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Renormalization group and nonequilibrium action in stochastic field theory
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We investigate the renormalization group approach to nonequilibrium field theory. We show that it is
possible to derive nontrivial renormalization group flow from iterative coarse graining of a closed-time-path
action. This renormalization group is different from the usual in quantum field theory textbooks, in that it
describes nontrivial noise and dissipation. We work out a specific example where the variation of the closed-
time-path action leads to the so-called Kardar-Parisi-Zhang equation, and show that the renormalization group
obtained by coarse graining this action, agrees with the dynamical renormalization group derived by directly
coarse graining the equations of motion.
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[. INTRODUCTION tion of the system through some adequate thermodynamic
potential(the free energy for a system in canonical equilib-
The goal of this paper is to investigate the renormalizatiorrium, etc). In field theory, the proper thermodynamic poten-
group (RG) approach to nonequilibrium field theory. We de- tial under canonical equilibrium conditions is the Euclidean
rive the renormalization group from iterative coarse grainingaction, where the time variable is identified with periodicity
of the Schwinger-Keldysh or closed-time-pd®TP) action  B=1/T, and T is the temperature. The Euclidean CGA is
[1,2]. We work out a specific example where variation of thedefined from a partial integration over the field variables; the
CTP action leads to the so-called Kardar-Parisi-Zha®Z)  variation of the Euclidean CGA with scale is given by the
equation[3-5]. We show that the renormalization group ob- Wegner-Houghton equatiofl2], and gives rise to the so-
tained from the coarse grained acti@GA), agrees with the  czlled exact RG13].
dynamical RG derived by directly coarse graining the equa- | gynamical situations, such devices are not forthcoming,
tions of motion[3,4]. _ and so the dynamical RG is usually formulated at the level of
The RG[6-8] is a powerful method by which to analyze yhe equations of motiof6]. Since thermodynamic potentials
complex physical systems. Given a description of the SYSteM e most often simpler than equations of motion, the equilib-

?‘t some scale, a new desp_npuon at alower level of r(_esolutlopium RG has been much better developed than the dynamical
is derived by coarse graining the former. By analyzing how

: : . RG.
the picture of the system changés fails to changg with . N . :
resolution, important physical information is derived. In dynamical situations, the Lorentzian EA, which may be

A field theory is most often not considered a fundamentapsed’ for example, to deriv@matrix elements of the field

description of a physical system. Its field variables are con®Perators, cannot be used to derive a physically sound evo-

sidered as the relevant degrees of freedom at some degree!yfion for the background fieldgl4]. A simple solution lies

resolution. This description is not complete, leaving outin adopting the so-called Schwinger-Keldysh techniques
some uncontrolled sector whose interaction with the field15,16. In this paper, we show that essentially the same
variables is characterized as noise and dissipdfict0]. We ideas can be used to define a convenient CTP action for
would like to associate with each level of description a cor-stochastic field theorigd.7]. For the heat diffusion equation
responding action, so that the changes in this action as weear equilibrium this was done in R¢fL8].
change the resolution of our description allow us to define The basic element of the Schwinger-Keldysh or CTP
the dynamical RG for the theory. method is the doubling of degrees of freedom. For each field
A simple way of implementing this idea is by looking at variable in the original theory, a new mirror variable is in-
the CTP generating functional, whose Legendre transforntroduced; accordingly, the number of external sources in the
yields the CTP effective actiofEA). The generating func- generating functional is also doubled, and the EA is defined
tional admits a representation as a path integral over fluctuaas a Legendre transform with respectaib variables inde-
tions in the field variables of the exponential of an actionpendently. The dynamics for the backgroufaso called
functional. By performing a partial integration over some classical or meagnfields is obtained by taking the variation
fluctuations, we obtain a new integrand which may be useaf the EA, and therbut only then imposing some constraint
to define the CGA11]. The change in the CGA as more on the mirror variables, in order to eliminate the excess de-
fluctuations are integrated away defines the dynamical RG.grees of freedom. The formalism is built in such a way as to
In equilibrium, there is an efficient way to code a descrip-make sure that the resulting dynamics is causal and respects
the reality of the background fields.
We wish to point out that there are other implementations
*Email address: zanellaj@dfuba.df.uba.ar of the doubling of degrees of freedom idea. The best known
"Email address: calzetta@dfuba.df.uba.ar in this context is possibly the so-called Martin-Rose-Siggia
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formalism [19] for stochastic differential equation$SDE), assumption made in inflationary cosmologsee, for ex-
which is closely related to the CTP approd@o]. ample, Ref[27]). There, the second time derivative of the
Since the CTP EA may be used to derive real and causanflationary field, which obeys a Klein-Gordon equation, is
equations of motion for the expectation values of field op-discarded when compared with the dissipative term.
erators(and, in an extension of the formalism, also for their ~ The goal of this paper is to put forward the essential ele-
correlations[10,21)) it is natural to define the RG for non- ments of the CTP approach to stochastic dynamics, and the
equilibrium field theory from the iterated coarse graining ofderivation of the dynamical RG therefrom. Rather than an
the CTP action. This approach to the RG has been put forabstract presentation, we have chosen to work on a specific
ward in Refs[1] and[2]. These authors show that, under the €xample. We have chosen a parametrization of the CTP ac-
adiabatic approximation, the RG defined from the CTP action for a scalar field theory whose variation leads to the
tion reduces to the usuéquilibrium) one. noisy KPZ equation in 3-1 dimensions[3-5]. We have
However, nonequilibrium field theories also manifest achosen this example because it is relatively simple, while its
regime(called strongly dissipative by Bereeaal.[22]) with ~ manifold applications warrant its physical coger[&/28—
very different properties from equilibrium fields. At the level 30]. Related with the KPZ equation is the Burger’s equation
of the CTP EA[23,24], this regime is characterized by the [31] which, among its multiple applications, has been useful
EA becoming complex, and also by the entanglement of thén describing problems of structure formation in cosmology
original field variables and their doubles, in such a way that32].
the CTP EA no longer may be written as the difference of The paper is organized as follows. In the following sec-
two independent action functionals. tion, we introduce the basic notions regarding the CTP for-
These nonseparable terms are associated with dissipatiéfalism; then we proceed to defining the CTP action and the
(when they are repland noise(when they are imaginayy =~ CTP generating functional for SDE, and show the connection
The joint presence of noise and dissipation, which is due tavith the usual(single-path functional formulation for SDE.
the unitarity of the underlying theory, is the dynamical foun- We then apply the CTP approach to the KPZ equation, cal-
dation of the fluctuation-dissipation relation near equilib-culating its associated CTP EA. In Sec. Ill we introduce the
rium. CG generating functionals and the corresponding actions or
On closer examination, it is not surprising that studies ofCGA. In Sec. IV we study the way the CGA runs with
the nonequilibrium RG in field theory so far have found nochanging coarse graining, and compare the resulting RG with
evidence of this strongly dissipative regime. The case ighe one derived by other means. We show that the resulting
analogous to, for example, the situation in thermal fieldRG displays nontrivial running for the noise and dissipation
theory in four space-time dimensions. An approach to thderms in the action. We conclude with some brief final re-
renormalization group based on the ultraviolet behavior ofmarks in Sec. VI.
correlation functions(which is insensitive to temperature  In Appendix A it is shown explicitly that the field equa-
[25]) will fail to disclose the nontrivial fixed point at very tions derived from the CTP EA for the KPZ equation repro-
high temperatures, when the theory becomes effectivelgluce the right dynamics for the classi¢at., mean or back-
three dimensional. In the same way, the RG derived undeground field. In Appendix B we compute the CGA to second
the adiabatic approximation is insensitive to noise and dissiorder in the nonlinearity. In Appendix C we show that the
pation, because these are nonadiabatic eff&€its effective theory for the modes that survive the coarse grain-
In the thermal case, what is needed is an “environmening of the KPZ CTP generating functional, is equivalent to
tally friendly” approach to the RG26], where temperature that obtained by coarse graining the equations of motion of
dependent correlations and coupling constants are usdfe field.
throughout. In the nonequilibrium case, the starting point
must be a noisy and dissipative CTP action, including new
parameters associated with the nonadiabatic terms. [l. CLOSED-TIME-PATH AND STOCHASTIC
The stumbling block in the completion of this program is DIFFERENTIAL EQUATIONS
the lack of an efficient parametrization of the nonadiabatic . _ .
CTP action. Of course, it is possible to start from the adia- Aﬁ?f a brief review of CTP formalism, we shall procged
batic action(that is, the difference of two Lorentzian actions [© defineé the CTP action and the CTP generating functional
for the field and mirror variables, respectivend derive the for a_qlass of SDE. Next, we shall gpply our mgthod o the
nonadiabatic action after coarse graining some of the quarpPecific example of the KPZ equation, computing the CTP
tum fluctuations. However, the fact that this is necessarily=" and deriving from it the equation of motion for the clas-

done in some kind of perturbative schervehich assumes Sical field.
that the resulting corrections to the action are smalla

large extent defeats the purpose of the whole exercise. How-

ever, the strongly dissipative regime of nonequilibrium field

theory truly exists, to such extent that most practical appli- In the usual In-Out formulation of the quantum field
cations of nonequilibrium field theory are actually based intheory, the basic object is the vacuum persistence amplitude
stochastic classical field theory, kinetic theory, and even hyZ, which encodes all the dynamical information of the theory
drodynamics, all of them limiting cases of the strongly dis-[33]. Suppose we are dealing with a scalar field theory. Then
sipative regime. An interesting example is the slow rollingwe define

