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Scaling detection in time series: Diffusion entropy analysis
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The methods currently used to determine the scaling exponent of a complex dynamic process described by
a time series are based on the numerical evaluation of variance. This means that all of them can be safely
applied only to the case where ordinary statistical properties hold true even if strange kinetics are involved. We
illustrate a method of statistical analysis based on the Shannon entropy of the diffusion process generated by
the time series, called diffusion entropy analyéEA). We adopt artificial Gauss and &g time series, as
prototypes of ordinary and anomalous statistics, respectively, and we analyze them with the DEA and four
ordinary methods of analysis, some of which are very popular. We show that the DEA determines the correct
scaling exponent even when the statistical properties, as well as the dynamic properties, are anomalous. The
other four methods produce correct results in the Gauss case but fail to detect the correct scaling in the case of
Lévy statistics.
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I. INTRODUCTION [4], thereby implying forF the Gaussian form and for the
scaling exponent the value predicted by ordinary random
Scale invariance has been found to hold empirically for avalk theory, namelys=0.5.
number of complex systems, and the correct evaluation of The main purpose of this paper is to prove that a tech-
the scaling exponents is of fundamental importance to assesgjue of statistical analysis, recently introduced to establish
if universality classes exigtl]. The mathematical definition the thermodynamic nature of a time series of sociological,
of scaling is as follows. The functioi®(r,,r,,...) istermed astronomical, and biological interd&—9], affords a reliable

scaling invariant, if it fulfills the property way to evaluate the scaling exponent. This method of analy-
sis is based on the entropy of the diffusion process and for
D(ry,rp,..0= Y P(¥r,¥°r5,..). (1) this reason is called diffusion entropy analy$BEA). We

) ] ) compare the DEA to the standard deviation analySBA)
Equation (1) means that if we scale all coordinaté$ by  [10], the detrended fluctuation analy$BFA) [3], the res-
means of an appropriate choice of the exponatltsc, ..., caled range analysi®RRA) [11], and to the spectral wavelet
then we always recover the same function. The theoreucq&mawsis(s\,\/A) [12]; and we show that, while all these tech-
and experimental search for the correct scaling exponents iﬁqueS' some of which are very popular, can yield wrong
intimately related to the discovery of deviations from ordi- scaling exponents, the DEA always determines the correct
nary statistical mechanics. This aspect emerges clearly, fQfajue of the scaling exponemt with satisfactory precision.
instance, from Ref|2]. The author of this interesting book, Thjs important conclusion is reached by examining artificial
v_vith the help of dimensional analysis an_d regularity assUMpsequences generating Gauss andyLstatistics. The DEA is
tion, determines the values of the scaling exponents. Thes@e only technique yielding the correct scaling in both the
scaling exponents, however, arevial in the sense that they Gauss and Ly cases. The other techniques produce correct
refer to ordinary statistical mechanics. results only in the Gauss case but fail to detect the correct

In this paper we focus on the scaling of time series, andcajing s in the case of Ley statistics.
consequently3] on the scaling of diffusion processes. In

fact, according to the prescription of RgB] we interpret the
numbers of a time series as generating diffusion fluctuations, Il. DIFFUSION ENTROPY ANALYSIS
thereby shifting our attention from the time series to the
probability distribution function(pdf) p(x,t), wherex de-
notes the variable collecting the fluctuations. In this case, iﬁ
the time series is stationary, the scaling property of @g.
takes the form

It is remarkably simple to determine the scaling parameter
using the DEA. First of all, we transform the time series
to a diffusion process whose pg{x,t) is estimatedSec.

IV illustrates an algorithm to do thatThen, we measure the
Shannon entropy of the diffusion process,

1 X
p(x'”zﬁF(t—>‘ @ s=- [ ax poxoilpocn], ®

— o

whereé is the scaling exponent. Ordinary statistical mechan-
ics is intimately related to the central limit theorei@LT) Let us suppose thgi(x,t) fits the scaling condition of Eq.
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(2) and let us plug Eq2) into Eq.(3). After_ an easy glgebra, _(E(t1)§(tz)>
based on changing the integration variable franinto y Dty t))=—"7—. (10
=x/t°, we obtain (€9
S(t)=A+8In(t), (4) Under the stationary condition, this correlation function de-
pends only on the time difference, namelf(t;,t,)
where =®d,(|ty—t,]); and this property, with the help of a suitable

change of integration variables, yields Ef).
% What is the connection between second moment and scal-
A=— fﬁxdyF(Y)ln[F(Y)]- (5 ing? Having in mind Eq(6), one would be tempted to make
the conjecture that

