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First- and second-order phase transitions in scale-free networks
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We study first- and second-order phase transitions of ferromagnetic lattice models on scale-free networks,
with a degree exponentg. Using the example of theq-state Potts model we derive a general self-consistency
relation within the frame of the Weiss molecular-field approximation, which presumably leads to exact critical
singularities. Depending on the value ofg, we have found three different regimes of the phase diagram. As a
general trend first-order transitions soften with decreasingg and the critical singularities at the second-order
transitions areg dependent.
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Complex networks, which have more complicated co
nectivity structure than periodic lattices~PLs! have attracted
considerable interest recently@1,2#. This research is moti-
vated by empirical data collected and analyzed in differ
fields. Small-world~SW! networks@3#, which can be gener
ated from PLs by replacing a fractionp of bonds by new
random links of arbitrary lengths, are suitable to model n
ral networks@4# and transportation systems@5#. On the other
hand, scale-free~SF! networks@6# are realized among other
in social systems@7#, in protein interaction networks@8#, in
the Internet@9# and in the World-Wide Web@10#. In a SF
network the degree distributionPD(k), wherek is the num-
ber of links connected to a vertex, has an asymptotic pow
law decayPD(k);k2g, thus there is no characteristic sca
involved. In natural and artificial networks the value of t
degree exponent is usually in the range 2,g,3 @11#.

Cooperative processes such as spread of epidemic dis
@12#, percolation@13#, Ising model@14,15#, etc., have also
been studied in the SW and the SF networks. For SW
works numerical studies show@16# that any finite fraction of
new, long-range bonds,p.0, brings the transition into the
classical, mean-field~MF! universality class. It is under
standable since for systems with long-range interactions
MF approximation is exact. In the SF networks, where lin
between remote sites exists, too, at first thought one co
expect also a traditional MF critical behavior. In speci
problems, however, it turned out that it is only true f
loosely connected networks, when the degree exponentg is
large enough. Otherwise the critical singularities of the tr
sition are model independent, but nonuniversal; the crit
exponents continuously depend on the value of the de
exponent. In particular, for 2,g<3, when^k2& is divergent
the systems are in their ordered phase for any value of
control parameter~temperature, percolation probability, tra
sition rate, etc.!, and the critical properties can be inves
gated in the limit of infinitely strong fluctuations.

Till now investigations on cooperative processes in the
networks are almost exclusively limited to continuous ph
transitions. However, in many problems the phase transit
on PLs are first order and it seems natural to ask what h
pens with these transitions on the SF networks? There
general tendency that the discontinuities~e.g., the latent heat!
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in the pure system are reduced due to inhomogenei
which often change the transition into a continuous one. T
has been observed in the vicinity of free surfaces@17#, when
there are missing bonds, or in the bulk when random@18# or
aperiodic@19# perturbations are present.

In the present paper, we investigate this issue on the
networks. In particular we are interested in the combin
effect of strong connectivity and irregularities, present in t
SF networks, on the properties of discontinuous phase t
sitions. In the actual calculations we start with the ferroma
netic q-state Potts model and solve it in the frame of t
Weiss molecular-field approximation, which represents a
tice version of the MF method. Then we generalize this p
cedure for any lattice model and show how the MF equat
on the SF networks can be deduced from the correspon
one for PLs. The MF equation is analyzed by standard me
ods @21# and the properties of the phase transitions, in p
ticular those related to a first- to second-order crossover
calculated. Since the MF method is expectedly exact for
SF networks our results are presumably exact.

In the following, we consider theq-state ferromagnetic
Potts model@22# defined by the Hamiltonian:

2
H

kBT
5(̂

i j &
Ki j d~si ,sj !1(

i
hid~si ! ~1!

in terms of Potts spin variables,si50,1, . . . ,q21, at sitei.
The interactionKi j is equal toK.0 if the bond^ i j & is oc-
cupied and zero, otherwise. As is well known, the Po
model contains as special cases as the Ising model foq
52 and the bond percolation problem in the limitq→1. On
regular, d-dimensional lattices in the absence of extern
fields the phase transition of the homogeneous model is
order, as in the MF theory, forq.qc(d) and continuous for
q<qc(d) whereqc(2)54, qc(3)&3 andqc(d>4)52.

To find the thermodynamical properties of the model
use the MF method, when the problem is transformed to a
of independent spins in the presence of effective local fie
which are created by the nearest neighbors. The parti
function is then given as a product of single site contrib
tions,Z5) izi , and the free energyF takes the form,
©2002 The American Physical Society40-1
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2
F

kBT
5(

i
(

j

Ki j

2q
@122mj2~q21!mimj #

1(
i

lnFexpS (
j

Ki j mj1hi D 1q21G . ~2!

Here we introduced the local magnetization 0<mi<1 as

mi5
q^d~si !&21

q21
, ~3!

the value of which follows from the extremal condition
the free energy]F/]mi50, leading to a set of self
consistency~SC! equations:

(
i

Ki j mi5(
i

Ki j

expS (
j

Ki j mj1hi D 21

expS (
j

Ki j mj1hi D 1q21

. ~4!

