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First- and second-order phase transitions in scale-free networks
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We study first- and second-order phase transitions of ferromagnetic lattice models on scale-free networks,
with a degree exponent. Using the example of thg-state Potts model we derive a general self-consistency
relation within the frame of the Weiss molecular-field approximation, which presumably leads to exact critical
singularities. Depending on the value pf we have found three different regimes of the phase diagram. As a
general trend first-order transitions soften with decreasirand the critical singularities at the second-order
transitions arey dependent.
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Complex networks, which have more complicated con-in the pure system are reduced due to inhomogeneities,
nectivity structure than periodic latticéBLs) have attracted which often change the transition into a continuous one. This
considerable interest recentl{t,2]. This research is moti- has been observed in the vicinity of free surfaied, when
vated by empirical data collected and analyzed in differenthere are missing bonds, or in the bulk when randasj or
fields. Small-world(SW) networks[3], which can be gener- aperiodic[19] perturbations are present.
ated from PLs by replacing a fractigm of bonds by new In the present paper, we investigate this issue on the SF
random links of arbitrary lengths, are suitable to model neuhetworks. In particular we are interested in the combined
ral networkg 4] and transportation systerfs]. On the other  effect of strong connectivity and irregularities, present in the
hand, scale-freéSP networks[6] are realized among others SF networks, on the properties of discontinuous phase tran-
in social system§7], in protein interaction networkgg], in  sitions. In the actual calculations we start with the ferromag-
the Internet[9] and in the World-Wide Welj10]. In a SF  netic g-state Potts model and solve it in the frame of the
network the degree distributioRp(k), wherek is the num-  Weiss molecular-field approximation, which represents a lat-
ber of links connected to a vertex, has an asymptotic powettice version of the MF method. Then we generalize this pro-
law decayPp(k)~k~?, thus there is no characteristic scale cedure for any lattice model and show how the MF equation
involved. In natural and artificial networks the value of theon the SF networks can be deduced from the corresponding
degree exponent is usually in the range 2<3 [11]. one for PLs. The MF equation is analyzed by standard meth-

Cooperative processes such as spread of epidemic disead@s[21] and the properties of the phase transitions, in par-
[12], percolation[13], Ising model[14,15, etc., have also ticular those related to a first- to second-order crossover are
been studied in the SW and the SF networks. For SW netcalculated. Since the MF method is expectedly exact for the
works numerical studies sho\6] that any finite fraction of ~SF networks our results are presumably exact.
new, long-range bond§>0, brings the transition into the  In the following, we consider thei-state ferromagnetic
classical, mean-fieldMF) universality class. It is under- Potts mode[22] defined by the Hamiltonian:
standable since for systems with long-range interactions the
MF approximation is exact. In the SF networks, where links H
between remote sites exists, too, at first thought one could kTR Kijé(si ;Sj)+2 h;é(s;) (N
expect also a traditional MF critical behavior. In specific B {n '
problems, however, it turned out that it is only true for
loosely connected networks, when the degree expopést in terms of Potts spin variables,=0,1, ... g—1, at sitei.
large enough. Otherwise the critical singularities of the tran-The interactiorK;; is equal toK>0 if the bond(ij) is oc-
sition are model independent, but nonuniversal; the criticatupied and zero, otherwise. As is well known, the Potts
exponents continuously depend on the value of the degremodel contains as special cases as the Ising modet) for
exponent. In particular, for 2 y<3, when(k?) is divergent =2 and the bond percolation problem in the limit-1. On
the systems are in their ordered phase for any value of theegular, d-dimensional lattices in the absence of external
control parameteftemperature, percolation probability, tran- fields the phase transition of the homogeneous model is first
sition rate, etg, and the critical properties can be investi- order, as in the MF theory, fay>q.(d) and continuous for
gated in the limit of infinitely strong fluctuations. g=d.(d) whereq.(2)=4, 9.(3)=3 andq.(d=4)=2.

Till now investigations on cooperative processes in the SF  To find the thermodynamical properties of the model we
networks are almost exclusively limited to continuous phaseise the MF method, when the problem is transformed to a set
transitions. However, in many problems the phase transitionsf independent spins in the presence of effective local fields,
on PLs are first order and it seems natural to ask what hapwhich are created by the nearest neighbors. The partition
pens with these transitions on the SF networks? There is fnction is then given as a product of single site contribu-
general tendency that the discontinuitiesy., the latent heat tions, Z=1I;z;, and the free energly takes the form,
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Potts model the first three coefficients are given dy
kBT E. 2 [1 2m;—(q—1)mm;] —1/9, a,=(q-2)/(299), and a;=(q’—6q+6)/(6°%).
For the SF networks, the analogous SC function,
Gse(Km,h), is generally not analytical due to singularities
+q—1} (2)  caused by integration over the degree distribution. For small