Equation(4) means that the entrop$(t) increases lin-
early with Int) and the slopé of the resulting straight line is
the scaling coefficient. The numerical search for the scalin
coefficients is done with this property in mind. Actually, the
numerical results are expressed in a linear-log scale that
equivalent to transform the fitting curves with the foifn
+ 6In(t) into straight lines. It is evident that the diffusion
time t depends on the time unit adopted. However, this arbi-

trary choice in no way affects the scaling parameter. Th(;rhe adoption of the symbd rather than the symba¥ is

adoption of a different time unit would change the cutge dictated by the following reasons. In general the second mo-

into a new one, parallel to the original, and thus bearing thé:oenr\]/teg%enst trcl)oggéeI'?fgr]?hgoig?oitmsz;iilrgf:_;?j;eéoge’ tr|1telizec-
same scaling parametér P y

ond moment a symbol different from that used in this paper
. for the scaling coefficient. The authors in the field of time
Ill. GAUSS AND LE VY DIFFUSION series analysis use the symboto denote scaling, having in

mind the popular method of Hurst. The Hurst coefficient, in

(X2(1)) e t?°. (11

g?—|owever, this conjecture is not correct in general, and to be
fnore rigorous let us replace E@.1) with

(x2(t)) =M, (12)

This section is devoted to illustrating why, in spite of the i X , >
unambiguous definition of diffusion scaling of E®), in the  the special case of fractional Brownian motigfBM) [13],
literature on time series analysis a misleading perspective i§: duite correctly, identified with the scaling parameter.

frequently adopted. The scaling property is usually expressed®WeVer, there is no guarantee that the exportéris in
by means of general identical to the scaling coefficieht Thus, the adop-

tion of the symboH is also a way of warning the reader that
xoct?. (6) in some casebl might be significantly different frond. To

prove under which conditions the equalify- H applies, and
The next step, adopted by many authors, rests on evaluatirgpnsequently Eq11) [as well as Eq(12)] is correct, let us
the second moment of the pgi(x,t), (x3(t)). Let us see notice that under the assumption that the fluctuait) is
why this procedure is correct only in the Gaussian case. Isaussiarfand with no other assumptignve can prove that
the long-time limit, the variable(t) collecting the fluctua- the pdfp(x,t) fulfills the following diffusion equation:
tions £(t) has a time evolution equivalent to

: ap(x.t) 92
x(t)=&(1). (7) ot PP, (13)
By time integration we get where
t
K0 =x(0)+ [ dvet) ®) D(0=(& [0 tar. "
0

Let us imagine a set of infinitely many trajectories of the
type of that of Eq(8). As to the second momefix?(t)), we
evaluate its time evolution by squaring E§) and averaging
over all the trajectories of this set. Under the assumption thag
the process is stationary and thg(t)) =0, it is straightfor-
ward to obtain

The proof of this important result rests on the cumulant
theory of Ref[14], and the reader can derive it from a more
eneral case discussed in REE5]. It is straightforward to
how that the general solution of E{.3), for a set of par-
ticles initially located ax=0, is

2
t 1 1 X
X2(1))=(x?(0))+2( & Jd J dr,® (¢ p(x,t)= exp(— ) (15
< ()> < ( )> <§> 0 71 0 T2 g(Tz) 9 27T<X2(t)> 2<X2(t)>
Note that to get this result we use the equilibrium correlatiorwhere(x?(t)) is the second moment with the time evolution
function described by Eq.9). It is easy to show that the time
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asymptotic properties of the second moment are compatibleecond moments fqe<3. It is evident that in this case the
with Eg. (12), with H ranging from 0 to 1. Let us consider property5=H is broken, and that the numerical determina-
the case tion itself of H is an ill-posed problem.

Instantaneous jumps of arbitrarily large intensity are
somewhat unrealistic. For this reason the authors of Refs.
[20—22 made the assumption that it takes the random walker
a time proportional to the jump intensity to make a given
It is straightforward[16] to prove that Bs8<1 ands=1  jump. This process is called g walk. Furthermore, the

t—oo

. <
lim d>§(t)oct—ﬂ. (16)

yields condition that the distribution of jumps intensities has al-
ready the Ley stable form is released and replaced by an

H=1_ E (17) inverse-power-law distribution. To generatéviyewalk we

2° refer here to the algorithm of Ref6]. This algorithm is

, based on drawing first the random numbergs, i
If B>1 ands=1, we getH=0.5. Note that the case when —1 2 . with the probability density)(7) given by
the decay of the correlation function is exponential, it corre-

sponds toB=«, and so again téd1=0.5. In principle, this Te-1
picture is compatible with a diffusion slower than the P(1)=(pn—1) : (21)
Brownian diffusion. This is possible whea=—1. This (T+7n)#

means that the correlation function undergoes one or more _ N o _ _
oscillations allowing it to get negative values moving from whereT is a positive constant. This is the simplest analytical
the initial positive value® (0)=1. In this case Eq(17)  form ensuring at large times an inverse power law and fit-