A. Closed-time-path field theory
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W, J ]=—ilnzZ[3*,37], (5)

Z[J]E(Ouﬂln>J=J D(D(x)exr(iS[(D]HJ Jo|. (1)

and classical fields
Here S is the action of the fieldb, and J is an external
current coupled linearly to the fieldlf not indicate explic- . SW[JIF,J7]
itly, the integrals are over the entire space-timEhis func- Dci(x)= SFY R
tional generates matrix elements of operators between In and )
Out states, rather than proper expectation values referred Oext we define the CTP EA as the Legendre transforiwof
single state. Hence, this formulation is useful when one as at i's
guestions about scattering problems or rate transitions, for '
instance. But if we want to deal, in this formalism, with the
time evolution of true expectation values, we must be ableto ~ T'[®_,®_]=W[J*,J |- f Jtol+ f J®,, (1
relate two different complete set of states, e.g., via Bogol-
ubov coefficients, in order to relate the In and Out basesypere it js understood that the currents have been expressed
Instead, we can use the functional integral method developegl ,nctions of the classical fields, via relatiof®. The

by Schwinger and Keldysh, known as CTP formalifs].  oquations of motion for the classical fields can be written as
In the In-Out formulation, when working in the Heisenberg ¢,|ows:

picture, the vacuum persistence amplitidg is also given

by + gy
o'[d,,, P
P el . °']=:Ji(x). (8)

|n>, (2) 5CDC|(X)

(6

Z[J]=<Ou4Texp{iJ d*x I(X) D (x)
) ) The common value o/, and®,;, whenJ™=J", is real,
whereT denotes temporal order, add, is the field operator pecause it is a true expectation value. It can be shown from
in the Heisenberg picture. By contrast, in the CTP formulathe definitions above that it obeys a causal equation of mo-
tion we define a more symmetric object, namely, tion (see, for example, Refl16]). On the contrary, in the
Z[37,37 1= 5-(In[In )+ In-Out formali_sm the clz_issical fi_eld is not necessarily r_ee_ll,
’ J J nor the equation of motion that it follows is causal, as it is

- t* not a proper expectation value, unless the In and Out states
=<|n Tex;{ “i["at [ ex 0 00u0|  coincide,
o It will be convenient to rephrase the CTP formalism in
* terms of p=P*—d~ andp=P*+d . The CTP condi-
xTex;{if dtf d®x J* () Py(x) In>. tion will be given by ¢(t*)=0, and the classical equations
o of motion by
() 5

That is, one compares the final states that result from the %: —j(x), 9
evolution of the In state under the influence of two external
currents J* andJ~. HereT means antitemporal order, and 5Serd b, ¢]
t* is some late time, which in practice it is chosen totbe. Ot P —J(x), (10)
It is easily seen that the derivativesZ{fJ*,J~ ] evaluated at Se(X)
J*=J" generate true expectation values of product of fields.
In terms of path integralZ[J*,J~] has the following rep- Wwhere
resentation PR R U

- = (11

Z[3737 = DO (x)DP~(x')
DF(tF) =D (1*)
Moreover, we shall have
XeXF{i S[(D+]_S[(I)_] (S\N[\],J] 5\/\/[\],]]

bei(X)= S ¢ci(X)= %) (12

: (4)

+jJ+<I>+—JJ‘CI>‘

The quantityS[® *]— g @ "] is the CTP action 08z1p. In ST
Eg. (4) we integrate over historied ™ and® ~ that join at ———[ et 0c]=—1, 13
time t*. As in the In-Out formalism, the classical equations 5¢ei(x)
of motion are obtained from the variation of the action with -
respect to the fields. _
We can define a generating functional 5¢e(X) [ e @al=—J. (14

We obtain more symmetrical equations of motion
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When J=0, the first of these equations gives the physicalwhere
equation of motion, and the second one is trivially satisfied.

1
— _ -1 ’ ’
B. CTP approach to stochastic differential equations P n]—expl’ zf dx dx 7(ON"Z(x,x") 7(x") 1 (19)

The causal and real evolution obtained from the CTP for-
malism, suggests that a CTP action that reproduces this the probability distribution of the noisg, andN~* means
Langevin equation for a stochastic theory described by dhe inverse matrix oN. Hence, we can write
field ¢, could as well be used to compute the correlations of
the field and to derive the equation of motion for the classical )
(i.e., mean field by employing the corresponding CTP EA. ZCTP[‘]J]:J DnD¢ Dy P[ 7]
In its turn, the defined CTP generating functional can be used
to implement the RG in the same fashion as it is imple- .
mented at the level of a thermodynamic partition function for xexp iScrel .. 7]
systems in equilibrium. In this way, one would find an alter-
native route for the usual dynamical RG,2]. ; J ;
Let us consider a stochastic differential equation of the 1 dXIX) ()00 15 20
general form
where
de(Xx)
at

Tlel(x)= —Kle](x)=n(x), (19

Screl &, ¢, 77]=Cf {p(X)T [](x) = n(X) p(X)}dX.
whereK[ ¢] represents a differential operator not including (21)
time derivatives, and wherg is a zero mean stochastic func-

tion with Gaussian probability distribution. It can be seenty. \ariation of this action with respect t, leads to Eq.
that this equation is obtained from the following CTP actlon,(15). This method allows us to relate the imaginary part of

as explained below: the CTP action, quadratic in the fied] to stochastic sources
[34,2,9,35,36,21 The constant can be absorbed by rede-
SCTP[d’a(P]:CJ’ dx ()T [¢](X) fining ¢ asc™1¢; therefore¢ and ¢ will not have, in gen-
eral, the same dimensions. The variation of E2{l) with
i respect to the fieldp, gives the equation of motion fap.
+c2—f dx dX ¢(X)N(x,x")p(x"). This equation contains information about the evolution of the
2 response functions for the physical fiedd This will be clear
(16 in Sec. Ill, where we use the equation férin deriving the
Feynman rules for a particular example.
Here N(x,x") is the two point correlation function of the Let us show that the CTP generating functio(id) is, up
noise », andc is a dimensional constant that makes theto a Jacobian factor, the generating functional usually defined
action dimensionless. The dimensionsaill depend on in the theory of SDE from a probabilistic approgdv,37—
the physical interpretation we give g e.g., the potential in  39], namely,
fluid mechanics, the height function in surface growth. The
CTP generating functional for this action is

2091= | Dy P[n]exp(i | de<x><pS<x;n]). 22
Zerd.1= | Do Do exp{ismpw,go]

Here ¢4 (X; 7] is the solution—assumed unique—of Eg5)
for a particular realization of the noisg whose probability

+i f dx[I(X) @(X) +j(x) ¢>(X)]]- (17)  distribution isP (19). The derivatives o with respect to the
external curreng give the correlation functions of the field,

- o : here the average process is referred to the noise probability
The CTP tiongp(t— o0) = tood.T where tn ; : . :
‘[,ﬂ eE(; ff;dl |€vr;¢( ;;:e)rv:, Ifh:?de:;eoodte?mam\é;p distribution. This formulation of the stochastic problem is

) : : equivalent to the Martin-Siggia-Rose formalig9] (see
—(c%2)fdxdX ¢(X)N(x,x") p(x")} in Eq.(17), can be writ- . .
ten as the functional Fourier transform of an auxiliary func-REf' [40D. We_now demonstrate that it is _also equwalent toa
tional. We find, up to a constant factor, CTP formulation based on E¢l7). Inserting the following

identity in Eq.(22):

C2
exp{ - ?f dxex SOON(xX) f(x )} f Do oL ¢(x)— e(x; p1]=1, 23

=fD77 P[n]exr{—icfdx 7(X) p(X) |, (18

we obtain
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Z[J]=J DnDe P[1]5 [@(X)— @s(X; 7]] K[@](Xl)Ef dXoU5(X1,X2) 9(X2)

Xexp[if dx J(X)(p(x)]. (24) +f dx0d%3U3(X1,%2,X3) 9(X2) 9(X3),

29
Changing variables in the argument of the delta functional 9

yields and Uq(x1)=7n(x;). Hence, remembering that the noise
term in Eq.(16) is recovered after Fourier transform the

guadratic term ing, the classical and physicéale., J=0)
Z[J]ZJ DnDeP[7]o [T[e](X)—n(X)] equations of motion derived from the CTP action—E(@.
and(10), will be
xjexp{if dx J(X)(p(X)], (25 8Scrp  do(Xy)

