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Generalization and capacity of extensively large two-layered perceptrons
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The generalization ability and storage capacity of a treelike two-layered neural network with a number of
hidden units scaling as the input dimension is examined. The mapping from the input to the hidden layer is via
Boolean functions; the mapping from the hidden layer to the output is done by a perceptron. The analysis is
within the replica framework where an order parameter characterizing the overlap between two networks in the
combined space of Boolean functions and hidden-to-output couplings is introduced. The maximal capacity of
such networks is found to scale linearly with the logarithm of the number of Boolean functions per hidden unit.
The generalization process exhibits a first-order phase transition from poor to perfect learning for the case of
discrete hidden-to-output couplings. The critical number of examples per input dimension,ac , at which the
transition occurs, again scales linearly with the logarithm of the number of Boolean functions. In the case of
continuous hidden-to-output couplings, the generalization error decreases according to the same power law as
for the perceptron, with the prefactor being different.
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I. INTRODUCTION

Since the early 1960s, the perceptron, which is the b
element of feed-forward neural networks, was extensiv
studied as a learning unit with memory capabilities. It w
shown that such a feed-forward unit withN input compo-
nents and an output calculated by the input and the we
vectors can store examples and can learn from them
generalize@1#. It attracted attention in the statistical mecha
ics field only in the late 1980s. Gardner blazed the trail in
seminal work@2,3#, in which she introduced means of qua
tifying the abilities of the perceptron. The origin of her to
box was models of spin glass. She based her calculat
upon the entropy of the network and used the replica trick
order to overcome the difficulties in calculating the avera
over the quenched randomness.

After a thorough analysis of the perceptron, the multilay
architecture took center stage@4–12#. The simplest
multilayer network~MLN ! is composed of two layers, eac
being perceptronlike. Such networks can be used for m
complicated tasks. The number of Boolean mappings
can be implemented in a MLN with binary output is mu
larger than the number that can be implemented in a bin
perceptron. It was shown@13# that any mapping can b
stored in a large enough MLN and that an unbounded hid
layer only will suffice. Most of the networks that have be
studied analytically contain anN-dimensional input vector
whereN tends to infinity. The input is connected via a hidd
layer with K nodes to the output. The number of nodes
finite or large but even whenK is taken to be infinitely large
it does not scale withN, which is much larger@4–9,11#
~apart from the unique case studied in@10#!. It is intriguing
to extend the analytical study of MLNs to the case when
number of hidden units scales withN. In all cases studied
the maximal number of patterns that can be stored, divi
by the input dimensionac , becomes larger as the number
hidden layersK grows. We are interested in the case of in
nitely large K, when K scales withN and both layers are
1063-651X/2002/66~3!/036138~13!/$20.00 66 0361
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adaptive. The questions raised in such a model are the
lowing. Can we develop analytical tools to solve such ext
sively large MLNs? What is the nature of the order para
eter in this limit? How to combine into one parameter t
quantities of both layers? Will the maximal capacity p
weight,ac , continue to grow in this limit?

It was found that large machines withK→` but whenK
does not scale withN can generalize. The generalization e
ror eg that measures the discrepancy between the two
chines, the ruler— the teacher — and the student in an
plored example, decreases to zero with the same de
typical of the perceptron, independent ofK, in the tree parity
machine@7# and also in the tree committee machine@11#. It
is not clear what happens whenK scales withN. Is the gen-
eralization decrease similar to the perceptron decrease? W
are the methods used to calculate analytically the learn
curve? Most of the answers to the questions above were
cently introduced in Ref.@12#. In this paper we present
detailed description of the analysis of such extensively la
MLNs and include a variety of cases~some of them were
omitted in Ref.@12#!. We introduce simulation results an
include an expanded discussion of the results.

We analyze theLN:N:1 network~see Fig. 1! from several
viewpoints. The capacity of the network is examined in t
framework of replica calculations@2,3#, where an order pa-
rameter that incorporates both layers is introduced. It
shown that the order parameter contains the essential in
mation concerning the network performance. Bounds are
rived using combinatorial geometry@14,15#. The learning
ability of the network is also under discussion, where t
replica calculations are used@16–18#. Again, the order pa-
rameter involving the capacity calculations is found to be
cornerstone in the generalization analysis. Simulations
cluding exact enumerations are performed and are foun
support the results.

Our main finding concerning the capacity is that the ma
mal capacity of the network, divided by the input dimensi
ac , scales with the logarithm of the number of Boole
©2002 The American Physical Society38-1
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functions NB assigned to each unit. The maximal capac
per input dimensionac was analytically derived for the cas
of binary hidden-to-output couplings and approximated,
ing the replica symmetry assumption, in the case of conti
ous hidden-to-output couplings. In both casesac; ln(NB).
We carried detailed simulations and numerical results in
case ofL53, the general case when all antisymmetric Bo
ean functions are admissible (NB516), and the case of per
ceptron mapping (NB514). The hidden-to-output coupling
were taken to be either continuous or discrete. We found
ac is within the analytical bounds and the results are s
ported by simulations.

The generalization ability in the case of a realizable ru
teacher and student with the same architecture, was der
analytically. Although the student in this case studies from
teacher, which is much more complicated than the perc
tron, we found similarities between learning in the perce
tron and learning in the case of 3N:N:1. In the case of
binary hidden-to-output couplings, a phase transition occ
from poor to perfect generalization. Again, the logarithm
the number of Boolean functions determinesac , the number
of examples per input dimension in which the transition o
curs. In the case of continuous hidden-to-output couplin
the generalization error obeys the same power law as in
simple perceptron, where the prefactor is inversely prop
tional to L.

The paper is organized as follows: The architecture is
troduced in Sec. II. In Sec. III we define the order parame
that enables calculations in a variety of cases. The sto
capacity in the case of discrete and continuous hidden
output couplings is discussed in Sec. IV. In Sec. V the g
eralization ability in all those cases is studied.

II. THE ARCHITECTURE LN :N:1

The architecture of the two-layer feed-forward neural n
work, LN:N:1, discussed in this paper consists ofN binary
units t i561 in the intermediate or so-called hidden lay
Each of these hidden units receives input from a sepa
subsetji5$j i j , j 51, . . . ,L% of L units of the input layer.
Accordingly, the input layer is of sizeLN and the receptive
fields of the hidden units are nonoverlapping~see Fig. 1!.