holds true with & B8<2. ting, at the same time, the normalization condition that is
Thus, we see that in the asymptotic time limit the solutionnecessary to interpret it as a probability density. Note that we

of Eqg. (13) can be written under the form also set the physical conditiqen>2, ensuring the existence

of a finite first moment, namely, the mean time of this dis-
1 x2 tribution, (7). The meaning of the paramet€iis made clear
p(x,t)= e vt (18 py the relation
with xk being a constant depending on the time series under (r)= T 22)
study. The expression of E¢L8) shows that the scaling defi- pu—2"

nition of Eq. (2) is fulfilled, with §=H, while the function
F(y) keeps the Gaussian form of ordinary statistical me-This means that the paramefeserves the purpose of keep-
chanics. This expression coincides with the FBM prescriping under control the mean time), which can be made as
tion [13], the only important difference being that the FBM large as we wish in two different ways, the first being mak-
implies that the form of Eq(18) holds true at all time scales, ing u as close as possible to 2, and the second being assign-
while the dynamical derivation, from E¢L3), makes it true ing to T very large values that compensate an ingesig-
only in the asymptotic time limit. nificantly greater than 2, but smaller than 3. The second
The condition6=H, correct in the case of FBM, is vio- requirement is due to the fact that=3 is the border with
lated in general. A very popular example is given by thethe Gaussian basin of attractip]. To generate Ley walk
Levy flight [17,18. Let us illustrate here the special case ofwe cannot cross this border. Note that the artificial sequences
symmetric Ley flight. Let us consider that at any time step that we generate to show the different techniques of analysis
a one-dimensional random walker can make jumps by a dign action are obtained, as we shall see in Sec. VI, from the
tance ¢, whose probability density\ (&) has the Fourier discrete version of this algorithm. We associate each time
transform of the formf\(k):exp(_b|k|u—1)_ Here 1=pu interyal 7 to a lnumbe_rsi, equall to either+1 or —1, ac-
<3 andb denotes the strength of the resulting diffusion pro-cording to a coin tossing prescription. We ceMentthe ran-
cess. According to the generalized central limit theorenflom drawing of the paifr;,s;}. The first event takes place
(GCLT) [19], the resulting diffusion process yields a pdf att=0. The random walker moves with constant velodhy

p(x.,t), whose Fourier transform(k,t) reads ahead or backwards, according to whetbeis equal to+1
n ' or to —1. At time t=7; the random walker can change di-

f)(k,t)=exr(—b|k|“‘lt). (19) rection or keep mqving in th(_a same direction, according to
whethers, has a sign opposite or equal to thatxf We
Note that|k|1//x|. Thus, Eq.(19) shows that in this case keep using the same prescription at timgs- 7,, 71+ 7,
the scalings is given by + 73, and so on. We consider a time scale characterized by
the property
1
=1 (20 t> (7). (23)
On the other hand, it is know[17] that the pdfp(x,t) yields It is evident that the number of events that occurred prior to
slow tails proportional to 1X|#, thereby implying diverging a given timet is given by
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t cal meaning changes from case to case and depends on both
n= m} (24)  the statistics of the process and the walking rule adopted to
change the time series into a diffusion process.
with [a] denoting the integer part af. Consequently, at a
given timet>(7), the positionx occupied by the random IV. THE DIFFUSION ALGORITHM
walker is given by the superposition of many highly corre-
lated fluctuations;, of intensity W, or of n uncorrelated In Sec. II, the DEA was illustrated adopting a continuous
variablesé = 7;s; . Using the latter perspective, we have thatpicture. The analysis of time series implies the adoption of a
the probability distribution function (£) given by discrete picture. This is so because, in practice, we have to
analyze a sequence df numbers ofé;, withi=1,... N.
1 3 We derive from this sequence the largest possible number of
ME)= 2W ¥ \T\/) ' (29 diffusing trajectories with the method of a mobile window of

(integey length t. In fact, we select an integer numbgr
the analytical form of the functiogy being given by Eq(21).  fitting the condition kt<N. This integer number plays the
By applying again the GCLT19], we obtain the Ley sta- rule of the diffusion time. Therefore, for the only purpose of
tistics, and, of course, the same scaling prescription as that aimplifying the notation, we adopt the same symbal *
Eq. (20). adopted for the continuous diffusion time in the previous

Levy walk serves the very useful purpose of explainingsections. For any given diffusion tinte we can findN—t
why the emergence of the iy statistics does not imply a +1 subsequences defined by
total failure of the methods relating scaling to variance. In
this case, in fact, the second moment is finite, and this prop- &9=¢g, . with s=0,... N—t. (31)
erty does not depend on the lack of sufficient statistics. It
depends on the fact that no jump can occur with a length o
intensity larger thanVt. In this specific case, the renewal
theory[23] prescribes that the correlation functidr(t) is
related to the waiting time distributiof( 7) by the important