On a PL with coordination number,z, mi5m0, and hi5h
one obtains the relation,

m5G~zKm01h!, G~x!5GP~x!5
ex21

ex1q21
, ~5!

which is compatible with a first-order~second-order! transi-
tion for q.2 (q<2).

For a SF network we consider no correlations~anticorre-
lations! between the degrees of connected sites and ass
that the probability of having a link between sitesi andj, pi j
is proportional to the number of links connected to ea
sites, i.e.,pi j ;kikj . Furthermore, in the spirit of the MF
method we replace the interaction,Ki j , in Eq. ~4! by its
average value@20#, Ki j 5K(kikj /( iki). Now in terms of the
average order parameter,m5( ikimi /( iki and for homoge-
neous fieldhi5h one obtains from Eq.~4! the SC equation
for the SF networks:

m5E dkPD~k!k G~kKm1h!/^k&5GSF~Km,h!, ~6!

where summation with respect toi is replaced by integration
over the degreek as (1/N)( i→*dkPD(k), whereN is the
number of vertices. Note that the SC equations for PLs in
~5! and for the SF networks in Eq.~6! are in similar form,
and the SC function for networks,GSF(Km,h) is directly
related to that in a PL,G(x). This latter transformation, a
given in Eq. ~6! remains the same for any type of lattic
model. Therefore, Eq.~6! sets a direct connection betwee
the MF solutions in PLs and in the SF networks and thus
a fundamental relation.

Next, we turn to analyze the critical behavior of the S
networks compatible with the general SC equation in Eq.~6!.
First, we recall that the SC function,G(x) is monotonically
increasing from 0 to 1 asx varies from 0 tò and the first
few terms of its Taylor expansion,G(x)5(n51anxn are es-
sential for the properties of the phase transition@21#. For the
03614
me

h

q.

s

Potts model the first three coefficients are given bya1
51/q, a25(q22)/(2q2), and a35(q226q16)/(6q3).
For the SF networks, the analogous SC functio
GSF(Km,h), is generally not analytical due to singularitie
caused by integration over the degree distribution. For sm
m ~and for smallh) it has generally a regular part which is
polynome of finite degreeñ where ñ is the largest natura
number smaller thang22:

GSF
r ~Km,h!5 (

n51

ñ

an

^kn11&

^k&
~Km!n1a1h, ~7!

and a singular contribution, which in the smallm limit is
given by

GSF
s ~Km!5H as~Km!g22, ñ12,g,ñ13

Bu ln Kmu~Km! ñ11, g5ñ13.
~8!

Here

as5CE
0

`

dx x12gFG~x!2 (
n51

ñ

anxnG ~9!

and the constantsB andC are positive.
Having the smallm behavior of the SC function for the

SF network at hand, we can analyze the corresponding c
cal behavior. Due to the presence of the singular contribu
in Eq. ~8! the critical behavior of the SF network can b
different from that in PLs. Generally we can define thr
regions of the degree exponentg with different types of
critical behavior. In the following, we are going to describ
these regimes.

g.gu: Conventional mean-field regime. If the degree e
ponent is larger than an upper critical valuegu the critical
behavior on the SF network is the same as on a PL. T
happens when the singular term in Eq.~8! does not modify
the usual Landau-type analysis@21#. Here, depending on the
order of the transition in the PL, there are two different po
sibilities:

~i! If the transition in the PL is second order, then the fi
two nonvanishing terms of the smallm expansion of

GSF(Km,h) should be regular, i.e.,ñ>2 and(n52
ñ uanu.0.

In this casegu5n212, wheren2.1 is the smallest intege
for which an2

,0. As an example for the (q,2)-state Potts

model ~including percolation for whichq51) the upper
critical degree exponent isgu54, since herea2,0. On the
other hand for the Ising model, wherea250 anda3,0 the
upper critical value isgu55.

~ii ! In the second case, when the transition in the PL
first order, we are looking for the condition that the transiti
stays first order in the SF network, too. This will happe
provided ~a! the linear regular term ofGSF(Km,h) exists
and ~b! the next-order contribution~either regular or singu-
lar! is positive. It is then easy to see that the upper criti
value of gu is given by the conditionsñ51 and as(g

u)
50. Indeed, for strongly connected networks, whenas,0
the transition is softened into a second-order one, the unc
0-2
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ventional properties of which will be described later. As
example the first-order transition of the (q.2)-state Potts
model in PLs, wherea2.0 anda3,0, will turn into a con-
tinuous one on the SF networks forg,gu, where the upper
critical exponent obtained numerically is shown in Fig. 1 f
different values ofq.

As a general trendgu is monotonously decreasing withq
and approaching the limiting value of 3 as 1/q for large q
~see the inset to Fig. 1!. This is consistent with our expecta
tions; a stronger first-order transition on a PL, which ha
larger latent heat, can be destroyed only in a more conne
network, i.e., with a smaller value ofg.

