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Statistical mechanics of typical set decoding
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The performance of “typical sefpair9 decoding” for ensembles of Gallager’s linear code is investigated
using statistical physics. In this decoding method, errors occur, either when the information transmission is
corrupted by atypical noise, or when multiple typical sequences satisfy the parity check equation as provided
by the received corrupted codeword. We show that the average error rate for the second type of error over a
given code ensemble can be accurately evaluated using the replica method, including the sensitivity to message
length. Our approach generally improves the existing analysis known in the information theory community,
which was recently reintroduced in IEEE Trans. Inf. ThedBy 399 (1999, and is believed to be the most
accurate to date.
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Promoted by active investigations on error correctingcomposed oK andC(=3) nonzero(unit) elements per row
codes in both the information theoryT) and statistical and column, respectively. Encoding of the message vector
physics(SP communitied 1—8], there is growing interest in  is carried out using th# X N generating matrixG", satisfy-
the relationship between IT and SP. Since it has turned outg the conditonHG"=0, wherey’=G"x (mod 2). The
that the two different frameworks have investigated similarM-bit codewordy? is transmitted via a noisy channel, a BSC
subjects, it is natural to expect that standard techniques the current analysis, and the corrupted vecyery®
known in one framework might bring about developments in+n° (mod 2) is received at the other end, whend
the other, and vice versa. e{0,1}M represents a noise vector with an independent prob-

The purpose of this paper is to present such an examplebility p per bit of having a value 1. Decoding is carried out
More specifically, we show that a method to evaluate theby multiplying y by the parity check matrix, to obtain the
performance of error correcting codes established in the IByndrome vector=Hy=H(G™x+n%=Hn° (mod 2), and
community[1,5,9 can be generally improved by introducing finding a solution to the parity check equation
the replica method used in SP. This provides an answer to the
guestion among IT researchers as to why the methods from Hn=2z (mod 2), (1)
physics generally provide more optimistic evaluations than

those known in the IT literature. In our formulation, the IT \yhich estimates the true noise vectdt One retrieves, an
method is naturally linked to the existing SP analysis, beingstimate of the original message, using the equaGdn
parametrized by the number of replicas-0, which clearly —y—n (mod 2).
shows how the IT and SP methods are related. Several schemes can be employed for solving (Eg.In

In a 9§U9r3| scenario, thédimensional Boolean message yecent years, the maximuaposterioriand the maximizer of
xe{0,1;" is encoded to thé/(>N) -dimensional Boolean posterior marginal decodings, which correspond to zero and
vectory’, and transmitted via a noisy channel, which is takenthe Nishimori temperatures, respectively, have been widely
here to be a binary symmetric chanriBSC) characterized  jnyestigated3,8,11,12. However, we will here evaluate the
by a flip probabilityp per bit. Other transmission channels performance of another scheme terntggical set (pairs)
may also be examined within a similar framework. At the gecoding which was pioneered by Shannf®i, and reintro-
other end of the channel, the corrupted codeword is decodegl;ced by MacKay5] for analyzing Gallager-type codes. Al-
using structured codeword redundancy. _ though this decoding method is slightly weaker in reducing

The error correcting code that we focus on here is Gallagthe plock or bit error rates, a rigorous analysis is easier than
er’s linear cod¢ 10]. This code was originally introduced by for the above two methods, and it is therefore becoming
Gallager about 40 years ago but was almost forgotten soofgpylar in the IT community1,5,13.
after its proposal due to the technological limitations of the' | order to discuss the typical set decoding, we must first
time. However, since its recent rediscovery by MacKay andnroduce the definition of beintypical. Due to the law of
Neal [4], it is now recognized as one of the best codes defarge numbers, a noise vectorgenerated by the BSC satis-

veloped to date. _ _ fies a condition
A code of this type is characterized by a randomly gener-