( t t
equation x©(t)= i; g8 = i; its- (32

1 e ! I !
(I>§(t)=mft (' —t)g(t)dt’. (26)

f:or any of these subsequences, we build upsthaliffusion
trajectory, defined by the position

We can also imagine a collection bf—t+ 1 particles, with
the valuex®(t) denoting the position of theth particle at
the timet. In other words, we imagine®(t) as the position
of a particle that, at regular intervals of time, has been jump-

From this important relation, using E1), we derive the
following analytical expression fob .(t):

T \8 ing forward or backward according to the values of the cor-
Dt)=| —=]| . (27)  responding subsequences of Eg81). This means that the
t+T particle, before reaching the position that it holds at timne

has been makingjumps. The jump made at théh step has
the intensity| £, and is forward or backward according to
B=p—2. (28)  whether the numbet'® is positive or negative. We adopt a
perspective inspired to Brownian motidrandom walker
At this stage we are equipped to derive the asymptotic propfor the tutorial purpose of illustrating how the diffusion al-
erties of the pdf second moment. The existence of the corregorithm works. Actually, the ultimate task of this algorithm
lation function of Eq.(27) allows us to use again E(Q) so s to express in a quantitative way the departure of the ob-

with

as to reach quickly the conclusion that served process from the statistical properties of the ordinary
Brownian motion.
H= 4__:“ (29) We are now ready to evaluate the entropy of this diffusion
2 process. To do that we have to partition thexis into cells

of size e. We count how many particles are found in the
This result is, in fact, obtained by plugging HQ8) into Eq.  samejth cell at a given time.. We denote this number by
(17). There is no reason to identify with &, in this case. ~N;(t). Then we use this number to determine the probability
Rather, if we trust the GCLT and, consequently, the scalinghat a particle can be found in thih cell at timet, p;(t), by

prescription of Eq(20), we see tha® is related toH by means of
5= ! 30 N (t)
“3-2H 30 : (33

Pi= N7 D)
We shall prove that the DEA detects this correct scaling; the

methods resting on variance cannot, even if the expoHent At this stage the entropy of the diffusion process at tinse
they detect has an interesting physical meaning. This physdetermined, and reads
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the symbolH to denote the result of the statistical analysis.
St)y=-2 p;(H)In[p;(t)]. (34 To assess whether this is the true scaling or not, it is neces-
J sary to also use the DEA.
Rescaled range analysiRRA was introduced by Hurst in
1965[11], mainly for the purpose of studying the water stor-
eage of the Nile River. It years, the average influx is

The easiest way to proceed with the choice of the cell size
is to assume it to be a fraction of the square root of th
variance of the fluctuatiorg(i), and consequently, indepen-
dent oft.

t
1
(&=7 2 & (37
V. THE METHODS OF ANALYSIS BASED ON VARIANCE

. . . . _.The amount of water accumulated in the reservoir years
In this section, to make easier for the reader to appreciat ye

the benefits afforded by the adoption of the DEA, we review

four alternative methods of time series analysis. The last T

three methods are very popular, and are all reldteda X(t, )=, (&—(&)). (38
somewhat different extento the first one, based on the di- =1
rect evaluation of variance.

Standard deviation analysisSDA is probably the most
natural method of variance detection. This method was use
for instance, in Ref[10]. The starting point is given by the
diffusion algorithm of Sec. IV, Eq32). All trajectories start
from the originx(t=0)=0. With increasing time, the sub- R(t)= maxx(t,7)— min x(t, 7). (39)
sequences generate a diffusion process. At each discrete time 1=r7=t 1=7=t
t, it is possible to calculate the standard deviation on th
trajectory position with the well-known expression

The reservoir neither overflows nor empties during the pe-
riod of t years if its storage capacity is larger than the differ-
ence,R(t), between the maximum and minimum amounts of
water contained in the reservoR(t) is

For getting a dimensionless value, Hurst divided) by the
standard deviatios(t) of the data during thé years:

N—t - T
2 KO0-xr° st=\/1 2, (6 (002 0

N—t ’ (35)

D(t)=
Hurst observed that many phenomena are very well de-

— scribed by the following scaling relation:
wherex(t) is the average on the positions of tNe-t+1 y g g

particles at timd. We note that the prescription illustrated in R(t)

Sec. IV to define that the trajectories of this diffusion process %“t - (41)

are based on overlapping windows. This means that the tra-

jectories are not totally independent of one another. In prinThe exponentd (denoted by the letteK by Hursh was
ciple, we can also adopt a nonoverlapping window methodealled Hurst exponent, and consequently denoted by the let-
In this case the largest trajectory that we can build up withter H, by Mandelbrof13].

