfolded spe
trum reveals strong deviations from the GOE limit. This s
nal of nonchaotic motion in52Ca is realistic and fully in
agreement with the behavior of the wave function locali
tion lengths@14#.

To avoid any uncertainties on the real behavior of
mean level densityr̄(E), and therefore on the calculate
level fluctuations, we can study GOE and Poisson level sp
tra, the paradigmatic cases of chaotic and regular syste
respectively. We consider a GOE matrix with dimensionN
510 000, and compare the spectral fluctuations obtained
three different methods: Smooth unfolding made with
semicircle law, local unfolding, and Gaussian broadening
folding. As Fig. 3 shows, all these methods yield almo
indistinguishable results for theP(s) distribution, and in per-
fect agreement with the Wigner surmise. The behavior of
short-range correlations is not affected by the method of
folding.

However, Fig. 4 shows a completely different scenario
the D3 behavior of a GOE energy level spectrum. For t
smooth unfolding, the spectral rigidity behaves as predic

FIG. 2. D3 for the completeJ510 level sequence of a shel
model calculation for52Ca in thep f shell. For smooth unfolding
made by an Edgeworth expansion in the cumulants, the result~open
triangles! lies between Poisson~dashed line! and GOE~dotted line!
limits. Filled triangles correspond to local unfolding with a 2v
510 window.
03620
e

s
e.

d,
el
l

e
r
e
-
-

-

e

c-
s,

by
e
-
t

e
-

r

d

by GOE, up to very largeL values. The local unfolding was
performed using two different windows, withv59 and
v521. The calculatedD3 coincides now with GOE predic
tions only up toL.2v, then it leaves the GOE trend an
saturates to a constant value. The Gaussian broadening
folding was performed fors51 MeV ands52 MeV. In
the central part of the spectrum these values correspon
windows containing about 10 and 20 states, respectiv
Therefore, the effective number of states that affect the
erage level density is about the same as in the local unfold
case. Again, we see the sameD3 saturation forL values
greater than the window used in the unfolding.

Similarly, Fig. 5 shows the spectral rigidity for 10 00
energy levels generated with Poisson statistics and a unif
density r̄(E)51. The smooth unfolding givesD3 values
close to Poisson predictions, but local unfolding withv52,
9, and 21, leads again to the same saturation behavior
served in previous cases forL*2v. In fact, for the small
window with four spacings, theD3 of the Poisson spectrum
closely follows GOE predictions.

Looking for deeper insight into the spuriousD3 satura-

FIG. 3. Comparison of the nearest-neighbor spacing distribu
P(s) for anN510 000 GOE level spectrum, calculated with diffe
ent unfolding methods. The thin line histogram is obtained for lo
unfolding with 2v518, and the thick line histogram for global un
folding with the semicircular mean level density. The Gauss
broadening unfolding method~not shown for figure clarity! gives
very similar results as well. The solid line is the Wigner surmise

FIG. 4. Comparison of the spectral rigidity for anN510 000
GOE level spectrum, calculated with different unfolding metho
Open triangles correspond to the smooth unfolding. Filled circ
and squares correspond to the local unfolding with window s
2v542 and 2v518, respectively. Open circles and squares to
Gaussian broadening unfolding fors52 ands51 MeV, respec-
tively.
9-3
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tion, we may consider the sequence of nearest level spac
as a physical signal, and apply Fourier analysis technique
its study. The indexi in Eq. ~3! is considered as the analog
a discrete time, andsi is the value of the signal at this time
Obviously, the analogy is only formal and the discrete time
dimensionless. The Fourier analysis is performed by me
of a fast Fourier transform. The frequencies obtained ark
52pn/d, wheren is an integer andd is the total number of
spacings. Frequencies beyond the Nyquist freque
reached atn5d/2, have no physical meaning.

We have chosen a system with Poisson statistics and
form level distribution to illustrate the idea, because t
smooth density in this case is constant. Therefore, the fun
mental assumption of the local unfolding method, name
that the mean density is approximately linear within a w
dow, is exactly fulfilled. From the real nearest-neighbor le
spacing sequenceS, we obtain:~a! the average spacing se
quenceDL calculated with the local constant density of E
~5! for v521, ~b! the sequence of smoothly unfolded spa
ingss, and~c! the sequence of locally unfolded spacingssL .
Since for this spectrumr̄(E)51, we have mean spacingD
51 and therefores5S.

Figure 6 displays the power spectrum of these three
quences for frequencies up tok50.6. ForDL , it has a maxi-
mum neark50 and decreases smoothly afterwards, beco
ing zero at some threshold frequencyk05p/v. However,
this behavior is a spurious effect, because the real m
spacingD is constant and consequently its power spectrum
zero for all frequencieskÞ0. Therefore the local unfolding
procedure introduces spurious low frequency compone
into theDL signal. Comparing the power spectra ofDL and
s, it is seen that they are very similar at low frequenci
except for the damping of the former. The power spectras
and sL are also very similar, except that the low frequen
components are missing in the latter. These results clarify
deficiencies of local unfolding. It becomes apparent that
procedure is filtering out low frequency fluctuations from t
spectrums, and improperly including them inDL . More-
over, by reducing or eliminating fluctuations of frequen
smaller thank0, the procedure is introducing long-range co
relations with wavelengths greater than 2v. As this fluctua-

FIG. 5. Comparison of the spectral rigidity for a Poisson
quence of 10 000 levels with uniform density, using several unfo
ing procedures. Open triangles correspond to the smooth unfold
Filled circles, squares, and triangles correspond to the local unf
ing with window size 2v542, 2v518, and 2v54, respectively.
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tion reduction is progressive, the spurious long-range co
lations become stronger asL increases beyond the window
size 2v. It is precisely this phenomenon what has previou
been detected by theD3 statistic, namely, the strong long
range correlations leading to a saturation of theD3 are ob-
served forL*2v.

In summary, we have shown that the correct behavior
D3 is strongly modified by some commonly used unfoldi
procedures when the exact shape of the mean level dens
not known. Methods such as local unfolding or Gauss
broadening introduce spurious long-range correlations in
unfolded level spectrum, leading to a saturation ofD3(L). In
these methods ther̄(E) is calculated from the levels insid
an energy window aroundE. The spurious behavior of the
D3 statistic is observed forL larger than the window size. In
general it gives misleading signatures of quantum chaos,
for small windows the behavior ofD3 may be close to the
GOE limit. Furthermore, the spurious saturation ofD3 can
easily be misinterpreted as Berry’s saturation.

For systems intermediate between regular and chaotic
traditional spectral statisticsP(s) and D3(L) for small L
values may be close to the GOE limit, and strong deviatio
of D3 from GOE predictions only appear for largerL values.
Thus if the local mean level density is not known from
statistical theory or a good empirical ansatz, the analysis
energy level fluctuations based on local unfolding or simi
methods will not lead to correct conclusions on the syst
dynamics. In many cases it will be very convenient to
beyond level statistics and study properties of the wave fu
tions, such as localization length, transition strengths
transition strength sums@15#, to have a reliable overview o
statistics related to quantum chaos.

We want to acknowledge useful discussions with
Weinmann. This work was supported in part by Span
Government grants for Research Project Nos. BFM20
0600 and FTN2000-0963-C02.
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FIG. 6. Comparison of the power spectrum for the level spac
sequencesDL , s, andsL , of 10 000 uncorrelated levels with uni
form density. The locally unfolded spacingssL are calculated with a
window of size 2v542 that corresponds tok050.15.
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