FIG. 1. A two-layered perceptron, 3N:N:1.
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Given the activity in the input layer the states of the hidd
units are determined by Boolean functionsBi mapping the
L-dimensional binary inputji to a binary output t i
5Bi(ji).

The output is a single binary units given by

s5sgnS (
i 51

N

Jit i D . ~1!

HereJ is theN-dimensional hidden-to-output weight vecto
There areNB522L

different Boolean functions withL in-
puts. To keep the connection with more traditional archit
tures of neural networks which use perceptronlike mappi
also between input layer and hidden units, we restrict o
selves to odd functions satisfyingB(2j)52B(j). There
are NB522L21

different odd Boolean functions ofL inputs.
Only a minute fraction of these,eL2

, can be implemented by
a perceptron~see @19#!, i.e., for these, there exists a
L-dimensional weight vectorW such that

B~j!5sgn~W•j!. ~2!

When possible we will give results both for the case when
antisymmetric Boolean functions are available and for
more restricted case when only those implementable by c
pling vectorsW may be used.

In a learning process in networks of the proposed arc
tecture both the Boolean functionsBi and the couplingsJi
are adapted in order to perform the desired input-output m
ping. We will consider in this paper the two standard pro
lems, the capacity and the generalization problem. In b
cases the input components are chosen independently a
dom, j i j 561 with equal probability. In the capacity prob
lem the corresponding outputs are generated at random
well and the question is how many of such random inp
output mappings one may typically implement by choos
appropriate Boolean functionsBi and valuesJi . The thresh-
old is proportional to the dimension of the input space a
will be written asacLN. In the generalization problem on
considers two networks of identical architecture. One
these~the teacher! is designed at random choosing Boole
functionsBi

T and couplingsJi
T according to a given probabil

ity measure. The second~the student! tries to imitate the
teacher as well as possible on the basis of a training
consisting ofaLN random inputs together with their class
fication according to the teacher. The aim is to calculate
generalization erroreg(a) defined as the probability that th
teacher and student disagree on a new random example

Most of the detailed numerical results discussed be
will refer to the caseL53. The 16 possible antisymmetri
Boolean functions for this case are presented in Table I. T
comprise two groups which are mirror images of each oth
We therefore present in Table I only one group — eig
Boolean functions. Seven out of the eight Boolean functio
can be realized using Eq.~2!. The last mapping in Table I is
called parity since it is simply the parity of the inputs. It
the well known problem where the mapping cannot
implemented by a perceptron.
8-2
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III. THE ORDER PARAMETER

Statistical mechanics analysis of the considered netw
builds on standard techniques@1#. The central quantity is the
entropy averaged over the distribution of the inputs,

s5 limN→`

1

N K K lnE dm~J!Tr$Bi %

3 )
m51

aLN

uS (
i

JiBi~ji
m! D L L

$j
i
m%

, ~3!

wheredm(J) is the proper measure in the space of couplin
J and the trace runs over the set of available Boolean fu
tions. The replica trick

^^ ln V&&5 limn→0

^^Vn&& 21

n
~4!

with

^^Vn&&5 limN→`E )
a51

n

dm~Ja!Tr$Bi
a%

3K K )
m51

aLN

)
a51

n

uS (
i

Ji
aBi

a~ji
m! D L L , ~5!

is used to perform the quenched average over the input
tribution and gives rise to the order parameter

qab5
1

N (
i 51

N

Ji
aJi

b^^Bi
a~j!Bi

b~j!&&j . ~6!

Here the averagê^ f (j)&&j runs just over the 2L different
configurations of asingle input vectorj of length L. The
limit n→0 in Eq.~4! is appropriate for the capacity proble
whereas the generalization error can be obtained by perfo
ing the limit n→1 @1,17#. We will always assume replica
symmetry,qab5q for all aÞb. This is known to be reliable
for the generalization problem, whereas it represents a m
approximation in the case of the capacity problem.

TABLE I. Half of the possible antisymmetric Boolean function
in the case ofL53. The other eight functions are exactly the o
posite, 81 jB(j)52 jB(j), j 51,2, . . . ,8.

Input Perceptron@Eq. ~2!# Parity

1B 2B 3B 4B 5B 6B 7B 8B

j15111 1 1 1 1 1 1 1 1

j25112 1 1 1 2 1 2 2 2

j35121 1 1 2 1 2 1 2 2

j45122 1 2 1 1 2 2 2 1

j55222 2 2 2 2 2 2 2 2

j65221 2 2 2 1 2 1 1 1

j75212 2 2 1 2 1 2 1 1

j85211 2 1 2 2 1 1 1 2
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The explicit calculations are given in Appendixes A a
B. The entropy is found to consist of two major parts. T
so-called energetic partGE ,

GE
n~q!5 lnE DtHnSA q

12q
t D , ~7!

is the same as for the simple perceptron. Here we have u
the standard abbreviationsDt5exp(2t2/2)/A2pdt and
H(x)5*x

`Dt. In the limit n→0, the capacity problem, the
linear term inn yields

GE
cp~q!5E Dt ln HSA q

12q
t D . ~8!

In the limit n→1, the generalization problem, the linear ter
in (n21) yields

GE
gn~q!52E DtHSA q

12q
t D ln HSA q

12q
t D . ~9!

The other part,GS , is more specific to the network architec
ture and is in the present case much more involved than
the perceptron. Moreover, it depends on thea priori measure
dm(J) for the couplings. We will therefore discuss separat
its explicit form for different a priori constraints on the
hidden-to-output couplings.

IV. CAPACITY

In this section we discuss the capacity problem. The
tropy, Eq.~3!, is found to decrease rapidly with an increasi
number of random input-output pairs corresponding to l
and less flexibility in implementing additional mappings. A
a sharp thresholdac of the storage ratioa no room for
further adaptation is left. Within replica symmetry~RS! this
is signaled byq→1, which implies that the available phas
space has shrunk to a point, since different solutions of
problem are almost identical. We first investigate the case
binary couplings.

