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Statistical mechanics of typical set decoding
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The performance of ‘‘typical set~pairs! decoding’’ for ensembles of Gallager’s linear code is investigated
using statistical physics. In this decoding method, errors occur, either when the information transmission is
corrupted by atypical noise, or when multiple typical sequences satisfy the parity check equation as provided
by the received corrupted codeword. We show that the average error rate for the second type of error over a
given code ensemble can be accurately evaluated using the replica method, including the sensitivity to message
length. Our approach generally improves the existing analysis known in the information theory community,
which was recently reintroduced in IEEE Trans. Inf. Theory45, 399 ~1999!, and is believed to be the most
accurate to date.
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Promoted by active investigations on error correct
codes in both the information theory~IT! and statistical
physics~SP! communities@1–8#, there is growing interest in
the relationship between IT and SP. Since it has turned
that the two different frameworks have investigated sim
subjects, it is natural to expect that standard techniq
known in one framework might bring about developments
the other, and vice versa.

The purpose of this paper is to present such an exam
More specifically, we show that a method to evaluate
performance of error correcting codes established in the
community@1,5,9# can be generally improved by introducin
the replica method used in SP. This provides an answer to
question among IT researchers as to why the methods f
physics generally provide more optimistic evaluations th
those known in the IT literature. In our formulation, the
method is naturally linked to the existing SP analysis, be
parametrized by the number of replicasr.0, which clearly
shows how the IT and SP methods are related.

In a general scenario, theN-dimensional Boolean messag
xP$0,1%N is encoded to theM (.N) -dimensional Boolean
vectory0, and transmitted via a noisy channel, which is tak
here to be a binary symmetric channel~BSC! characterized
by a flip probabilityp per bit. Other transmission channe
may also be examined within a similar framework. At t
other end of the channel, the corrupted codeword is deco
using structured codeword redundancy.

The error correcting code that we focus on here is Gall
er’s linear code@10#. This code was originally introduced b
Gallager about 40 years ago but was almost forgotten s
after its proposal due to the technological limitations of t
time. However, since its recent rediscovery by MacKay a
Neal @4#, it is now recognized as one of the best codes
veloped to date.

A code of this type is characterized by a randomly gen
ated (M2N)3M Boolean sparse parity check matrixH,
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composed ofK andC(>3) nonzero~unit! elements per row
and column, respectively. Encoding of the message vectx
is carried out using theM3N generating matrixGT, satisfy-
ing the conditionHGT50, wherey05GTx (mod 2). The
M-bit codewordy0 is transmitted via a noisy channel, a BS
in the current analysis, and the corrupted vectory5y0

1n0 (mod 2) is received at the other end, wheren0

P$0,1%M represents a noise vector with an independent pr
ability p per bit of having a value 1. Decoding is carried o
by multiplying y by the parity check matrixH, to obtain the
syndrome vectorz5Hy5H(GTx1n0)5Hn0 (mod 2), and
finding a solution to the parity check equation

Hn5z ~mod 2!, ~1!

which estimates the true noise vectorn0. One retrievesx, an
estimate of the original message, using the equationGTx
5y2n (mod 2).

Several schemes can be employed for solving Eq.~1!. In
recent years, the maximuma posterioriand the maximizer of
posterior marginal decodings, which correspond to zero
the Nishimori temperatures, respectively, have been wid
investigated@3,8,11,12#. However, we will here evaluate th
performance of another scheme termedtypical set (pairs)
decoding, which was pioneered by Shannon@9#, and reintro-
duced by MacKay@5# for analyzing Gallager-type codes. A
though this decoding method is slightly weaker in reduc
the block or bit error rates, a rigorous analysis is easier t
for the above two methods, and it is therefore becom
popular in the IT community@1,5,13#.

In order to discuss the typical set decoding, we must fi
introduce the definition of beingtypical. Due to the law of
large numbers, a noise vectorn generated by the BSC satis
fies a condition

U 1

M (
l 51

M

nl2pU<eM, ~2!

with a high probability for largeM and a positive numbe
eM;O(M 2g) (0,g,1/2). We define as typical any vecto
©2002 The American Physical Society25-1
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n for which this condition is satisfied. We also call the set
all typical vectors the typical set.

Now, we can define typical set decoding as a schem
select a vectorn that belongs to the typical set and satisfi
Eq. ~1!, as an estimate of the true noisen0. For this scheme
two types of decoding error can occur; the first possibil
referred to as a type I error, occurs when the true noisen0 is
not typical, while the other possibility, referred to as a type
error, is declared when the true noisen0 is typical, and there
are multiple typical vectors that satisfy Eq.~1! @5#. Since it
can be shown that the probability of type I errors occurrin
PI , vanishes in the limitM→`, we will focus on the evalu-
ation of the probability for type II errors,PII .

