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Evolving networks with distance preferences
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We study evolving networks where new nodes when attached to the network form links with other nodes of
preferred distances. A particular case is where always the shortest distances are €etedtedriends with
the friends of your present friends”We present simulation results for network parameters like the first
eigenvalue of the graph Laplacidsynchronizability, clustering coefficients, average distances, and degree
distributions for different distance preferences and compare them with the parameter values for random and
scale-free networks. We find that for the shortest distance rule we obtain a power-law degree distribution as in
scale-free networks, while the other parameters are significantly different, especially the clustering coefficient.
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[. INTRODUCTION idly from a localized source through the entire network. An-
other distinct feature of this model is that there is clustering
Graphs can be considered as substrata of dynamic netrhich is absent in random models. Empirical evidence is
works, and so, several types of graph models have been pravailable for the occurrence of clustering in real networks
posed for capturing the properties of specific netwdiks3]. [9]. Another interesting model is that of a scale free network
In particular, evolving networks can be modeled throughas introduced by Barabaand Albert[2,10]. This is a graph
growing graphs, i.e., graphs to which continuously newwhere new nodes are added and form a fixed number of links
nodes (vertices and new links(edge$ are added. While with the existing nodes not completely at random, but with a
regular graphs, i.e., ones where each node has the same cameference towards those nodes that already have more con-
nectivity pattern and where consequently the interactions argections than others. More precisely, the probability with
local in nature and progress in a slow and orderly fashiorwhich existing nodes receive a link from a new node is pro-
from neighbor to neighbor, can exhibit subtle combinatorialportional to the number of links it already possesses. The
patterns, for a realistic network model typically a certaincharacteristic feature of the emerging graph here is that the
amount of irregularity or randomness is needed. The protonumber of nodes with a given number of links does not
types here are the random graphs introduced by £etwl  decrease exponentially as a function of the latter as for ex-
Renyi where the connections between the nodes are chosemple in random graphs, but follows a power law—the rea-
completely randomly[4]. These exhibit quite interesting son why such a graph is called scale free. Such models can
properties, but often real networks are not entirely random irprovide valuable insights into existing real networks, for ex-
this sense, but show some kind of regularity, not directly inample into patterns of social relations or spreading of dis-
their connectivity pattern, but with respect to some othereases in the small world model, or the connection patterns of
variable or order parameter. Such a parameter can be a clugiternet sites or flight connections between airports in the
tering coefficient, the average or maximal distance betweescale-free model.
nodes in the networkas measured by the minimal number of It is then a natural question whether there exists an en-
links separating thejm the distribution of the number of compassing scheme, which on one hand can put these spe-
links between the nodes, the correlation of such propertiesific models into a more general perspective, and on the
between neighboring nodése., those connected by a link of other hand can offer systematic tools for analyzing the de-
distance 1 or the first eigenvalue of the graph Laplacian pendencies among the various network features listed above.
which is relevant for synchronization properties throughoutideally, these features should depend in an analyzable man-
the network of dynamic activities at the individual nodesner on certain parameters of the network construction, and so
[2,5-8. Models have been proposed that capture some aheir interdependencies could then be studied in terms of
these aspects. The small world networks introduced by Wattselations between the parameters involved.
and Strogat#5] are constructed from regular graphs by cre-  We attempt here to take a step in this direction by propos-
ating additional random links between nodes, with or withouting a general scheme for constructing evolving networks.
deleting some of the existing ones. Once a certain number @ur model is characterized by a distance preference function.
such new links has been introduced in proportion to the numThis function specifies the probability in terms of the dis-
ber of regular ones, distances in the graph get dramaticallfance with which an existing node in the network receives a
shortened, and, consequently, activity can spread quite rapew link from a newly created node that already has formed
one random link so as to attach it to the network and to
define its distances to the other nodes. The number of links
*Email address: jjost@mis.mpg.de each node is allowed to make can be either fixed—as in our
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to form a new link does so preferably to another node of II. NETWORK CONSTRUCTION

distance 2, i.e., to a direct neighbor of a node that it is al- ) .