A. Binary couplings

The case whereJi561 is very special since, due to in
version symmetry, it is exactly equivalent to fixing all th
hidden-to-output weights toJi511 ~the so-called commit-
tee machine!. Indeed anyJi521 can be flipped toJi5
11, while at the same time replacing the Boolean funct
Bi(j) with its mirror imageB̃i(j)52Bi(j).

An upper bound for the storage capacityac can be ob-
tained from the annealed approximation to the entropy,
~3!, given by

sA52
T

N
ln~^^Z&&j!5~2L212aL !ln 2, ~10!

where we assume that all antisymmetric Boolean functi
are admissible,NB522L21

. Since the entropy must be pos
tive we find
8-3
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ac<ac
UB5

2L21

L
. ~11!

As in the case of the Ising perceptron, this bound is relate
information theory. The full specification of the network wi
all Ji51 requiresN 2L21 bits of information necessary t
pin down theN Boolean functions. Therefore the netwo
cannot store more thanN 2L21 bits andac cannot exceed
2L21/L.

A more detailed characterization of the storage abilities
the network can be obtained from the quenched entropy.
pendix A includes a detailed presentation of the derivati
for the general case of discrete values discussed in Sec. I
The binary case is a specific case of these general de
tions. Therefore, the last two terms appearing in Eq.~A2! are
simply exp@(a,bq̂

ab(j^^Bj
a(j)Bj

b(j)&&$j%2(a,m(l̂m
a)2#. In this

way we find

s5extrq,q̂$2 1
2 q̂~12q!1aLGE

cp~q!1Gs~ q̂!%, ~12!

whereGE
cp is given in Eq.~8! and

Gs~ q̂!5E )
i 51

2L21

Dzi ln Tr$B%expFA q̂

2L21GZB , ~13!

whereZB5^^ziB(j i)&&j5( i 51
2L21

ziB(j i). Note that the sum
needs to be taken over half of the possible inputs only,
instance, over only those whose first component is posi
~in the case ofL53 this means that the sums are ovei
51, . . . ,4, from Table I!.

When all antisymmetric Boolean functions are at our d
posal the above expression can be simplified using

Tr$B%expFA(
j

ziB~j i !G5)
i

$2 cosh~Azi !%. ~14!

ThenGs is found to be given by

Gs~ q̂!52L21E Dz lnF2 coshSA q̂

2L21
zD G . ~15!

The transformationsq̂°2L21q̂ anda°2L21a/L now map
the expression for the entropy onto the corresponding
pression for the so-called Ising perceptron@20#. Using the
results of this case we immediately find that from the lim
q→1 we get

ac
RS~L,22L21

!5ac
RS~1,2!2L21/L, ~16!

with ac
RS(1,2)54/p. However, this result is known to over

estimate the storage capacity since the entropy beco
negative and replica symmetry is broken fora,ac

RS. The
correct value forac is given by the value at which the replic
symmetric entropy vanishes. This implies

ac~L,22L21
!5ac~1,2!2L21/L, ~17!
03613
to

f
p-
s
B.
a-

r
e

-

x-

t

es

whereac(1,2)>0.83 is the storage capacity of the Ising pe
ceptron@20#. The most important point following from this
result is that the storage capacity of the proposed netw
scales with thelogarithm of the number of admissible Boo
ean functions.

If we restrict ourselves to the set of Boolean functio
which may be implemented by perceptrons, cf. Eq.~2!, the
identity appearing in Eq.~14! no longer holds. Nevertheles
explicit results can be obtained from the numerical solut
of the saddle point equations

q̂~12q!5
aL

2p
E Dt

expS 2
qt2

12q
D

H2SA q

12q
t D , ~18!

2
L21

2 Aq̂~12q!5E ) Dzi

TrBZBexpFA q̂

2L21
ZBG

TrBexpFA q̂

2L21
ZBG .

Again, ac(L,NB) is determined as the value ofa at which
the entropy becomes zero. The upper bound is derived e
from the annealed approximation or according to informat
theory and is again given byac

UB(L,NB)5 log2NB /L.
The results for the special caseL53 are collected in

Table II. Note that the values for the storage capacity in
two cases again scale as the respective logarithms
the number of admissible Boolean function
ac(3,14)/ac(3,16)51.06/1.11> ln 14/ln 16.

In Fig. 2 we compare the analytical resultac(3,14) with
numerical simulations using exact enumerations. We de
mine f (a), the fraction of learning sessions in which th
complete training set is learned forN55 (7). The data
points are obtained by performing in any givena four
groups of 250 (50) experiments which are 43250 (50)
choices of patterns. The standard deviation of the calcula
quantities over the four different results are used to prod
error bars for the depicted mean quantities. Even for
small sizes accessible to this numerical technique we fin
steepening of the transition with increasingN and a crossing
point of the curves close to the theoretical prediction.

B. Discrete couplings

We can generalize the above analysis to the case of
crete couplings in the hidden-to-output layer

TABLE II. Upper bound forac , the replica result and the cor
rect result derived according to the zero-entropy criterion~see text!
in the case ofL53 and binary hidden-to-output weights.

ac
UB ac

RS ac

L53, NB516 1.33 1.70 1.11
L53, NB514 1.27 1.40 1.06
8-4
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Ji56
1

L ,6
2

L , . . . ,61. ~19!

In a manner similar to the binary case, we use the zero
tropy criterion that was found to give the best estimation
the storage capacity in the case of finite synaptic de
@21,22#. In this case there are four order parameters in
analytical equations,q @Eq. ~6!#, its conjugate q̂, q̄

5( i(Ji
a)2/N, and its conjugate,q̂̄. A detailed derivation of

ac is given in Appendix A.
We determine explicit numerical results for the stora

capacityac(L) for the simple casesL53 andNB516 and
NB514 only. The equations for the order parameters in
case ofL53 and NB516 are given by Eqs.~A10!, ac is
found by setting the entropy~A7! to zero. The caseNB
514 was treated in a similar manner. The results forac(L)
for L51,2,3,4,5 are shown against each other in the inse
Fig. 3. The solid line is a linear fit,ac(3,14)5aac(3,16)
with a50.9660.01. This is in good agreement with our a
sumption thata; ln 14/ln 16>0.95 for anyL.