ated (M —N)XM Boolean sparse parity check matri, 1M
— nN—p <ey, 2
v 2, MR < eu @
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n for which this condition is satisfied. We also call the set oflevel of the channel noise, an{ «) is the set of indices that
all typical vectors the typical set. have nonzero elements in theth row in the parity check
Now, we can define typical set decoding as a scheme tmatrix H. In the second line of Eq4), we have introduced
select a vecton that belongs to the typical set and satisfiesthe gauge transformatiom—n’n, for further convenience.
Eqg. (1), as an estimate of the true nois& For this scheme, The quantityVy(n°H) is the number of vectors that differ
two types of decoding error can occur; the first possibility,from n° in the intersection of the typical set and the solution
referred to as a type | error, occurs when the true nofsis  space of Eq(1).
not typical, while the other possibility, referred to as atype Il From the definition, the probability of a type Il error for a
error, is declared when the true noiskis typical, and there given matrix H is given by P, ;(H)=(A(n%H)8(SM ,n?
are multiple typical vectors that satisfy EQ) [5]. Since it — tanhF))0, Where (---)0=Tro(---)exdFEM n’)/
can be ;howq that the'probability of type | errors occurring,2 coshF)M. Since the parity check matrill is generated
P, vanishes in the limiM—c, we will focus on the evalu-  somewhat randomly, it is natural to evaluate the average of
ation of the probability for type I errors,, . P,/(H) over an ensemble of codes for given parameters

To proceed, it is convenient to employ a binary expressiomyndc as a performance measure for the code ensemble. Em-
for bit sequences rather than a Boolean one. This can be do'b‘f’oying Eq. (3), the average is given ag—“: lim

! . L +0€XP
by.mappmg the f|eld{0,1,+(mod 2)} onto {+1_,—;,><}, [—ME(p)], where p—+0
which makes it possible to introduce thegror indicator
function, which becomes 1 when an error occurs and zero 1 M
otherwise, as Ep)=-— Mln< <Vﬁ,p(n0,H)5( 21 n|°— M tanhF)> >
AN H)= lim VRe(n®H), &) o
p—+0 (5)
where for large M. Here, (- --)y represents an average over the
M—N uniform distribution of the parity check matrix for a given
V(O H)=Tr S n°. n choice of parameter a.nd.C. o
Nl ) ”#"O,Ll_:ll (|EL(M) ) ') Before proceeding, it is worth mentioning the general
M properties of the exponerfi(p). First, P, is expected to
vanish in the limitM —oo for a sufficiently small noise.
X - . . X
g 21 n-M tanhF) This happens wher€(0)=lim,_ ,,&(p)>0. The highest

MoN noise levelp, for this is called theerror threshold[1]. The
7. I ol1: I n value of £(0) (>0) represents the sensitivity &, to the
“*1#=1 | € £(u) : message length and serves as a performance measure of the
" code ensemble wheM is finite. Next, since the number of
2 0 wrong vectorsVyg(n°,H) can only take a non-negative in-
o~ e M tanhF |, @ teger value 0,1,2 .. V(n%H) should increase with re-
specttop (>0), and therefore the exponefitp) must be a
where1 denotes theM-dimensional vector all the elements nonincreasing function g (>0). This is linked to the in-
of which are 1. The fieldF = (1/2)In (1—p)/p] represents the equality

X0

M
<<SNF(n°,H)Vﬁ,F(n°,H)5(E n’—M tanhF
op) 1 -

gp M W
Vﬁ,F(nO,H)a(IEl: n’—Mm tanhF)
< o

<0, (6)

whereSye(n® H) =In Vyye(n°, H) is the entropy representing condition £(1)=0. Forp=1 in Eq.(5), it is convenient to
the_number of wrong solutions for E¢l) belonging to.the insert an identity 1=fde5(E|M:ln|—Mw) in the final
typical set. One can also show thet€(p)/dp?<0, which  form of Eq. (4). Then, for a sequence that satisfies

implies that&(p) should be a convex function @f. (1/M)E|’\11n,=w, one obtains
We are now ready to connect the discussion above to the
existing analysis of typical set decodihg,5,9. Since&(p) (5(E|M—1”|0“|— M tanhF)&(EMln?— M tanhF))o
is a decreasing function @f, we have that(0)=&(1). This B B
means that we can obtain lawer bound of p. from the ~exd —MK(w,F)],
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where =(M)=M,Znenf- . .n), wherea,B, ... are replica in-
dices, and where the variabl@s,|=1, ... M, come from
Kw,F)=[(1~w)/2]H[2 tanhF/(1~ )] enforcing the restriction ofS connections per indek as
—[(1+ )/2]In 2+ H(tanhF) in [3]. _ _ _ _
To proceed with the calculation, one requires a certain
and ansatz about the symmetry of the order parameters. As a first

approximation we assume replica symmemRg) in the fol-

H(X)=—=[(1+x)/2]In[(1+x)/2] =[(1=x)/2]In[(1=X)/2].  |owing order parameters and their conjugate variables:

The remaining average required in Ea) can be evaluated Y9e8.....v~ q‘I‘dX’iT(X)XI,qa'ﬁ’.___’?,: (.]de'n'(X)X',A where |
as (Trad(2 10— I\/Ia))H No(1; I ¢ 201 denotes the number of replica indices, efndndq are nor-
~exdMR(w)]. The exponenR(w) is the so-calledveight ~ malization variables for defining(-) and#(-) as distribu-
enumeratof 1,5], which in the current contexil4] provides tions. Unspecified integrations are carried out over the inter-
an averaged distribution of the distances between the trueal [—1,1]. One can find details of a similar calculation in
noisen® and other vectors that satisfy E@), and plays an [3].
important role in the evaluation of the performance of codes Originally, the summation Tt.;(-) excluded the case of
in conventional coding theory15]. One obtains&(1)  n=1; but one can show that favl — oo this becomes identi-
=Ext, . 1{K(»,F)—R(w)}, where Ext..., denotes an ex- cal to the full summation in the nonferromagnetic phase,
tremization. This corresponds to E@.7) in [1]. where (x) # 8(x—1) andw(x)# 8(x—1). In addition, we
However, it should be emphasized here thatgkel cal-  employ Morita’s schemgL6], which in this case converts the

culation above generally overestimates the decoding erraiestricted annealed average with respea’notd)o a quenched
probability. This is because far=1,A(n°%H), which should  one,

be 1 when a type Il error occurs, is replaced by the number

of wrong vectorsVyg, which can be an exponentially large M 1

number with respect t&1 and hence contributes too much —In< X6 2 -M tanhF>> =—(In(--))no,
for counting one error. To obtain an accurate estimate sup- = no M

pressing such an overestimation, one has to introduce a posi- (7)

tive exponenp in the calculation and take a limit— +0 as
in Eq. (3). This can be carried out by the replica method,and simplifies the calculation of the average on@rin Eq.
which gives rise to a set of order parameters; .,  (5) considerably. We obtain

p

K
1+]1 x, c

Cq i=1 A A
Ep)=ExXt o ) niral —Tfi]:[ldxm(xi) — < ,Hl dx,7(X,,)

1+an
2

1+xx|” [C

g -¢

C
0
X Trn: tleGn " H
pn=1

+pGtanhF | ,

P
) D —CInq+quf dx dxm(x)m(X)

®)

where  ((-++))po=Tro_+1(- - -)exdFn’J(2coshF) and  provide &(p)=p[H(tanhF)—(1-R)In2] and &(p)
Extf .., denotes the functional extremization excluding the=H (tanhF)—(1—R)In 2, respectively, for any positive inte-
possibility of m(x)= 8(x—1) and7(X)=58(x—1), as is in- 9er numbep=1,23....
troduced in[17]. In order to take the limitp— +0, one has to select
Two analytical solutions ofr(x) and #(X) can be ob- [N€ Trelevant branch of the two solutions. Since the
tained in the limit K,C—o, keeping the code rate repllca_l methpd IS a strategy in Wh'(?h one hqs to perform_an
R=N/M=1-C/K finite: (1) (x)=23[(1+tanhF)&x gnalytlc contlnuapon of the expressions obtained _for positive
A - integer p [for which the saddle point problert8) is well
—tanhF)+(1-tanhF)dx+tanhF)],  @(x)=4(x); and,  gefined to those for any real numbers, the branch that is
2 w(X)=3z[8(x—1)+8(x+1)], m(X)=3[6(x—1)  dominant(i.e., yields the lower exponerfor positive integer
+8(x+1)]. One can show that both of these are locallyp should be selectef18]. As a result, we obtain for the
stable against perturbations to the RS solutions, and thegxponent
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(@) (b) {© When the channel noigeis sufficiently high[Fig. 1(a)],
€(p)I €P)1RsR S(P)‘_lF_*S_B________‘fW the exponent for the continuous branch monotonically de-
ot _ M creases with respect g which implies that this is the domi-

