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Nonequilibrium antiferromagnetic mixed-spin Ising model

Mauricio Godoy* and Wagner Figueiredo
Departamento de Fı´sica–Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, SC, Brazil

~Received 24 June 2002; published 25 September 2002!

We studied an antiferromagnetic mixed-spin Ising model on the square lattice subject to two competing
stochastic processes. The model system consists of two interpenetrating sublattices of spinss51/2 andS
51, and we take only nearest neighbor interactions between pairs of spins. The system is in contact with a heat
bath at temperatureT, and the exchange of energy with the heat bath occurs via one-spin flip~Glauber
dynamics!. Besides, the system interacts with an external agency of energy, which supplies energy to it
whenever two nearest neighboring spins are simultaneously flipped. By employing Monte Carlo simulations
and a dynamical pair approximation, we found the phase diagram for the stationary states of the model in the
plane temperatureT versus the competition parameter between one- and two-spin flipsp. We observed the
appearance of three distinct phases, that are separated by continuous transition lines. We also determined the
static critical exponents along these lines and we showed that this nonequilibrium model belongs to the
universality class of the two-dimensional equilibrium Ising model.

DOI: 10.1103/PhysRevE.66.036131 PACS number~s!: 64.60.Ht, 05.50.1q
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I. INTRODUCTION

Equilibrium statistical mechanics is a well-known esta
lished theory in physics, which provides the tools to und
stand the thermodynamical properties of a variety of phys
systems. In particular, for those systems in what we are
to write a suitable hamiltonian, the equilibrium properti
can be found from the appropriate statistical ensemble.
the other hand, there are many interesting problems in p
ics, chemistry, and biology, for which it is not possible
establish an Hamiltonian function. Sometimes, we know
Hamiltonian, but in contrast, the system can be under
action of time varying external fields. In these cases, typ
equilibrium arguments, such as the detailed balance ca
be applied, and a formal theory is not at hand to desc
precisely the steady states of the system. One way to ha
with these difficulties is to provide an energy function to t
model, for instance, one involving short-range couplings i
many particle interacting system, and defining some dyna
cal processes appropriated to describe its nonequilibr
states. In this work we studied an open system for which
know its energy states and that is under the action of exte
forces.

The particular model we consider is an antiferromagne
mixed-spin Ising system on a two-sublattice with spin valu
s51/2 andS51. While the system is in contact with a he
bath, it is also forced to receive energy from the exter
environment. The time evolution of the states of the syst
is then governed by two competing dynamical processes:
simulating the contact of the system with a heat bath a
temperatureT, and the other mimicking the input of energ
into the system. We choose the Glauber@1# stochastic dy-
namics to describe the exchange of energy with the h
bath. This can be done by allowing that boths andS spins
relax through one-spin flip. The increase in the energy st
of the system is defined in a similar manner, but instead
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simultaneously flip a nearest neighbor pair of spinss andS.
Recently, some works@2–4# appeared, focusing their atten
tion on the nature of the phase transitions exhibited by so
competing stochastic Ising systems.

The ferrimagnetic materials present a special arrangem
of their magnetic moments that can be described by
mixed-spin systems. The existence of a compensation t
perature, that is, a temperature below the critical tempera
of the material, at which the resultant magnetization is ze
makes the ferrimagnets of great technological interest. So
typical examples of these systems are the two-dimensio
organometallic ferrimagnets@5# and the Prussian blue analo
@6#. Some calculations concerning the critical properties
the equilibrium mixed-spin systems were performed mai
by using renormalization group methods@7–10#, series ex-
pansion@11# and Monte Carlo simulations@12#.

In an early work, we studied the ferromagnetic version
the mixed-spin Ising model in the framework of the dynam
cal pair approximation@13# and by Monte Carlo simulations
@14#. Its phase diagram, in the plane temperature versus c
petition parameter between one- and two-spin flips, was
termined. We found two continuous transition lines in th
plane: one line separating an ordered phase in what the
lattice magnetizations are parallel aligned, from a disorde
phase where the sublattice magnetizations are both
~paramagnetic phase!, and other line separating the parama
netic phase from an ordered phase where the sublattice m
netizations are aligned in opposite directions. Our finite s
scaling analysis of the appropriated order parameters sho
that the critical exponents along the two continuous lines
the same as those of the equilibrium two-dimensional Is
model.