Sp(x1) ot _fdxzuz(xl,xz)w(xz)

where
- f dXodX3U3(Xq,X2,X3) @(X2) @(X3)

0T [¢] d  Kle]

J= de4 S }_det{ﬁ_ o =U(xq), (30
is the Jacobian associated with the change of variables in the %Sere _ _ IP(x) _ f A% (X2) U (X0, X1)
delta functional. If the operatd{ does not contain any time op(X1) ot
derivative, the Jacobian, up to a field independent factor, is
given by[17,40 -2 f dxp0XsU (X X3, X1) $(X2) ¢(Xs)

1 SK[ ¢] =0. (31
j—exp[ — Ef dx 500 | (26)

These are the same as E¢.1) and(3.1b in Ref.[19].
: . . . To conclude this section we compare the CTP approach
The next step is to expand the delta functional in Fourier ;. e single-path approach to SDE of REE7] (see also

components, that is, Refs.[37,38,42). The difference arises in Eq25). If the
integral over the noise is performed explicitly with the aid of
AT [¢](x)—n(x)] the delta functional, we get
B f D¢ eXP{i f dxpOOLT Ll ’7<X>]]' 2[9]= f D¢P[T[¢]]JeXp{i f dx I e(x) (. (32
(27)

Using the definition(19), and leaving apart the Jacobigh

and then replace this expression in E@5). The integral we obtain the following single-path action:

over the noise is done explicitly using Ed.9), yielding 1
Ssp=— Ef dx dX T[e](ON" X" )T[¢]l(x'). (33

Z[J]= | D¢pD iS yol+i]Jd , . . . .
1] f ¢ ‘pjeXp[l ctel ¢.¢] If (X)(P(X)J While it is a valid representation of the generating func-

(28)  tional, this action cannot be used to generate the dynamics of
the classical fields. To see this, suppose that the opdfator
where the actiorSc1p is given by Eq.(16) after absorbing Eq.(15) is linear ing, and moreover that the Green function
the constant into ¢. G, associate with that equation, is causal. The assumption
We see that, when the Jacobidns field independent, the regarding the linearity oK implies thatSsg ¢] is quadratic,
expression(28) can be identified with the CTP generating and that the Jacobiay is field independent, so it can be
functional we defined before motivated by more heuristicignored. Becaus€ is a linear operator, the classical field
considerations. This happens for a broad class of 88  associated witlSgp will obey the classical equation of mo-
including the KPZ[41] and Navier-Stokes equati¢B9]. tion obtained from the variation @sp. So, when an exter-
It can be seen that Eq&) and(10) are equivalent to the nal current] is coupled to the field we obtain
equations proposed for the physical and the nonphysical field
operators, respectively, in the work of Martin, Siggia, and
Rose[19]. To show this, we adopt the notation of that paper, ‘pc'(x):J dx,dXpdXsG (X, X)N(X1,X2) G (X2, X3)I(X3).
thus (39
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Because of causality the Green function verifi@éx,x;) A. CTP action and generating functional for KPZ equation

_ t — . . .
*6(t—1t;) andG'(xz,X3)* 6(t3—1t2), and hence we cannot  Ag demonstrated in Ref41] the Jacobian7 associated
affirm that ¢ obeys a causal evolution. Therefore the physi-ith the KPZ equation is field independent, and hence we

cal meaning ofp is limited, as for the classical fields in the ¢4 define a CTP action for the KPZ equation which de-
In-Out formalism of quantum field theory. This problem is g¢ripes the stochastic dynamics of the field In 3+1 di-

related to the fact that operat@rappears twice in Eq33). mensions, absorbinginto ¢ Eq. (16) yields
As noted in Ref[37], the set of solutions associated with the ’

variation of Sgp in Eq. (33), includes not only the solutions 4 A )
of Eq. (15), which are causal, but a set of spurious solutions. SCTP[¢:‘P]:J d*x ¢(X)£<P(X)—§¢(X)(V<P) (x)

Ill. CTP APPROACH TO THE KPZ EQUATION + sz d*xd*x" p(X)N(X, X" ) (x"),  (36)
In this section we apply CTP methods to the KPZ equa-
tion [3], where
dg \ L= I V2, (37)
E_VVZ(P_E(V‘P)ZZ 7, (35 &

N(x,x") is the two point correlation function of the noisg
assumed Gaussian and having zero mean value. With these

where 7 is the noise term, assumed to have some particulagefinitions and per the early discussion we see that the KPZ
Gaussian statistics. The KPZ is a well known equation thaéquation is attained.

belongs to a general class of stochastic nonlinear differential
equations of diffusive type, for which our method can be
extended straightforwardly.

There is a large amount of literature regarding the KPZ If the nonlinearity is absent, i.e., ¥=0, we are dealing
equation(see, for example, Ref5] and references thergin ~ With the free case, and the corresponding free action is
We mention here only a few points concerning it. In the
context of fluid dynamics, the KPZ equation is derived for So[(ﬁ,qo]:f d*x B(X) Lo(X)
the case of free-vorticity, null-pressure fluid,V ¢ being the
velocity field. When used to describe some phenomena re- i
lated to surface growtfi3,5], the KPZ equation is also de- +—f d*xd*x’ d(X)N(x,x")p(x"). (38
rived as one of the simplest nonlinear extension of the 2
Edwards-Wilkinson equatiorg measuring surface height. In
addition, the KPZ equation is closely related with flame-front
propagation[28], dissipative transporf29], and polymer
physics[30], to quote some. When derived from Navier-
Stokes equation, it is seen that the nonlinear coupling must

B. The free case

When linear couplings of the fields with external currents are

included, the variation of the free action with respect to the
fields, gives the classical equations of motion, namely,

be A=1, which is not necessarily the case in treating, for %S0 :L(P(X)JFJ A% N(x,x" ) b(x") = —j(x). (39)
example, surface growth. The noiseless KPZ equation is Gal- ~ 9¢(X)

ilean invariant, a property which, in the case of a fluid, is

inherited from the Navier-Stokes equation, and that in the S _

context of surface growth is related to the rotation symmetry So(x) LX) == I(X), (40

of the coordinate system. If the noise is white, and transla-

tion invariant, this symmetry is preserved by the noisy KPZwhere

equation as well. This fact implies a nonperturbative result

concerning the running of the coupling when the RG is

implemented 4,43], thus reducing the number of indepen- L* =t A (41)
dent scaling exponents. As in the paper of Forster, Nelson,

and Stephen for the case of Navier-Stokes equgddi(see  \yg can write the solutions to EqE89) and (40) in terms of

also Ref.[45]), one can derive the RG equations by COarsGhe fundamental solutiond and G*, which satisfy
graining the equation of motion of the field. We want to

apply ideas concerning the CTP formulation of quantum field L,G(x,x")=L*G* (x,x") = & (x—x"). (42)
theory in order to implement this RG transformation at the R X ’

level of a CTP generating functional. Exolicitly (in 1+ 3 dimensionswe have
We begin by defining the CTP action and generating func- xplicitly (i ! longw v

tional for the KPZ equation. The free case is examined in (=X 2t~
order to implement the perturbative calculation of the EA for G(x,x')= e o(t—t"), (43)
the interacting case. (4mv|t—t[)%?
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e(;—i')2/4v(t—t/) The corresponding functions in the momentum space are
G*(x,x')=— —— 0(t' —t). 44
(x) == Rt (49 |
(d(p)(p'))=0,
Hence,
N(p,p")
#00= | 45,6 0030, (45) )= A @
1 I(Xq (e(P)e(p")) [ip%+ vp2][ip O+ 2] (51)
X)=— | d**{G(x,x1)j(x .
®(X) j 1G(X,X1)j(X1) , i5(p+p')
(d(P)e(P"))= — =7
[ip""+vp’]
—if d*x,d*x,d*x3G(X,X1)
X N(X1,X) G* (X5,X3)I(Xa). (46)  [We indicate the Fourier transformed fields with the same

name as the original fields, and use the following convention
(There is the freedom on adding some arbitrary solutions ofn  d+1 dimensions: f(p)=(2)~ (4" D"2[d%dx%exp
the homogeneous equations. However, the only such solutiO{rLi(poxo_ﬁ,;)}f(X), wherex°=t.]
which is bounded for all times is identically zero.
If J=0 then¢=0, ande is given by
C. The interacting case

—(X—X1)2/4v(t—
@(X):—f ay € o B(t—t))j(xy). (47) Let us go back to the definition of the generating func-
Y (Gmvlt—ty))3? AR tional for interacting field¢dropping the CTP subscripts
This entails a causal evolution. : :
Z[J,jl= | DD S[ ¢,
We define the generating functiondj[ J,j] for the free [9.1] j ¢ ¢exr<l L6.¢]
fields