i1 p .~ |Frozen

) , nant branch for positive integerp. This provides
0 I pp lim,_.,¢&(p)=0. However, for lower values of,&(p) of
the continuous branch maximizes to a positive valug gat
FIG. 1. Appropriate limits for lig ., o&(p) in the case of finite  [Fig. 1(b)]. In this situation, the continuous branch solution
K andC. The solution that has the lower exponent fo¢1 should ~ for 0<p<p4 is physically wrong because the inequali6)
be selected as the relevant brarishe text, which is drawn as a does not hold. However, a frozen replica symmetry breaking
thick curve or line in each case. Fee=p. (a), the continuous (RSB) ansatz[22] [a one-step RSB ansatz under the con-
solution is relevant while the(frozenRSB solution which emerges  straint (1M)n?.n°=1 for replica indicesa and b in the
from this solution ap=p, provides an appropriate exponeifp;)  same subgroumbtains a consistent solution. Employing this
for p,=<p<pc (b). For 0<p<pj (c), the frozen(RS solution is  1RSB solution, we finc(p) =E(py) for 0<p<p,, which
relevant. In the limitk,C— o, the situation(b) does not appear. implies lim, ., ,&(p) =&(pg) >0, indicating a vanishing be-
havior for P, ~exd —M&(pg) ]. This implies that the critical
_ (Re—R)IN2, R<R, condition determining the error threshofs is given by
&0)= lim &p)= 0 R>R ©) d&(p)! dp|,—.+0=0, computed for the continuous solution.
pm+0 ’ ¢’ Employing the gauge transformatiphl], one can show that
the variational parametes in Eq. (8) that is introduced to
whereR.= 1+ p logyp+(1—p)logy(1—-p) corresponds o Sh- gpforce the conditior . ;n°n; =M tanhF coincides withF

annon’s limit[19]. It is worth noticing that the expressié®) this |imit. The critical condition can now be summarized
is identical to the lower bound of the exponent that is be-

as
lieved to be accurate in the information theory literatiie
Note that in the vicinity ofR=R. this exponent can ex-

Frozen Frozen

ceed the upper bound on reliability functions that represent a 1 M—N

vanishing rate of the decoding error probability for the best F tanhF — v In| Tro. 1 5( 1; 11 n|>
code[17,20,21. However, this does not imply a contradic- n=l e Ll

tion, because the current analysis is only Ry, while the M

convergence rate d?, is slower than that of the reliability XeFE n?n,b -0 (10)
function. 1= al o '

For finite K and C, one can obtair€(p) via numerical
methods. Similar to the case &f,C—o, there generally
appear two branches of solutiond) Continuous distribu- which is identical to what has been obtained for the phase
tions for 77(x) and (), for which lim, ., 0&(p)=0; and, boundary of the ferro-paramagnetic transition along Nishi-
(2) p independent frozen distributions(x) = [ (1+ b) 8(x [rgolri;]s temperature predicted by the existing replica analysis

jalyay 1 " Y , .

})H} b)otx+1)]. (%)= 3[(1+b) o(x . b+ As p is reduced further, the position of the maximym
—b) 5(x+ 1,)]' '!'he parameters andb are determmed from moves to the right and exceegs- 1 at another critical noise
the extremization problenisee Eq.(8)] by settingp=1,

hich red the functional extremizati th ‘i ratepy, . In principle, this might cause a serious problem for
which reduces the functional extremization with TeSpect 1Gna selection of the relevant branch for the analytic continu-

7(-) and 7(-) to that with respect to the first momertts  ation p— +0, since the branches of frozen and continuous
=[dxxmw(x) and b=fdxxw(x). The exponent of this RS solutions intersect at a certain value @f1, which
branch is completely frozen to that fpr=1 asé&(p)=£&(1) seems to imply that the dominant branch of solutions for
for Vp=0. Although the distributions of the two branches positive integerp is not unambiguously defined. This ambi-
look quite different, their exponents coincidemst 1 in any  guity is lifted, however, because in this case the selection of
situation. It should be emphasized here that&tie) can be the frozen RS solutions as the relevant branch is the only
accurately evaluated without use of the replica method. Weossible option. This is because for py it is impossible to
will show later that this value, together with the inequality construct any physically consistent solution that both satis-
(6), plays an important role in the determination of the rel-fies the inequality(6) and reproduces the correct value of
evant branch for the analytic continuatipr-+0 when the  £(1), by extending the continuous RS solutions. This implies
channel noise is sufficiently low. that the criterion for selection of the relevant branch for the
Note that the frozen branch corresponds to the converanalytic continuatiorp— +0 can be conveniently summa-
tional IT analysig[1,5], and would provide the correct esti- rized as selection of that branch that is dominant in the vi-
mate in the absence of other solutions. However, in order tainity of p=1. Thus, belowp, the limit p— + 0 is governed
take an appropriate limit lig, . o&(p), one has to select the by the frozen(RS) solutions, identical to the result from
dominant branch for positive integpr[ 18] among the exist- conventional IT analysifFig. 1(c)]. However, this situation
ing solutions, and the frozen branch does not necessarilig realized only significantly below the threshold and the
provide the correct exponent fer— +0. Our analysis sup- solution is therefore of no use for the direct evaluatiorp of
ports this statement as seen in Fig. 1. although it does provide a lower bound.
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0.004 — TABLE |. Comparison of the estimates pf between the IT and
0.002 p=0.0915 the current methods is summarized in a table. The estimates for the
. IT method are taken froml]. The numerical precision is up to the
20

w

last digit for the current method. Shannon’s limit denotes the high-
p=0 Oggoi\l\ est possible, for a given code rate.