the whole sequence is divided into=[N/t] smaller trajec- Detrended fluctuation analysiDFA was introduced in
tories of sizet (as done earlier, with the symbj@] denoting 1994 by the authors of Ref3]. Since 1994, hundreds of
the integer part of). Thus, the quantityD(t) can be re- papers analyzing fractal properties of time series with the
ferred to many trajectories totally independent of each othebFA have been published. In summary, DFA works as fol-
This is the advantage of using many nonoverlapping winfows. Given a time sequend&;} (i=1, ... N), the DFA s
dows. However, nonoverlapping windows generate a numbeasased upon the following steps. First, the entire sequence of
of trajectories much smaller than when using the overlappingength N is integrated, thereby leading to

window method, and, consequently, statistics is poorer than

that with the method of overlapping windows. We prefer to :

work with rich statistics; therefore, in this paper we use the Xlzzl (&—(&), (42
method of overlapping windows.

According to the traditional wisdom of the methods basedyhere
on variance, the existence of scaling is assessed by observ-
ing, with numerical methods, the following property: 1 N
O=§ 2 & (43)

D(t)ot", (36) '
with | being an integer number whose maximum valusl.is
The exponentH is interpreted as the scaling exponent. AsSecond, the resulting time series is divided ifk/t] non-
discussed in Sec. lll, there is no guarantee that this exponeonverlapping boxes. The numbemwhich indicates the size of
coincides with the genuine scalir® This is the reason why the box and plays a rule analogous to the diffusion time, is an
with all the methods of analysis of this section we shall usanteger much smaller tha. A local trend is defined for each
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box by fitting the data in the box. The linear least-squares fiS,(7), defined by Eq(49), is the wavelet spectral density
may be done with a polynomial function of ordex0 [24].  function that gives the contribution to energy at the seale
Let x/(t) be the local trend built with boxes of sizeThird, From Ref.[12], we derive that SWA applied to studying a
a detrended walk is defined as the difference between theoisy sequencgé;}, at the scaler, yields

original walk and the local trend given by the linear least-

squares fit according to the following relation: Sw( 7)o 74 (50

Xi(t)=x=x(t). (44)  The exponent is related to the variance scaling exponent
_ _ in the same way as in the conventional Fourier analysis.
Finally, the mean squared displacement of the detrendegiherefore, a=2H—1 for the SWA of the noise, and

walk is calculated, that is, =2H for the SWA of the integral of the noise. The connec-
LN tion with the methods of scaling detection based on variance
is evident.
Fo(h =g 2, (DT (45

o ) ) VI. ARTIFICIAL SEQUENCE ANALYSIS
The application of this method of analysis to a number of

complex systemssee, for instance, Reff3,24]) shows that In this section we verify the theoretical predictions of the
previous sections about the pdf scaling expong@ind the
Fp(t)octH, (46)  variance scaling exponeht by using artificial sequences of

5% 10° data. With the help of artificial time series, we com-
Again, according to the traditional wisdom of the methodspare the methods of analysis based on variance with the
based on variance, the exponetitis considered to be a DEA. We prove that the DEA always determines the true
scaling exponent. Thus, the extent of the departure from thecaling §, whereas the variance based methods detect the
ordinary condition of Brownian motion is given bjH true scaling only in the Gaussian case. Thus, in theyLe
—-0.5>0. case, only the DEA reveals the true scaling.

Spectral wavelet analysiSWA is a new and powerful

method for studying the fractal properties of variaf&&].
SWA decomposes the sample variance of a time series on a . ] S i
scale-by-scaldasis. Wavelet transform makes use of scaling  Fractional Brownian diffusion is produced by fractional
waveletsT//,yt(u), localized in time and frequency. The wave- Gaussian noise. For historical reasons, we generate a time

let frequency is given by a scaling coefficientthat mea- series{£;} of N data by using the original algorithm by Man-

sures the width of the wavelet. The position of the wavelet indelbmt’ which can be found in work of Fedé2s]. Other

space is given by, with u being the space variable. Two more recent algorithms are suggested in Reif2,24. Cho-

typical wavelets widely used are the Haar wavelet and th%en a V"?‘ILE:T oH .Th[o'l.]t' Iet.{ei} beg set of Gaugrsrl]an d'r an- i
sombrero wavelef12]. om variables with unit variance and zero mean. The discrete

Given a signak(u), the continuous wavelet transform is fractional Brownian increment is given by
defined by

A. Gauss statistics: fractional Brownian diffusion

— m
rnH

g:— jH—O.Sa .
o _ i F(H+0.5) “ I+m(M+i)—]j
W(T,t)=fiww7,t(U)§(U)dU- (47)

m(M—-1)

o , , ) + E [(M+])H 70570990, m—1y—j ¢
The original signal can be recovered from its continuous =1

wavelet transform via

§<u>=éfom

whereM is an integer that should be moderately large, mnd
indicates the number of the fractional steps for each unit

f W(T,t)ﬂ/ﬂ(u)dt (48 time. In the simulation, good results are obtained wiMh

7 =1000 andm=10. The time serieg¢;} is then used for
. (f:;enerating a diffusion process with the trajectoiig®).
whereCy, is a constant that depends on the wavelet, see Ref. According to the theoretical arguments of Sec. IIl, we