+if dX[I(X) p(x)+IX)e(x)]]. (52

2o3.1= [ PooDetexd is b0+ [ 0+ 3¢)].
(48 The EAis given by

The mean fields are obtained by differentiating In Z, with

respect to the currents. Having in mind that for the free case

the mean fields satisfy the same equatit88 and (40), we e, @c]=—11n Z—f d*X[ ei(X)j(X) + @1 (X)I(X)].
find (up to a normalization factr (53)

. i .
Zo[J,l]IeXPéf d4X1d4X2{ —J(X1)G(X1,X2)j(X2) and admits the CTP representation

(X)) G* (X1,X2) I(X2) =1 I(X1)
ell'lecr ecil = f Do(X)Dp(x)eSleert ecitel (54
X 1PI

f d*x3d*x,G (X1 ,X3)

where 1Pl indicates that only diagrams one particle irreduc-
‘](X2)}' (49 ible must be included in the diagrammatic evaluation of the
functional integrals.
The two point correlation functions are given by the second For the KPZ CTP actiori36) we have
derivatives ofZ,, so we have

XN(X3,X4)G* (X4,X2)

(H(X)p(x"))=0, S et b @c1 T @]1= L e el + Sl b, 0]
(e (X)e(x")) 5[ axoV e puv o2
= _f d4X1f d*X,G(X,X1)N(X1,X2) G* (Xp,X'), +2¢V ¢V ¢ lx
(50) +lineartermsin¢g and ¢. (55
Taking the logarithm of Eq(54) and expanding t®(\)?,
(p(X)p(x"))y=—iG*(x,x"). it results
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A
Mg eel=S b 0el— 5 | EXHT )+ bV o)?

in?
+2V‘P'V(Pcl]x>+?f d4Xd4X,<[¢(V¢’)2

+ (V)2 +2¢V - Ve ly
X[H(Ve)2+ de(Ve)?

+2¢V‘P'V(Pcl]x’>connected (56)
where the averaging operatign- - ) is defined as
f DpDee A §,¢]
(F.el)= . (57)

J' D¢Dee'Sol ¢l

A
AY e, @cl]l= QJ d*p1d?poAii(P1—P2.P2) dei( —P1) +

Aij(P2,P3)(P2— P1)i( —P1+ P2+ P3);

PHYSICAL REVIEW E 66, 036134 (2002

Note that the termr{(¢V¢- Vo) (dV - Vo )y ), which
could give a nontrivial equation of motion fef.,, vanishes,
because it is proportiondup to spatial derivativeso

(p(X) (X)W P(X") (X)) O(t" —t)O(t—t").

Since Sy is quadratic, expectation values may be written as
products of the two-point correlation functions given in Eq.
(500 and (51). Hence, after Fourier transformation of Eq.

(56), the result is

Il éct,ci]l= bei el A der, ol (58)

where

in2 _Aij(pzy_pZ)(ﬁl)i(51+52)j

d*p,d*p, = S =
64#“ [—pi+vpill — (pa+p2)°+ v(p1+P2)?]

+4i f d*p,d*p,d*ps

+ f d*p;d?p,d*pad*psAi; (P2, P3)Ajj(P1—P2.P3— Pa) bei(—P1) bei(—P3) | -

The sum over repeated indices is understood, and

[(p1—p2)°+ ¥(P1—P2)?]

dci(—P1) @ci(P1—P2—P3)

(59

N(p.p")

Ajj(p,p")=

are obtained whegp, J=0. Thus, toO(\?),

or

[ip%+ vp?][ip’ %+ vp’'?]

The equations of motion for the classical fields result from the first variations of the EA. Those with proper physical meaning

pip; - (60)

- A . . A
- — —Tin0 2 . 4 A _ _ o 4 = _
Sda(—p) [¢c1=0,0¢]=[ip"+ vplec + 8772~f d*p1p1- (P— P ¢ci(P1) eci(P p1)+8772f d*p14i(p—p1.P1)

- 167 P2

The equation

or
<~ [ba=0,p]=0 (62

O (—p)

is automatically satisfied.
In Appendix A we show explicitly that Eq61) is also
obtained by averaging the KPZ equati(86).

\? Jd“ 4 Aij(P1,P2)(P1—P)i(P1+P2—P);
' [(p—py)°+¥(p—py?]

ec(P—=P1—P2)=—j(p)- (61)

IV. COARSE GRAINED CTP ACTION FOR THE KPZ
EQUATION

In order to implement the RG transform, we analyze the
influence that the modes of higher wave number exert on
lower ones, by computing the C3A,2,11,48. When we are
only concerned with the lower wave number sector of the
theory, we can carry out explicitly, in the generating func-
tional Z, the integration over the higher wave number modes,
and the result of this partial integration will be a functional
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of the lower wave number modes only. This functional isnumber modes. That can be accomplished merely by the
indeed a generating functional for the lower modes, in whichvariation ofZ with respect tg andJ. . Therefore, it will be
the influence of the higher modes is incorporated as modifienough if we set, from the beginning, ,J~.=0. The CGA
cations of the original action. is achieved by performing explicitly the functional integra-
This procedure may be seen as a straightforward applicaions over ¢ and ¢-. We rewrite the actiong ¢,¢]
tion of the Feynman-Vernon influence functional techniques=g ¢. + ¢ ,¢- + ¢_] in the following manageable way,
to this problem[34], where the low wave number sector is which will be useful to compute the CGA perturbatively,
regarded as “system” and the short wave modes as “bath.”
To the best of our knowledge this approach has not been
systematically discussed in the literature on SDE. There exist g ¢_+¢_ 0.+ o_]=F - @]+ So[ - -]
works where the RG is also derived from functional formu-
lations of the stochastic theofgee, for example, Ref40] +S[¢= . b 0= ,0-]. (66
for critical dynamics of helium, antiferromagnetics, and
liquid-gas systems; or Ref§43,47 for the KPZ equatio . -
T?le crgucial)éjifference betvﬁen tﬂhese works an(?the F?resej:'ere,Solcorresponds to the free action of the original theory.
paper is that we coarse grain the generating functional ex- ence, it results
plicitly, imposing an ultraviolet cutoff, while in the cited pa-
pers the RG is obtained from the study of the singular ultra-
violet contributions to the many-points response functions. — .
We start with our early definitioti52) of the generating 2l3< 'J<]_f DQD<D¢<GXF{'S[¢< <]
functional for the interacting fields

'Hf d4X[j<¢<+J<(p<](X))

213,)= [ DéDeexd isls.¢) | |
x[f D<P>D¢>e'30[¢>,¢>>]+'5|[¢<v¢>,<P>,<P<]]

+if d*x[j(X) () +IX)e(¥)]|. (63

:f D¢<D¢<eXF<iS[¢<:(P<]

Now we split up the field and currents, according a scale that

we shall choose below, . . ;
+1 j d4X[J<¢<"’~J< (P<](X)) glAsld< o<l

o=t o., (67)

b=+ b, The CGA is defined as

j=is>+i<,
Scal P« o< 1= ¢, 0| +AY ¢, 0] (69)
J=J.+J_.

Here, ¢~ contains the modes of higher wave number, In the present paper we are concerned with the KPZ equation
contains the lower ones, and analogously for the other quarnd with its associated CTP acti¢86), which inp space is

tities. The division will be specified by a cutoff, given by
d*k oo i -
— i (K¥x"—k-x) kO k 4 . N
e fmqs(zqr)ze e, (64 S[¢,<p]=f d*p ¢(—p)(ip°+ vP?) ¢(p)

A
oo +5 | d*odtpdtny2m) 26(py+ o po)
e-0=[ S0 e00k), (69 2) PR R
As<|Kl<A(277)? I
X P2 P3d(P1) ¢(P2) ¢(P3)
and so on. Herep(k) is the Fourier transform of the field |
;il(égr,yand/\ can be identified with a natural cutoff of the + if d%p,d*p,d(p1IN(— Py, — P2) H(P,).
In any case, the correlations are obtained from the varia- (69)
tion of Z with respect to the currents, and after that, by set-
ting the currents equal to zero. As stated earlier, we just want
to compute correlation functions involving the lower wave Splitting the fields according to wave number yields
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S[¢,go]=f d*p ¢><—p><ip°+v62>¢><p>+f d*p ¢ (—p)(ip°+ vp?) o (p)
i i
+ EJ d*p1d*p2h- (PLIN(—= Py, = P2) b= (p2) + Ef d*p1d*p2cb < (P1IN(=p1,—P2) $<(P2)

. A ) .
""f d4p1d4p2¢>(p1)N(—pl,—p2)¢<(p2)+§f d*p,d?p,d*pa(2m) “28(py+ P2t P3)P2- Pa{ o190-20-3