ready attached to. This might constitute a useful model for e start with a small network having, nodes and then
the formation of social relationshifigou want to become a let it grow according to the following scheme. We fix a num-
friend of the friends of your present friends as the easiest oper m as the number of connections each new node is al-
safest means of forming new relationshipSonversely, we lowed to establish to other nodes existing in the network; in
might also stipulate that always the most distant nodes arprinciple, this number could also be randomly chosen from
the preferred recipients of new links. Obviously, one thensome distribution instead of being fixed, but, for simplicity,
expects that the resulting network has quite a short averagg our simulations, we only work with a fixeth=m,, as this
distance between any two nodes, as in the small world angyijj probably not dramatically affect the resulting network
scale-free models. In fact, however, our simulations demonProperties. The crucial part of our scheme is the specification

strate that directly selecting distances is not as efficient foﬁ: a probability distributionp(d) for the preferred distance

reducing the average distance in the network as creatin . : o .
some highly connected nodes through which many shorte a node with which a new link is established. So, when a

connections can go, as in the scale-free model. More intef?€W nodex, comes in, it is first allowed to make one con-
estingly perhaps, one may even expect a certain tenden@pction with a randomly chosen node in the network, in or-
towards the scale-free type when shortest distances are préer to attach it to the networkWe could also change this
ferred. Namely, a node that is highly connected then has Elle and let the first connection prefer well connected recipi-
greater chance of receiving a new link than a less well con€nt nodes, as in the scale-free model, but in the present pa-
nected one, because the former has a greater chance of bei@f, We do not perform numerical simulations for that nule.
a direct neighbor of another node that has received a previthis leaves us witim—1 further links that it is allowed to
ous link from a new node that is attaching itself to the net-establish. For the formation of any such link, we consider a
work. Thus, we see the principle that the rich get richer,nodexin the network and select it as the recipient of the new
which is characteristic for scale-free networks, also at workink with a probability given byp(d(x,,x)). Of course, the
here, although in an indirect and somewhat mediated form. Aormation of any new link changes the distances in the net-
conceptual advantage of this construction over the scale-fregork and the creation of further links, until the allotted num-
one might be that here, for each link, we only need to evaluberm of them has been formed frory , then is governed by
ate local information, namely, check those sites in its vicin-the new distance pattern. Onggis connected according to
ity. More precisely, if we exclusively select sites of distancethis scheme, we create a new nogg ; and repeat the pro-
2 as recipients of new links, then we only have to list all thecedure.
neighbors of the present neighbors of the link forming node The distance preference functipd) encodes all the fea-
at each step. In contrast to this, for the scale-free model, thieires of our construction. An important case is where this
complete connectivity pattern of any potential recipient any-Sfunction is in fact deterministic, namely where only nodes of
where in the network has to be evaluated. In general, in oudistance 2 fromx, are allowed as link recipients, i.e., the
scheme, whether we give preference to short distances ones that have the smallest possible distance frametare
not, what is crucial for the decision about a new link is notnot allowing multiple links, and so no further link can be
an absolute property of the candidate as in the scale-fregttached to a node at distancg. Another deterministic
model, but rather its relation, as expressed by the distance, thoice ofp(d) would be to allow only recipients of maximal
the link forming node. This may capture a property that isdistance fromx, . This obviously makes the scheme compu-
relevant in some applications. tationally much more expensive than the exclusive selection
On the other hand, the scheme where short distances aof nodes at distance 2. More generally, we are interested in
preferred should lead to more pronounced local clusteringlistance preference functiopgd) that are decreasing func-
effects and larger average distances in the network than th@®ns ofd, i.e., where short distances are preferred over large
scale-free construction model. In this way, we can check thabnes, but the latter can still be selected with a positive prob-
certain network properties are independent of or at least natbility.
strongly related to each other. In our simulations as described in the Table |, we consider
Of course, our scheme also includes the possibility that althe cases where the number of links that each new node is
distances are equally preferred. This should generate propesfiowed to form ism=2,3,4, and 5. We let the network grow
ties similar to a random network, although the construction isuntil its size was 30 000 nodes when we evaluated the vari-
not entirely identical, because for a random graph, all nodesus parameters. We considered three different versions of the
are considered equal, whereas here, only those of the sameobability for the distances. In model 1, we exclusively se-
distance to the node forming links have equal recipient problected links to nodes of distance 2, i.e., we always formed
abilities, because the distances need not be evenly distributédangles. In model 2, we let the probability be proportional
among the nodes. to the inverse distance. Thus, there waslaght) preference
We could also easily supplement our construction schem#or shorter distances over larger ones. In model 3, in contrast
by a rule for the deletion of links and/or nodes according toto this, we let the preference function be proportional to the
some criterion to be specified, as a means to stabilize the sizistance itselfscaled with the maximal distance in the net-
of our network. This would allow a comparison of our model work). Thus, there is a preference for larger over shorter
with other models for evolving networks of given size range.distance. Our comparison models are the growing random
Here, however, we do not pursue this aspect systematicallgraph model where alm links are randomly connected
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TABLE 1. The first eigenvalue\,, the clustering coefficient, symmetric because we consider undirected links. We label

