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Nonequilibrium antiferromagnetic mixed-spin Ising model
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We studied an antiferromagnetic mixed-spin Ising model on the square lattice subject to two competing
stochastic processes. The model system consists of two interpenetrating sublattices of=spisand S
=1, and we take only nearest neighbor interactions between pairs of spins. The system is in contact with a heat
bath at temperaturd@, and the exchange of energy with the heat bath occurs via one-spifGilguber
dynamic3. Besides, the system interacts with an external agency of energy, which supplies energy to it
whenever two nearest neighboring spins are simultaneously flipped. By employing Monte Carlo simulations
and a dynamical pair approximation, we found the phase diagram for the stationary states of the model in the
plane temperatur@ versus the competition parameter between one- and two-spinpflidée observed the
appearance of three distinct phases, that are separated by continuous transition lines. We also determined the
static critical exponents along these lines and we showed that this nonequilibrium model belongs to the
universality class of the two-dimensional equilibrium Ising model.
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. INTRODUCTION simultaneously flip a nearest neighbor pair of spinandS.

Recently, some workE2—4] appeared, focusing their atten-

Equilibrium statistical mechanics is a well-known estab-tjon on the nature of the phase transitions exhibited by some
lished theory in physics, which provides the tools to undercompeting stochastic Ising systems.
stand the thermodynamical properties of a variety of physical Thg ferrimagnetic materials present a special arrangement
systems. In particular, for those systems in what we are ablgs i air magnetic moments that can be described by the
to write a suitable hamiltonian,' the eqpil!brium proDertiesmixed—spin systems. The existence of a compensation tem-
fﬁg Ot:ﬁefroﬁgg dfr?rzg rgh:\rgpiﬁ;?lprli?]tteerzglr?“cil()glgs;ﬁ;nitr)lle-ho Jerature, that is, a temperature below the critical temperature

' y gp PNYt the material, at which the resultant magnetization is zero,

ics, chemistry, and biology, for which it is not possible to X L

establish an Hamiltonian function. Sometimes, we know th a_kes the ferrimagnets of great technological mte_rest. S_ome

Hamiltonian, but in contrast, the system can be under th pical examples of these systems are the two-dimensional
’ ’ rganometallic ferrimagnef$] and the Prussian blue analog

action of time varying external fields. In these cases, typic : ) > :
equilibrium arguments, such as the detailed balance cann @]. Some calculations concerning the critical properties of

be applied, and a formal theory is not at hand to describ&e equilibrium mixed-spin systems were performed mainly
precisely the steady states of the system. One way to handRy Using renormalization group methofis-10], series ex-
with these difficulties is to provide an energy function to thePansion[11] and Monte Carlo simulationis2].
model, for instance, one involving short-range couplings in a In an early work, we studied the ferromagnetic version of
many particle interacting system, and defining some dynamithe mixed-spin Ising model in the framework of the dynami-
cal processes appropriated to describe its nonequilibriuraal pair approximation13] and by Monte Carlo simulations
states. In this work we studied an open system for which w¢14]. Its phase diagram, in the plane temperature versus com-
know its energy states and that is under the action of externgletition parameter between one- and two-spin flips, was de-
forces. termined. We found two continuous transition lines in this
The particular model we consider is an antiferromagnetiglane: one line separating an ordered phase in what the sub-
mixed-spin Ising system on a two-sublattice with spin valuedattice magnetizations are parallel aligned, from a disordered
o=1/2 andS=1. While the system is in contact with a heat phase where the sublattice magnetizations are both zero
bath, it is also forced to receive energy from the externalparamagnetic phageand other line separating the paramag-
environment. The time evolution of the states of the systenmetic phase from an ordered phase where the sublattice mag-
is then governed by two competing dynamical processes: ongetizations are aligned in opposite directions. Our finite size
simulating the contact of the system with a heat bath at &caling analysis of the appropriated order parameters showed
temperatureT, and the other mimicking the input of energy that the critical exponents along the two continuous lines are
into the system. We choose the Glaulpgf stochastic dy- the same as those of the equilibrium two-dimensional Ising
namics to describe the exchange of energy with the heatodel.
bath. This can be done by allowing that bethand S spins The motivation to study the model with antiferromagnetic
relax through one-spin flip. The increase in the energy statesoupling between spins are the results found for the phase
of the system is defined in a similar manner, but instead weliagram of the ferromagnetjd5] and antiferromagneticl6]
nonequilibrium Ising models. In those studies, the system of
Ising spins was also subject to two independent competing
*Email address: wagner@fisica.ufsc.br stochastic dynamics. The one-spin-flip Glauber dynamics
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with probability p and the two-spin-exchange Kawasaki dy- d