TP 1920531 2¢ 1000 3T 21020 3T P10 3t ¢<1‘P<2€D<3}- (70

We shall assume that the noise is translation invafi@ht therefore the term in the third line is zero because of orthogonality.
Hence, as before, we have

] i
So[¢>y€0>]:jd4p ¢=(=p)(ip®+vp?) - (p)+ Ef d*p1d*p2h- (PLIN(= Py, = P2) b= (P2), (7D

and using the definition given in E¢6), we find

A N
S[¢=, b 0=, 0-]= Ef d*p1d*p,d?pa(27) 281+ P2t P3)P2: Pa{ o105 20-3F Do10=20-3T 2010203

+2¢’>1¢>2‘P<3+¢>1<P<2§0<3}- (72)

Therefore, from Eq(67), we obtain

) ) i\ .
e'AS[¢<"P<]:f D¢>D€0>9'50[¢>'¢>19XF{?I d*p,d*p,ad?pa(2m) 28(py+ P2t P3Pz Pa{d= 105 20-3F P10-20-3

+2¢<1‘P>2€D<3+2¢>1¢’>2€D<3+¢>1‘P<2<P<3} . (73
When the noise is white, TI, and has no spatial correlations, we have
N(p,p’)=2D &(p°+p'%)8(p+p’), (74

whereD is the noise amplitude. For this cagee details in Appendix B

A i
AS ¢ o ]=— EJ d*p(2m)28(p)F p(p)+ Ef d*p ¢~ (—p)2 5D p(p)

4

d* d
+i>\2DJd4q<f4—7;¢<(—p)¢<(p—Q)A(p,Q))<f4—772¢<(—p)¢<(p+Q)A(p.—Q)

. A2
+2D7\2f d*p ¢<(—p)<p<(p)><p25v(p)—7f d*p d*q d*k d* C(p,q.k,) - (—p)e- (D e (K)o (1).

(795
|
We have defined the tadpole amplitude, d*q
26D=2D2)\2f—
412
d‘g  2Dg’M(q) Lo
= —, 76 “(p—q)1°M(q,p—
flGWA[(qO)2+V2(q2)2] o X 0\2 2[q*2(2 q)(:)l f)qu S) S 227!
[(a)*+ 229 IL(p =)+ vH{(p—a)}7]
the noise amplitude correction (77)
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the functionA, related to the arising of multiplicative noise, (i) The integration fromA to A—0 is performed not at
once, but in repeated integrations over infinitesimal shells in

(p—a)-q three-momentum space. In integrating over one such shell,
A(p.0)= (i0%+ 13?) (@), (78 the cutoff changes from’ to e SA’~(1— 8s)A .
(i) After each shell is integrated, the fields, lengths, times,
the viscosity correction momenta, etc., must be rescaled to bring the theory to its
original aspect. In particular, the rescaling of momenta must
- dq adjust the cutoff to its initial value at the beginning of the
p25V(I0):f o process, and, in addition, some factors can affect the cou-

pling constants.
gl When combined and repeated these operations give sen-
“(p— “(p—q)M(q,p— . )
. g (Fi @)p-(p—AM(q E (i) , sible results. It must be clear that we are not simply calcu-
(i9°+vg*)[(p°— %)+ v*{(p—q)*}?] lating an integral as the sum of discrete contributions from a
(79 partition of the domain, because at each step the coupling
constant that measures the perturbation is renormalized, that

and thee? -interaction coupling is, at each step we are perturbating with respect to a different
coupling constant; it is an iterative process that gives mean-
C(p.a.k,)=(2m) " *8(—p+q+k+1) ing to the whole integration between and A —0.
. In Sec. IV we have already performed the first step of the
g-(k+Dk-I M(k+1) (80) RG scheme: the coarse graining of the generating functional.

The result was that the generating functional for the long
modes is obtained from the original one by introducinga

[I(KO+ 1%+ p(k+1)2]

Inits turn,M(p,q, . . . k) means that the momenta in the set correction to the noise correlation function, given in E4)
{p.q, . .. Kk} are restricted(i.e, must be projectgdio the and(ii) a correction to the viscositylike coupling, given in
momentum shells\ < |p|<A, A¢<|q|<A, and so on. Eqg.(79), and finally by including a set of new terms: the first

In conclusion, when Eq(63) is coarse grained, the gen- (tadpole term the third (multiplicative noise termy and the
erating functional for the remaining modes is obtained byfifth (cubic interaction term in Eq. (75). Extra terms
modifying the original viscosityv and the noise amplitude are a common byproduct when one coarse grains a
D, and by adding some new terms: a tadpole term that corgenerating functiongl6]. Actually, the tadpole term can be
cerns the homogenous mode only, a multiplicative noise terrgliminated by a simple transformationp(p)— ¢<(p)

(see Appendix B and a cubic interaction term. We remark +i2m°\Fd56(p); thus only the multiplicative noiséMN)
that the noise terms are read directly from the imaginary par@nd the cubic interactio(Cl) terms remain. At this point, if

of the CTP CGA. we proceed further and repeat the coarse graining, it can be
seen that, a©O(\?), no others terms arise. The effect of the
V. RENORMALIZATION GROUP FROM CTP CGA MN and that of the ClI is just to correct the terms already

present in the CGA in a way that can be traced systemati-
The actionS we started with(36), is actually a coarse cally. Hence, the first time we do the coarse graining is very

grained action. The fieldg and ¢ are assumed to describe special, because the effective viscosity is now a momentum
the physical world up to certain degree of resolution, limited,dependent function, new terms arise that were not included
eventually, by a natural cutoff, as can be the atomic size in in the original action, and no other terms appear when we
a turbulent fluid or the Compton length of heavy particles inrepeat the coarse graining.
particle physics. When we integrated the higher wave num- The natural question is why not to include this momentum
ber modes in the generating functional, we obtained a newlependence and the new terms from the very beginning. The
action, suitable for a physical description with a lower de-momentum dependence of the viscosity can be ignored if one

gree of resolutiom. _ _ _ is interested in th@—0 limit of the theory only. The MN
Suppose that we are interested in the behavior of thang C| terms, because of the constraint that some momenta
theory at momentum scales not superior tieafiA, with s myst be on the shell, involve modes that despite being
real and positive. In principle, this implies that, in the inte- yyst lie close to the shell. Hence, if it is assumed that the
grations we performed in Sec. IV, some linear combinationgie|ds < have support near the origin, these extra terms van-
of the momenta must be restricted to the slelfFA<|p| ish. Moreover, under certain assumptions MN and Cl terms,
< A. Often we are only concerned with the smallhodes, as more and more shells are integrated and the variables
for which p is near to 0. Hence, we must integrate all therescaled, tend to vanish, i.e., they are irrelevant terms. We
modes except those very close to the origin, as close as neshall not include them in our treatment of the R&e be-
essary to obtain a leading order result. However, it can béw). In what follows we shall work out in an arbitrary num-
seen that in the case of the KPZ equation, as in others, dber of spatial dimensiond, and, furthermore, assume that
vergences arise in the limit ohg—0, indicating that the initially A=1, with the appropriate dimensions. As before,

perturbative approach fai[8-5]. the noise verifies Eq.74).
What we can do instead, is to implement the so called RG Let us study the smalp- limit of the corrections intro-
formalism[6—8]. The scheme is the following. duced by the coarse graining. We start with E£j7). There,

036134-11



JUAN ZANELLA AND ESTEBAN CALZETTA

g andp—q must be on the shell between{1s)A andA,
and because we shall restrict ourselves to the sméfhit,

PHYSICAL REVIEW E 66, 036134 (2002

a+z+d, which rescales the fielg(p) in the momentum
representation, matches with an exponent equal for the

we must inspect the behavior of the integral when the exterrescaling ofe(x). The choice of the exponent given fer,
nal momenta get close to 0. To lowest order, the effective makes the free part of the rescaled CGA form invariant, and

noise satisfies Eq74), providedD is adjusted by the follow-
ing amount 3-5J:

A2DKy
D= 085S,
413

(81)

whereK 4=S,/(27)9, andS, is the area of a unit sphere in

d dimensions. A similar conclusion is reached for E@9)
[3-5]; in the smallp limit, we find thatv must be replaced
by v+ Sv, where

A2D d-2

ov=—Kq— ——s. 82
42 4d (82

Hence, when attention is paid to the snyalinodes, the CGA

will be given by(eliminating the tadpole, discarding MN and

Cl terms, and dropping the subscripty

Sce[d’a(P]:f d***p B(—p)(ip®+[v+vIp?)(p)

A
+— [ d¥1p,d¥ p,d¥ tpaS(py+ pat pa)
872
X P2 P3d(Py)@(P2)@(P3)

i
+2[ 4 g(—pyr2D+2601000). (89

Next, we proceed with the rescaling. We tdke 1+ Js, and
define

¢(p°,p)=b*"**9e(p’®,p"), (84)
¢(p°,p)=b"**g(p'%,p"), (85)
wherep’°=b?p® andp’ =b p. Therefore, we obtain

SCG[¢!‘P] :hé[:‘ﬁr’(;’]

= [ @ 2 Bipycip® o v o1 ()

A
+ ba+z_2ﬁj dd+ lpldd+1p2dd+1p3

X 8(p1+ Pat P3Pz P3d(P1) @(P2) (P3)
i -
+ EJ' dd+lp ¢(_ p){b72a7d+z

X[2D+28D]}d(p). (86)

Some remarks are in order. The new varigplis such that

hence, we can iterate the process without further modifica-
tions.

