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Generalization and capacity of extensively large two-layered perceptrons
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The generalization ability and storage capacity of a treelike two-layered neural network with a number of
hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via
Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is
within the replica framework where an order parameter characterizing the overlap between two networks in the
combined space of Boolean functions and hidden-to-output couplings is introduced. The maximal capacity of
such networks is found to scale linearly with the logarithm of the number of Boolean functions per hidden unit.
The generalization process exhibits a first-order phase transition from poor to perfect learning for the case of
discrete hidden-to-output couplings. The critical number of examples per input dimeasipaf which the
transition occurs, again scales linearly with the logarithm of the number of Boolean functions. In the case of
continuous hidden-to-output couplings, the generalization error decreases according to the same power law as
for the perceptron, with the prefactor being different.
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I. INTRODUCTION adaptive. The questions raised in such a model are the fol-
lowing. Can we develop analytical tools to solve such exten-
Since the early 1960s, the perceptron, which is the basisively large MLNs? What is the nature of the order param-
element of feed-forward neural networks, was extensivelyeter in this limit? How to combine into one parameter the
studied as a learning unit with memory capabilities. It wasquantities of both layers? Will the maximal capacity per
shown that such a feed-forward unit witth input compo-  weight, e, continue to grow in this limit?
nents and an output calculated by the input and the weight It was found that large machines wikt— o but whenkK
vectors can store examples and can learn from them amndbes not scale witthN can generalize. The generalization er-
generalizg 1]. It attracted attention in the statistical mechan-ror €4 that measures the discrepancy between the two ma-
ics field only in the late 1980s. Gardner blazed the trail in herchines, the ruler— the teacher — and the student in an ex-
seminal work[2,3], in which she introduced means of quan- plored example, decreases to zero with the same decay
tifying the abilities of the perceptron. The origin of her tool typical of the perceptron, independentiafin the tree parity
box was models of spin glass. She based her calculatiomsachine[7] and also in the tree committee machidd]. It
upon the entropy of the network and used the replica trick, ins not clear what happens whé&nscales withN. Is the gen-
order to overcome the difficulties in calculating the averageeralization decrease similar to the perceptron decrease? What
over the quenched randomness. are the methods used to calculate analytically the learning
After a thorough analysis of the perceptron, the multilayercurve? Most of the answers to the questions above were re-
architecture took center stagg4—12. The simplest cently introduced in Ref[12]. In this paper we present a
multilayer network(MLN) is composed of two layers, each detailed description of the analysis of such extensively large
being perceptronlike. Such networks can be used for mor#LNs and include a variety of casdsome of them were
complicated tasks. The number of Boolean mappings thatmitted in Ref.[12]). We introduce simulation results and
can be implemented in a MLN with binary output is much include an expanded discussion of the results.
larger than the number that can be implemented in a binary We analyze th& N:N:1 network(see Fig. 1from several
perceptron It was shown[13] that any mapping can be viewpoints. The capacity of the network is examined in the
stored in a large enough MLN and that an unbounded hiddeframework of replica calculationg,3], where an order pa-
layer only will suffice. Most of the networks that have beenrameter that incorporates both layers is introduced. It is
studied analytically contain aN-dimensional input vector, shown that the order parameter contains the essential infor-
whereN tends to infinity. The input is connected via a hiddenmation concerning the network performance. Bounds are de-
layer with K nodes to the output. The number of nodes isrived using combinatorial geometiyl4,15. The learning
finite or large but even wheNK is taken to be infinitely large ability of the network is also under discussion, where the
it does not scale withN, which is much largef4-9,11 replica calculations are usg¢d6-18. Again, the order pa-
(apart from the unique case studied[k0]). It is intriguing  rameter involving the capacity calculations is found to be the
to extend the analytical study of MLNSs to the case when thecornerstone in the generalization analysis. Simulations in-
number of hidden units scales witth In all cases studied, cluding exact enumerations are performed and are found to
the maximal number of patterns that can be stored, dividedupport the results.
by the input dimensiom., becomes larger as the number of  Our main finding concerning the capacity is that the maxi-
hidden layerK grows. We are interested in the case of infi- mal capacity of the network, divided by the input dimension
nitely large K, whenK scales withN and both layers are «., scales with the logarithm of the number of Boolean
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Given the activity in the input layer the states of the hidden
units are determined by Boolean functioBs mapping the
L-dimensional binary input§ to a binary output 7
=Bi(&).

The output is a single binary unit given by

N
U:Sgr(izl\]ﬂ'i). (1)

HereJ is theN-dimensional hidden-to-output weight vector.

There areNB=22L different Boolean functions with in-
puts. To keep the connection with more traditional architec-
tures of neural networks which use perceptronlike mappings
also between input layer and hidden units, we restrict our-
selves to odd functions satisfying(— &)= —B(§). There

are NB=22L_1 different odd Boolean functions df inputs.

functions Ng assigned to each unit. The maximal capacityOnly a minute fraction of these'-z, can be implemented by
per input dimensiomy, was analytically derived for the case a perceptron(see [19)]), i.e., for these, there exists an
of binary hidden-to-output couplings and approximated, usi-dimensional weight vectoW such that

ing the replica symmetry assumption, in the case of continu-

ous hidden-to-output couplings. In both cases-In(Ng). B(&€)=sgnW-§). 2

We carried detailed simulations and numerical results in the

case ofL =3, the general case when all antisymmetric Bool-When possible we will give results both for the case when all
ean functions are admissibl&l§=16), and the case of per- antisymmetric Boolean functions are available and for the
ceptron mappingNg=14). The hidden-to-output couplings more restricted case when only those implementable by cou-
were taken to be either continuous or discrete. We found th&ling vectorsW may be used.

a. is within the analytical bounds and the results are sup- In a learning process in networks of the proposed archi-
ported by simulations. tecture both the Boolean functiof® and the couplings;