The capacity increases monotonically withL in both
cases. AsL becomes large, the numerical solution of Eq
~A10! becomes very sensitive. In Fig. 3 we present the a
lytical results for L53 and NB516. To extract the
asymptotic behavior for largeL, we fitted the dependenc
ac(3,16)51.9010.51/L21.42 ln(L)/L to the data points
starting from~and including! L58. For L→` we get ac
;1.9, which is close to the result for continuous couplin
~see Table III!.

It is rather difficult to compare these analytical findin
with numerical simulations, since the effects of the fin
synaptic depth do not show up at the small values oN
accessible to exact enumerations@19#.

FIG. 2. Fractionf of the runs in which alla3N random input-
output mappings were embedded by a MLN with binary hidden
output weights andNB514. Averages over 43250 realizations in
the case ofN55 ~circles! and 4350 in the case ofN57 ~triangles!
are compared with the analytical result~solid line!.
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C. Continuous couplings

For continuous couplings we enforce as usual the sph
cal constraint( i 51

N Ji
25N. We try to determine the maximum

numberacLN of input-output mappings that can be stored
such a network. The zero-entropy criterion cannot be use
this case sinces can be negative when the version space
continuous. We start by deriving an upper bound forac . A
lower bound is given by the results for finite depth obtain
above. Clearly, the possibilities in a network with finite dep
are limited compared to the continuous weights, and the
fore its maximal capacity should be smaller. We chose
introduce in Table III the results derived forL55 as a lower
bound forac in the case of continuous couplings. In prin
ciple, any discrete set~i.e., any value ofL) can serve as a
lower bound when the limitL→` is supposed to be the
closest lower bound~see the discussion in Sec. IV D!.

We derive an upper bound forac by counting the different
configurations that may be generated for given inputsji

m ,m
51, . . . ,aLN. There are at most 2N(log2NB21) different con-
figurations of hidden units, using different combinations
the NB Boolean functions. Since the mapping from the h
den layer to the output is performed by a perceptron, e
hidden configuration gives rise to the desired output w
probabilityC(p,N)/2p with p5aLN. HereC(p,N) denotes
the number of dichotomies calculated in Ref.@14#,

-

FIG. 3. Analytical results ofac(3,16), derived according to the
zero-entropy criterion as a function of the synaptic depth in
hidden-to-output layerL, are presented in a semilog plot~circles!.
The solid line is a fit to the asymptotic behavior, the dashed line
the RS result for continuous hidden-to-output couplings. The in
shows the proportionality ofac(3,14,L) and ac(3,16,L) for L
51,2,3,4,5~from bottom to top!.

TABLE III. Upper bound forac , the replica symmetry result
and lower bound derived from the case of discrete couplings w
L55, in the case ofL53 and continuous hidden-to-outpu
weights.

ac
UB ac

RS ac
LB

L53, NB516 2.39 1.95 1.51
L53, NB514 2.32 1.85 1.46
8-5
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1

N
ln C~p,N!;aL ln~aL !2~aL21!ln~aL21!. ~20!

Setting the probability, 2N(log2NB21)C(p,N)/2p, equal to 1/2
we find that ac is bounded forN→` by the solution
aMD(L,NB) of the equation

ln
NB

2
5~aL21!ln~aL21!2aL ln

aL

2
. ~21!

The result is an upper bound rather than an exact result, s
we neglected correlations between the different dichotom
~see Ref.@15#!.

For L51, NB52, we get the expected resultaMD52. In
the case of L53 we find aMD(3,16)>2.394 and
aMD(3,14)>2.315 ~as appears in Table III!. In the limit of
largeL, the bound is

limL→`aMD~L,NB!;
log2NB

L
. ~22!

This result shows the same scaling with the number of Bo
ean functions as the lower bound derived from the ze
entropy result in the case of binary couplings, Eq.~17!.
Hence we can summarize at this stage, without even ca
lating the capacity directly, that the maximal capacity in t
continuous case scales with logNB /L and the prefactor is
larger than 0.83.

If the mapping from the input to the hidden layer is do
by perceptrons we know that the number of implementa
Boolean functions scales likeNB;eL2

for largeL. Therefore,
in this limit the upper bound assumes the formaMD;L im-
plying that adding more inputs to each hidden unit linea
enlarges the maximal storage capacity.

The analysis of the replica calculations in the case of c
tinuous weights is given in Appendix B. Equations~B6! are
the equations for the order parameters in the general cas
the small-a regime, the order parameterq is given by

q;
2L

p2L21
a. ~23!

This relation holds in both the binary and the discrete ca
The overlap parameterq grows with increasinga with a
slope decreasing proportionally to the number of inputs
unit, 2L21, independent ofNB and the measure in the cou
plings space,m(J).

We carried out numerical simulations in the case ofL
53, NB514, andN55. We determined the behavior of th
order parameterq for small a as shown in Fig. 4~circles!.
Error bars are half of the standard deviation obtained fr
1000 different runs. The linear approximation, Eq.~23!, is
given by the dashed line. The simulation results comp
well with the analytic result Eq.~23! ~solid line! and the
linear approximation. Asa increases there is a deviatio
from the analytical curve; the better learning performance
the simulations is due to finite size effects.
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As soon asq approaches 1 the numerical integrals d
verge, andac is found from the asymptotic expansion of th
functions forq→1 andq̂;1/(12q)2→`. In the case ofL
53 if NB514 we getac>1.85, whereas ifNB516, the
critical a is somewhat larger,ac>1.95, and the ratio be
tween the results is again connected to the ratio between
logarithm of NB . The general result when all the antisym
metric Boolean functions are admissible is

ac~L,22L21
!5

21
4

p
~2L2121!

L
. ~24!

Simulations

A great computational effort is demanded in performi
simulations of the kind of learning by choice of internal re
resentations@23# in an extensive large network when th
Boolean functions in the first layer are defined by percept
mapping. Moreover, when the Boolean functions in the fi
layer can be any antisymmetric Boolean function, the l
method seems to be inappropriate. It appears that in su
case, the natural algorithm will be to go through all the po
sible mappings in the first layer and in each possibility to
to teach the network using a traditional learning algorith
that is known to perform well in the perceptron. Such part
exact enumerations are time consuming and therefore
performed only for smallN.