the mean path length, and the second moment of degrék$), for  the nodes of" asx;,Xs, ... X,, and we letk; denote the
models 1-5, for differenin values. connectivity, i.e., the number of neighbors of the nogle
The first eigenvalue is then given by
m N C L (k?)
Model 1 ) — 712
| 2, [0 ~u0g)]
2 0.00051 0.245980 9.9977 28.2986 A= inf (@
3 0.00089 0.239210 7.2686 72.4940 UT-R D ku)=0 >, kiu(x;)?
4 0.00213 0.219250 6.0137 140.6150
5 0.00501 0.201360 5.2833 236.4537  \vherex,~x; denotes that they are neighbors. We can now
Model 2 provide the following heuristic argument, how the creation
of a new link in the network affects;, depending on the
2 0.13906 0.001422 7.0212 22.3045  distanced(x,y) between the two nodesy before the link
3 0.25099 0.001770 5.6292 48.8695  between them is formed. Namely, for any functionas
4 0.32974 0.001981 4.9776 85.6206  evaluated for the infimum in Eq1), the new link only cre-
5 0.38889 0.002228 45795 132.6747 ates an additional summand(x) —u(y)]? in the numerator
while the denominator is left unchanged. As the difference in
Model 3 u between neighbors is minimized for a first eigenfunction,
2 0.13872 0.000119 7.1207 21.7022  the expected squared differerfag(x) — u(y)]* should be an
3 0.24933 0.000415 5.7022 47.1782 increasing function of the distance betweeandy. There-
4 0.32844 0.000681 5.0324 g2.4328 fore, the value of a typical candidate functiarfor the infi-
5 0.38688 0.000961 4.6203 127.5877 mum in Eg.(1) should increase as a result of the new link in
a manner that is positively correlated with the distance
Model 4 d(x,y). Thus, if our scheme prefers larger distances, the first
eigenvalue should get larger than when we select short dis-
2 0.13929 0.000391 7.0690 21.9742 tances for new links. Of course, this fits well together with
3 025053 0.000741 5.6659 47.9818  yho fact that on one hand, a largey facilitates synchroni-
4 0.32948 0.001011 5.0061 83.8960  ,ation across the network, and on the other hand, connecting
> 0.38816 0.001306 4.6017 129.8109  nodes that had a large distance should have the effect of a
Model 5 more pronounced decrease of the average distance which in
turn facilitates synchronization as well.
2 0.15605 0.000605 5.8862 39.9532 Our simulationgas described in the Tablgyield that the
3 0.27093 0.001074 4.8676 90.2483 first eigenvalue for model 1 is 0.005 which is quite close to
4 0.35066 0.001482 4.3696 161.7150 the value for a regular network. Thus, synchronization is
5 0.40970 0.001945 4.0593 250.7354 quite difficult in such a network although the average or