[12] for details. Finally, it is possible to prove that expect 5=H in this case. To confirm this expectation by
L q means of the statistical analysis, we generate five different
N _ B RN T [ sequences with the following values bff. (1) H=0.8, (2
Log (“)d“_afo Lcw (T’t)dt}?_fo Swnd7 06, (3) H=0.5, (4) H=0.4, and(5) H=0.2. We ana-
(49) lyze these sequences with the SDRig. 1) and with the
DEA (Fig. 2. The results of the numerical analysis fully
The functionW?(r,t)/7* defines an energy density function confirm our expectation. Let us see all this in more detail.
that decomposes the energy across different scales and tim&sr illustration convenience, in Fig. 1 we plét(t)/D(1)
Equation (49) is the wavelet equivalent to the Parseval's against the diffusion timé, whereD(t) is the standard de-
theorem in the traditional Fourier analysis. The functionviation defined by Eq(35). With this choice, at=1 all the
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It is remarkable that for all the values Bfthe parameters
Kp andKg are very close to one and zero, respectively. This
is a consequence of an important property that the statistical
analysis of times series should properly take into account.
The short-time regime is a kind of dynamic regime and the
scaling regime is a kind of thermodynamic regime. It takes
time for a transition from the dynamic to the thermodynamic
regime. Only in the case of a transition time equal to zero,
that is, in the presence of an ideal FBM, the two fitting
parameters arép =1 andKs=0. Figures 1 and 2 show that
for small values ofH, for exampleH=0.2, the transition
regime becomes more extended in time. We note that at this
small value ofH the diffusion process becomes significantly
antipersistent. This might be a physical property where the
Mandelbrot algorithm that we are adopting does not satisfac-
torily reproduce the ideal condition of FBM.

FIG. 1. SDA acting on five time series of fractional Brownian
noise of Sec. VI A. We ploD(t)/D(1) against the diffusion time
The straight lines of this log-log representation are fitting functions
with the formf(t)=Kpt". From the top to the bottom we hay®
H=0.8,(2) H=0.6, (3) H=0.5, (4) H=0.4, and(5) H=0.2. We generate a sequence of paifs;,s}, with i

] ) , ) ] =1,2,.... Thenumberdr;} are the integer part of the times
numerical results yield, in the ordinate axis, the same vaIueTi generated by the algorithm of Ré6], yielding the prob-
equal to the unity. For the same reason, in Fig. 2, we plot thejjity density of Eq.(21). We select for all the artificial
entropy differenceS(t) —S(1), thereby making all five nu-  gequences the valuB=1. It must be pointed out that this
merical curves depart from the same ordinate valué at chjce for the value o is adopted to ensure a transition to
=1. In both figures the straight ImeHs are the results of ghe scaling regime as fast as possible. The asymptotic time
fitting procedure, based ofp(t)=Kpt™ in Fig. 1, and on  |imit predicted by the theoretical remarks of Sec. Ill remains
fg(t)=Kg+ & In(t), in Fig. 2. These fitting functions become unchanged. The mean tinde) of Eq. (22) has to be referred
st'raight lines due'to the log-log repre;entation adpptgd ifo a kind of effective value of, i.e. T(erp), and so does the
Fig. 1 and to the linear-log representation adopted in Fig. 2¢qrrelation function of Eq(27). It is not worth defining the
The parameter$i of the straight lines of Fig. 1 and the gyact value off 1), since this does not have any significant

parameters of the straight lines of Fig. 2 coincide, curve by ¢onsequence on the asymptotic time limit. As illustrated in
curve, with the actual values éf used to generate the arti- gec_ ||, the numbers; hold either+ 1 or — 1, according to

ficial FBM sequences. The good fits of Figs. 1 and 2 provene coin tossing prescription. We can use the sequence

that the conditiorH = 6 is verified for FBM. The constants {r;,s} to generate both by flight and Lary walk.