—0.006 — s Code rate 12 2/5 1/3 1/4
0 02 04 06 08 1 12 IT 0.0915 0.129 0.170 0.205
P Current method 0.0990 0.136 0.173 0.209
Shannon’s limit 0.109 0.145 0.174 0.214

FIG. 2. Numerically computed(p) of the continuous branch
for p=0.0915,0.0990 foK=6 andC=3 (R=1/2). Symbols and
error bars are obtained from 50 numerical solutions. Curves ar&,C—o for which no 1RSB solution is found at all. How-
computed via a quadratic fit. Fer=0.0915,5(p) is maximized to  ever, for finiteK and C, it is impossible to completely re-

a positive valuet(p,)=2.5x 103 for p,~0.5 while it vanishes at move the possibility of having an exponentially larygr
p=1 as is suggested in the IT literatyrd. On the other hand, for just by excluding atypicah®, and therefore the critical noise
p=0.0990, our predicted threshold, it is maximized to zerpat level p. is accompanied by the emergence of 1RSB solu-
=0, which implies that this is the correct threshold. tions.

Finally, we have examined the casekof 6 andC=3 to

As two types of frozen solution are introduced in the demonstrate the accuracy of the estimated threshold. We
analysis above, one might be interested in their physical inhave numerically evaluateé(p) of the continuous branch
terpretation. It is a significant property of the frozen RS so-for p=0.0915, a highly accurate estimate of the error thresh-
lutions that their exponents are independenpofrom Eq.  old for this parameter choiddl], and forp=0.0990, which
(6), this implies that these solutions express a situation that a§ the threshold predicted by the replica metfidd,23. The
most a subexponential number of vectors contribut®{p  numerical results are obtained by approximatinf}) and

(their entropy being D In the information theory literature %(_) using 16-dimensional vectors and iterating the saddle

[20], it is known that the average error rate for the low n0|se%oim equations until convergence. The results, shown in Fig.

region is mostly due to a small fraction of atypical codes tha indicate maye(p)=2.5x 103 for p=0.0915 while&(p)
have large error rates because they allow a small number ? maximized(to zperc) a.tp:O for p=0 oégo suggestiﬁg a

vectors close to the true noisé to satisfy the parity ChECk. tighter estimate for the error threshold than those reported so
equation(1). The frozen RS solutions may correspond to thlsfar. Comparisons for other parameter choices are also sum-

contribution. : ;
. marized in Table I.
On the other hand, the frozen 1RSB solutions only appear In summary, we have investigated the performance of the

be'O_W the critical parametqs , ha_vmg orlgmated from the typical set decoding for ensembles of Gallager’'s codes. We
continuous RS solutions. A transition of this type can occur if

) . have shown that direct evaluation of the average type Il error
Vne becomes an exponentially large number with an expo

al I babili hil shing | probability over the ensemble is possible by employing the
nentially small probability while vanishing In most Cases. .o yjica method. The link to the existing IT analysis, which is

Yased on the weight enumerator, is also clarified. Although
the weight enumerator does not play a crucial role in deter-
mining the error threshold in the current analysis, it still pro-

vides useful insight about the relationship among different
“decoding schemes. Its analysis from the viewpoint of statis-
tical physics is given if24].

below the critical noise levep., as the transition to the
ferromagnetic phase is of the first ord8r17] and, therefore,
the suboptimal nonferromagnetic stdtehich has finite en-
tropy) is still locally stable, and can emerge with an expo
nentially small probability even after the transition.

The probability of having an exponentially larg&r in
the ferromagnetic phase could become larger when the true We acknowledge support from Grants-in-Aid of the
noisen® is atypical. This implies that the restriction to typi- MEXT Nos. 13780208 and 14084206, the Japan-Anglo Col-
cal n® in order to evaluate the type Il error rate, as in thelaboration Program of the JSRS.K.), EPSRC(Grant No.
current analysis, should reduce the contribution of the frozeiR/N00562, and The Royal SocietyJ.v.M.). David Saad
1RSB solutions compared to that in other evaluationsand David J. C. MacKay are acknowledged for useful com-
[17,20,2]. This speculation certainly holds in the case of ments and discussions.
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