It has been proved that in the case ofN53 and in the case
of N55 one can confine the hidden-to-output layerJ to a
finite number of values and that this network, although
stricted, is capable of implementing the same Boolean fu
tions of the input as the network with no restrictions on
second-layer weights@6,19#. We used the aforementione
equivalence and made exact enumeration calculations in
case ofN53 andN55 as shown in Fig. 3. In the case o

FIG. 4. Analytical results ofq, as a function ofa derived from
Eqs.~B6!, in the case ofL53, NB514, and continuous hidden-to
output couplings~solid line!. The dashed line shows the linear a
proximation arounda→0, Eq. ~23!. Simulation results in the cas
of N55 ~circles! are in good agreement for smalla. Error bars are
half of the standard deviation obtained from 1000 different runs
8-6
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N53 we had to examine four differentJ only, ~1 1 1!,
~1 0 0!, ~0 1 0!, ~0 0 1!. In the case ofN55 we examined the
following seven prototype families,~1 1 1 1 1!, ~1 0 0 0 0!,
~1 1 1 0 0!, ~2 1 1 1 0!, ~3 1 1 1 1!, ~2 2 1 1 1!, ~3 2 2 1 1!,
and all of its permutations. The data points presented in
5 were obtained by performing 100 experiments four tim
in any givena.

The discrepancy between the exact enumeration res
and the analytical curve in Fig. 5 may be due to finite s
effects. The equivalence described above that is the basi
the use of exact enumeration, instead of some sort of le
ing procedure, actually shows that carrying simulations
small N and continuous hidden-to-output couplings
equivalent to carrying simulations with discrete hidden-
output couplings, whereas we found thatac in the discrete
case is smaller thanac in the continuous case. Therefore, w
also performed partial exact enumerations forN59. We ex-
amined half of the possible Boolean functions~the other half
is redundant due to the inversion symmetry indicated abo!.
For each possible evaluation of the Boolean functions in
first-layer units we tried to teach the second-layer accord
to the ADATRON learning procedure@24#. As a becomes
larger the time it took to find whether there is a solution
not becomes longer. Therefore we have results only foa
50.667,1,1.111, the squares presented in Fig. 5. The re
for N59 were far better than the exact enumerations car
out for N53 andN55. This result is indeed consistent wit
our observation that the differences betweenac of the con-
tinuous and discrete cases become negligible only for v
largeL ~see Fig. 3!.

D. Discussion

The crux of our findings in this section is the property th
determines the maximal capacity of networks of the ty

FIG. 5. The fraction of success embedding procedures,f, as a
function of the number of patterns per input dimension,a, in the
case of continuous hidden-to-output weights,L53 andNB514. A
comparison between the analytical result ofac under the RS as-
sumption~solid line!, exact enumeration results in the case ofN
53 ~circles!, N55 ~diamonds!, and partial learning~see text! in the
case ofN59 ~squares!. Error bars are half of the standard devi
tion. The dashed line is the upper bound forac .
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described above, which was found to be the logarithm of
number of Boolean functions embedded in each unit of
first layer, ln(NB). That term was found to determineac
where only the free factor depends on the kind of limitati
one has on the couplings in the net. In the discrete case
have exact results for the criticala from the zero-entropy
criterion.

In the case of continuous couplings it appears that th
should be a regime in which the RS is unstable. We know
confirmed by simulation, that in the small-a regime the RS
solution is correct~see Fig. 4!. Moreover, in the case ofL
51 the RS solution is stable fora,ac and is unstable for
a.ac ~see@1,25–27# and references therein!. The question
is whether the RS remains stable in the regime wherea
<ac . For L51, the perceptron, the answer is definite
positive. AsL becomes very large, the RS solution in th
continuous case Eq.~24! meets that of the binary case@Eq.
~16!#. Clearly, this solution is unstable since it overestima
the bound@Eq. ~22!#. In this paper we specifically examin
the case ofL53. As one can see in Fig. 3, it appears that t
solution in the discrete case with a large synaptic depthL
@1, which may serve as a lower bound, almost coincid
with the RS solution for the continuous case. The correct
procedure appears to be very complicated since it was sh
that one-step replica symmetry breaking~RSB! @25,26# is not
sufficient to solve the storage capacity calculations in
perceptron and one has to solve the perceptron within the
Parisi scheme@27#. The question of stability of the replica
and the kind of RSB assumption to be made are not wit
the realm of this study.

V. GENERALIZATION

We only consider the simplest setup in which the teac
and student network have the same architecture. Accordin
the teacher is defined by aLN:N:1 MLN with Boolean func-
tions Bi

T and couplingsJi
T generated at random. The stude

is given a set ofaLN random inputs together with the co
responding outputs of the teacher. The task is to choose
Boolean functionsBi

S and the couplingsJi
S of the student

such that the probability for misclassifying a new rando
example, the generalization error, is small. In Appendix C
is shown that the generalization error is given by

eg5
1

p
cos21r, ~25!

with the normalized overlapr5q/(uuJTuu uuJSuu) and

q5
1

N (
i

Ji
TJi

S^^Bi
T~j!Bi

S~j!&&j . ~26!

Assuming the samea priori measures for the teacher an
student, the problem exhibits teacher-student symmetry s
that replica symmetry holds and the overlap Eq.~26! is iden-
tical with the student-student overlap defined in Eq.~6! @1#.
It can be derived by taking the limitn→1 instead ofn→0 in
the same expression Eq.~4! for the quenched entropy alread
used in the capacity problem.
8-7
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A. Binary couplings

Learning with binary hidden-to-output couplings is e
pected to show a first-order phase transition, similar to
findings in the discrete perceptron@16#. Here we study only
the generalization ability of discrete networks whose hidd
to-output couplings are constrained to binary couplin
Ji

T/S561. The learning features of a discrete network w
2L possible values are easily derived by generalizing to
case using similar methods to those described in Appen
A.