Kp andKs are fitting parameters. Lévy flight is obtained by changing the original sequence
3 of pairs {r;,s;} into the new sequencgé}, where ¢

' =g;r;. Notice that this means that the probability density

does not have the g form. However, thanks to the GCLT

B. Lévy statistics: flight and walk diffusion

25¢
° [19], after a few time steps the resulting pplfx,t) is ex-
2l pected to get the lwy form of Eq. (19).
Lévy walk is obtained by building up the sequer{ég as
— 15} follows. We assign to the firat; sites of this sequence the
w valueWs;, to the nextr, sites the valu&Vs,, and so on. As
% 1 explained in Sec. I, the Ly flight and the Ley walk, in

05 the asymptotic time limit have the same scaling, given by

0k TABLE I. Theoretical relation between the waiting time distri-
bution power exponent, the variance scaling expondst and the
_0_51 5 pdf scaling exponend.
t
M H 1)

FIG. 2. DEA of the five time series of fractional Brownian noise
of Sec. VIA. For illustration convenience, in ordinate we plot the 2.2 0.90 0.833
entropy incremens(t) — S(1) as a function of diffusion time The 24 0.80 0.714
straight lines of this linear-log representation are fitting functions 2.5 0.75 0.667
with the form fg(t)=Kg+ dIn(t). From the top to the bottom we 2.6 0.70 0.625
have (1) §=0.8, (2) §=0.6, (3) 6=0.5, (4) 6=0.4, and(5) & 2.8 0.60 0.556
=0.2.
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FIG. 3. DEA of the five Ley flight time series of Sec. VIB. The FIG. 5. RRA of the five Ley flight time series of Sec. VI B. Al
straight lines of this linear-log representation are fitting functionsihe five cases fitted by the straight line of this log-log representation
with the form fg(t) =Ks+ 6In(t). From the top to the bottom we g fitting functions with the fornfip(t) = Kpt", with Kp=1.1 and
have (1) 6=0.833, Ks=2.25; (2) 6=0.714, Ks=2.15; (3) § =05
=0.667,Ks=2.11; (4) 6=0.625,Ks=2.15; and(5) §=0.556,Kg
=2.15.

representation. The values of the parametecsincide with

Eq. (20). However, the Ley walk is expected to result in a the theoretical prediction of Table 1. Figurgs 4 and 5. illustrate
givenH, predicted by Eq(29). the results of the SDA and RRA, respectively, applied to the

For the illustration purposes of this paper, we realize fivesame five time series of Fig. 3. For these figures we adopt a
sequences to generatévyeflight and five sequences to gen- 109-log representation, and consequently fitting functions
erate Ley walk. This is done by assigning to the distribution With the formfp(t) =Kpt" that become straight lines in this
of Eq. (21) the following values foru: (1) u=2.8, (2) u representation. Both figures yield fbr a value independent
=2.6,(3) u=2.5,(4) u=2.4, and5) u=2.2. In Table lwe of u. This value isH=0.5 in all cases. According to the
have reported for reader’s convenience the valued ahd  traditional wisdom, this would suggest the wrong conclusion
H, which according to the theory of Sec. Ill correspond tothat we are in the presence of ordinary Brownian motion. We
each of the five values qf used for the numerical check. are not, and the DEA is warning us that this would be a

The theoretical prescriptions used are E2p) for § and Eq.  wrong conclusion. The reason for this misleading result is
(31) for H. that these techniques are determined by both the finite value

Figure 3 shows the DEA at work on the time series gen-Of the variance, due to statistical limitation, and the memo-
erating Levy flight. The straight lines are fitting functions of ryless nature of the sequenfig}. The smaller the parameter
the formfg(t)=Kg+ SIn(t). As in Fig. 2, these fitting func- ., the smaller the variance, as shown by Fig. 4. The RRA
tions become straight lines due to the adoption of a linear-log

10

100000

100 7000 : 70000 70000

70 100 : 1000 10000 10000
FIG. 6. DEA of the five Ley walk time series of Sec. VI B. The

FIG. 4. SDA of the five Ly flight time series of Sec. VIB. The straight lines of this linear-log representation are fitting functions
straight lines of this log-log representation are fitting functions withwith the form fg(t)=Kg+ §In(t). From the top to the bottom we
the form f5(t)=Kp t". From the top to the bottom we hay#) have (1) 6=0.833, Ks=0.35; (2) 6§=0.714, Kg=0.93; (3) ¢
H=0.5,Kp=190; (2) H=0.5,Kp=29; (3) H=0.5,Kp=16; (4) =0.667,Ks=1.05; (4) §=0.625,Kg=1.15; and(5) §=0.556,Kg
H=0.5,Kp;=9.5; and(5) H=0.5,Kp=4.1. =1.25.
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FIG. 7. RRA of the five Ley walk time series of Sec. VIB. The FIG. 9. DFA of the five Ley walk time series of Sec. VI B. The
straight lines of this log-log representation are fitting functions withstraight lines of this log-log representation are fitting functions with
the form f(t)=Kpt". From the top to the bottom we hay&)  the formfp(t)=Kp t". From the curve with highest slope to that
H=0.9, Kp=0.15; (2) H=0.8, Kp=0.25; (3) H=0.75, Kp with lowest slope we havél) H=0.9, K;=0.043; (2) H=0.8,
=0.75;(4) H=0.7,Kp=0.39; and(5) H=0.6, K, =0.62. Kp=0.067;(3) H=0.75,Kp=0.082;(4) H=0.7,Kp=0.104; and