The generalization ability in the case of a realizable ruleare adapted in order to perform the desired input-output map-
teacher and student with the same architecture, was derivgdng. We will consider in this paper the two standard prob-
analytically. Although the student in this case studies from dems, the capacity and the generalization problem. In both
teacher, which is much more complicated than the percepsases the input components are chosen independently at ran-
tron, we found similarities between learning in the percep-dom, §;;==1 with equal probability. In the capacity prob-
tron and learning in the case of\3N:1. In the case of lem the corresponding outputs are generated at random as
binary hidden-to-output couplings, a phase transition occurgell and the question is how many of such random input-
from poor to perfect generalization. Again, the logarithm ofoutput mappings one may typically implement by choosing
the number of Boolean functions determings the number appropriate Boolean functior and values); . The thresh-
of examples per input dimension in which the transition oc-old is proportional to the dimension of the input space and
curs. In the case of continuous hidden-to-output couplingswill be written asaLN. In the generalization problem one
the generalization error obeys the same power law as in theonsiders two networks of identical architecture. One of
simple perceptron, where the prefactor is inversely proporthese(the teacheris designed at random choosing Boolean
tional to L. functionsBiT and couplings]iT according to a given probabil-

The paper is organized as follows: The architecture is inity measure. The secondhe student tries to imitate the
troduced in Sec. Il. In Sec. Il we define the order parameteteacher as well as possible on the basis of a training set
that enables calculations in a variety of cases. The storagsnsisting ofaLN random inputs together with their classi-
capacity in the case of discrete and continuous hidden-tcfication according to the teacher. The aim is to calculate the
output couplings is discussed in Sec. IV. In Sec. V the gengeneralization erroe,(«) defined as the probability that the

FIG. 1. A two-layered perceptronN3N:1.

eralization ability in all those cases is studied. teacher and student disagree on a new random example.
Most of the detailed numerical results discussed below
Il. THE ARCHITECTURE LN:N:1 will refer to the casd.=3. The 16 possible antisymmetric

Boolean functions for this case are presented in Table I. They

The architecture of the two-layer feed-forward neural netcomprise two groups which are mirror images of each other.
work, LN:N:1, discussed in this paper consistshobinary =~ We therefore present in Table | only one group — eight
units 7,=x£1 in the intermediate or so-called hidden layer. Boolean functions. Seven out of the eight Boolean functions
Each of these hidden units receives input from a separatean be realized using ER). The last mapping in Table | is
subset§={,j=1,... L} of L units of the input layer. called parity since it is simply the parity of the inputs. It is
Accordingly, the input layer is of sizeN and the receptive the well known problem where the mapping cannot be
fields of the hidden units are nonoverlappitgge Fig. 1 implemented by a perceptron.
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TABLE I. Half of the possible antisymmetric Boolean functions ~ The explicit calculations are given in Appendixes A and
in the case ol =3. The other elght functions are exactly the op- B, The entropy is found to consist of two major parts. The

posite,®“1B(§)=-1B(§),j=1.2,....8. so-called energetic paGg,
Input PerceptrofEq. (2)] Parity . [ q
= n —_—

5 28 B ‘B B 8 ‘B °B Ge(a) Inf DtH 1-q) @
&=+++ + + + 4+ + + 4+ + is the same as for the simple perceptron. Here we have used
LH=++-— + + + -+ - - - the standard abbreviation®t=exp(—t¥2)/\2=dt and
LH=+—+ + + -+ - + - - H(x)=[;Dt. In the limit n—0, the capacity problem, the
G=+—-—— + - + + - - = + linear term inn yields
e=——— - - - - - - - -
L=——+ - - - + - + o+ + [ q
&=—+— _ _ + _ + _ + + G%p(q):J DtinH mt) (8
L=—++ -+ - - 4+ + + -

In the limitn—1, the generalization problem, the linear term
in (n—1) yields

Ill. THE ORDER PARAMETER

Statistical mechanics analysis of the considered network G%n(q)zzj DtH( \/%t) In H( \llﬁ—qt). 9)

builds on standard techniquEl|. The central quantity is the

entropy averaged over the distribution of the inputs, The other partGg, is more specific to the network architec-

ture and is in the present case much more involved than for
s=limy_ .o <<|nj du(d)Trg, the perceptron. Moreover, it dgpends on miori measure
du(J) for the couplings. We will therefore discuss separately
«LN its explicit form for differenta priori constraints on the

XH 0<2 ‘]iBi(giM))>> , &) hidden-to-output couplings.
podo A )

IV. CAPACITY
wheredu(J) is the proper measure in the space of couplings
J and the trace runs over the set of available Boolean functro
tions. The replica trick

In this section we discuss the capacity problem. The en-
py, Eq.(3), is found to decrease rapidly with an increasing
number of random input-output pairs corresponding to less
«Q n>> 1 and less flexibility in implementing additional mappings. At
{(InQ))=lim,_g—— (4)  a sharp thresholdr, of the storage ratiox no room for
further adaptation is left. Within replica symmetfirS) this
is signaled byg— 1, which implies that the available phase

with . . X .
space has shrunk to a point, since different solutions of the

n problem are almost identical. We first investigate the case of
<(Q”)>=IimN_mf [T du(3®)Trgs binary couplings.
a=1 !
aLN n A. Binary couplings
< <}__[ alj 9( 2 JaBa(fﬂ)) > > () The case wherd;==*1 is very special since, due to in-