In order to find the overlapr as a function ofa we cal-
culate the entropy. We start with the terms in Eq.~A5! and
substituteq̄51 ~hencer5q). Expanding aroundn51 re-
sults in

s5extrq,q̂$2 1
2 q̂~11q!1aLGE

gn~q!1GS~ q̂!%, ~27!

whereGE
gn is defined in Eq.~9! and

GS5E )
i 51

2L21

Dzi ln Tr$Bi %
expFA q̂

2L21
ZB1

q̂

2L21
BG ,

~28!

with B5( iB(j i).
In the case where all 22

L21
antisymmetric Boolean func

tions can be used, the expression forGS can again be sim-
plified using Eq.~14!. In this way we find

GS52L21E Dz ln 2 coshFA q̂

2L21
z1

q̂

2L21G . ~29!

Using the rescalingq̂°2L21q̂ and a°2L21a/L the result
for the entropy again maps perfectly on the known result
the Ising perceptron. Hence there is a first-order phase t
sition from poor to perfect learning at

ac
learn~L,22L21

!5ac
GD~1,2!2L21/L, ~30!

whereac
GD(1,2)>1.245. This value was first found for th

perceptron by Gardner and Derrida on the basis of nume
simulations@3#, and was shortly afterwards derived analy
cally in Ref. @16#. In the case ofL53, Eq. ~30! yields a
phase transition to perfect generalization atac>1.66.

In the case of perceptron mappings between the input
hidden layer, i.e., generalNB , one has the following set o
equations:

q̂5
aL

pA12q
E Dte2qt2/2H~Aqt!, ~31!

11q5E )
i 51

2L21

Dzi

TrBS 1

Aq̂2L21
ZB1222LBD expSZB

TrBexpSZB
,

where SZB5Aq̂/2L21ZB1(q̂/2L21)B. Like in the case of
the binary perceptron, this set of equations has two solutio
03613
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q→1, q̂→`, which is the result for any finitea and gives
identical zero entropy. The other solution isq(a)Þ1 and is
physically correct up toac , where the entropy vanishes.

The numerical result ofeg(a) in the case ofL53 and
NB514, derived by Eqs.~31!, the vanishing entropy criteria
and Eq.~25! are presented in Fig. 6. The solid line is th
analytical curveeg(a) where the phase transition from poo
to perfect generalization occurs. The transition occurs atac
>1.62. As expected, a smaller number of Boolean functio
in each unit of the first layer results in faster learnin
ac(3,14),ac(3,16). A smaller value of the critical storag
ratio ac determined in the capacity problem usually giv
rise to quicker generalization. The reason is that the netw
cannot reproduce many input-output pairs without havin
key to how they are produced~generalization starts where
learning ends!.

We ran exact enumerations in this case forN55. Despite
the fact thatN is small, in the small-a regime there is good
agreement between the analytical curve and the avera
simulation results. The averaged results obtained from
runs and the standard deviations are presented in Fig. 6.
first-order transition is in the simulation smoothed by fin
size effects.

B. Continuous couplings

The entropy of a 3N:N:1 network with continuous
hidden-to-output weights as a function ofn is given in Eqs.
~B2! and ~B3!. As indicated above, taking the limitn→1 is
appropriate for the learning problem. We redefine the para
eters,Q̂5q̂/(k1q̂), and find that

q̂5
Q̂

12Q̂
, ~32!

since the zero order, (n21)0 of the entropy should vanish
The entropy calculated to first order (n21)1 is given by

FIG. 6. Analytical results ofeg as a function ofa in the case of
L53, NB514, and binary hidden-to-output couplings~solid line!.
The dashed line shows the nonphysical solution fora.ac . We ran
exact enumerations withN55 ~circles!. Error bars are half of the
standard deviations obtained from 100 runs.
8-8
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extr

qQ̂H 2
qQ̂

2~12Q̂!
1

1

2
ln~12Q̂!1aLGE

gn~q!1GS
gn~Q̂!J ,

~33!

whereGE
gn is given by Eq.~9! and

GS

A12Q̂
5E )

i 51

2L21

DziTrBexpS Q̂

2L
ZBD ln TrBexpS Q̂

2L
ZBD .

~34!

The equations derived by taking the extremum are

Q̂

~12Q̂!
5

aL

2pA12q
E Dt

expH 2
qt2

2 J
H~Aqt!

,

q52~12Q̂!2
]GS

]Q̂
2~12Q̂!. ~35!

At the end of the learning procedure, whenq→1, one
also finds thatQ̂→1. We derived the generalization erro
from Eq. ~25! and assumed that all the antisymmetric Bo
ean functions are available for the first layer. In that ca
]GS /]Q̂;1/@2(12Q̂)2# and

eg;
0.625

La
. ~36!

Not surprisingly, the generalization error decays accordin
a power law, as in the spherical perceptron@18#. The decay is
slower for largerL, again reflecting the enhanced stora
abilities. The numerical derivation ofeg(a) given by Eqs.
~35! and~25! in the case ofL53 andNB516 is presented in

FIG. 7. The generalization error as a function ofa for L
53, NB516, and continuous hidden-to-output couplings deriv
from the analytical Eqs.~35! ~solid line! together with the
asymptotic expansion ofeg , Eq. ~36! ~dashed line!. The circles are
results of exact enumerations withN55, with error bars obtained
from 100 runs.
03613
-
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Fig. 7 ~solid line!. For largea, the derivation ofeg from the
numerical integrals becomes impossible, due to the sens
integrals involved. Therefore, we present the asymptotic
pansion~dashed line! for large a, Eq. ~36!. The averaged
exact enumeration results taken from 100 samples withN
55 are in good agreement for smalla ~circles!, whereas for
large a the generalization error in the simulations vanish
faster to zero due to finite size effects.

C. Discussion

In summary, we found that learning in large two-layer
perceptrons is possible. The learning curve behaves in
same way as in the case of a simple perceptron — ph
transition in the binary case and power law decay in
continuous case. Such a similarity was observed in the c
of a large number of hidden unitsK→` when K!N @7#.
However, in the two-layered perceptrons presented in
paper, the power-law decay in the continuous case depe
on the number of inputs to each hidden unit,L. Moreover,
the discontinuous transition in the discrete case occurs
value ofa, which scales with the logarithm of the number
Boolean functions in each unit in the first layer, lnNB .