Thus we can conclude at this point that forg<gu the
effect of the connectivity of the SF network isrelevant, so
that the singularities of the thermodynamical quantities
the system are different from the conventional mean-fi
behavior, which can be observed in PLs. The relevant per
bation region is still divided into two parts, depending on t
position of the singularity, whether it is at finite or at ze
coupling. In the following, we describe these regions.

3,g<gu: Unconventional critical regime. The critica
behavior in this regime is due to an interplay between
regular linear term~which does exists, sinceg.3) and a
negative singular next-to-leading term in the expansion
GSF(Km,h). As a result the transition is second order a
takes place at a finite coupling, which in the MF method
given byKc5^k&/(^k2&a1). Due to theg dependence of the
singular term the singularity of the order parameter is unc
ventional:

m~K !;~DK !1/(g23), 3,g,gu, ~10!

whereDK5K2Kc . At the upper critical value of the degre
exponentg5gu according to the result in Eq.~8!, there are
logarithmic corrections of the form

m~K !;S DK

u ln DKu D
1/(gu23)

, g5gu, ~11!

at least if the transition in the PL is second order.

FIG. 1. Regions of first- and second-order phase transitions
the q-state Potts model on scale-free networks with a degree e
nent g. In the second-order regime, i.e., below the upper criti
valuegu the singularities areg dependent.
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If the transition in the PL is first order, theng5gu corre-
sponds to a tricritical point in the SF network and the tr
ritical exponents depend on other details of the degree
tribution, such as the next-to-leading decay exponent.

The behavior of the susceptibility at the transition point
calculated from the smallh expansion of the SC function in
Eq. ~7!. Since the leading contributions are regular, the s
gularity of the susceptibility follows the conventional Curi
Weiss law,x(K);1/uDKu, and is not modified by the con
nectivity effect of the SF network.

The singularity in the specific heat is directly related
that of the order parameter and can be deduced from
known relation for the energy densitye;m2 valid in the MF
theory.

g<3: Ordered regime. If the degree exponent of the
network isg<3 ~but g.2, in order to ensure a finite ave
age degree,̂k&,`), then the singular properties of the sy
tem are exclusively determined by the leading singular te
of the SC function in Eq.~8!. As a consequence the system
the SF network is in its ordered phase at any finite value
the coupling and singularities take place only at zero c
pling ~or at infinite temperature!. The order parameter van
ishes atK50 as

m~K !;K (g22)/(32g), 2,g,3, ~12!

whereas at the borderline value,g53, there is an essentia
singularity:

m~K !;K21exp~21/BK!, g53. ~13!

The susceptibility atK50 is generally finite,x5a1 /(3
2g), except forg53, when it is divergent asx;1/K.

In a finite network withN vertices the order in the system
disappears already at a nonzero coupling,KC(N), which can
be estimated as follows. The typical value of the largest
gree in the finite network,kmax, is obtained from the usua
condition for extreme events:*kmax

` PD(k)dk;1/N, thus

kmax;N1/(g21). In a finite system the different moments ofk
are also finite, and we obtain for the finite-size scaling b
havior of the second moment̂k2&;kmax

32g;N(32g)/(g21).
From this result the size dependent value of the coupling
the transition point can be calculated as

KC~N!;^k2&21;N2(32g)/(g21), 2,g,3, ~14!

from which the finite-size scaling behavior of the order p
rameter at the transition point

m~N!;KC~N!(g22)/(32g);N2(g22)/(g21) ~15!

follows. Forg53 the size dependence of the transition po
is logarithmic:

KC~N!;~ ln N!21, g53, ~16!

which has been observed in Monte Carlo simulations for
Ising model@14#.

To summarize we have studied the properties of first- a
second-order phase transitions of ferromagnetic lattice m
els on scale-free networks. Using the Weiss molecular-fi
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approximation we have derived a general SC equation
has been analyzed by standard methods. Three regions o
phase diagram are identified as a function of the degree
ponentg. First-order transitions can only take place in t
first regime, whereg.gu, and where the effect of connec
tivity of the network is irrelevant. In the second regime, f
3,g<gu the phase transition is always continuous a
takes place at a finite temperature. The magnetization cri
exponent, however, is nonconventional,g dependent. In the
third regime, forg<3, the system is in its ordered phase
any temperature and a singularity can develop only for
verging temperature~or vanishing coupling!.

As far as the properties of the critical singularities a
concerned the MF method presumably gives exact res
The location of the transition point is not necessarily exa
A.
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Indeed, our results coincide with others, obtained by diff
ent methods on specific problems@13,15#.

After this work has been completed we became aware
a preprint by Goltsev, Dorogovtsev, and Mendes@23#, in
which some results about theq-state Potts model on the S
networks have been announced.

We are indebted to Jae Dong Noh for stimulating disc
sions. The work by F.I. has been supported by the Hunga
National Research Fund under Grants Nos. OTKA TO341
TO37323, MO28418, and M36803, by the Ministry of Ed
cation under Grant No. FKFP 87/2001, by the~EC! Center of
Excellence~Grant No. ICA1-CT-2000-70029!, and by the
CNRS. The Laboratoire de Physique des Mate´riaux is Unité
Mixte de Recherche No. 7556.
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