maximal distance in the network is quite lo\as described
below) and the degree distribution of the nodes is quite simi-
lar to the scale-free case. In all the other modklsjs sub-
(model 4 and the scale-free or real world modetodel 5.  stantially larger, namely, around 0.39 for models 2—4 and
In Table | we give the first eigenvalue;, the clustering 0.41 for model 5. It might be of some interest that it appears
coefficientC, the mean path length, and the second mo- to be about the same or perhaps even slightly smaller in
ment of degree¢k?), for differentm values, for models 1to model 2, where shorter distances are preferred, than in the
5. The discussion below will employ the simulation resultsrandom model 4, which in turn has a smaller value than
for m=5; as one can see from the table, the resultsnfor model 3 with the preference for larger distances. Thus, the
= 3,4 are qualitatively similar bun=2 is slightly different.  scale-free model is the most easily synchronizable of the
The table gives the averages over ten simulations each; thive, not always a desirable property.
standard deviations are quite small.

IV. CLUSTERING

Ill. FIRST EIGENVALUE . . . .
If our distance preference is for the shortest possible dis-

Spectral properties of small world, scale-free, and randontance, i.e., 2, then the emerging graph will contain many
graph models have been discussed@iv]. The first(non-  triangles, i.e., triples of nodes of mutual distance 1. As a
zerg eigenvalue of the graph Laplacian is the crucial param-consequence, we expect that the graph contains highly con-
eter for the synchronization properties of activities at thenected subclusters.
network sites as systematically investigated in our previous Also, since the creation of any new link increases the first
work [8]; see alsd11]. We naturally assume here that the eigenvalue, it has been suggested by Eckmann and Moses
graphI’ under consideration is connected, as are the grapH42] to employ the number of triangles for defining some
resulting from our constructive scheme. Moreover they aranotion of curvature of a graph. This is based on an analogy
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with Riemannian geometry where the so-called Ricci curvaiarge distances are preferred than for the random model 4,
ture yields a lower bound for the eigenvalue of the Laplaceand slightly smaller for model 2 with its preference for
Beltrami operatofthe Riemannian version of the Laplacian shorter distances.

In other words, the larger the curvature, the higher the ex-

pected value of the first eigenvalue. As our preceding heuris-

tic analysis of the first eigenvalue of the graph Laplacian VI. DEGREE DISTRIBUTION

shows, however, there is a problem with the analogy between T
the number of triangles and the curvature. Namely, if we add One of the dlstmgu[shmg featur_es.of the scale-free or real
a link to a given graph, then the expected increase in th orld model(model 5 is that the dlstrlbu_uon of the degrees
eigenvalue is higher, the larger the original distance betweeﬂf thetnc?de%sfdecays “kle atlhpowerdlaw In cc;}ntrazt tlolthle:'ex-
the two linked nodes was. In other words, when we select th onentiaf of, Tor examplé, the random graph modet. In Figs.
new link so as to form a new triangle, the expected eigen- (a)-1(e) we give the.plots fqr degree d'St.“bUtm(k.) for
value increase is smallest, or, when trying to pursue the anap-1OOIeIS 1-5, respectively, witm=4. We find that in our

ogy with Riemannian geometry, the additional curvature jgnodel 1, Wh?re excluswe_ly shart connections are se_lec_ted
least. once a node is anchored in the network, the degree distribu-