In this work we used the most simple learning algorithm
We counted on exact enumerations in smallN at least for the
first layer and then the second one was treated as a sim
perceptron. Such exact enumerations are performed by
peating the whole set of examples for each realization of
Boolean functions in the first layer, and trying to embed t
input-output relations by training the second layer. As sho
in Fig. 7 such procedures yield reliable results only for sm
a. To address the question of whether there is an effic
algorithm which achieves ana21 decay ofeg in the continu-
ous case, on-line learning schemes should be used, as s
in the Committee Machine@9#. The on-line analysis of the
ability of the extensively large two-layered perceptrons w
rants further study.
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APPENDIX A

In this appendix we calculate the dependence ona of the
order parameterq describing the overlap between differe
networks that can embedaLN random examples. All net-
works have components in the hidden-to-output layer t
are confined to a finite set of values. The general descrip
is exemplified for the values given in Eq.~19!, where the
binary case is a special case withL51.

Our starting point is Eq.~5!. First, we rescale the argu
ment of theu function by a factor of 1/AN. In such a way we
ensure that in the thermodynamic limit the argument, wh
is the local field, will be in the appropriate order. We rewr
the equation by using the integral representation of theu

function, usinglm
a and l̂m

a for that purpose,
8-9
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^^Vn&&5 limN→`

1

NE )
m51

aLN

)
a51

n H dlm
a dl̂m

a

2p
exp@ ilm

a l̂m
a #J

3 )
m51

aLN

)
j 51

N K K expF2 i
1

AN
(
a51

n

l̂m
a Jj

aBj
a~jj

m!G L L
j

.

~A1!

We take the Taylor expansion of the last exponent in
right-hand side of the equation above up to the quadr
order. The linear term vanishes and therefore, by recollec
everything to an exponent form, we have a Gaussian. In
ducing the order parameter, Eq.~6!, we have

^^Vn&&5 limN→`

1

NE )
m51

aLN

)
a51

n H dlm
a dl̂m

a

2p
exp@ ilm

a l̂m
a #J

3E )
a,b

dqa,bdq̂a,b

2p/N
expF2 (

a,b
Nqa,bq̂a,b

2 (
m,a,b

qabl̂m
a l̂m

b G3E )
a

dm~Ja!Tr$Bj %

3expF (
a,b

q̂ab(
j

Jj
aJj

b^^Bj
a~j!Bj

b~j!&&$j%G
3expF2 (

m,a, j
~ l̂m

a Jj
a!2/2G . ~A2!

In the case of discrete couplingsdm(J)5TrJ , we define,
similarly to the perceptron@21#, an additional order param

eter q̄a5( j (Jj
a)2/N and its conjugateq̂̄a. Counting on the

replica symmetry assumption we derive

^^Vn&&5 limN→`

1

NE )
m51

aLN

)
a51

n dlm
a dl̂m

a

2p
@ ilm

a l̂m
a #

3E dqdq̂

2p/NE dq̄dq̂̄

2p/N
expF2N

n~n21!qq̂

2
2Nnq̄q̂̄G

3expF2q (
m,a,b

l̂m
a l̂m

b 2
q̄2q

2 (
m,a

~lm
a !2G

3Tr$Bj %
Tr$J%expF2

N

2
q̂(

a
~Ja!21Nq̄(

a
~Ja!2G

3expF q̂ (
j ,a,b

Jj
aJj

b^^Bj
a~j!Bj

b~j!&&$j%G . ~A3!

At this stage it is impossible to calculate the integrals o
lm

â and to perform the trace overJa since both appear in
mixed exponents that contain different replicas. We circu
vent this difficulty by using the Gaussian integral
03613
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expF q̂(
a,b

Jj
aJj

b^^Bj
a~j!Bj

b~j!&&$j%G
5expF q̂

2L21 (
a,b,j i

Jj
aJj

bBj
a~ji !Bj

b~ji !2
q̂

2 (
a

~Jj
a!2G

5E )
i 51

2L21

DziexpFA q̂

2L21(a,i
Jj

aBj
a~ji !zi

2
q̂

2 (
a

~Jj
a!2G . ~A4!

The mixed terms involvinglm
â are treated in the same man

ner. The product and the sum at the end of Eq.~A4! are due
to the average overj. The possible inputs are divided int
two groups, one being the opposite of the other. It can
shown that as a result of the inversion symmetry of the Bo
ean functions, it is sufficient to go through one of the grou
— half of the input@e.g., to evaluate the terms for the inp
1 to 4 in the case ofL53 ~Table I!#. This leads to

^^Vn&&5E dqdq̂

2p/NE dq̄dq̂̄

2p/N
expH 2NFn~n21!

2
qq̂G J

3expH 2NFn~n21!

2
qq̂1q̄q̂̄n2aLGE

n2GS
nG J ,

~A5!

where

GE
n,Disc5 lnE DtHnSA q

q̄2q
t D ,

GS
n,Disc5 lnE )

i 51

2L21

Dzi$ ln@TrJ,Be2(q̂/22 q̂̄)J2
eJAq̂/2L21ZB#%n.

~A6!

We use redefinitions of the parameters similar to those

Ref. @21#, F15q̂,F25 1
2 F12 q̂̄. The entropy is rewritten as a

function of the last parameters and in the limit ofn→`,

sDisc5
extr

F1 ,F2 ,q,q̄H aGE
Disc1GS

Disc2F2q̄2
F1

2
~ q̄2q!J ,

~A7!

whereGE
Disc is similar to Eq.~8!,

GE
Disc5E Dt ln HSA q

q̄2q
t D , ~A8!

and is the same expression derived for the discrete per
tron. For the Ising perceptron,q̄51 by definition, and one
gets Eq.~8! exactly.

However,GS
Disc is unique to MLN. It can be rewritten in

a comparatively simple manner if we assume that all
8-10
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antisymmetric Boolean functions are possible:NB522L21
.

We then use the identity Eq.~14!. The generalization of
GS

Disc to the case where only perceptron mappings are
missible is straightforward but tedious,

GS
Disc5E )

i 51

2L21

Dzi ln TrJFe2F2J2

)
i 51

2L21

coshSA F1

2L21
Jzi D G .