namics[17] with probability (1—p). Similarly to the ferro- giPoS=- > W(0,S—0",8)p(0,Sit)
magnetic mixed-spin system, the role of the Glauber dynam- oS

ics was to describe the relaxation of the spins with the heat

bath, while the Kawasaki dynamics accounted for the in- + 2 W(o',S'—0,9)p(a’,S’51), (2
crease in the energy of the system. While the phase diagram o'

showed the presence of three distinct phases in the ferromag,herew(a S—¢',S') is the probability, per unit of time
netic case, only two phases appeared in the correspondi 9r the tran'sition f’rom the stater(S) to t’he state ¢,5'). ’

antiferromagnetic case. Then, simply changing the sign o s in the ferromagnetic case, the transition ratéo,S

the exchange coupling in these nonequilibrium models doeia,’s,) is written as the sum of two independent stochastic

nﬁt perdm't to for;a;t}een ut_r;amb|gousl);. the té)ploflogy _ct)f :heprocesses with suitable weights. One of these processes is the
phase diagram of (h€ antiierromagnetic model from Its er'one—spin flip Glauber kinetics, designed to describe the ex-

, . ) Thange of energy of the system with a heat bath at tempera-
related to the two-spin-exchange Kawasaki dynamics, fo[ure'lg This cang{)e done %/hrough the or S spins, and WS
which the order parameter does not change. The antiferr%rite i.n general that '

magnetic states are more sensitive to this dynamics than the

ferromagnetic ones. On the other hand, in the present StUdyWG(a,S—m’,S’)=WG(U,S—>U’,S)+WG(U,S—>U,S’).

of the antiferromagnetic mixed-spin Ising model, the two

competing dynamical processes do not conserve the order 3)

parameter as in the ferromagnetic case. Here, we want to

know if the change on the sign of the exchange coupling willThe other dynamical process considered is a two-spin flip

affect the topology of the phase diagram, as happened byiechanism, which does not depend on temperature and it is

using the Kawasaki kinetics in the pure Ising model. used to describe the interaction of the system with an exter-
In this work the antiferromagnetic mixed-spin Ising nal source of energy. In order to increase the energy of the

model with competing dynamics is studied within the dy-system, we choose to simultaneously flip a pair of nearest

namical pair approximation and through Monte Carlo simu-nejghbor spins, and we write for this proce®é;p(o,S

lations. As in the previous ferromagnetic modié#] we at- . 5’ S'). Then, we have the following equation for the total
tributed a weighp to the one-spin flip process, and a weight transition probability:
(1—p) to the two-spin flip process. We determined the phase

diagram of the model and we calculated its static critical W(o,S—0o',S")=pWg(0o,S—0c',S")+(1-p)
exponents. o
This paper is organized as follows. In the following sec- XWgp(0,S—a’,§'), (4)

tion we present the model and the equations to describe the

time evolution of states. In Sec. Ill, we find the phase dia-Where O<p<1 is the competition parameter between the

gram and the critical exponents of the model. Finally, in Sec®n€-Spin flip and two-spin flip processes. The Glauber tran-

IV, we present our conclusions. sition rate is used to describe the one-spin flip changes

N
Il. THE MODEL AND EQUATIONS OF MOTION WG(U,S—><T’,S’)=]_21 O01,01005.05" " Oy =0l Vo o,
The antiferromagnetic mixed-spin Ising model is defined X Se b s s (o)

on a square lattice, with spins=1/2 andS=1. The lattice R A R e T e
is bipartite, with the o spins occupying the sites of
one sublattice, yvhile theS spins_ occupy_the _sites of _,_2 PIRY S SR S
the other sublattice, each sublattice containdgsites. A k=1 1 T2z 17 NEN
state of the system is represented byo,S} -
={oy,....00, ..., 0n:S1y - .Smy - .SN), Where the X ds, 5,0s,,s, " 05 5 05, ,5,0k(S), (B

spin variableso; can assume the values1 and the spin
variablesS,, can assume the values#Q0l. The energy of the wherew;(o) andwy(S) are the probabilities of flipping the