(5) H=0.6,Kp=0.15.
eliminates this spreading, due to the fact that it normalizes
theF?gaS?ets)de_'\i'g'r;gfg?’ :getrialgiﬂ?édsi?i\g:tlggﬁeratin'g JLe more |mpo_rtant thgn this, is the fact that for the samt_all
walk. Figure 6 illustrates the result of the DEA. As in Figs. 2four techniques yield the same value Hf. as the fitting
and 3, the straight lines are fitting functions of the form curves show, thereby supporting our conviction that they are
f(t)=Ks+ 5In(t), made linear by the adoption of a linear- dnfferent fprms of the same tec.hmque of gnaIyS|s, and that
log representation, and, again the paramesegsincide with this technique of analysis is reliable only in the FBM case.
the theoretical prediction of Table I. Figures 7, 8, and 9 il-On the other hand, we notice that the valuesscénd the
lustrate the results of RRA, SDA, and DFA, respectively. For/alués ofH reported in Table | fit the condition of E¢30),
all these figures we adopt the log-log representation, andind this is a strong evidence that the statistics generated by
consequently we change into straight lines the fitting functhe time series is hey statistics. This means that the dis-
tions with the formf(t) =K, t". Finally, Fig. 10 shows the agdreement between the scaling exponérnietected by the
results of SWA. The SWA is made upon the integral of theDEA @nd the exponert detected by the variance techniques
signal and in the ordinate the square rooSg{ ) is plotted. ~ Of analysis can be used for the important purpose of defining
In this way, we can adopt fitting functions with the form the nature of statistics generated by strange kinetics.

fw(7)=Ky7" for Fig. 7. In all four cases the parametér

corresponds to the theoretical value tafof Table I. Still
1000 | 100}
[T}
S
=
=0
100 s
= %)
(]
10} 1L
10 1%')0 7000 76000
]

10 1?° 1000 10000 FIG. 10. SWA of the five [ey walk time series of Sec. VIB.

The straight lines of this log-log representation are fitting functions
FIG. 8. SDA of the five Ley walk time series of Sec. VIB. The with the formf,(7)=Ky,7". From the curve with highest slope to
straight lines of this log-log representation are fitting functions withthat with lowest slope we havél) H=0.9, K=0.115; (2) H
the form f(t) =Kpt". From the curve with highest slope to that =0.8, K\,=0.15; (3) H=0.75,K=0.17; (4) H=0.7, K\,=0.2;
with lowest slope we havél) H=0.9, K;=0.45; (2) H=0.8,Kp and (5) H=0.6, Ky,=0.23. The wavelet spectral density is calcu-
=0.48; (3) H=0.75,Kp=0.53; (4) H=0.7,Kp=0.6; and(5) H lated using the maximum overlap discrete wavelet transff8mn
=0.6,Kp=0.7. with the Daubechie$i4 discrete wavelet.
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VII. SIGNIFICANCE OF THE RESULTS OBTAINED ics. Paraphrasing the title of a recent paj@, “Do strange

. . . kinetics imply unusual thermodynamics?”, we can say that
This paper affords the compelling evidence that the DEA, o ¢ the basic problems concerning complex systems is

is the only method_ leading in all conditions to the detectionthat of establishing if anomalous diffusidstrange kinetics

of the correct scaling exponent In the case of a sequence 5 compatible or not with ordinary Gaussian distributioni-

of random numbers, which according to the GCLT shouldyary thermodynamigs In statistical mechanics, thermody-
result in an anomalous scaling, the popular Hurst methoghamics is used to establish the most plausible form of equi-
would lead to the wrong conclusion that the process obtibrium distribution, thereby implying that the transition
served is equivalent to the ordinary Brownian motion. All thefrom an out-of-equilibrium initial condition to the final equi-
traditional methods would lead to quite correct conclusiondibrium condition is thought of as a transition from dynamics
only in the case of Gaussian statistics, a condition that doet® thermodynamics. We consider the scaling regime as a
not mean, of course, ordinary Brownian diffusion, as maddorm of equilibrium, and consequently as a thermodynamic
evident by the FBM theory of Mandelbrot. It is also evident equilibrium. If we look at the results of this paper from
that these traditional methods ought not to be abandonedvithin this perspective, we can conclude that FBM is an
even if they have to be used with caution. The results of Seexample of strange kinetics compatible with ordinary ther-
VIB prove that the departure of from H is a clear indica- modynamics. We can thus conclude that the joint use of DEA
tion of the occurrence of lwy statistics. More generally, the and techniques of analysis based on variance can assess
departure of the traditional methods from the DEA findingwhen strange kinetics force the complex system to depart
might be used to shed light on statistics as well as on dynanfrom ordinary thermodynamics.
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