version symmetry, it is exactly equivalent to fixing all the

is used to perform the quenched average over the input digidden-to-output weights td;=+1 (the so-called commit-
tribution and gives rise to the order parameter tee maching Indeed anyJ;=—1 can be flipped ta);=
+1, while at the same time replacing the Boolean function
B; (&) with its mirror imageB;(&) = —B;().
2 ‘]a‘]b<<Ba(§)B ())e- 6) An upper bound for the storage capacity can be ob-
tained from the annealed approximation to the entropy, Eq.
Here the averagé(f(&))) runs just over the 2 different ~ (3), given by
configurations of asingle input vector & of length L. The
limit n—0 in Eq.(4) is appropriate for the capacity problem Sa=— IIn(((Z)) )=(2""1—al)in2 (10)
whereas the generalization error can be obtained by perform- " N ¢ '
ing the limit n—1 [1,17]. We will always assume replica
symmetry,q2°=q for all a#b. This is known to be reliable where we assume that aII antisymmetric Boolean functions
for the generalization problem, whereas it represents a mer e admissibleNg= 22" Since the entropy must be posi-
approximation in the case of the capacity problem. tive we find
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oL-1 TABLE Il. Upper bound fore,, the replica result and the cor-
= angT. (11 rect result derived according to the zero-entropy critefgme text
in the case of. =3 and binary hidden-to-output weights.
As in the case of the Ising perceptron, this bound is related to UB RS
. . . . . o o o
information theory. The full specification of the network with c ° ¢
all J;=1 requiresN 2- 71 bits of information necessary to L=3,Ng=16 1.33 1.70 1.11
pin down theN Boolean functions. Therefore the network L=3, Ng=14 1.27 1.40 1.06
c?nrlwot store more thaN 2"~ bits anda, cannot exceed
2-74/L.

A more detailed characterization of the storage abilities ofvherea(1,2)=0.83 is the storage capacity of the Ising per-
the network can be obtained from the quenched entropy. Apteptron[20]. The most important point following from this
pendix A includes a detailed presentation of the derivationgesult is that the storage capacity of the proposed network
for the general case of discrete values discussed in Sec. IV Bcales with th@ogarithm of the number of admissible Bool-
The binary case is a specific case of these general deriv&an funct|ons_ _
tions. Therefore, the last two terms appearing in (M) are If we restrict ourselves to the set of Boolean functions

imol S 6@ (B3 ARBP =S (R@21 In thi which may be implemented by perceptrons, cf. By, the
simply - expZa<pd™Z((B(9B](§))g—Zau(h,)] In this identity appearing in Eq14) no longer holds. Nevertheless
way we find o . . :
explicit results can be obtained from the numerical solution

A A of the saddle point equations
s=extr, o{— +a(1- )+ aLGP(Q) + G}, (12 point €4

qt?
whereGgP is given in Eq.(8) and . ex;{ - —)
~ o
41-a)- 5| ot
o

2L*l ~ )
A q 2 q
Gs(q)—f iﬂl DziInTr{B}exr{ \/F Zs, (13 H \/ﬁt
oLl-1 ~
where Zg=((z;B(£)))¢=2i_1 zB(&). Note that the sum q
needs to be taken over half of the possible inputs only, for TrgZgex 2|_le5

) . ; o L-1
instance, over only those whose first component is positive ,——,/3 _f
. ' ; . 2 1-q)= Dz
(in the case ofL=3 this means that the sums are over \/a( a H ! a
=1,...,4,from Table ). Trgex Zg

When all antisymmetric Boolean functions are at our dis- 2t-1
posal the above expression can be simplified using

Again, a(L,Ng) is determined as the value ef at which
the entropy becomes zero. The upper bound is derived either
=II {2cosliAz)}. (14  from the annealed approximation or according to information
' theory and is again given by ®(L,Ng)=log,Ng/L.
The results for the special cate=3 are collected in
Table Il. Note that the values for the storage capacity in the
= two cases again scale as the respective logarithms of
2 cos)’( A\ /iz) . (15 the number of admissible Boolean functions,
L-1 a¢(3,14)la(3,16)=1.06/1.1=In 14/In 16.
In Fig. 2 we compare the analytical resul(3,14) with
The transformationél.ﬁzbla anda—2""1a/L now map Nhumerical simulations using exact enumerations. We deter-
the expression for the entropy onto the corresponding exmine f(a), the fraction of learning sessions in which the
pression for the so-called Ising perceptf®0]. Using the complete training set is learned f&d=5 (7). The data
results of this case we immediately find that from the limit points are obtained by performing in any given four
q—1 we get groups of 250 (50) experiments which arex 250 (50)
choices of patterns. The standard deviation of the calculated
aRSL,22" Y =aRY 1,22 YL, (16 ~ Quantities over the four different results are used to produce
¢ ¢ error bars for the depicted mean quantities. Even for the
with aR(1,2)=4/m. However, this result is known to over- small sizes accessible to this numerical technique we find a

estimate the storage capacity since the entropy becom&i€epening of the transition with increasiNgand a crossing
negative and replica symmetry is broken for azzs. The Point of the curves close to the theoretical prediction.

correct value fowy, is given by the value at which the replica

Tr{B}eX[{ AEg Z; B(f,)

ThenGg is found to be given by

Gs(a)zztflf DzIn

symmetric entropy vanishes. This implies B. Discrete couplings
L We can generalize the above analysis to the case of dis-
ac(L,22 =a(1,22 1L, (17)  crete couplings in the hidden-to-output layer
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%5 06 07 08 09 1 31 72 13 14 N2 16 FIG. 3. Analytical results of.(3,16), derived according to the
o zero-entropy criterion as a function of the synaptic depth in the

) - ) ) hidden-to-output layeL, are presented in a semilog plaircles.
FIG. 2. Fractionf of the runs in which alle3N random input- e solid line is a fit to the asymptotic behavior, the dashed line is
output mappings were embedded by a MLN with binary hidden-to+e RS result for continuous hidden-to-output couplings. The inset

output weights andNg= 14. Averages over 4 250 realizations in ghows the proportionality ofx.(3,14£) and a.(3,16£) for £
the case oN=5 (circles and 4x 50 in the case dN=7 (triangles =1,2,3,4,5(from bottom to top.