+2
' m (and for smallh) it has generally a regular part which is a

n exp(z Kijm;+h;
i

Here we introduced the local magnetizatios <1 as polynome of finite degreEl wheren is the largest natural
< > number smaller thary—2:
q(ds(s))—1 -
i:q_—lli (3) n < n+1>
G5p(Km,h)= E iy (Km)"+a;h, 7)

the value of which follows from the extremal condition of

the free energydF/om;=0, leading to a set of self- 5nq 5 singular contribution, which in the smal limit is
consistency(SC) equations: given by

eX[{E Kljmj+h| _1 ( ) aS(Km)7721 F|+2<’}/<ﬁ+3 (8)
Z K,]m,=2 K” : . (4) F B||n Kml(Km)E+1, ’}/:ﬁ"‘?)
| 1
e Kiim+h;|+g—1
Xp(; M hi Here
On a PL with coordination numbeg, m;=m,, andh;=h o n
one obtains the relation, f dxxt~” G(x)—z ax" 9
n=1
e*—1 "
=G(zKmp+h), G(X)=Gp(x)=———, (5 and the constant® and C are positive.
“+q-1 Having the smallm behavior of the SC function for the

o . ] ] . SF network at hand, we can analyze the corresponding criti-
which is compatible with a first-ordgsecond-ordertransi-  ca| behavior. Due to the presence of the singular contribution
tion for g>2 (q<2). in Eq. (8) the critical behavior of the SF network can be

For a SF network we consider no correlatigasticorre-  different from that in PLs. Generally we can define three
lations between the degrees of connected sites and assumggions of the degree exponemtwith different types of
that the probability of having a link between sifeandj, p;;  critical behavior. In the following, we are going to describe
is proportional to the number of links connected to eachthese regimes.
sites, i.e.,p;;~kik;. Furthermore, in the spirit of the MF > ,U: Conventional mean-field regime. If the degree ex-
method we replace the interactiok;;, in Eq. (4) by its  ponent is larger than an upper critical valyé the critical
average valug20], Ki; =K(kik;/Zik;). Now in terms of the  pehavior on the SF network is the same as on a PL. This
average order parameten= 2 kim;/Z;k; and for homoge- happens when the singular term in Ef) does not modify
neous fieldh;=h one obtains from Eq(4) the SC equation  the usual Landau-type analy$®l]. Here, depending on the

for the SF networks: order of the transition in the PL, there are two different pos-
sibilities:
=J' dkPp(K)k G(kKm+h)/(K)=Gs(Km,h), (6) (i) If the tr_an§ition in the PL is second order, the_n the first
two nonvanishing terms of the smath expansion of

P A n

where summation with respect ités replaced by integration GSF(.Km’h) suhould be regular, |.en>-2 andEn:2|an!>0.
over the degred as (1N)S,— [dkPy(K), whereN is the In thls.casey =n,+2, wheren,>1 is the smallest integer
number of vertices. Note that the SC equations for PLs in qu_or which an,<0. As an example for thegt<2)-state Potts
(5) and for the SF networks in E@6) are in similar form, model (including percolation for whichq=1) the upper
and the SC function for network&se(Km,h) is directly  critical degree exponent ig"=4, since here,<0. On the
related to that in a PLG(x). This latter transformation, as ©other hand for the Ising model, wheag=0 anda;<0 the
given in Eq.(6) remains the same for any type of lattice upper critical value isy"=5.
model. Therefore, Eq(6) sets a direct connection between (i) In the second case, when the transition in the PL is
the MF solutions in PLs and in the SF networks and thus it idirst order, we are looking for the condition that the transition
a fundamental relation. stays first order in the SF network, too. This will happen,

Next, we turn to analyze the critical behavior of the SFprovided (a) the linear regular term oGse(Km,h) exists
networks compatible with the general SC equation in(By. ~ and (b) the next-order contributiofeither regular or singu-
First, we recall that the SC functio(x) is monotonically ~ lar) is positive. It is then easy to see that the upper critical
increasing from 0 to 1 as varies from 0 tox and the first  value of y“ is given by the conditionsi=1 and ag(y")
few terms of its Taylor expansioiG(x)==,-,a,x" are es- =0. Indeed, for strongly connected networks, wter<0
sential for the properties of the phase transifidh]. For the  the transition is softened into a second-order one, the uncon-
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4 - - - If the transition in the PL is first order, thep= 5" corre-
4 sponds to a tricritical point in the SF network and the tric-
38 | IMorder 3.8 ] ritical exponents depend on other details of the degree dis-
> 36 tribution, such as the next-to-leading decay exponent.
36 | 2‘2‘ The behavior of the susceptibil?ty at the transition point is
- ‘3 calculated from the smah expansion of the SC function in
0 0102030405 Eq. (7). Since the leading contributions are regular, the sin-
34 ¢ 1/q T gularity of the susceptibility follows the conventional Curie-
oorder Weiss law, x(K)~1/|AK]|, and is not modified by the con-
32t 1 nectivity effect of the SF network.
The singularity in the specific heat is directly related to
3 . . . that of the order parameter and can be deduced from the
2 4 6 8 10 known relation for the energy densiéy~m? valid in the MF
q theory.