To proceed, it is convenient to employ a binary express
for bit sequences rather than a Boolean one. This can be
by mapping the field$0,1,1(mod 2)% onto $11,21,3%,
which makes it possible to introduce theerror indicator
function, which becomes 1 when an error occurs and z
otherwise, as

D~n0,H !5 lim
r→10

V NF
r ~n0,H !, ~3!

where

VNF~n0,H ![TrnÞn0 )
m51

M2N

dS )
l PL(m)

nl
0 , )

l PL(m)
nl D

3dS (
l 51

M

nl2M tanhF D
5TrnÞ1 )

m51

M2N

dS 1; )
l PL(m)

nl D
3dS (

l 51

M

nl
0nl2M tanhF D , ~4!

where1 denotes theM-dimensional vector all the elemen
of which are 1. The fieldF5(1/2)ln@(12p)/p# represents the
g

th
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level of the channel noise, andL(m) is the set of indices tha
have nonzero elements in themth row in the parity check
matrix H. In the second line of Eq.~4!, we have introduced
the gauge transformationnl→nl

0nl for further convenience.
The quantityVNF(n0,H) is the number of vectors that diffe
from n0 in the intersection of the typical set and the soluti
space of Eq.~1!.

From the definition, the probability of a type II error for
given matrix H is given by PII (H)5^D(n0,H)d(( l 51

M nl
0

2M tanhF)&n0, where ^•••&n05Trn0(•••)exp@F(l51
M nl

0#/
(2 coshF)M. Since the parity check matrixH is generated
somewhat randomly, it is natural to evaluate the average
PII (H) over an ensemble of codes for given parameterK
andC as a performance measure for the code ensemble.
ploying Eq. ~3!, the average is given asPII 5 limr→10exp
@2ME(r)#, where

E~r![2
1

M
lnK K V NF

r ~n0,H !dS (
l 51

M

nl
02M tanhF D L

n0
L

H
~5!

for large M. Here, ^•••&H represents an average over t
uniform distribution of the parity check matrix for a give
choice of parametersK andC.

Before proceeding, it is worth mentioning the gene
properties of the exponentE(r). First, PII is expected to
vanish in the limitM→` for a sufficiently small noisep.
This happens whenE(0)[ limr→10E(r).0. The highest
noise levelpc for this is called theerror threshold@1#. The
value of E(0) (.0) represents the sensitivity ofPII to the
message length and serves as a performance measure
code ensemble whenM is finite. Next, since the number o
wrong vectorsVNF(n0,H) can only take a non-negative in
teger value 0,1,2, . . . ,V NF

r (n0,H) should increase with re
spect tor (.0), and therefore the exponentE(r) must be a
nonincreasing function ofr (.0). This is linked to the in-
equality
]E~r!

]r
52

1

M

K K SNF~n0,H !V NF
r ~n0,H !dS (

l 51

M

nl
02M tanhF D L

n0
L

H

K K V NF
r ~n0,H !dS (

l 51

M

nl
02M tanhF D L

n0
L

H

<0, ~6!
whereSNF(n0,H)5 ln VNF(n0,H) is the entropy representin
the number of wrong solutions for Eq.~1! belonging to the
typical set. One can also show that]2E(r)/]r2<0, which
implies thatE(r) should be a convex function ofr.

We are now ready to connect the discussion above to
existing analysis of typical set decoding@1,5,9#. SinceE(r)
is a decreasing function ofr, we have thatE(0)>E(1). This
means that we can obtain alower bound of pc from the
e

conditionE(1)50. For r51 in Eq. ~5!, it is convenient to
insert an identity 15*Mdvd(( l 51

M nl2Mv) in the final
form of Eq. ~4!. Then, for a sequencen that satisfies
(1/M )( l 51

M nl5v, one obtains

^d~( l 51
M nl

0nl2M tanhF !d~( l 51
M nl

02M tanhF !&n0

;exp@2MK~v,F !#,
5-2
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where

K~v,F !5@~12v!/2#H@2 tanhF/~12v!#

2@~11v!/2# ln 21H~ tanhF !

and

H~x!52@~11x!/2# ln@~11x!/2#2@~12x!/2# ln@~12x!/2#.