are compared with the analytical res(gblid line).
C. Continuous couplings

41 (19) For continuous couplings we enforce as usual the spheri-
’ cal constrainE ' ;J>=N. We try to determine the maximum
numbera LN of input-output mappings that can be stored in
such a network. The zero-entropy criterion cannot be used in
In @ manner similar to the binary case, we use the zero enhis case since can be negative when the version space is
tropy criterion that was found to give the best estimation forcontinuous. We start by deriving an upper bound dgr. A
the storage capacity in the case of finite synaptic deptfower bound is given by the results for finite depth obtained
[21,22. In this case there are four order parameters in thebove. Clearly, the possibilities in a network with finite depth
analytical equations,q [Eg. (6)], its conjugateq, q are limited compared to the continuous weights, and there-
5 (182 ; ; o ; P fore its maximal capacity should be smaller. We chose to
=2i(Ji)/N, and its conjugateq. A detailed derivation of introduce in Table IIl the results derived far=5 as a lower

ac is given in Appendix A. . ; . .
We determine explicit numerical results for the storagebound forag in the case of continuous couplings. In prin-

. : _ _ iple, any discrete sdi.e., any value of£) can serve as a

capacitya (L) for the simple casek=3 andNg=16 and cip e .
Ng=14 only. The equations for the order parameters in th%?évsegsfﬁ)wgr \ggjg d;zee :Ir?:tgi;:o:slssioiui?\pg:idI\t/)ODbe the
case ofL=3 andNg=16 are given by Eqs(Al10), «. is ) S T
found by setting the entropyA7) to zero. The casdg We denlve an upper bound fai, by countlng the_d|ﬁerent
=14 was treated in a similar manner. The resultsdgfL) co;flguratllf)lgs :[I'hhaetr(ren?r/eb:t ?ﬁgstr“?zt'oegg’\‘];qu)gclj\ilggr(Iannitg{[%
for £=1,2,3,4,5 are shown against each other in the inset of ~ -« - @-"N- ! , : , e
Fig. 3. The solid line is a Iir?ear fitero(3,14)=acry(3,16) {guratlons of hidden units, using different combinations of
with a=0.96+0.01. This is in good agcreément with our as- the Ng Boolean functions. Since the mapping from the hid-
sumption thata~In 14/In 16=0.95 for anyL. den layer to the output is performed by a perceptron, each

The capacity increases monotonically with in both hidden configuration gives rise to the desired output with

cases. AsC becomes large, the numerical solution of Eqs.Propability C(p,N)/2° with p=aLN. HereC(p,N) denotes

(A10) becomes very sensitive. In Fig. 3 we present the anat-he number of dichotomies calculated in Rf4],

lytical results for L=3 and Ng=16. To extract the _

asymptotic behavior for large, we fitted the dependence  TABLE lll. Upper bound fora., the replica symmetry result,
a.(3,16)=1.90+ 0.51/£—1.42In(C)/ L to the data points and lower bound derived from the case of discrete couplings with
starting from(and including £=8. For £L— we geta, L£=5, in the case ofL=3 and continuous hidden-to-output

~1.9, which is close to the result for continuous couplings/¢'9ns:

I+

ol e
SIS

(see Table ). uB RS LB
It is rather difficult to compare these analytical findings % e e
with numerical simulations, since the effects of the finite_L =3, N;=16 2.39 1.95 1.51
synaptic depth do not show up at the small valuesNof | =3 Ny=14 2.32 1.85 1.46

accessible to exact enumeratidig].
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%In C(p,N)~aL In(al)—(aL—1)In(aL—1). (20)

Setting the probability, 2(°%Ne~DC(p,N)/2P, equal to 1/2
we find that «. is bounded forN—o by the solution
aMP(L,Npg) of the equation

NB al
I =(aL~1)in(aL 1)~ alL In—-. (21)

The result is an upper bound rather than an exact result, sinc
we neglected correlations between the different dichotomies
(see Ref[15)).

ForL=1, Ng=2, we get the expected result'®=2. In

the case of L=3 we find aMP(3,16)=2.394 and o
MD . - . .
a"~(3,14)=2.315(as appears in Table )ilIn the limit of FIG. 4. Analytical results of}, as a function ofx derived from
largeL, the bound is Egs.(B6), in the case of. =3, Ng=14, and continuous hidden-to-
output couplinggsolid line). The dashed line shows the linear ap-
log;Ng proximation aroundv— 0, Eq.(23). Simulation results in the case

lim_ _..aP(L,Ng)~ (22

of N=5 (circles are in good agreement for small Error bars are
half of the standard deviation obtained from 1000 different runs.

This result shows the same scaling with the number of Bool-
ean functions as the lower bound derived from the zero- AS soon asq approaches 1 the numerical integrals di-
entropy result in the case of binary couplings, Efj7).  Verge, andx. is found from the asymptotic expansion of the
Hence we can summarize at this stage, without even calcdunctions forq— 1 andq~1/(1—q)?>—. In the case of.
lating the capacity directly, that the maximal capacity in the=3 if Ng=14 we geta,=1.85, whereas iNg=16, the
continuous case scales with INg/L and the prefactor is critical « is somewhat largere,=1.95, and the ratio be-
larger than 0.83. tween the results is again connected to the ratio between the
If the mapping from the input to the hidden layer is donelogarithm of Ng. The general result when all the antisym-
by perceptrons we know that the number of implementablenetric Boolean functions are admissible is

Boolean functions scales Iil»{téB~e'-2 for largeL. Therefore,

in this limit the upper bound assumes the foa{®~L im-

plying that adding more inputs to each hidden unit linearly -1

enlarges the maximal storage capacity. alll2 )=——— (24)
The analysis of the replica calculations in the case of con-

tinuous weights is given in Appendix B. Equatiof®6) are

L

4
24+ —(2-71-1)
o

. . Simulations
the equations for the order parameters in the general case. In
the smalle regime, the order parametgris given by A great computational effort is demanded in performing
simulations of the kind of learning by choice of internal rep-
oL resentationg 23] in an extensive large network when the