The motivation to study the model with antiferromagne
coupling between spins are the results found for the ph
diagram of the ferromagnetic@15# and antiferromagnetic@16#
nonequilibrium Ising models. In those studies, the system
Ising spins was also subject to two independent compe
stochastic dynamics. The one-spin-flip Glauber dynam
©2002 The American Physical Society31-1
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with probability p and the two-spin-exchange Kawasaki d
namics@17# with probability (12p). Similarly to the ferro-
magnetic mixed-spin system, the role of the Glauber dyna
ics was to describe the relaxation of the spins with the h
bath, while the Kawasaki dynamics accounted for the
crease in the energy of the system. While the phase diag
showed the presence of three distinct phases in the ferrom
netic case, only two phases appeared in the correspon
antiferromagnetic case. Then, simply changing the sign
the exchange coupling in these nonequilibrium models d
not permit to foreseen unambigously the topology of
phase diagram of the antiferromagnetic model from its f
romagnetic counterpart. The explanation of this behavio
related to the two-spin-exchange Kawasaki dynamics,
which the order parameter does not change. The antife
magnetic states are more sensitive to this dynamics than
ferromagnetic ones. On the other hand, in the present s
of the antiferromagnetic mixed-spin Ising model, the tw
competing dynamical processes do not conserve the o
parameter as in the ferromagnetic case. Here, we wan
know if the change on the sign of the exchange coupling w
affect the topology of the phase diagram, as happened
using the Kawasaki kinetics in the pure Ising model.

In this work the antiferromagnetic mixed-spin Isin
model with competing dynamics is studied within the d
namical pair approximation and through Monte Carlo sim
lations. As in the previous ferromagnetic model@14# we at-
tributed a weightp to the one-spin flip process, and a weig
(12p) to the two-spin flip process. We determined the ph
diagram of the model and we calculated its static criti
exponents.

This paper is organized as follows. In the following se
tion we present the model and the equations to describe
time evolution of states. In Sec. III, we find the phase d
gram and the critical exponents of the model. Finally, in S
IV, we present our conclusions.

II. THE MODEL AND EQUATIONS OF MOTION

The antiferromagnetic mixed-spin Ising model is defin
on a square lattice, with spinss51/2 andS51. The lattice
is bipartite, with the s spins occupying the sites o
one sublattice, while theS spins occupy the sites o
the other sublattice, each sublattice containingN sites. A
state of the system is represented by$s,S%
[$s1 , . . . ,s l , . . . ,sN ;S1 , . . . ,Sm , . . . ,SN%, where the
spin variabless l can assume the values61 and the spin
variablesSm can assume the values 0,61. The energy of the
system in the state (s,S) is given by

E~s,S!5J(
( i , j )

Sis j , ~1!

where the sum is over all nearest neighboring pairs of sp
and J.0 is the antiferromagnetic coupling. First of all, w
definep(s,S;t) as being the probability of finding the sys
tem in the state (s,S) at timet. The probability states evolve
in time according to the master equation
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p~s,S;t !52 (

s8,S8
W~s,S→s8,S8!p~s,S;t !

1 (
s8,S8

W~s8,S8→s,S!p~s8,S8;t !, ~2!

whereW(s,S→s8,S8) is the probability, per unit of time,
for the transition from the state (s,S) to the state (s8,S8).
As in the ferromagnetic case, the transition rateW(s,S
→s8,S8) is written as the sum of two independent stochas
processes with suitable weights. One of these processes
one-spin flip Glauber kinetics, designed to describe the
change of energy of the system with a heat bath at temp
ture T. This can be done through thes or S spins, and we
write in general that

WG~s,S→s8,S8!5WG~s,S→s8,S!1WG~s,S→s,S8!.

~3!

The other dynamical process considered is a two-spin
mechanism, which does not depend on temperature and
used to describe the interaction of the system with an ex
nal source of energy. In order to increase the energy of
system, we choose to simultaneously flip a pair of nea
neighbor spins, and we write for this processWGD(s,S
→s8,S8). Then, we have the following equation for the tot
transition probability:

W~s,S→s8,S8!5pWG~s,S→s8,S8!1~12p!

3WGD~s,S→s8,S8!, ~4!

where 0<p<1 is the competition parameter between t
one-spin flip and two-spin flip processes. The Glauber tr
sition rate is used to describe the one-spin flip changes

WG~s,S→s8,S8!5(
j 51

N

ds1 ,s
18
ds2 ,s

28
•••ds j ,2s

j8
•••dsN ,s

N8

3dS1 ,S
18
dS2 ,S

28
•••dSk ,S

k8
•••dSN ,S

N8
v j~s8!