The clustering coefficienC of the graph is defined as tion likewise follows power laws, at Ieagt over most of its
follows [13], regime.(Form=3, we get a pow_er-law distribution only for
some part of the distribution while the end decays exponen-
tially.) Thus, our mechanism is capable of producing a net-
(2)  work that exhibits a power-law distribution of the degrees
but that differs from the scale-free model with respect to a
. . ) ) number of other distinctive parameters, like first eigenvalue
where a “triangle” is a trio of vertices connected to each ang synchronizability, clustering, average distance, etc. In
other and a “connected triple” is a vertex connected t0 ayariicular, this feature is independent of those other features.
(unordered pair of other vertices. For our choice=5, for Models 2 and 3 show an exponential distribution as in the
a regular network the value fa€ is 2/3 (as the number of 3nqom mode{model 4. We also find that the distribution of
links of each node is constrained, not all the neighbors of &ne neighbor degredse., the sum of the degrees of all the
given .node can be coqnected among each other, and so tH@ighbors of a given nodeP(kk)] also partly follows a
value is smaller than 1 in any casé our model 1, the value  noyer law in our simulations for models 1 and 5. In Fig. 2
0.20 is quite high, as to be expected, whereas in all othef,q plot that for model 1 withm=4.
models, it is dramatically smaller. In fact, for model 3 as well
as for the random model 4, it is even smaller than for the
scale-free model 5. In particular, the difference between the VIl. CORRELATIONS
models 1 and 2 is striking here.

_ 3X(number of triangles on the graph
~ (number of connected triples of vertigés

We may ask whether our scheme leads to strong correla-
tions between neighboring sites in the network, with regard
to their connectivity. One possible source of such a correla-

As already explained, the resulting average or maximalion in connectivity could be a correlation in age. Namely,
distance in our network should be smaller when large disolder nodes in the network have had more chances than
tances are preferred for the establishment of new links. Howyounger ones of receiving a random connection from a new
ever, this is not so easy to support through numerical simunode, and so, the connectivity should be positively correlated
lations, as in any case, independently of the preferencwith the age of a node. However, there is no direct reason
function adopted, our networks, like the small world andwhy neighboring nodes should exhibit a pronounced age cor-
scale-free ones, exhibit rather small maximal distances, saiglation.
around the order of four or five for networks with ten or ~ Another line of reasoning can go as follows:Xf is a
twenty thousand sites, and so the difference resulting fronmeighbor of a sitex, of connectivityl, then if distance 2 is
the preference function cannot be very pronounced. selected by our preference function, then has anl-fold

There is one observation that can be made here, howevathance of receiving the second connection that a new node
Namely, the direct preference for forming links to nodes atx, is making, but the chances &f to benefit from this and
largest distance is not as efficient in reducing the average ageceive the third connection that is making is proportional
maximal distance in the network as the more indirect schemto 11 as it is facing the competition of tHe- 1 other neigh-
of preferential attachment to highly connected nodes embors ofx,. Thus, the factors cancel, and here, we do not get
ployed in the Barals-Albert model. This demonstrates the an advantage for a node from being a neighbor of a well
virtue of the latter model. In fact, the average distahce connected node. Of course, this heuristic argument does not
between all possible pairs of nodes is smallest for that modetake the triangle pattern in the network into account. We
namely, 4.06, around 4.6 for models 2—4, and about 5.2 focalculated the average of the square of the degrees of the
model 1. Not surprisingly, a preference for short connectionsiodes(second momeint(k?). The result is given in the last
leads to a larger average distance although the effect is by mwlumn of the table. The value of this parameter is around
means as pronounced as one might naively expect. It is suB50 for models 1 and 5 while for models 2, 3, and 4 it is
prising, however, that is slightly larger for model 3 where almost half of that value.

V. DISTANCES
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FIG. 1. Degree distributioi(k) for models 1, 2, 3, 4, and 5.

VIIl. COMPARISON WITH OTHER RECENT NETWORK

node forms only two links and triangles are exclusively se-
CONSTRUCTIONS

lected. They attach new nodes to the network with links to

Dorogovtsevet al. [3,14] introduced a model which is the two ends of some randomly chosen link already present
similar to the special case of our model 1, where each newn the network. This scheme depends on the distribution of
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10° . . links are randomly removed and replaced by new ones with
one random link. The resulting network again is highly clus-
10l : ] tered, has small average distance, and can be tuned towards a
. scale-free behavior.
10" :
. IX. CONCLUSION AND DISCUSSION
X _ .3
=107 ] We have introduced a model for evolving networks where
. each new node, once it isandomly anchored to the net-
10% E work, forms further links according to some distance prefer-
“ ence function, and we have compared simulation results for
10'k ] the evolved networks with those for two main types previ-
".-"__'“ ously considered, namely the random graph model and the
10° ) ) - scale-free or real world model of Barahaand Albert. We
10’ 102 10° 10° found that when always the shortest possible distances are
kk selected for the recipients of new links, we get a highly clus-