(23) Boolean functions in the first layer are defined by perceptron
mapping. Moreover, when the Boolean functions in the first
layer can be any antisymmetric Boolean function, the last

This relation holds in both the binary and the discrete casesnethod seems to be inappropriate. It appears that in such a

The overlap parametey grows with increasingr with a  case, the natural algorithm will be to go through all the pos-

slope decreasing proportionally to the number of inputs pesible mappings in the first layer and in each possibility to try

unit, 2=, independent oNg and the measure in the cou- to teach the network using a traditional learning algorithm
plings spacew(J). that is known to perform well in the perceptron. Such partial

We carried out numerical simulations in the caseLof exact enumerations are time consuming and therefore are
=3, Ng=14, andN=5. We determined the behavior of the performed only for smalN.

order parameteq for small « as shown in Fig. 4circles. It has been proved that in the case\bf 3 and in the case

Error bars are half of the standard deviation obtained fronof N=5 one can confine the hidden-to-output layeto a

1000 different runs. The linear approximation, E83), is  finite number of values and that this network, although re-

given by the dashed line. The simulation results comparstricted, is capable of implementing the same Boolean func-

well with the analytic result Eq(23) (solid line) and the tions of the input as the network with no restrictions on its
linear approximation. Ase increases there is a deviation second-layer weight§6,19. We used the aforementioned
from the analytical curve; the better learning performance oequivalence and made exact enumeration calculations in the
the simulations is due to finite size effects. case ofN=3 andN=5 as shown in Fig. 3. In the case of

g~ —772'-*1&
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' number of Boolean functions embedded in each unit of the
first layer, InNg). That term was found to determine,
where only the free factor depends on the kind of limitation
one has on the couplings in the net. In the discrete case we
have exact results for the critical from the zero-entropy

1-‘.-0"&?_%:' L L L A described above, which was found to be the logarithm of the

ol %
31

08~ 7 criterion.
f i In the case of continuous couplings it appears that there
04l K3 | should be a regime in which the RS is unstable. We know, as
' confirmed by simulation, that in the smalltegime the RS
%E solution is correci(see Fig. 4 Moreover, in the case df
02l X3 i =1 the RS solution is stable far<a. and is unstable for

' a>a. (see[1,25-27 and references therginThe question
is whether the RS remains stable in the regime where
ol ! <a.. For L=1, the perceptron, the answer is definitely

positive. AsL becomes very large, the RS solution in the
& continuous case Eq24) meets that of the binary ca$Eqg.
(16)]. Clearly, this solution is unstable since it overestimates
the bound Eqg. (22)]. In this paper we specifically examine
the case of. =3. As one can see in Fig. 3, it appears that the
solution in the discrete case with a large synaptic degth,
>1, which may serve as a lower bound, almost coincides
=3 (circles, N=5 (diamonds, and partial learningsee textin the with the RS solution for the continuous case. The correcting

case ofN=9 (squares Error bars are half of the standard devia- Procedure appears to be very complicated since it was shown

tion. The dashed line is the upper bound fgy. that_ one-step replica symmetry break(rr_igSB) [25,26_‘3 is not
sufficient to solve the storage capacity calculations in the

N=3 we had to examine four different only, (1 1 1), perceptron and one has to solve the perceptron within the full
(100),(010), (00 1). Inthe case oN=5 we examined the Parisi schemg27]. The question of stability of the replica
following seven prototype familieg1 1112, (1000 0, and the kind of RSB assumption to be made are not within
(11100,(21110,(31119,22112,(322112, therealm of this study.

and all of its permutations. The data points presented in Fig.

5 were obtained by performing 100 experiments four times V. GENERALIZATION

in any givena.

The discrepancy between the exact enumeration results We only consider the simplest setup in which the teacher
and the analytical curve in Fig. 5 may be due to finite sizeand student network have the same architecture. Accordingly
effects. The equivalence described above that is the basis ftie teacher is defined bylaN:N:1 MLN with Boolean func-
the use of exact enumeration, instead of some sort of learnions B and couplings)] generated at random. The student
ing procedure, actually shows that carrying simulations fofis given a set oxLN random inputs together with the cor-
small N and continuous hidden-to-output couplings is responding outputs of the teacher. The task is to choose the
equivalent to carrying simulations with discrete hidden-to-ggglean functionsBiS and the couplings]is of the student
output couplings, whereas we found that in the discrete  g,cp that the probability for misclassifying a new random

c(la\se IS sfmalle(; tha‘?_c :n the tcontmuou.? cas;.}q‘ergezlt\a/fore, W€ example, the generalization error, is small. In Appendix C it
also performed partial exact enumerations - WE X" s shown that the generalization error is given by

amined half of the possible Boolean functigtise other half
is redundant due to the inversion symmetry indicated above 1
For each possible evaluation of the Boolean functions in the €4=—C0S 'p, (25)
first-layer units we tried to teach the second-layer according 77
to the ADATRON learning procedurd24]. As « becomes . .
larger the time it took tc? fiFr)1d whethe{er t]here is a solution orWith the normalized overlap=aq/(|[3[| [|9%) and
not becomes longer. Therefore we have results onlyafor 1
=0.667,1,1.111, the squares presented in Fig. 5. The results _ - T1S//RT S
for N=9 were far better than the exact enumerations carried 9N Z HIX(BI(HBIE))e- (28
out forN=3 andN=5. This result is indeed consistent with
our observation that the differences betwegnof the con-  Assuming the same priori measures for the teacher and
tinuous and discrete cases become negligible only for vergtudent, the problem exhibits teacher-student symmetry such
large £ (see Fig. 3 that replica symmetry holds and the overlap E2§) is iden-
. . tical with the student-student overlap defined in E).[1].
D. Discussion It can be derived by taking the limit— 1 instead oh—0 in
The crux of our findings in this section is the property thatthe same expression E@) for the quenched entropy already
determines the maximal capacity of networks of the typeused in the capacity problem.