The remaining average required in Eq.~5! can be evaluated
as ^Trnd(( l 51nl2Mv))m51

M2Nd(1;) l PL(m)nl)&H

;exp@MR(v)#. The exponentR(v) is the so-calledweight
enumerator@1,5#, which in the current context@14# provides
an averaged distribution of the distances between the
noisen0 and other vectors that satisfy Eq.~1!, and plays an
important role in the evaluation of the performance of cod
in conventional coding theory@15#. One obtainsE(1)
5ExtvÞ1$K(v,F)2R(v)%, where Ext$•••% denotes an ex-
tremization. This corresponds to Eq.~4.7! in @1#.

However, it should be emphasized here that ther51 cal-
culation above generally overestimates the decoding e
probability. This is because forr51,D(n0,H), which should
be 1 when a type II error occurs, is replaced by the num
of wrong vectorsVNF , which can be an exponentially larg
number with respect toM and hence contributes too muc
for counting one error. To obtain an accurate estimate s
pressing such an overestimation, one has to introduce a p
tive exponentr in the calculation and take a limitr→10 as
in Eq. ~3!. This can be carried out by the replica metho
which gives rise to a set of order parametersqa,b, . . . ,g
he

lly
th
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g , wherea,b, . . . are replica in-
dices, and where the variablesZl ,l 51, . . . ,M , come from
enforcing the restriction ofC connections per indexl, as
in @3#.

To proceed with the calculation, one requires a cert
ansatz about the symmetry of the order parameters. As a
approximation we assume replica symmetry~RS! in the fol-
lowing order parameters and their conjugate variab
qa,b, . . . ,g5q*dxp(x)xl ,q̂a,b, . . . ,g5q̂*dx̂p̂( x̂) x̂l , where l

denotes the number of replica indices, andq and q̂ are nor-
malization variables for definingp(•) andp̂(•) as distribu-
tions. Unspecified integrations are carried out over the in
val @21,1#. One can find details of a similar calculation
@3#.

Originally, the summation TrnÞ1(•) excluded the case o
n51; but one can show that forM→` this becomes identi-
cal to the full summation in the nonferromagnetic pha
wherep(x)Þd(x21) andp̂(x)Þd( x̂21). In addition, we
employ Morita’s scheme@16#, which in this case converts th
restricted annealed average with respect ton0 to a quenched
one,

1

M
lnK ~••• !3dS (

l 51

M

nl
02M tanhF D L

n0

5
1

M
^ ln~••• !&n0,

~7!

and simplifies the calculation of the average overn0 in Eq.
~5! considerably. We obtain
E~r!5Ext
$q,q̂,p(•),p̂(•),G%
* H 2

C qK

K E )
i 51

K

dxip~xi !
S 11)

i 51

K

xi

2
D r

2K lnF E )
m51

C

dx̂mp̂~ x̂m!

3S Trn561eGn0n )
m51

C S 11 x̂mn

2
D D rG L

n0

2C ln q̂1Cqq̂E dx dx̂p~x!p̂~ x̂!S 11xx̂

2
D r

1S C

K
2CD1rG tanhFJ ,

~8!
-

t
he
an
ive

is
where ^(•••)&n05Trn0561(•••)exp@Fn0#/(2 coshF) and
Ext$•••%* denotes the functional extremization excluding t

possibility of p(x)5d(x21) andp̂( x̂)5d( x̂21), as is in-
troduced in@17#.

Two analytical solutions ofp(x) and p̂( x̂) can be ob-
tained in the limit K,C→`, keeping the code rate
R5N/M512C/K finite: ~1! p(x)5 1

2 @(11tanhF)d(x
2tanhF)1(12tanhF)d(x1tanhF)#, p̂( x̂)5d( x̂); and,
~2! p(x)5 1

2 @d(x21)1d(x11)#, p̂( x̂)5 1
2 @d( x̂21)

1d( x̂11)#. One can show that both of these are loca
stable against perturbations to the RS solutions, and
 ey

provide E(r)5r@H(tanhF)2(12R)ln 2# and E(r)
5H(tanhF)2(12R)ln 2, respectively, for any positive inte
ger numberr51,2,3, . . . .

In order to take the limitr→10, one has to selec
the relevant branch of the two solutions. Since t
replica method is a strategy in which one has to perform
analytic continuation of the expressions obtained for posit
integer r @for which the saddle point problem~8! is well
defined# to those for any real numbers, the branch that
dominant~i.e., yields the lower exponent! for positive integer
r should be selected@18#. As a result, we obtain for the
exponent
5-3
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E~0!5 lim
r→10

E~r!5H ~Rc2R!ln 2, R,Rc ,

0, R.Rc ,
~9!

whereRc511p log2p1(12p)log2(12p) corresponds to Sh
annon’s limit@19#. It is worth noticing that the expression~9!
is identical to the lower bound of the exponent that is b
lieved to be accurate in the information theory literature@1#.