tered network which is difficult to synchronize, although it
still has a relatively small average distance between nodes. It
) o also exhibits a power-law-type behavior for the distribution
links whereas the model 1 depends on distribution of nodesys the degrees of the nodes comparable to the scale-free
though in both cases triangles are formed. model, although the underlying network forming mechanism
Vazquez[15] studied a network where the growth de- js gifferent, and, in particular, there is no explicit preference
pends on the knowledge obtained by “walking” on it. It is & for highly connected nodes which is considered as the main
directed graph model unlike our model. New links arereason for the power-law behavior in the scale-free model.
formed with a probabilityp to a neighbor of a randomly |t has been shown that linear preferential attachment is a
linked node from the new node and this process is recumecessary condition for a growing power-law netwf2g).
sively continued. New nodes are added when there is no newo check this in our model, we calculated the attachment rate
link to form. Beyond a criticap value it produces scale-free 11(k) as a function of the degréde To calculate this we used
network. Here whemp=1, neighbors are preferred as in our the method described {i21]. The attachment rate is numeri-
model 1 but the process continues recursively to produce gajly fitted with a power law itk and we obtained the power
lot more links of longer distances. equal to 1.0 for models Ifor m=5) and 5, and 0.0 for
Jin et al. [16] introduced a model with fixed number of models 2, 3, and Lﬂn model 1 for smaller values Gﬁ, this
vertices where the probability of formation of new links be- exponent is less than)1This indicates that there is prefer-
tween two nodes depends preferentially on the number ofntial linear attachment in our model 1 as in the case of
mutual neighbors. There is a cutoff on the number of neigBaraai-Albert model though we do not explicitly introduce
bors pOSSible and a pOSS|b|I|ty for node removal. This mode{hat in our model. Surprising'y for model 2, though it is
gives graphs with high clustering coefficient but there is nosimilar to model 1, the attachment rate is independent of the
scale-free degree distribution. _ degree as indicated by the zero exponeri.dfhis explains
Holme and Kim[17] introduced a model that in some why the degree distribution is similar to that of a random
respects is similar to our model 1. They let the first connecgne. Even the small probability of attaching to second- and
tion of a new node form according to preferential attaChmenhigher-order neighbors in model 2 produces deviation from
as in the scale-free model and then introduce subsequefifear preferential attachment rate. The number of second-
links that either form triangles or constitute once more, pref4ng higher-order neighbors are not linearly proportional to
erential attachments, according to some random preferencgye number of first neighbors of a vertex in these models.
The resulting network is again scale free. Their main resultis As the other network parameters are different from the
that in a scale-free network, the clustering coefficient canscale-free model, this shows that this feature is independent
take different valueaccording to the strength of the triangle of clustering or synchronizability properties. For other dis-
preference . ) ) tance preference functions, we found network parameters
Klemm and Eguuz [18] consider a growing network that were roughly comparable with these for a random graph
model based on the scale-free paradigm, with the distinctiVﬂetwork' and in fact were regarc“ess of whether our prefer-
feature that Older nOdeS become inaCtiVe at the same rate ﬂ‘@ﬁce was proportiona' or inverse'y proportiona| to the dis_

new ones are introduced. This is interpreted as a finitgance between the link forming node and the potential recipi-
memory effect, in the sense that older contributions tend t@n¢.

be forgotten when they are not frequently enough employed.
This results in networks that are even more highly clustered
than regular ones.
. . . . ACKNOWLEDGMENT
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FIG. 2. Neighbor degree distributidd(kk) for model 1.
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