In conclusion, after integration and rescaling are per-
formed, the action is characterized by a different viscosity,

V=(1+85) Y v+ 8v], (87
by a new coupling constant
N=(1+85)*" 272\, (88)
and by a new noise correlation coefficient
D=(1+6s) 2* 9t D+ sD]. (89

These are general relations, which are valid for every two
consecutive instances of the RG procedure. Finally, we can
arrive at a set of differential equations for the running of

these quantities, namely,

dv - \?D d-2 %
ds Y2 K s ) (90
an_ 2 91
&_)\[a—’_z_ ]1 ( )
90 bl —d-2 4 MPKa 92
ds ~D|zdzet #2

These are the well know RG equations for the KPZ equation
[3-5].

In the analysis we made above, we discarded some terms
that result from coarse graining the initial generating func-
tional for the KPZ equation, the MN, and the CI terms. In
principle, it is not difficult to take into account their effect in
a systematical manndfor the Navier-Stokes equation, see
Ref.[49]). However, providedi>2 we can see that both the
MN term and the CI are irrelevant in the special case when
we are near the trivial fixed point. This fixed point is given
by A=0, z=2, anda=1-d/2. The MN term rescales as
b2~ and the Cl a9 29, Hence, ifd is greater than 2
both terms tends to zero exponentially when .

We mention here that the concept of renormalization
group has also been fruitful in studying differential equations
within singular perturbation theof\60]. In these papers, the
renormalization is applied to the parameters appearing in the
perturbative solutions of the differential equations, and not to
the parameters of the differential equations themselves, as in
the present work. As pointed out by Kunihif61], the es-
sence of the method pioneered by Goldenfeld, Oono, and
their collaborators, is to find an envelope curve for a unipa-
rameter family of perturbative solutions, locally valid, of the

|5| runs up toA, as for the original fields. The exponent differential equations, selected among the whole set of such
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solutions, which depend on a greater number of parameterdiate range. The KPZ field, of course, is a collective mode

For an application of this method to field theory see, forwhen described in terms of the fundamental theory. We ex-
example, Ref[52]. pect to continue our research on this issue.

The renormalization group as studied in this paper, is a

necessary tool to understand the nature of collective vari-

VI. FINAL REMARKS ables describing the relevant physics in strongly interacting

nonequilibrium systems such as the universe during the re-

(a) With respect to the theory of the nonequilibrium renor- "€ating period and the gluon fireball in the early stages of a
malization group, we showed that it is possible to derive Jhigh-energy heavy ion collision. We continue our research on

nontrivial renormalization group flow from a CTP action. tis rewarding problem.

This renormalization group is different from the usual in

quantum field theory textbooksee, for example, Ref53]) ACKNOWLEDGMENTS

in that it describes nontrivial noise and dissipation. This re- _ . o,

gime has not been observed in earlier studies of the renor- Itis a pleasure to acknowledge discussions with Jefe
malization group from the CTP effective actift]. In Ref. ~ Mercader. This work has been partially supported by Univer-
[1], the starting point was a noiseless, time reversal invariangidad de Buenos Aires, CONICET, ANPCyT under Project
theory, which was investigated within perturbation theory.No. PICT-99 03-05229 and Fundanidntorchas.

But the relevant noise and dissipation effects are essentially

In this paper we accomplished the following two things.

nonperturbativg9]. A nontrivial nonequilibrium renormal- APPENDIX A: AVERAGE OF THE LANGEVIN KPZ

ization group can only be found in an “environmentally EQUATION

friendly” approach[26] where the basic description of the

theory already has noise and dissipation built in. As a way of comparison with the results of Sec. Il C, in

(b) From the point of view of the renormalization group this appendix we shall calculate the equation of motion for
flow in the KPZ equation, we have derived the relevant flowthe mean(i.e., classicalfield directly from the noisy KPZ
equations from an analysis that consistently considered onigquation(35). In momentum space it reads
the long wavelength sector of the theory. The usual approach
of deriving these equations from the ultraviolet behavior of N
response functiongt3], although technically correct, is con- [ip%+ vp?le(p) + _zf d*p1p;- (p—p1)e(py)
ceptually contrived. Being explicitly dissipative, the KPZ 8m
equation should not be regarded as fundamental, but rather
as the macroscopic limit of an underlying, unitary field
theory, even if we lack a full specification of this micro- .
scopic description. In Ref43], the renormalization group We write ¢ for the mean value of after averaging out the
flow is derived from a regime where the noisy and dissipanoise 5, and define the fluctuating fielgr according toe
tive effective description embodied in the KPZ equation= g+ 4. Therefore, if we average the KPZ equation, it yields
ceases to be valid, and the underlying unitary theory is re-
covered. The ultraviolet divergences in this underlying
theory ought to be idenpendent of temperature, and therefore
the same as in vacuum, leading to the usual “textbook”
renormalization grouf53]; we remark that by “vacuum” we -
mean the vacuum of the microscopic, unitary theory. For this X[e(p)e(p—p1)+{(&H(p1)¥(p—p1))]=0,
reason we believe that the approach in the present paper, (A2)
where no reference to ultraviolet behavior is made, is con-
ceptually simpler, although technically equivalent.

One thing we did not accomplish is to describe in detail@"d thus
the crossover from the high-energy unitary theory to the low-
energy noisy and dissipative effective theory. We bypassed . Y ..
this difficult problem by choosing as low-energy effective [ip%+vp?]e(p) + _2f d*psp;-(P—P1)
description a theory with a clear physical content. For ex- 87
ample, if the high-energy theory leads to hydrodynamics in — _
some regime, then it contains the Burgers and KPZ equation X124(P1) @(P= P+ Y(PLY(P—Po)
in the limit in which the pressure is null and the velocity field —(h(pr)h(p—p1))]1=n(p). (A3)
vorticity free. If we consider a theory of a scalar field, for
example, we knoyv this limit exists, because at low temperag, . shall write the solution fors as a power series in,
tures the field will behave as a condensate and develop a
negative pressure, while at high temperatures the theory will ) 1
be approximately conformally invariant, thus leading to a p(P)=¢ ™ (P)+ NP (p)+ - - -, (Ad)
radiationlike equation of state. Thus the pressure will be
much lower than the energy density at least in some intermedfom which the following expressions result:

Xo(p—p1)=n(p). (A1)

L0 2o A 4.z o
[ip”+vp ]qo(p)+§ d*pip1-(P—P1)
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n(p)

[ip%+ ) -

WO(p)=
(1) - -
vm 4mip%+ vp?]
x [ dipuy (5= B0I26p0e(p—po)
+ 4 Opy) O (p—p) (PO (p) ¢\ (p—p1))].
(A6)
Hence,

N(p,p")
[ip%+vp2][ip'®+vp'2]’

(pO>p)yO(p"))= (A7)
I I ——
4172[ip0+ vp 2]

Xf d4p151-(5—51)

N(p1.p")e(p—P1)
[ipd+vp2llip' O+ vp'2]
(A8)

JIN .
A ¢ o ]=—i {?J D¢>>D(p>e'so[¢> ¢>]

PHYSICAL REVIEW E 66, 036134 (2002

Coming back to Eq(A2) we find that
[ip®+vp?le(p)
N 4. = = = — _
+§J d*p1p1- (P—P1)e(P1)e(P—Pp1)

A 4
+ ZJ d*p14i;(p1,P—P1) Gij
8

2 Aij(p21p_p1)(5l_52)iﬁlj

[ipd+vpi]

_16774f d*p,d*p,

X @(p1—p2) =0, (A9)

where A is defined in Eq.(60). The changep;— —p;+p
yields to the same expression we found by computing the
CTP EA, Eq.(61), whenj=0.

APPENDIX B

In this appendix we evaluate E¢73) to order \2. We
start from Eq.(73). The average of an odd number bf
fields is zero, because of the parity of the free aciioh
when we change- by — ¢- and, simultaneously.. by
— ¢~ . Hence, up taD(\?), we find

J dpyoPy Pal 10203+ 2¢-1¢0- 203}

A2 . Coa .
—gf D¢>D<P>e'so[¢>’¢>][f dp1odiodd P3dz- U3 X{ P> 10-20-3P-T0=3¢=3

TP P AP20-30-30-3F 4P 10 2P A0 F0-30-3T 4030 FD 10520703

T O 203050 3D-10-TT 4P 1020705030320 20 3P=TP=30-30=1

AP 10 30-20-30-T0-3F 4P 1020 30-3¢0-3P-7}

Here, o; (¢-7) meanse_(p;) (¢<(d;)); dpapz stands for
d*p,d*p,d*p348(p,+p,+ps) and analogously fodq;,s.
In computing the last expression, as the logarithm of(Z8).

