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Dynamic phase transitions in the anisotropicXY spin system in an oscillating magnetic field
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The Ginzburg-Landau model for the anisotropi¥ spin system in an oscillating magnetic field below the
critical temperaturd ., ¥(r,t)=(T—T)¢— | |2+ yy* + V2¢+h cost) is both theoretically and numeri-
cally studied. Herey is the complex order parameter andstands for the real anisotropy parameter. It is
numerically shown that the spatially uniform system shows various characteristic oscillédigmesmical
phaseg depending on the amplitudeand the frequency) of the external field. As the control parameter,
eitherh or , is changed, there exigynamical phase transition®PT), separating them. By making use of
the mode expansion analysis, we obtain the phase diagrams, which turn out to be in a qualitative agreement
with the numerically obtained ones. By carrying out the Landau expansion, the reduced equations of motion
near the DPT are derived. Furthermore, taking into account the spatial variation of order parameters, we will
derive the analytic expressions for domain walls, which are represented by etk Bloch type walls,
depending on the difference of the coexistence of phases.
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[. INTRODUCTION try the same as the Ising spin system belong to the same
universality class as that of the equilibrium Ising spin system
After the first study of phase transition, such as dynamical8].

behavior of a deterministic mean field equation of motion for Recently, Fujisaka, Tutu, and Rikvold analyzed the
a ferromagnet in an oscillating fie[d,2], Monte Carlo stud- Ginzburg-Landau equation in an oscillating external mag-
ies of a kinetic Ising spin system under its critical tempera-netic field,
ture in a strong oscillating magnetic field have been carried
out[3-7]. It was found that the system exhibitspmmetry-
restoring oscillation(SRO when the frequency) of the
periodic external magnetic field is smaller than its critical
value Q). determined by the temperature. This is because . ]
local spins can follow the slow variation of the external field.to study the DPT from both the dynamical-theoretical and
On the other hand, for a sufficiently high frequency field thestatistical-mechanical points of vie\], whereT is the tem-

spins cannot follow rapid change of the applied field, andPerature of the system afid is its critical value. They found
u|t|mate|y the Spins exhibit aymmetry_breaking oscillation that the DPT is nothlng but the bifurcation of the SRO which

(SBO). appears as eithdd is increased oh is decreased. Further-

In this connection the transition that is observed as thénore, they carried out the Landau expansion around the un-
frequency is increased was called thgamic phase transi- stable SRO including the thermal noise, and obtained the
tion (DPT). In particular, the analysis of the Monte Carlo €ffective Hamiltonian the same as the Ginzburg-Landau free
simulation carried out for a two-dimensional kinetic Ising €nergy in the thermodynamic phase transition. This fact con-
spin system below the critical temperature-7] suggests firms that the DPT belongs to the same universality class as
that the DPT belongs to the same universality class as that dfat of the Ising system in thermodynamic phase transition.
the critical Ising spin system in thermal equilibrium. In fact, It is quite natural to ask whether or not such a phase
it was reported that in the SBO region the intensity of thetransition is observed in other spin systems in an oscillating
deviation from the SRO increases in the power law fogp  field. In Ref.[10], in fact, another type of DPT was reported
and the probability density for the total magnetization averdn the Ginzburg-Landau equation with an oscillating external
aged over one period of the oscillating field has a single peafield corresponding to th&Y spin system below its critical
structure in the SRO region and the two peak structure in thé&emperature. This fact suggests that there may exist rich va-
SBO region, as reported in Ref&l—7]. It was also shown rieties of DPT in other spin systems in an oscillating mag-

that various probabilistic cellullar automata with the symme-netic field. The aim of the present paper is to report on the
analysis of the anisotropic spin system in an oscillating ex-

ternal magnetic field below the critical point. The model
*Electronic address: yasui@acs.i.kyoto-u.ac.jp equation is the following Ginzburg-Landau type equation:
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S(r,t)=(Te—T)S— S+ V2S+hcog Qt) (T<T,),
(1.0
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where ¢ is the complex order parameter, andis a real . U ) 1 SH
anisotropy parameter. In the present model, the oscillating(r,t)=[1+y—(X"+Y9)]X+VX+hcosQt)=— 7 -,
field is applied in the direction of the real componentjof