~A9!

The four equations for the set of parameters$q,q̄,F1 ,F2% are
derived by finding the extremum of Eq.~A7! with respect to
the parameters

F25
F1~ q̄2q!

2q̄
,

F15
aL

A2p~ q̄2q!3/2

q̄

q
E tDt

e2[q/2(q̄2q)] t2

HSA q

q̄2q
t D ,

q̄5E )
i 51

2L21

Dzi^J
2&,

q̄2q5
1

A2L21F1
E )

i 51

2L21

Dzi K J(
i

zi tanh~Ci !L ,

~A10!

where the average is defined as follows:

^A~J!&[

TrJA~J!e2F2J2

)
i

cosh~Ci !

TrJe
2F2J2

)
i

cosh~Ci !

~A11!

and

Ci5A F1

2L21
Jzi . ~A12!

The maximum capacityac is found by calculating the num
ber of examples per input dimensiona in which the entropy
vanishes.

APPENDIX B

In the following we calculate the order parameterq for
networks that try to store random examples. The hidden
output weight vectors in these networks are subject to
spherical constraint, i.e.,

dm~J!5)
i

dJi

A2pe
dS (

i 51

N

Ji
22ND . ~B1!
03613
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The above distribution is substituted in Eq.~A2! by em-
ploying the integral representation of thed function and us-
ing the parameterk ~see Ref.@1#!. By applying the Gaussian
integrals, Eq.~A4!, and assembling everything we derive

^^Vn&&5E dqdq̂

2p/NE dk

4p
expH 2NFn~n21!

2
qq̂1Nn

k

2G J
3exp$N@aLGE

n~q!1GS
n~k,q̂!#%, ~B2!

whereGE
n(q) is given in Eq.~7! and

GS
n5 lnE )

i 51

2L21

DziFTrBexpH q̂

2L~k1q̂!
Z B

2J G n

2
n

2
2

n

2
ln~k1q̂!. ~B3!

Taking the limitn→0 one gets the following expression fo
the entropy:

extr

q̂,q,kH qq̂

2
1

k

2
2

1

2
ln~k1q̂!1aLGE

cp~q!1GS~k,q̂!J ,

~B4!

whereGE
cp is given in Eq.~8! and

GS5E )
i 51

2L21

DziTrBexpH q̂

2L~k1q̂!
Z B

2J . ~B5!

Taking the extremum over the parameters yields three eq
tions:

k512qq̂,

q̂~12q!

k1qq̂
5

aL

2p
E Dt

e2(qt
2
/12q)

H2SA q

12q
t D ,

12q

12q̂
12q

k1q̂

5
1

2L21E )
i 51

2L21

Dzi

TrBZ B
2expH q̂

2L~k1q̂!
Z B

2J
TrBexpH q̂

2L~k1q̂!
Z B

2J .

~B6!

The result of the saddle point equations is the evolution
the overlap between different networks capable of storinga
random examples,q(a).

APPENDIX C

In this appendix the joint probability distribution ofx and
y @defined in Eq.~C2!# is calculated under the spherical a
sumption (q5r). Having this probability,P(x,yur), enables
calculation of the generalization error according to its de
nition,
8-11
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eg5^^u~2xy!&&xy . ~C1!

The parameters,x andy represent the local fields

x[
1

AN
(

i
Ji

SBi
S~ji !, y[

1

AN
(

i
Ji

TBi
T~ji !, ~C2!

and since the outputs is the sign of the local fields, Eq.~C1!
simply states that the generalization error is the avera
discrepancy between the teacher’s and the student’s ou
We show that although theLN:N:1 network is different
from the perceptron, the final functionP(x,yur) is the same
and therefore one can find a simple expression for the g
eralization error, Eq.~25!.

Under the spherical constraint, the assumptions are as
lows:

1

N (
i

~Ji
T!251,

1

N (
j

~Ji
s!251, ~C3!

1

N (
j

Ji
TJj

S^^Bj
T~j!Bj

S~j!&&j5r.

We calculate the joint probability distribution according
the definitions ofx andy, Eq. ~C2!,

P~x,yur!5K K dS (
j

Jj
SBj

S~jj !

AN
2xD d

3S (
j

Jj
TBj

T~jj !

AN
2yD L L

$jj%

. ~C4!

Representing thed functions by integrals, one can rewrit
the average above in a single-site manner

P~x,yur!5E dx̂dŷ

4p2
exp~2 ixx̂2 iy ŷ!

3)
j

K K expS i x̂
Jj

SBj
S~j!

AN
1 i ŷ

Jj
TBj

T~j!

AN
D L L

j

.

~C5!
-

03613
d
ut.

n-

ol-

Since in this paper we restricted the Boolean functions
those that are antisymmetric, one can take the average
the input in two steps. The first step is to divide the inpu
into two groups,j1 andj2 , such that for any input vector in
the first group there is the opposite one in the second gro
and then to take the average over these two groups. In
case ofL53, the division may bej1 ,j2 ,j3 ,j4 from Table I
as one group, and the other four as the other group. One
takes the average over one specific group, say,j1 . Deriving
the probability after taking only the first average yields

P~x,yur!5E dx̂dŷ

4p2
exp~2 ixx̂2 iy ŷ!

3)
j

K K cosF 1

AN
$x̂Jj

SBj
S~j!

1 ŷJj
TBj

T~j!%G L L
j1

. ~C6!

Taking the expansion over the cosing function in the therm
dynamic limit, one gets

P~x,yur!5E dx̂dŷ

4p2
exp~2 ixx̂2 iy ŷ!

3expH 2 x̂2
1

2N (
j

~Jj
S!22 ŷ2

1

2N (
j

~Jj
T!2J

3expH 2 x̂ŷ
1

N (
j

Jj
TJj

S^^Bj
T~j!Bj

S~j!&&jJ .

~C7!

The result after introducing the definitions, Eq.~C3!, and
taking the integrals overx̂, ŷ is

P~x,yur!5
1

2pA12r2
expF2

x222rxy1y2

2~12r2!
G , ~C8!

the same function as for the perceptron. Therefore, the r
tion betweeneg andr is the same@Eq. ~25!#.
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