FIG. 5. The fraction of success embedding proceduteas a
function of the number of patterns per input dimensian,in the
case of continuous hidden-to-output weights; 3 andNg=14. A
comparison between the analytical resultagf under the RS as-
sumption(solid line), exact enumeration results in the caseNbf
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A. Binary couplings 05 . — — . . T .

Learning with binary hidden-to-output couplings is ex- i ]
pected to show a first-order phase transition, similar to the ¢4} i
findings in the discrete perceptr¢h6]. Here we study only
the generalization ability of discrete networks whose hidden-
to-output couplings are constrained to binary couplings, %3 7]
J/'S=+1. The learning features of a discrete network with & | ~ ]
2L possible values are easily derived by generalizing to thal ,| X _
case using similar methods to those described in Appendi» A

culate the entropy. We start with the terms in E45) and i -1

substituteq=1 (hencep=q). Expanding arounch=1 re- o A R ".’ [ I {; ; hg
sults in 0 0.5 1 15 2 2.5 3

A. i l
In order to find the overlap as a function ofe we cal- 0.1 }/E ¥ .

= - —_— l 0 gn q
s=exliyg{—2d(1+a) +alGE(Q)+Cs(a)},  (27) FIG. 6. Analytical results ot as a function ofx in the case of
whereG2" is defined in Ea(9) and L=3, NB=14., and binary hidden-tojoutput cpuplin@)lid line).
E ald) The dashed line shows the nonphysical solutiondfora.. We ran
exact enumerations witN=5 (circles. Error bars are half of the
standard deviations obtained from 100 runs.

2L*l ~ ~
q q
GS:J |1:[1 DziInTr{Bi}ex;{ FZBJr B

(28  g—1, g—o, which is the result for any finiter and gives
identical zero entropy. The other solutiongéa) #1 and is

with B=2;B(;). PR _ physically correct up tayr,, where the entropy vanishes.

In the case where all2 antisymmetric Boolean func- The numerical result oky() in the case of.=3 and
tions can be used, the expression @ can again be sim- Ny=14, derived by Eq¥31), the vanishing entropy criteria,
plified using Eq.(14). In this way we find and Eq.(25) are presented in Fig. 6. The solid line is the

analytical curveey(a) where the phase transition from poor
to perfect generalization occurs. The transition occurgat
=1.62. As expected, a smaller number of Boolean functions
in each unit of the first layer results in faster learning,
Using the rescalingi—2""1q and a+—2""1a/L the result — @c(3,14)<a(3,16). A smaller value of the critical storage
for the entropy again maps perfectly on the known result fofratio a. determined in the capacity problem usually gives
the Ising perceptron. Hence there is a first-order phase trafise to quicker generalization. The reason is that the network

g g
2L—lz+ 2L—l ’

(29

GS=2Lflf DzIn2 cosr{

sition from poor to perfect |earning at cannot reprOduce many input-output pairs without haVing a
- key to how they are produce@eneralization starts where
alcearn(L,ZZ - )=a§’D(1,2)2"‘1/L, (30) learning ends

We ran exact enumerations in this caseNoer 5. Despite
where a$P(1,2)=1.245. This value was first found for the the fact thatN is small, in the smallx regime there is good
perceptron by Gardner and Derrida on the basis of numericalgreement between the analytical curve and the averaged
simulations[3], and was shortly afterwards derived analyti- simulation results. The averaged results obtained from 100
cally in Ref.[16]. In the case ofL=3, Eq.(30) yields a runs and the standard deviations are presented in Fig. 6. The
phase transition to perfect generalizatiomat 1.66. first-order transition is in the simulation smoothed by finite

In the case of perceptron mappings between the input angize effects.
hidden layer, i.e., gener&lg, one has the following set of
equations: B. Continuous couplings

al. The entropy of a BI:N:1 network with continuous
= —f Dte‘qtzle(\fqt), (3D hidden-to-output weights as a function ofs given in Egs.
mVy1—q (B2) and(B3). As indicated above, taking the limit—1 is
appropriate for the learning problem. We redefine the param-

0

1 B eters,Q=q/(k+q), and find that
-1 TI'B( —_— "‘—L—:LZB+ 22 LB eXpE ZB
1+ f IT o 9 5 _A
= Z: y =
q oy Trgexps zg q 1-0' (32

where S 5 =/q/2" 125+ (q/2- 1) B. Like in the case of since the zero ordernc-1)° of the entropy should vanish.
the binary perceptron, this set of equations has two solutiongthe entropy calculated to first orden+ 1)* is given by
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Fig. 7 (solid line). For largew, the derivation ofey from the
numerical integrals becomes impossible, due to the sensitive
integrals involved. Therefore, we present the asymptotic ex-
pansion(dashed ling for large «, Eq. (36). The averaged
exact enumeration results taken from 100 samples With
=5 are in good agreement for small(circles, whereas for
large « the generalization error in the simulations vanishes
faster to zero due to finite size effects.

C. Discussion

In summary, we found that learning in large two-layered
perceptrons is possible. The learning curve behaves in the
same way as in the case of a simple perceptron — phase
transition in the binary case and power law decay in the
continuous case. Such a similarity was observed in the case
of a large number of hidden unit§—c when K<N [7].