1 (
k51

N

ds1 ,s
18
ds2 ,s

28
•••ds j ,s

j8
•••dsN ,s

N8

3dS1 ,S
18
dS2 ,S

28
•••dSk ,S̃k

•••dSN ,S
N8
vk~S̃!, ~5!

wherev j (s) andvk(S) are the probabilities of flipping the
spins s j and Sk , respectively. We used the variableS̃k to
mean the two possible values that a change of the actual
variable Sk can take. For the one-spin flip transitions, w
take

v j~s!5min@1,exp~2bDEj !#, ~6!

whereb51/kBT, and T is the absolute temperature of th
heat bath.DEj is the change in energy after flipping spins j
at sitej. We also assume a similar expression forvk(S). For
the two-spin flip we write
1-2
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WGD~s,S→s8,S8!

5 (
j ,k51

N

ds1 ,s
18
ds2 ,s

28
•••ds j ,2s

j8
•••dsN ,s

N8

3dS1 ,S
18
dS2 ,S

28
•••dSk ,S̃k

•••dSN ,S
N8
v jk~s8,S̃!,

~7!

wherev jk(s,S) is the probability of a simultaneous flippin
of the neighboring spinss j andSk . As we want this process
favors the increase in the energy of the system, we write

v jk~s,S!5H 0 if DEjk<0,

1 if DEjk.0,
~8!

whereDEi j is the change in energy after flipping the spinss j
andSk , at the neighboring sitesj andk.

From the probability of statesp(s,S;t) we can derive
expressions for the evolution of the sublattice magnet
tions, ^s l&, ^Sm&, and for the correlation functions,^s lSm&,
^Sm

2 &, and ^s lSm
2 &. The resulting set of equations can b

decoupled by using the dynamical pair approximation, a
the steady states of the system can be found as a functio
T andp. The details of these calculations were presented
our earlier work @13#. In the following section we will
present the phase diagram of the model along with the Mo
Carlo results.

We have performed Monte Carlo simulations, on t
square lattice of linear sizeL, with values ofL ranging from
L516 to L5128, with periodic boundary conditions. W
have taken completely random spin configurations as the
tial states of our simulations. A new configuration is gen
ated from an old one by the following Markov process: fo
given temperatureT and a selected value of the competitio
parameterp, we choose at random a spin of the lattice, a
then we generate a random numberj between zero and unity
If j<p we choose to perform the one-spin flip process,
cording to the Metropolis prescription given by Eq.~6!. If
j.p, then we consider the two-spin flip process. In th
case, we randomly select a new spin, which is nearest ne
bor of the initial chosen spin, and we apply the prescript
given by Eq. ~8!. At least, the first initial 53104 Monte
Carlo steps~MCS! were discarded in order to achieve th
stationary regime for all lattice sizes. In order to estimate
quantities of interest, we have considered the next 13106

MCS to calculate the averages for any lattice size. One M
equalsL2 one-spin flip or two-spin flip trials.

We calculated the sublattice magnetizations per spin,m1
andm2, defined as

m15
1

N K (
i

Si L ~9!

and

m25
1

N K (
j

s j L . ~10!
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It is also convenient to define the total and the stagge
magnetizations, respectively, by

mF5
1

2
u~m11m2!u ~11!

and

mAF5
1

2
u~m12m2!u, ~12!

and their associated reduced fourth-order Binder cumula
@18#

UL~m!512
^m4&

3^m2&2
. ~13!

The corresponding susceptibilities are defined by

x~m!5N$^m2&2^umu&2%, ~14!

wherem can bemF or mAF.
As will see in following section the model exhibits con

tinuous phase transitions beween ordered and paramag
phases. Finite-size scaling relations are used to locate
critical point and to determine the values of the critical e
ponents. For instance, the finite-size scaling relations for
quantitites define before, in the neighborhood of the stati
ary critical pointpc , are

mL~p!5L2b/nm0~L1/n«!, ~15!

xL~p!5Lg/nx0~L1/n«!, ~16!

UL~p!5U0~L1/n«!, ~17!

where«5(p2pc)/pc , pc being the critical competition pa
rameter for each value ofT, andn is the correlation length
exponent.