Note that in the vicinity ofR5Rc this exponent can ex
ceed the upper bound on reliability functions that represe
vanishing rate of the decoding error probability for the b
code@17,20,21#. However, this does not imply a contradi
tion, because the current analysis is only forPII , while the
convergence rate ofPI is slower than that of the reliability
function.

For finite K and C, one can obtainE(r) via numerical
methods. Similar to the case ofK,C→`, there generally
appear two branches of solutions:~1! Continuous distribu-
tions for p(x) and p̂( x̂), for which limr→10E(r)50; and,
~2! r independent frozen distributionsp(x)5 1

2 @(11b)d(x
21)1(12b)d(x11)#, p̂( x̂)5 1

2 @(11b̂)d( x̂21)1(1
2b̂)d( x̂11)#. The parametersb and b̂ are determined from
the extremization problem@see Eq.~8!# by setting r51,
which reduces the functional extremization with respect
p(•) and p̂(•) to that with respect to the first momentsb

5*dxxp(x) and b̂5*dx̂x̂p̂( x̂). The exponent of this
branch is completely frozen to that forr51 asE(r)5E(1)
for ;r>0. Although the distributions of the two branche
look quite different, their exponents coincide atr51 in any
situation. It should be emphasized here that theE(1) can be
accurately evaluated without use of the replica method.
will show later that this value, together with the inequal
~6!, plays an important role in the determination of the r
evant branch for the analytic continuationr→10 when the
channel noisep is sufficiently low.

Note that the frozen branch corresponds to the conv
tional IT analysis@1,5#, and would provide the correct est
mate in the absence of other solutions. However, in orde
take an appropriate limit limr→10E(r), one has to select th
dominant branch for positive integerr @18# among the exist-
ing solutions, and the frozen branch does not necess
provide the correct exponent forr→10. Our analysis sup-
ports this statement as seen in Fig. 1.

FIG. 1. Appropriate limits for limr→10E(r) in the case of finite
K andC. The solution that has the lower exponent forr>1 should
be selected as the relevant branch~see text!, which is drawn as a
thick curve or line in each case. Forp>pc ~a!, the continuous
solution is relevant while the 1~frozen!RSB solution which emerge
from this solution atr5rg provides an appropriate exponentE(rg)
for pb<p,pc ~b!. For 0,p,pb ~c!, the frozen~RS! solution is
relevant. In the limitK,C→`, the situation~b! does not appear.
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When the channel noisep is sufficiently high@Fig. 1~a!#,
the exponent for the continuous branch monotonically
creases with respect tor, which implies that this is the domi
nant branch for positive integerr. This provides
limr→10E(r)50. However, for lower values ofp,E(r) of
the continuous branch maximizes to a positive value atrg
@Fig. 1~b!#. In this situation, the continuous branch solutio
for 0,r,rg is physically wrong because the inequality~6!
does not hold. However, a frozen replica symmetry break
~RSB! ansatz@22# @a one-step RSB ansatz under the co
straint (1/M )na

•nb51 for replica indicesa and b in the
same subgroup# obtains a consistent solution. Employing th
1RSB solution, we findE(r)5E(rg) for 0,r,rg , which
implies limr→10E(r)5E(rg).0, indicating a vanishing be
havior forPII ;exp@2ME(rg)#. This implies that the critical
condition determining the error thresholdpc is given by
]E(r)/]rur→1050, computed for the continuous solutio
Employing the gauge transformation@11#, one can show tha
the variational parameterG in Eq. ~8! that is introduced to
enforce the condition( l 51

M nl
0nl5M tanhF coincides withF

in this limit. The critical condition can now be summarize
as

F tanhF2
1

M K K lnFTrnÞ1 )
m51

M2N

dS 1; )
l PL(m)

nl D
3eF(

l 51

M

nl
0nlG L

H
L

n0

50, ~10!

which is identical to what has been obtained for the ph
boundary of the ferro-paramagnetic transition along Nis
mori’s temperature predicted by the existing replica analy
@3,17#.