=3,Ng=16, and continuous hidden-to-output couplings derivegHowever, in the two-layered perceptrons presented in this

from the analytical Eqs.(35 (solid line) together with the
asymptotic expansion af;, Eq.(36) (dashed ling The circles are

paper, the power-law decay in the continuous case depends
on the number of inputs to each hidden utit,Moreover,

results of exact enumerations with=5, with error bars obtained the discontinuous transition in the discrete case occurs at a

from 100 runs.

extr[ q0

1 A A
S T §In<1—Q>+aLG%“(qHG%”(Q)] ,

(33
whereG2" is given by Eq.(9) and

2|_,1 A~
Gs Q
= H Dz Trgexp —2g
‘/l—Q i=1 oL

The equations derived by taking the extremum are

Q
InTrgexp —2Zg
2L

(34)

e - ]
~ X [ —
QA _ al J’Dt 2
(1-Q) 2m1—q H(\/qt)

q=2(1—Q)2%—(1—©). (35)

At the end of the learning procedure, whgn-1, one
also finds thatD—1. We derived the generalization error

value ofa, which scales with the logarithm of the number of
Boolean functions in each unit in the first layerNgx

In this work we used the most simple learning algorithms.
We counted on exact enumerations in snadlt least for the
first layer and then the second one was treated as a simple
perceptron. Such exact enumerations are performed by re-
peating the whole set of examples for each realization of the
Boolean functions in the first layer, and trying to embed the
input-output relations by training the second layer. As shown
in Fig. 7 such procedures yield reliable results only for small
a. To address the question of whether there is an efficient
algorithm which achieves am™* decay ofegy in the continu-
ous case, on-line learning schemes should be used, as shown
in the Committee Maching9]. The on-line analysis of the
ability of the extensively large two-layered perceptrons war-
rants further study.
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APPENDIX A

In this appendix we calculate the dependencexaf the

from Eq. (25) and assumed that all the antisymmetric Bool-Order parameteq describing the overlap between different
ean functions are available for the first layer. In that caseNetworks that can embedLN random examples. All net-

3G/ 3Q~112(1-Q)?] and

0.625
Eg"’ U (36)

works have components in the hidden-to-output layer that
are confined to a finite set of values. The general description
is exemplified for the values given in E¢L9), where the
binary case is a special case wiflx1.

Our starting point is Eq(5). First, we rescale the argu-

Not surprisingly, the generalization error decays according ténent of thed function by a factor of fN. In such a way we

a power law, as in the spherical perceptft8]. The decay is

ensure that in the thermodynamic limit the argument, which

slower for largerL, again reflecting the enhanced storageis the local field, will be in the appropriate order. We rewrite

abilities. The numerical derivation afy(«) given by Egs.

the equation by using the integral representation of dhe

(35 and(25) in the case of. =3 andNz= 16 is presented in function, using)\z and XZ for that purpose,
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1 aLN n d)\ad . .
<<Q”>>—|ImNﬂw 1__[1 Hl ean\#)\ﬂ] qz J J: ((B (§)B (§)>>{§}
aLN N 2 . N aE N
><,u=lj];[ <<eX[{—|\/—NaEl)\ ‘]?B?(gf)]>>g' 2|_ 1 ‘] iBi(&) j(fi)_z > J;)

ob-1

:j .:Hl Dziexp{ %Z, IB(&)z

(A1)

We take the Taylor expansion of the last exponent in the R
right-hand side of the equation above up to the quadratic o} a2
order. The linear term vanishes and therefore, by recollecting ) za: Jj (A4)
everything to an exponent form, we have a Gaussian. Intro-

ducing the order parameter, E), we have The mixed terms involving.; are treated in the same man-
ner. The product and the sum at the end of @dl) are due
to the average ovef. The possible inputs are divided into
ean\ ]] two groups, one being the opposite of the other. It can be
shown that as a result of the inversion symmetry of the Bool-

ean functions, it is sufficient to go through one of the groups

omy=imy .~ 1 1 |dk dh

u=1a=1

by fa.b
H dg®Pdg® e B PRV B Ngbga- — half of the input[e.g., to evaluate the terms for the input
a<b 2mIN a<hb 1 to 4 in the case of =3 (Table )]. This leads to
- 3 Rk |x [ T dutory, - [ dqdq [ dadg n(n-1) .
wlab a J (=] 2N 2mn®P "Nz 9d
~ab aqb n(in—-1) .
xex{E g 2 FIBHHB(& >>>{§}} Xexp[_N (1) 4+ gan—al G- GL ]
xex;{ S (Rage 2/2} (A2) (A5)
podl where
In the case of discrete couplingku(J)=Tr;, we define, n.Disc_ N q
similarly to the perceptrofi21], an additional order param- Gg~""=In| DtH —q qt )
eter&i=21(3f‘)2/N and its conjugate®. Counting on the
replica symmetry assumption we derive ' 2t P, -
Gg'D'“:InJ [1 Dz{In[Tr, ge~ (@2~ DI gIVa2 "2 yn,
=1
aN n gra d)\a (AB)

wom=timy . [ 1 IT =5 rinaia)

We use redefinitions of the parameters similar to those in
dqdq dada n(n—1)qq Ref.[21], F;=q,F,=1F,—q. The en_tropy is_, rt_awritten as a
X f 52N 2N A~ —F——Nnqq function of the last parameters and in the limitrofs o,

2
— . extr : : — F, —
PN q—qd SD|sc: ‘{ GDISC+GDISC_F R Y ],
xex;{ q ;b )\Z)\Z—TE (\%)2 F..F,.q.q] *CE s 20— 5 (4-0q)
: e (A7)
N. iSC i i

xTr{Bj}Tr{J}ex;{— qu (J32+Ng>, (Ja)2} whereGg'* is similar to Eq.(8),

a a

isc q
xex{qE Jan<<B?<§>B?<§>>>{§}}. (A3) cgee- | D“”“( Va—_qt>’ (A8)

and is the same expression derived for the discrete percep-

At this stage it is impossible to calculate the integrals ovetron. For the Ising perceptroﬁzl by definition, and one
and to perform the trace ovel® since both appear in gets Eq.(8) exactly

mlxed exponents that contain different replicas. We circum- However,G2'® is unique to MLN. It can be rewritten in

vent this difficulty by using the Gaussian integral a comparatively simple manner if we assume that all the
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The above distribution is substituted in Eé2) by em-