system in the stateo(,S) is given by spinso; and S, respectively. We used the variab to
mean the two possible values that a change of the actual spin

variable S, can take. For the one-spin flip transitions, we
E(U,S)ZJ(% Sioj, D take

wj(o)=min[ 1,exg — BAE;)], (6)
where the sum is over all nearest neighboring pairs of spins,
and J>0 is the antiferromagnetic coupling. First of all, we where 8=1/kgT, andT is the absolute temperature of the
definep(o,S;t) as being the probability of finding the sys- heat bathAE; is the change in energy after flipping spif
tem in the stated,S) at timet. The probability states evolve at sitej. We also assume a similar expressiond(S). For
in time according to the master equation the two-spin flip we write
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Wsp(o,S—a',S) It is also convenient to define the total and the staggered
N magnetizations, respectively, by
= 2 50' ,0’502,0'""50'-,—0'.'"'50' o! 1
eI ! 2 IR N"TN mF=§|(m1+m2)| (13)
Xésl,siész,sé‘"5sk’§k'"5SN’S'/\‘wjk(O'I,S), and
(7
mAF=1|<m —my)| (12
wherew;(o,S) is the probability of a simultaneous flipping 2T b

of the neighboring sping;j andS, . As we want this process ) ) i
favors the increase in the energy of the system, we write and their associated reduced fourth-order Binder cumulants

(18]
0 if AE)=0,
. jk ®) U, (m)=1— <m4>

whereAE;; is the change in energy after flipping the spins e corresponding susceptibilities are defined by
andS,, at the neighboring sitgsandk.

From the probability of statep(o,S;t) we can derive x(m)=N{(m?)—(|m|[)?}, (14)
expressions for the evolution of the sublattice magnetiza-
tions, (o), (Sy), and for the correlation functionég Sy, ~ Wherem can b?mF or fT}AF- . N
(S2), and (S2). The resulting set of equations can be As will see in follpyvmg section the model exhibits con- .
decoupled by using the dynamical pair approximation, andinuous phase transitions beween ordered and paramagnetic
the steady states of the system can be found as a function Bfi@ses. Finite-size scaling relations are used to locate the
T andp. The details of these calculations were presented i¢fitical point and to determine the values of the critical ex-
our earlier work[13]. In the following section we will —Ponents. For instance, th(=T f|n|te—S|;e scaling relations for. the
present the phase diagram of the model along with the Montguantitites define before, in the neighborhood of the station-
Carlo results. ary critical pointp,, are

We have performed Monte Carlo simulations, on the

(Ulk((T,S):

(13

—1 —Blv 1lv
square lattice of linear size, with values ofL ranging from m(p) =L mo(L ™), (15)
L=16 to L=128, with periodic boundary conditions. We =LYy (LY 16
have taken completely random spin configurations as the ini- x(p) Xo(Le), (16)
tial states of our simulations. A new configuration is gener- U (p)=Ug(LYs), (17)

ated from an old one by the following Markov process: for a
given temperaturd and a selected value of the competition wheree = (p—p.)/p., p. being the critical competition pa-
parametep, we choose at random a spin of the lattice, andrameter for each value df, and v is the correlation length
then we generate a random numgdretween zero and unity. exponent.
If £&<p we choose to perform the one-spin flip process, ac- The derivative of Eq(17) with respect to the competition
cording to the Metropolis prescription given by E®). If  parametep give us the following scaling relation:
&>p, then we consider the two-spin flip process. In this
case, we randomly select a new spin, which is nearest neigh- ) 1,VU6(L1/V8)
bor of the initial chosen spin, and we apply the prescription Ui(p)=L T (18)
given by Eq.(8). At least, the first initial 5<10* Monte
Carlo steps(MCS) were discarded in order to achieve the so that
stationary regime for all lattice sizes. In order to estimate the
quantities of interest, we have considered the next@f 1, Y0(0)
MCS to calculate the averages for any lattice size. One MCS UL(pe) =L Y (19
equalsL? one-spin flip or two-spin flip trials.
We calculated the sublattice magnetizations per spin, This last equation gives the critical exponenfrom a log-
andm,, defined as log plot of U{ (p.) versusL.
1
N< 3 Si> © Il. PHASE DIAGRAM
In this section we present the results we have obtained for
the phase diagram of the antiferromagnetic mixed-spin Ising
model, as well as its critical exponents. Figure 1 is the phase
diagram in the plane temperatufeversus competition pa-
<Z 0->. (10) rameterp. The dashed lines represent the results of the pair
! approximation calculations, while the data points are the re-

and
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. ! FIG. 2. Reduced fourth-order cumulant for various lattice sizes
olLM. 1. 1 as indicated in the figurega) Uf is the cumulant near the critical
0.0 02 0.4 092 0.96 1.00 point of theF-P transition, andb) U{F is the cumulant near the
P critical point of the AFP transition. The temperature is fixed at the
valueT=1.5.