As p is reduced further, the position of the maximumrg
moves to the right and exceedsr51 at another critical noise
ratepb . In principle, this might cause a serious problem f
the selection of the relevant branch for the analytic conti
ation r→10, since the branches of frozen and continuo
RS solutions intersect at a certain value ofr.1, which
seems to imply that the dominant branch of solutions
positive integerr is not unambiguously defined. This amb
guity is lifted, however, because in this case the selection
the frozen RS solutions as the relevant branch is the o
possible option. This is because forr,rg it is impossible to
construct any physically consistent solution that both sa
fies the inequality~6! and reproduces the correct value
E(1), byextending the continuous RS solutions. This impli
that the criterion for selection of the relevant branch for t
analytic continuationr→10 can be conveniently summa
rized as selection of that branch that is dominant in the
cinity of r>1. Thus, belowpb the limit r→10 is governed
by the frozen~RS! solutions, identical to the result from
conventional IT analysis@Fig. 1~c!#. However, this situation
is realized only significantly below the threshold and t
solution is therefore of no use for the direct evaluation ofpc
although it does provide a lower bound.
5-4
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As two types of frozen solution are introduced in t
analysis above, one might be interested in their physical
terpretation. It is a significant property of the frozen RS s
lutions that their exponents are independent ofr. From Eq.
~6!, this implies that these solutions express a situation tha
most a subexponential number of vectors contribute toVNF
~their entropy being 0!. In the information theory literature
@20#, it is known that the average error rate for the low no
region is mostly due to a small fraction of atypical codes t
have large error rates because they allow a small numbe
vectors close to the true noisen0 to satisfy the parity check
equation~1!. The frozen RS solutions may correspond to t
contribution.

On the other hand, the frozen 1RSB solutions only app
below the critical parameterrg , having originated from the
continuous RS solutions. A transition of this type can occu
VNF becomes an exponentially large number with an ex
nentially small probability while vanishing in most case
Such a scenario quite naturally describes the situation
below the critical noise levelpc , as the transition to the
ferromagnetic phase is of the first order@3,17# and, therefore,
the suboptimal nonferromagnetic state~which has finite en-
tropy! is still locally stable, and can emerge with an exp
nentially small probability even after the transition.

The probability of having an exponentially largeVNF in
the ferromagnetic phase could become larger when the
noisen0 is atypical. This implies that the restriction to typ
cal n0 in order to evaluate the type II error rate, as in t
current analysis, should reduce the contribution of the fro
1RSB solutions compared to that in other evaluatio
@17,20,21#. This speculation certainly holds in the case

FIG. 2. Numerically computedE(r) of the continuous branch
for p50.0915,0.0990 forK56 andC53 (R51/2). Symbols and
error bars are obtained from 50 numerical solutions. Curves
computed via a quadratic fit. Forp50.0915,E(r) is maximized to
a positive valueE(rg).2.531023 for rg.0.5 while it vanishes at
r.1 as is suggested in the IT literature@1#. On the other hand, for
p50.0990, our predicted threshold, it is maximized to zero ar
.0, which implies that this is the correct threshold.
J.
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K,C→` for which no 1RSB solution is found at all. How
ever, for finiteK and C, it is impossible to completely re
move the possibility of having an exponentially largeVNF
just by excluding atypicaln0, and therefore the critical nois
level pc is accompanied by the emergence of 1RSB so
tions.

Finally, we have examined the case ofK56 andC53 to
demonstrate the accuracy of the estimated threshold.
have numerically evaluatedE(r) of the continuous branch
for p50.0915, a highly accurate estimate of the error thre
old for this parameter choice@1#, and forp50.0990, which
is the threshold predicted by the replica method@17,23#. The
numerical results are obtained by approximatingp(•) and
p̂(•) using 106-dimensional vectors and iterating the sadd
point equations until convergence. The results, shown in F
2, indicate maxrE(r).2.531023 for p50.0915 whileE(r)
is maximized~to zero! at r.0 for p50.0990, suggesting a
tighter estimate for the error threshold than those reporte
far. Comparisons for other parameter choices are also s
marized in Table I.

In summary, we have investigated the performance of
typical set decoding for ensembles of Gallager’s codes.
have shown that direct evaluation of the average type II e
probability over the ensemble is possible by employing
replica method. The link to the existing IT analysis, which
based on the weight enumerator, is also clarified. Althou
the weight enumerator does not play a crucial role in de
mining the error threshold in the current analysis, it still pr
vides useful insight about the relationship among differ
decoding schemes. Its analysis from the viewpoint of sta
tical physics is given in@24#.
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MEXT Nos. 13780208 and 14084206, the Japan-Anglo C
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and David J. C. MacKay are acknowledged for useful co
ments and discussions.
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TABLE I. Comparison of the estimates ofpc between the IT and
the current methods is summarized in a table. The estimates fo
IT method are taken from@1#. The numerical precision is up to th
last digit for the current method. Shannon’s limit denotes the hi
est possiblepc for a given code rate.

(K,C) (6,3) (5,3) (6,4) (4,3)
Code rate 1/2 2/5 1/3 1/4
IT 0.0915 0.129 0.170 0.205
Current method 0.0990 0.136 0.173 0.209
Shannon’s limit 0.109 0.145 0.174 0.214
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