v=<3: Ordered regime. If the degree exponent of the SF

FIG. 1. Regions of first- and second-order phase transitions fohetwork isy<3 (but y>2, in order to ensure a finite aver-
the g-state Potts model on scale-free networks with a degree expo- Y L

nenty. In the second-order regime, i.e., below the upper criticaIf;ige degree(,:<>§oo|), (tjhetn th_e S:jngm?r: pTOpg_rtleS .Of thle Sgls'
value " the singularities ares dependent. em are exclusively aetermine Yy the leading singular term

of the SC function in Eq(8). As a consequence the system in

ventional properties of which will be described later. As anthe SF nejwork IS In its or'd.ered phase at any finite value of
example the first-order transition of the>2)-state Potts th_e coupllng "’!”P' singularities take place only at zero cou-
model in PLs, where,>0 andas<0, will turn into a con- plmg (or at infinite temperatuye The order parameter van-
tinuous one on the SF networks fer< ", where the upper ishes aK =0 as
critical exponent obtained numerically is shown in Fig. 1 for m(K)~K=2/G=0 o< <3, (12)
different values of.

As a general trend" is monotonously decreasing with  whereas at the borderline valug=3, there is an essential
and approaching the limiting value of 3 agyIfbr large q singularity:
(see the inset to Fig.)1This is consistent with our expecta-
tions; a stronger first-order transition on a PL, which has a m(K)~K™'exp( —1/BK), y=3. (13
larger latent heat, can be destroyed only in a more connected . _ .
network, i.e., with a smaller value of. The susceptibility atk=0 is gengrally finite,y=a4 /(3

Thus we can conclude at this point that fpesy¥ the ~ — ). €xcept fory=3, when it is divergent ag~1/K.
effect of the connectivity of the SF network islevant so _ In a finite network withN vertices the order in th_e system
that the singularities of the thermodynamical quantities ofdiSappears already at a nonzero couplig(N), which can
the system are different from the conventional mean-field?€ estimated as follows. The typical value of the largest de-
behavior, which can be observed in PLs. The relevant pertu@'€€ in the finite networkitmay, IS obtained from the usual
bation region is still divided into two parts, depending on thecondition for extreme eventsf, Pp(k)dk~1/N, thus
position of the singularity, whether it is at finite or at zero ky,a~NY(""1). In a finite system the different momentslof
coupling. In the following, we describe these regions. are also finite, and we obtain for the finite-size scaling be-

3<y=y" Unconventional critical regime. The critical havior of the second momer(k?)~k3 7~NG~»/(r=1),
behavior in this regime is due to an interplay between arom this result the size dependent value of the coupling at
regular linear termwhich does exists, sincg>>3) and a the transition point can be calculated as
negative singular next-to-leading term in the expansion of
Gse(Km,h). As a result the transition is second order and Ko(N)~(k?) " 1~N"C=0/07D 2<y<3, (14
takes place at a finite coupling, which in the MF method Isfrom which the finite-size scaling behavior of the order pa-

given byK.=(k)/({k?)a,). Due to they dependence of the " )
singular term the singularity of the order parameter is uncon["’meu;“r at the transition point

ventional: M(N)~K(N)(~2/G=0 N~ (=2)/6-1) (15)
m(K)~(AK)YO73), 3<y<yt, (10 follows. Fory=3 the size dependence of the transition point
whereAK=K —K, . At the upper critical value of the degree 's logarithmic:
exponenty= y" according to the result in E¢8), there are Ke(N)~(InN)~%,  y=3, (16)
logarithmic corrections of the form
which has been observed in Monte Carlo simulations for the
AK | YOum3) " Ising model[14].
m(K)~ INAK] O YEY (11) To summarize we have studied the properties of first- and
second-order phase transitions of ferromagnetic lattice mod-
at least if the transition in the PL is second order. els on scale-free networks. Using the Weiss molecular-field
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approximation we have derived a general SC equation thdhdeed, our results coincide with others, obtained by differ-
has been analyzed by standard methods. Three regions of teat methods on specific problerff3,15.
phase diagram are identified as a function of the degree ex- After this work has been completed we became aware of
ponenty. First-order transitions can only take place in thea preprint by Goltsev, Dorogovtsev, and Mend@s§], in
first regime, wherey> ", and where the effect of connec- which some results about tiestate Potts model on the SF
tivity of the network is irrelevant. In the second regime, for networks have been announced.
3<y=+y" the phase transition is always continuous and
takes place at a finite temperature. The magnetization critical We are indebted to Jae Dong Noh for stimulating discus-
exponent, however, is nonconventionaldependent. In the sions. The work by F.I. has been supported by the Hungarian
third regime, fory<3, the system is in its ordered phase atNational Research Fund under Grants Nos. OTKA TO34183,
any temperature and a singularity can develop only for di-TO37323, MO28418, and M36803, by the Ministry of Edu-
verging temperaturéor vanishing coupling cation under Grant No. FKFP 87/2001, by &) Center of

As far as the properties of the critical singularities areExcellence(Grant No. ICA1-CT-2000-70029 and by the
concerned the MF method presumably gives exact result€£NRS. The Laboratoire de Physique des Matex is Unite
The location of the transition point is not necessarily exactMixte de Recherche No. 7556.
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