The derivative of Eq.~17! with respect to the competition
parameterp give us the following scaling relation:

UL8~p!5L1/n
U08~L1/n«!

pc
, ~18!

so that

UL8~pc!5L1/n
U08~0!

pc
. ~19!

This last equation gives the critical exponentn from a log-
log plot of UL8(pc) versusL.

III. PHASE DIAGRAM

In this section we present the results we have obtained
the phase diagram of the antiferromagnetic mixed-spin Is
model, as well as its critical exponents. Figure 1 is the ph
diagram in the plane temperatureT versus competition pa
rameterp. The dashed lines represent the results of the p
approximation calculations, while the data points are the
1-3
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sults found from simulations. The phase diagram exhib
three different phases, separated by two continuous trans
lines: one line separating an ordered phase~AF!, where one
sublattice magnetization is positive and the other negat
from a disordered paramagnetic phase (P), where both sub-
lattice magnetizations are zero. The other line separates
paramagnetic phase from an ordered ferromagnetic p
(F), where the sublattice magnetizations are positive.
though the coupling is of the antiferromagnetic type, the
tiferromagnetic phase occupies only a small region of
phase diagram. As we increase the flux of energy into
system, which in the present model corresponds to decr
the value ofp, the AF phase disappears. However, for a ve
intense flux of energy, a ferromagnetic phase appears.
basic difference between the pair approximation and Mo
Carlo calculations is the size of the region occupied by
disordered phase. This region is very large in Monte Ca
simulations. The calculations based on the pair approxi
tion differ slightly for the ferromagnetic and antiferroma
netic couplings. For instance, at very small temperatures,
transition point in the antiferromagnetic case deviates
lower values ofp compared to the ferromagnetic case.

However, the topology of the ferromagnetic and antif
romagnetic phase diagrams are essentially the same: ch
ing the sign of the interaction coupling is equivalent to e
change the places of theF and AF phases in both diagram
Then, the two-spin flip dynamics in this mixed-spin mod
does not prevent the formation of another phase at very la
values of the flux of energy. This is different from that w
have seen in the pure antiferromagnetic Ising model@16#,
when the exchange of two nearest neighbor spins~Kawasaki
kinetics! conserves the order parameter. The simple two-s
flip does not conserve the order parameter within the mix
spin Ising model. Indeed, even when two nearest neigh

FIG. 1. Phase diagram of the antiferromagnetic mixed-spin Is
model in the plane temperatureT versus competition parameterp.
The letters denote theF and AF ordered phases andP the paramag-
netic phase. The dashed lines represent the pair approximation
culations and the squares are the data from Monte Carlo sim
tions. The lines joining the squares are only a guide to the eye.
temperature is measured in units ofJ/kB andp is a dimensionless
parameter.
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spins are parallel, we can flip them, changing the order
rameter and increasing the energy of the system. On
other hand, in the pure Ising case, the exchange of a pa
parallel spins does not add more energy to the system
cause its state remains the same.

The critical points found in the phase diagram of the F
1, were determined by the crossing of the fourth-order
mulants for different lattice sizes at the critical point@18#. In
order to find the critical parameter, we fixed the temperatu
which is measured in units ofJ/kB , and we have plotted
UL(p) versus the competition parameterp, for all the lattice
sizesL as shown in Figs. 2~a! and 2~b! for the particular
temperatureT51.5. Our estimate for the critical competitio
parameter, at the transition line between the ordered AF
paramagneticP phases ispc50.981260.0001, while its
value at the other transition line (F2P transition line! is
pc50.06560.001.

It is also easy to determine the critical exponents of
model from the Monte Carlo data. For instance, log-log pl
of the Eqs.~15!, ~16!, and~19!, respectively, for the magne
tization, susceptibility and derivative of the cumulants, at
critical point pc , give us the critical exponents from th
slope of the corresponding straight lines. This can be see
Fig. 3, for the transition between theAF andP phases atT
51.5. From the best fit to the data points we foundn
51.0460.05, b/n50.1360.01, andg/n51.6960.07. The
same procedure was used to find the critical exponents

g

al-
la-
he

FIG. 2. Reduced fourth-order cumulant for various lattice siz
as indicated in the figures.~a! UL

F is the cumulant near the critica
point of theF-P transition, and~b! UL

AF is the cumulant near the
critical point of the AF-P transition. The temperature is fixed at th
valueT51.5.