(B1)

] connected

N N(p.p")
(e=(P)e=(p")) [ip°+v52][ip’°+vf>’2]'

is taken, we must discard the disconnected diagrams associ-

ated with each functional integration. Also, we must have in

mind that when some integration variable, gay satisfies
Ip1|<As, thene-(p;) and ¢-(p;) will vanish; conversely

. is(p+p)
<¢>(p)(P>(p )>_ [lp,0+V5,2]

if |51|>AS. To evaluate Eg(B1) we can employ the propa- It is understood that if some momentum in the previous

gators given in Eq(51) with slightly modifications, that is,

<¢>(p)¢>(p’)>=0, (B2)

equations lies belowA g, the corresponding propagator will

be null. In Fig. 1 we give the convention adopted to represent

the propagators listed above. These propagators will be used
as internal lines in Feynman diagrams. When computing
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1)
@02 % 8(p+py+ps) PPy
_________ P —_——_—=== ¢<
1
Ps3
@
p/
{8.(p) .07 =
! P
\ /’
» \\ /
p p o ///
<¢>(p) ‘P>(P’)> = ~ ———
FIG. 1. Vertex and propagators used to calculate the coarse (b)

grained action for the KPZ equation. FIG. 2. Ordern Feynman diagrams for the coarse grained ac-

. . . tion. The external fields are indicated by double lines.
these diagrams, for each vertex there will be an integral over

the three momenta attached to it. After splitting the fields, they _ field. The contribution given in EqB3), in turn, can be
propagators quoted in Ed50) are not valid any longer. seen as a field-independent term added to the classical KPZ
However, because the split is in wavelength and not in ffeequation(Al). The remaining term 0©(\), represented in
quency, the causal properties of the propagators are still theig. 2(b), is zero. This is because the propagator
same. (= (p1)¢=(p,)) introduces a5(p;+p,). In addition to the
Consider the terms of ordex in Eq. (B1), the first of  conservation deltag(p,+ p,+ps), it implies ad(ps). The
which adds to the action a term thatfanctionally) linear in product of thiss(ps) with p,- ps force the whole integral to

¢<, vanish. We now proceed to consider the terms of okden
\ Eq.(BD.
— _f d*p(2m) " 28(p) b (p) (@ The first one corresponds to three connected, non-
2 equivalent diagramgFig. 3(a@)], and gives a contribution that
- does not depend op_. or ¢.. However, each of these
% f 4 N@.—a) q (B3) diagrams is zero, either because they entail a delta evaluated
Ag<lal<A 3(0)  [(q9%+v3(g)?]]’ in a momentum that lies outside the integration domain, or a
product of two mutually excluding’s. We shall find more of
where we have assumed that the noise representédiiby these cancellations below.
not only Tl but also white. Diagrammatically this term is  (b) The second term of ordew? [Fig. 3(b)], consists on a
shown in Fig. 2a). The external lines take trace of the  closed loop, and has the same structure as the noise term in
fields that are attached to a given vertex: a double continuouge original action. Explicitly, this diagram gives the follow-
line represents a_ field; a double dashed line is used for a ing contribution to the CGA action:

in? .
Tf d4P1d4Q1¢<1¢’<I|fd4p2d4p3d4Q2d4Q3(277)451235~1§§p2'p3QZ'Q3

N(p2,02)N(p3,0s)
(ipd+vp3)(ia5+vqd)(ip3+ vp3)(ia3+ vq?d)

M(p21p31q21Q3) ’ (B4)

where 83,3 stands ford(p,+p,+p3) and 8733 for 8(q;+9,+qs). M is the product of the projectors over each three-
momentum shell of its arguments, and is inserted to take trace of the proper integration domains, that is,

M({pi}>=li1 o(|pi| — Ag) O(A—|pi)). (B5)
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Up to this point, we assumed that the noise was zero mean Gaussian, white, and TI. For the sake of simplicity, we now assume
that the noise represented Bydoes not have spatial correlations as well, so that it satisfie67Bg.Equation(B4) now reads

i d*q [q-(p—a)]*M(a.p—q)
—| d*pd_(—p){2DN? | — = S— ~(p). B6
Zf P o<t p)l : f4772[(0|°)2+vz(qz)z][(|00—q°)2+vz{(lo—q)z}z]}q5 P (#9

(c) The third term ofO(\?) in Eq. (B1) adds to the original action a new term, not included previo{iBlg. 3(c)]. The
contribution of this term to the exponenciated CGA can be written as

. d*p (p—a)-q
1AS3 14— —\2 4 - — —g)—
gl S exp{ \ Dqu(f4wz¢<< Pe-(p q>(iq°+yﬁ2)M(Q)>

d*p [~(p+d)-d] )

X — -p) +)—————=-M(—0q)| (. (B7)

(J 4772<;’><( P)e~(p+q i+ ) (—q

In turn, we can regard this contribution as coming from a new source of noise, in a sense that will become clear after we
express'*%:rd as the functional Fourier transform of an appropriate expre$&iér2,9,35,36,24 That is,
(P—9)-4q
(ig°+»q?)

e‘AS3fd=Zf Dpexp(—[m\zD]‘lf d*q p(q)p(—q) exn|i(27r)‘2f d*q d*p p(q) p-(—P)e~(p—q) M(a) {,

(B8)

where Z is a normalization factor. Hence'*Ssd can be seen as the average of certain new term, according to the probability
distribution of the auxiliary sourcp. This distribution is that of a white, Tl, and Gaussian noise, which has a second order
momentum equal to @\?. Moreover,p is a multiplicative, rather than an additive noise.

(d) The fourth term of ordex? in Eq. (B1), is represented as a one loop diagram, built up by two propagaterg-. ) [Fig.
3(d)]. When calculating this propagator in the coordinate representdijon(x) ¢-.(x’)), the separation on lower and higher
(spatia) wave numbers modes, does not prevent the arising @t a—t), as result of integrating® in the complex plane
when the Fourier transform of¢-(p)e~(p’)) is performed in reverse. Thus, the double prodd¢t.(p’)e-~(p))

X{p~(p)e~(p’)) has null-measure support, and the diagram vanigfié® fifth term is proportional to the propagator of
two fields ¢~ , which is zero).

(e) The sixth term is the sum of two nonequivalent diagrdffig. 3e)],

in2 ...
TJ’ d4p1d4p2¢<1¢<2[Jd4p3d4Q1d4Q2d4Q3(27T)_4512351"2"3p2'P3Q2‘Q3

i6(q:+0y) N(psz,0d3) N(dz.03) i5(d,+p3)
2- 0 22 -0 ~2\/:~0 22 - 0 ~2\/:i~0 22 0 ~2
(igy+vas) (ips+vp3)(iqs+vas) (igx+vas)(iqs+vas) (ips+ vps3)

‘|M(p3!Q1!QZ!Q3)}! (Bg)

The first delta function in the square brackets give§(@s), but 63 must be integrated in a shell that does not include the

origin, and therefore the contribution of this member vanishes. For similar reasons, bBl(pupé)océ(f)Jrﬁ’), the second
member in the square brackets also vanishes.
(f) The seventh term of ordex? in Eq. (B1) is represented by a single diagrdfig. 3(f)], which includes a loop formed

by the propagatof¢-i¢-3)>8(g.+0q,). This delta function and that of conservatifys, generate a@(qgs). Because of the
integration domain, as before, the diagram gives no contributions.

(g) The eighth terniFig. 3(g)] gives the following contribution to the CGA:

_)\zf d*prp-(— pl)[ (277)74f d*psd*dsPs- (P1—P3)ds- (Ps—da)

o N(p1—P3,P3—d3)¢(d3)
(ip3+ vp3) (il p1— psl®+ v[p1—P3]A) (i ps— 3]+ v[ Ps—ds]?)

M(p3,P1—P3,P3—d3) | - (B10)
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1. Definitions

In general, we start from a given stochastic equation

L{e}(p) + N{e}(p)=n(p),

where the operatof is linear and\ collects the nonlinear
terms, and where, to be specific, the noigeverifies Eq.
(74). The nonlinearity couples modes of different scales. An
exact solution can be attained in few cases only, such as the
noiseless Burger’s equation in+1l dimensiong48]. One
could be interested in reducing the number of modes—for a
computational calculation on a discrete lattid&,49—or in
studying the scaling properties—in relation with critical phe-
nomenal6]. In both cases the elimination of short scale
modes can be accomplished by solving their equations of
motion in terms of the long scale modes, adopting, in gen-
eral, some perturbative scheme. One then feeds back these
solutions in the equations of motion of the long scale modes,
obtaining a coupled set of effective equations for these
modes only. One identifies, in these equations, effective
couplings—some of which were zero in the initial
equations—and noise terms, which can be either additive or
multiplicative.