FIG. 1. Phase diagram of the antiferromagnetic mixed-spin Ising
model in the plane temperatuleversus competition parametpr  spins are parallel, we can flip them, changing the order pa-
The letters denote the and AF ordered phases aRdhe paramag-  rameter and increasing the energy of the system. On the
netic phase. The dashed lines represent the pair approximation cgither hand, in the pure Ising case, the exchange of a pair of
culations and the squares are the data from Monte Carlo simulapara||e| spins does not add more energy to the system be-
tions. The lines joining the squares are only a guide to the eye. Thgg se its state remains the same.
temperature is measured in unitsd3kg andp is a dimensionless The critical points found in the phase diagram of the Fig.
parameter. 1, were determined by the crossing of the fourth-order cu-
mulants for different lattice sizes at the critical pdifa8]. In
sults found from simulations. The phase diagram exhibitorder to find the critical parameter, we fixed the temperature,
three different phases, separated by two continuous transitiomhich is measured in units af/kg, and we have plotted
lines: one line separating an ordered ph&SE), where one U, (p) versus the competition paramefgrfor all the lattice
sublattice magnetization is positive and the other negativesizesL as shown in Figs. (@) and Zb) for the particular
from a disordered paramagnetic pha&9,(where both sub- temperaturd =1.5. Our estimate for the critical competition
lattice magnetizations are zero. The other line separates ttparameter, at the transition line between the ordered AF and
paramagnetic phase from an ordered ferromagnetic phagmramagneticP phases isp.=0.9812+0.0001, while its
(F), where the sublattice magnetizations are positive. Alvvalue at the other transition line= P transition ling is
though the coupling is of the antiferromagnetic type, the anp.=0.065+0.001.
tiferromagnetic phase occupies only a small region of the It is also easy to determine the critical exponents of the
phase diagram. As we increase the flux of energy into thenodel from the Monte Carlo data. For instance, log-log plots
system, which in the present model corresponds to decreast the Eqgs.(15), (16), and(19), respectively, for the magne-
the value ofp, the AF phase disappears. However, for a verytization, susceptibility and derivative of the cumulants, at the
intense flux of energy, a ferromagnetic phase appears. Thgitical point p., give us the critical exponents from the
basic difference between the pair approximation and Montglope of the corresponding straight lines. This can be seen in
Carlo calculations is the size of the region occupied by therig. 3, for the transition between theF and P phases af
disordered phase. This region is very large in Monte Carlo=1.5. From the best fit to the data points we found
simulations. The calculations based on the pair approxima=1.04+0.05, 8/v=0.13+0.01, andy/»=1.69+0.07. The
tion differ slightly for the ferromagnetic and antiferromag- same procedure was used to find the critical exponents for
netic couplings. For instance, at very small temperatures, the
transition point in the antiferromagnetic case deviates to s
lower values ofp compared to the ferromagnetic case. I
However, the topology of the ferromagnetic and antifer- _ ,,
romagnetic phase diagrams are essentially the same: chan(
ing the sign of the interaction coupling is equivalent to ex- £ .|
change the places of tteand AF phases in both diagrams.
Then, the two-spin flip dynamics in this mixed-spin model . . , s - -
H L5 2 1 1.5 2 1 1.5 2
does not prevent the formation of another phase at very large
values of the flux of energy. This is different from that we
have seen in the pure antiferromagnetic Ising mddel, FIG. 3. Log-log plots of(a) the order parametetb) the deriva-
when the exchange of two nearest neighbor sfi@vasaki  tive of the cumulant, ancc) the susceptibility as a function of the
kineticg conserves the order parameter. The simple two-sSpimttice size, at the critical point of the AP- transition andT
flip does not conserve the order parameter within the mixed=1.5. The straight lines are the best fit to the data points. The sizes
spin Ising model. Indeed, even when two nearest neighbowf the circles are chosen so that the error bars are inside them.