FIG. 3. Log-log plots of~a! the order parameter,~b! the deriva-
tive of the cumulant, and~c! the susceptibility as a function of th
lattice size, at the critical point of the AF-P transition andT
51.5. The straight lines are the best fit to the data points. The s
of the circles are chosen so that the error bars are inside them
1-4
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other values of temperature, and at theP2F boundary.
We can improve the values found for the critical exp

nents, by collapsing the data points. For instance, we exh
in Figs. 4~a! and 4~b! the data collapse for the order param
eter mL

AF and for the susceptibilityxL
AF , respectively. The

Eqs.~15! and ~16! can be written as

mL~p!5L2b/nm0
7~L1/nu«u!, ~20!

xL~p!5Lg/nx0
7~L1/nu«u!, ~21!

where the two branches,«,0 ~paramagnetic phase! and «
.0 ~antiferromagnetic phase! are considered, and«5(p
2pc)/pc . For the infinite lattice size we havem(p);(p
2pc)

b and x(p);up2pcu2g. Then, for large values o
L1/nu«u and«.0, the slopes of curves in the Figs. 4~a! and
4~b! give us directly the values of the exponentsb and
2g, respectively. On the other hand, for large values
L1/nu«u and«,0, the slopes of the curves in Figs. 4~a! and
4~b! furnish the values ofb2n and2g, respectively. At this
point, we call attention that the abscissas in the Figs. 8 an
of our earlier paper@14# must be replaced byu«uL1/n, and the
signs of« in Figs. 8~a! and 8~b! must be exchanged.

The optimal values we have found for the critical exp
nents employing this procedure are: at theAF2P transition
line ~Fig. 4! n51.0160.01, b50.12560.001, andg51.74
60.01 and at theF2P transition line, whose plots are no
shown, n51.0160.02, b50.12460.002, and g51.74
60.02. Although we have exhibited the results only for t
temperatureT51.5, we have repeated the whole proce

FIG. 4. Finite-size scaling~full data collapse! near the critical
point of the AF-P transition for~a! the order parametermL

AF , and
~b! susceptibilityxL

AF , for different values ofL as indicated in the
figures. The parameter« is defined by«5(p2pc)/pc . The straight
lines represent the asymptotic behavior of the scaling functions.
temperature isT51.5, and the optimal values of the critical exp
nents aren51.0160.01, b50.12560.001, andg51.7460.01.
z,

a,
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outlined above for other points along the critical lines. T
bulk of our results clearly indicates that the nonequilibriu
antiferromagnetic mixed-spin Ising model is in the sam
class of universality of the two-dimensional equilibriu
Ising model. The choice of the two-spin flip dynamical pr
cess that is used to simulate the absorption of energy by
system, does not affect the static critical exponents of
model.

IV. CONCLUSIONS

The phase diagram of a nonequilibrium mixed-spin Isi
model was determined through Monte Carlo simulations a
pair approximation calculations. The spinss51/2 and S
51 occupy the sites of a square lattice and the nearest ne
bors of any spins are theS spins, and vice versa. Th
coupling between spinss and S is antiferromagnetic. The
system was in contact with a heat bath at fixed tempera
and, at the same time, subjected to an external flux of ene
The contact with the heat bath was simulated by the one-
flip Glauber process with probabilityp, while the flux of
energy was simulated by a process involving a simultane
flipping of a pair of nearest neighbor spins, with probabil
(12p). Both dynamical processes do not preserve the or
parameter. We have shown that the phase diagram con
three phases separated by two continuous transition li
When the flux of energy is very small the system is antif
romagnetically ordered, while for large values of the flux
energy, the system stays in a ferromagnetic phase. For in
mediate values of the flux of energy the system remains
paramagnetic state. The phase diagram is similar that fo
for the ferromagnetic case. Changing the sign of the m
netic coupling is equivalent to change in the phase diag
the places of the ferromagnetic and antiferromagnetic pha
This symmetry is not observed for the pure Ising mod
when we change the sign of the magnetic coupling and
two-spin flip mechanism is of the Kawasaki type. The p
serving order parameter Kawasaki kinetics destroys
symmetry.

We have also determined the critical exponentsn, b, and
g for the antiferromagnetic mixed-spin Ising model at t
transition lines. The values we found for the static critic
exponents of this nonequilibrium model leave it in the sa
universality class of the equilibrium Ising model in two d
mensions.
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