Formally, we can define a project@ over the Fourier

(CD

FIG. 3. Ordern? Feynman diagrams for the coarse grained ac-space spanned by modes in the momentum Szfng*t|5|

tion.

<A, and project the Eq(C1) to obtain
Lie-}+PN{e-+o =7, (C2

This contribution can be thought of as a momentum depen-

dent correction to the viscosity term in EGA1l). When ex-
panded in powers of the external momentpm the curly

bracket takes the form of an infinite sum of derivative inter-

actions. We saw in Sec. V that, if the noise satisfies(E4),

in the limit in which the shell is made of infinitesimal thick-
ness, the expression between curly brackets gives, for small

externalp,, a factor proportional tqﬁf All other contribu-

tions are of higher order ihSl|.

(h) Finally, the ninth term of ordex? in Eq. (B1), gener-
ates a new vertefthe cubic interaction terinwhich couples
threep_’'s with one ¢_ [Fig. 3(h)],

)\2
- ?f d*p,d*p,d*a,d*as(2m) 45155

y 52'(d2+d3)52' 63M(q2+ Js)
[—i(p+p9)+ v(p1+Pa)?]

<1P<2P<2P<3-

(B11)

APPENDIX C

£{€0<}+(1_P)N{‘P>+‘P<}=77<- (Cy

In some way we must solve the first equation fpr to
obtain ¢-[ ¢~ ,7-]. The second equation is then rewritten
as

L{(P<}+(1_P)/\/{(P<+ e[, p=1}=n-. (C4H

This will be the effective equation for the long modes, and
the one we expect that reproduces the results obtained from
coarse graining the CTP generating functional. Some fluctu-
ating terms on the left-hand side of E4) can be added to
the noiser to form an effective noise , which will have

an amplitude(or more precisely, a two point correlation
function characterized by an amplityde. We remark that

in Eq. (C4) there is not implicit any kind of averaging pro-
cess. The effective noise amplitude can be obtained trivially
from Eq. (C4) by calculating the correlation of. .

This situation is different from that addressed, for ex-
ample, in the paper of Mediret al.[4], concerning the KPZ
equation, where the effective noise amplitude is derived from
the two point correlation function of the fields, or that pre-
sented by McComb for the Navier-Stokes equation in Ref.
[45], where the effective equation is averaged with respect to
the short scale noise. For example, the right-hand side of Eq.
(9.39 in McComb’s book[45] displays the unrenormalized
external force, while our approach would replace it by the

In this appendix we compare the results of the precedingffective one[see Eqs(3.11) and (3.18 of Ref.[44]]. This

section with those obtained by coarse graining the equatior@iﬁerence arises because of the way the average is per-
of motion. This is the first step of the transformation associformed in Eq.(9.16 of Ref. [45].

ated with the dynamical RG as defined in RE8], to be
further discussed below.

We show below the results of applying the coarse graining
procedure to the KPZ equation.
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2. Coarse graining of KPZ equation o= <P>(0)+ )\qo>(1)+ - (C7)

Starting from Eq(A1), we proceed as before, splitting the
field as the sum of two independent fieldss ¢~ + ¢, and |t yields
analogously for the nois@. Thus,

(ipo+vPI)[e=+¢-1(p) o Opy= TP s
- (ip%+vp?)’
N(d¥g. . .
+§f EQ'(F)—Q){<P>(Q)QD>(D—Q)
+20-(q)e-(p—a)+e-(q)e-(p—q)} W(py=—* Jd4q7<*—*>
e>(de<(P~q)Te<(Q)e(P—Q e>(p 2(ip°+ vp?) 47721'] pP—q
=[n-+n-1(p). (CH
% 7]>(Q) 77>(p—C])
If |§|>AS, theno_(p) and n-(p) are zero, and we obtain (ig°+vg?) (i[p—ql°+v[p—qld
(ipo+ 1P o-(p) oo (q) P
PV Gp—a1%+ vlp-a1?)
+5f ﬂ&-(ﬁ—&){q» (D e=(p—q)
2) 4xm? o +<p<<q><p<<p—q>]. (c9)

20 (Do (p—A)+ (Do (pP—d)}=7-(p).

C6 -
€8 When|p|<As, ¢-(p) and 7~ (p) are zero. For such, and
This equation can be solved, formally, order by ordex iby ~ using the expressions given in E¢E8) and(C9), we find a

setting closed equation for the fielg_, namely,

> N(d%q. - . > > >\M™
(ipo+vp2)@<(p)+§J4_:2q'(p_q) 7-(@) 7-(9) 7-(P—9)

(ig°+vq?)  (iq9°+vg?)(i[p—ql°+»[p—ql?

e (De(p—q)+2¢-(p—Qq)

(P<(p_Q)<P<(k)(P<(q_k) ‘P<(p_Q)<P<(q_k)77>(k)
- +2 = =
(ig°+vg?) (i9°+ vg?) (ik°+ vk?)

Azfd‘lqd‘lk* (p— K- (G-KM(q)
7| a0 (P-aK (@-kM(a

N e-(p—q)n=(k)7-(q—k) N o (K)o (q—K)n-(p—Q)
(19°+ vg?)(ik°+ vk?)(i[g—k]1°+ v[q—K]?)  (ia°+»q?)(i[p—q]°++[p—q]?)

0o (q=K) 7= (K)n~(p—q)
(ia°+»q?)(i[p—q]1°+ [ p—q]?) (ik%+ vk?)

7-(K)7-(q—K)7-(p—0q)
e e ————————————— = (p). (C10
(ig"+va9)(i[p—al"+v[p—a]9)(ik"+ vk (i[q—K]"+ v[q—Kk]%)
|
Thls is the basic result: an effective equation that only cons diq. . . N(g,p—9q)-
tains the long modeg . . > — A4 (P 5 5 =
We now re-sort things in order to clarify the meaning of <7 47 (ig”+vg?)(ifp—ql”+v[p—0a]°)

each term. The first term @(\) is the original nonlinearity.

In the second oney- acts like a multiplicative noise over

¢~ , and can be identified with what we found earlier in Eq. |
(B8). Rewrite the third term o©O(\) in Eq. (C10) as

7-(a) 7-(p— ) —N(q,p— )~ ] | €13

(i9°+vg?)(i[p—q1°+ v[p—q]?)
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With N~ we have indicated that the functiohsare zero if  order terms in the perturbative expansion we performed to
their arguments lie outside the momentum shell. In this exarrive at Eq.(C10).

pression, the first term gives a field independent contribution, Consider theD(\?) terms in Eq.(C10). The first one is
which when the noise is delta correlated reproduces the rgust the cubic interaction given in E¢B11). The second and
sult shown by Eq(B3). In its turn, the remaining term in Eq. the fourth terms are quadratic interactions subjected to mul-
(C1)) is an additive source of noise, and therefore the effectiplicative noise. The third term contains also multiplicative
tive noise term, ta@D(\), is given by noise which, when the noisgis Tl, has zero mealbecause

. of M(q), and, hence, it does not contribute to the effective

q- - - viscosity]. In the CGA all these multiplicative noisy terms
7<(P)= 5 ﬁq-(p—q) appear when the perturbative expansion is extended to
O(\%.

7-(a) 7-(p—q) —N(q,p—q) - 1 The fifth termO(\?) can be written as

: o . (C12

(i9°+vg?)(i[p—al°+ v[p—al?) N2 (k. . . .

o . _ _ Y > 4-(p—a)k-(g—k)

This noise has zero mean, and its two point correlation func- 167

tion, assumingy satisfies Eq(74), is given by
2¢-(q—Kk)N(k,p—q)~

X = = =
2D+2D2)\2j iqz (i9°+va®)(i[p—al®+ v[p—qI?)(ik°+ vk?)
4
o L 26-@-K){7-(7-(p-0)~N(p-0).}
[a-(p-o)M@p-®) (19°+ va?)(ilp— a1+ v p— A1) (iKO+ 1k?) |
[(9°)%+v*(d)?][(P°— %)+ v*{(p—q)?}*] (C14)
(C13

Hence, we can regard the first contribution as the momentum
Notice that the correction to the noise two point correlationdependent correction to the viscosity we found in &{L0),
introduced above is equal to that given in E86). However, and the second one as another term lineag_ insubjected to
the third order correlation function is not zero, so we cannomultiplicative noise. This term, as with the last one appear-
say that the effective noise is Gaussian, as was the originag in Eq.(C10), which contributes to the effective noise, is
one.[However, the third order momentum@A%)]. Tosay found atO(A?%) in the CGA. We conclude that the coarse
something about the higher order correlation functions firsgrained equation of motion coincides with the equation of
we must include corrections to the noise coming from highemotion derived from the CGA.
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