AF,
|
AF.
og, )
~
T
|

long log, L log, L
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N outlined above for other points along the critical lines. The
bulk of our results clearly indicates that the nonequilibrium
antiferromagnetic mixed-spin Ising model is in the same
class of universality of the two-dimensional equilibrium
Ising model. The choice of the two-spin flip dynamical pro-

L=16 . . .
L=32 N cess that is used to simulate the absorption of energy by the
L=48 . ™
L=64 _ system, does not affect the static critical exponents of the
L=96
Lo model.
1 L
N ot 10° IV. CONCLUSIONS
lelL el

The phase diagram of a nonequilibrium mixed-spin Ising
FIG. 4. Finite-size scalingfull data collapsg near the critical  model was determined through Monte Carlo simulations and
point of the AFP transition for(a) the order parametemf‘F, and pair approximation calculations. The spins=1/2 and S
(b) susceptibilityx{'", for different values oL as indicated in the _ 1 occupy the sites of a square lattice and the nearest neigh-
figures. The parameteris defined bye = (p—p.)/p.. The straight .o of any spino are theS spins, and vice versa. The
lines represept the asymptotic behavior of the scaling fgnctions. Thgoupling between spine and S is antiferromagnetic. The
;eemnsse;a;gjjrj 1|§(—311656 fgﬁgﬂ;gi%‘%gflZisdff:tf?ffgcgi €XPO- system was in contact with a heat bath at fixed temperature
' o ' e o and, at the same time, subjected to an external flux of energy.
The contact with the heat bath was simulated by the one-spin
flip Glauber process with probabilitp, while the flux of
nergy was simulated by a process involving a simultaneous
ipping of a pair of nearest neighbor spins, with probability
(1-p). Both dynamical processes do not preserve the order
parameter. We have shown that the phase diagram contains
three phases separated by two continuous transition lines.
(20) When the flux of energy is very small the system is antifer-
romagnetically ordered, while for large values of the flux of
energy, the system stays in a ferromagnetic phase. For inter-
mediate values of the flux of energy the system remains in a
paramagnetic state. The phase diagram is similar that found
for the ferromagnetic case. Changing the sign of the mag-
netic coupling is equivalent to change in the phase diagram
the places of the ferromagnetic and antiferromagnetic phases.
This symmetry is not observed for the pure Ising model
when we change the sign of the magnetic coupling and the
ftwo-spin flip mechanism is of the Kawasaki type. The pre-
serving order parameter Kawasaki kinetics destroys this

other values of temperature, and at e F boundary.

We can improve the values found for the critical expo-
nents, by collapsing the data points. For instance, we exhibﬁ
in Figs. 4(a) and 4b) the data collapse for the order param-
eterm*™ and for the susceptibility ", respectively. The
Egs.(15) and(16) can be written as

m(p)=L"#mg (L*"]e]),

xL(P)=L""xg (L*[g]), (21)

where the two brancheg,<0 (paramagnetic phas@nd ¢
>0 (antiferromagnetic phageare considered, and=(p
—pe)/pe- For the infinite lattice size we havea(p)~(p
—po)? and x(p)~|p—p¢ 7. Then, for large values of
LY"|e| ande>0, the slopes of curves in the Figga#and
4(b) give us directly the values of the exponemgsand

— v, respectively. On the other hand, for large values o
LY"|e| ande<0, the slopes of the curves in Figgagand
4(b) furnish the values oB— v and — vy, respectively. At this symmetry.

point, we call attention that the abscissas in the Figs. 8 and 9 We have a!so determm_ed th_e C”t'c".il exponentge, and
X Uy y for the antiferromagnetic mixed-spin Ising model at the
of our earlier papei14] must be replaced by |L*", and the L S
. B transition lines. The values we found for the static critical
signs ofe in Figs. §a) and &b) must be exchanged.

The optimal values we have found for the critical eXpo_exponents of this nonequilibrium model leave it in the same

nents employing this procedure are: at hie— P transition umn(al\lf]eSirszslslty class of the equilibrium Ising model in two di-
line (Fig. 4 »=1.01+0.01, 8=0.125+0.001, andy=1.74 '
+0.01 and at thé-— P transition line, whose plots are not

shown, »=1.01+0.02, B=0.124-0.002, and y=1.74

+0.02. Although we have exhibited the results only for the This work was partially supported by the Brazilian agen-
temperatureT=1.5, we have repeated the whole processcies CAPES and CNPq.
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