We then use the identity Eq14). The generalization of Ploying the integral representation of taefunction and us-
G2'*° to the case where only perceptron mappings are adnd the parametek (see Ref[1]). By applying the Gaussian

missible is straightforward but tedious,
2L—1

G2ise= £[1 DzInTr,

2L—1 F
—F,J? =
e "2 cos Jz
iﬂl r( oL-1 4

(A9)

The four equations for the set of paramel{a:sIFl ,Fo} are
derived by finding the extremum of EGA7) with respect to
the parameters

_Fi@-9

F
2 2q

al q e-la2(a-a)]t?
Fi=——— — | tDt————,
J2m(q—q)¥2q H( [ q )
—t

a-q

%fﬁ}mﬂ,

2Lfl
— 1
g—q= \/2L:1|:1J |];[1 DZi<J§i: zitanf(Ci)> ,
(A10)
where the average is defined as follows:
TrA(J)e F2°T] coshC))
(A())= ' (A1D)
Trye F2"T] cosi(C;)
1
and
Fi
C,= 2L_lJzi . (A12)

The maximum capacityt,. is found by calculating the num-
ber of examples per input dimensianin which the entropy

vanishes.

APPENDIX B

In the following we calculate the order parametgfor

networks that try to store random examples. The hidden-to-
output weight vectors in these networks are subject to the

spherical constraint, i.e.,

dy [ &
du(d)=]] ma(; JiZ—N).

(B1)

integrals, Eq(A4), and assembling everything we derive

<«W»=fgg%f§;w4—N ]

X exp{N[ aLG2(q)+G2(k,q)T}, (B2)

———qg+Nn5

n(n—-1) . k
2 2

whereGE(q) is given in Eq.(7) and

~ n
Trgex LAZE;
2 (k+q)

n nl K ~
—E—En( +C])

ol-1

Gg=lnf II bz
=1

(B3)

Taking the limitn— 0 one gets the following expression for
the entropy:

extr [ qq 1| " oo e
d.qk| 2 T2 2NkFATelG @+ Cska)
(B4)
whereGgP is given in Eq.(8) and
2L*l "
q
G =f Dz Trgexp ———Z231 . B5
o) L pae p[2L<k+q> o ®9

Taking the extremum over the parameters yields three equa-
tions:

k=1-qq,
q(l-q) alL e (@0
= P —r,
K+ 7
aq HZ( /it)
1-q
q
- TreZ2exp ————— 22
1-q R p{ZL(k+q) B}

"~ Treex —AZZ
qk+q B F){2L(k+q) B

1
- Dz, -
.1-q 2L1f 11:[1 i q ]

(B6)

The result of the saddle point equations is the evolution of
the overlap between different networks capable of stosing
random examplesy(a).

APPENDIX C

In this appendix the joint probability distribution &fand

y [defined in Eq.(C2)] is calculated under the spherical as-
sumption = p). Having this probabilityP(x,y|p), enables
calculation of the generalization error according to its defi-
nition,
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Eg=<<9(—XY)>>xy- (C1 Since in this paper we restricted the Boolean functions to
those that are antisymmetric, one can take the average over
The parametersg andy represent the local fields the input in two steps. The first step is to divide the inputs

L L into two groups£, and&_, such that for any input vector in
SnS . ToT the first group there is the opposite one in the second group,

\/_ﬁ 2, JBIE), y= \/_N Z JiBi(£). (C2 414 then to take the average over these two groups. In the

case ofL =3, the division may b&, ,&,,&;,§, from Table |

and since the output is the sign of the local fields, E4C1) as one group, and the other four as the other group. One then

simply states that the generalization error is the averagetiikes the average over one specific group, &ay, Deriving

discrepancy between the teacher’s and the student’s outpuhe probability after taking only the first average yields

We show that although th&N:N:1 network is different

X=

from the perceptron, the final functid®(x,y|p) is the same dxdy . A
and therefore one can find a simple expression for the gen- P(x,y|p)=J’ S exp(—ixx—iyy)
eralization error, Eq(25). Am
Under the spherical constraint, the assumptions are as fol- 1
lows: x [T { ( cos —={x3B5(&)
) . j VN
N2 D=1 2 =1 (c3
| ‘ +yJ,TB,-T(§>}]> > : (Co)

1 £
N 2 INB(&B(9))e=p.
. Taking the expansion over the cosing function in the thermo-
We calculate the joint probability distribution according to dynamic limit, one gets
the definitions ofx andy, Eqg. (C2),

P(l)fdAXdyp("'U
X, = exp(—ixx—i
PIRLHED L e Y
P(x,ylp)= O\ ——F=——-x]/ ¢
\/N _“2i S 2_‘2i T\2
xexp —x* o 2 (I)2-y ZN; (1)
DIRHEHED .1
x| 40—y . (CH xexp[ —XYy 2 J,-TJ?<<BI<§>B?(§)>>§]-
JN ]
“ 7

Representing thé functions by integrals, one can rewrite
the average above in a single-site manner The result after introducing the definitions, E@3), and

. taking the integrals ovex, y is

dxdy . g g y
P(x,y|p>=f ~exp — ixx—iyy)
y T — p[ 2 e
X,Y|lp)= ——=exg - —————|,
LIBBYo  LITBl(9 2m\1-p? 2(1-p?
x]T { { exp ix N +iy N :
] § the same function as for the perceptron. Therefore, the rela-

(CH tion betweeney andp is the samgEq. (25)].
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