2.3

The present paper is organized as follows. In Sec. I, we 23
will discuss the fundamental characteristics of the local dy- i 1

namics of Eq.(1.2). It will be shown that the symmetry Y(r.t)=[1—7—(X2+Y2)]Y+V2Y=—Ew- (2.9

argument leads to the possibility of four types of oscillations,

which suggests that there exist several DPTs separating \we first discuss the characteristics of the local spin dy-

them. In Sec. I, numerica”y integrating the local dynamiCS,namiCS without a Spatia| Coup“ng term. The local dynamics
we obtain the phase diagram for four dynamical phases fog given by

different values of the anisotropy parametewith the Flo-
quet analysis. In Sec. IV, we will carry out the analysis of the ,;y(t) =y— |2+ yy* +hcog Qt). (2.5
mode expansion to determine the DPT points and compare

the results with those obtained in Sec. Ill. In Sec. V, toNamely, by using the components, this is written as
clarify the universality class of DPTs, we will derive the

reduced dynamics, making use of the Landau expansion near X(t)=[1+y=(X*+Y?)]X+hcogQt), (2.6
DPTs, and its results are compared with exact results by .
numerical integration. In Sec. VI, considering the spatial in- Y(t)=[1—y—(X2+Y?)]Y. 2.7

homogeneity of spin variables, we will derive the analytic
forms of domain walls connecting two stable oscillating

Forh=0 this set of equations of motion has the following

states, and find that they are fundamentally the same as eithiétearly stable fixed pointX®®= (X°5,Y*9):

the Neel or the Bloch walls. Concluding remarks are given in
Sec. VII.

Il. GINZBURG-LANDAU MODEL AND SYMMETRY
ARGUMENT

After the rescaling
Y= (Te= DY, t=(Te=T) 7, V=(Te- DY,
y—=(Te—T)y, h—(T.—T)*%h, Q—(T,—TQ,
so that the dimension of temperature is unity, the anisotropi
XY spin system Eq(1.2) in a spatially uniform oscillating

magnetic field with the amplitude and the frequency) is
written as

: oH
Y(r,)=¢—|y?y+ yy* + V2y+hcod Qt) = — o
(2.1

Here the Ginzburg-Landau Hamiltoni&i is defined by

o

+|V|2—h cog Qt) (g+ %) |dr.

1
~ 2+ S92 2 (02 g2

(2.2

In the present paper, the thermal noise which is often added
in the equation of motion is neglected. This is because we
will mainly discuss the dynamics in a strong external mag-

netic field, where the deterministic nature of motion is not

X35=(+1+v,0) (y>0), (2.9
X55=(cosby,sinby),(0y:arbitrary  (y=0), (2.9
X35=(0,=y1—vy) (y<0). (2.10

Without an external field, for the replacemept- — v, the
dynamics are equivalent since it only alters the role of the
real and imaginary components. However, wheh0, since
the specific direction of the external field breaks the equiva-
lence for the replacement— — vy followed by the exchange
of the components, the dynamics fgt>0 and y<0 are
Gifferent.

The set of the equations of moti¢2.6) and(2.7) involves
two invariant properties for corresponding symmetry opera-
tions. The symmetry argument allows us to classify the dy-
namical behaviors of the system. Let us discuss the basic role
of the symmetry in dynamics. First, if(t)=X(t) +iY(t) is
a solution of Eq(2.5), then

Pty = ¢ () =X(1)—iY(t) (2.12

also satisfies Eq(2.5). This reflects the property that Eq.
(2.5 is invariant under the change of sigW,——Y. One
should note that these oscillations with~0 or Y<<0 belong
to separate regions in the phase space, because the sign of the
Y-component cannot be changed in the dynamics. Further-
more, with the periodT(=27/Q) of the applied field, if
P(t)=X(t)+iY(t) is a solution of Eq(2.5), then

t+T =-X t+T +iY

2/ 2™

T
t+ =

()= —y* 5

(2.12

much affected by thermal noise. This model reduces to thés also the solution of Eq2.5). This reflects the property that

Ising model[9] for y—c and to theXY model[10] for y
=0. The equations of motion for the componeitsand Y
(=X+1iY) are rewritten as

Eq. (2.9 is invariant for the operations—t+T/2 andX—
-X.
The motion with the symmetry
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(a) X {b)

FIG. 1. Limit cycles in theX-X space denoted by solid lines respectively indicate typical trajectories of the Isingt®R@d the
Ising-SBO(b) phases. Solid and broken lines(lm correspond to stable and unstable limit cycles, respectively. The broken libgigthe
Ising-SRO. There are degenerate stable limit cyclegbjn Arrows show the movement of the phase points in the course of time. The
parameters arg=0.55 andh=1.0 are for(a) and(b), and,Q2=0.520 for(a) and ) =0.530 for(b).

HH=y¢* (1), ie, Y()=0 (2.13 lll. DYNAMIC PHASE TRANSITION AND PHASE
DIAGRAM

is called thelsing-type motionAn oscillation without this
symmetry is called thXY-type motionOne can expect that
the dynamics tends to exhibit the Ising-type motion for a
large value of|y|. On the other hand, if the motion has the
symmetry

A. Four dynamical phases

In this section, carrying out numerical integration of Eq.
(2.5, we show the existence of dynamic phase transitions as
expected from the symmetry argument in the preceding sec-
tion, and present phase diagrams in the space spanned by the
frequency and the amplitude of the external field. The types
, (2.14 of limit cycles are crucially affected by the magnitude of the

anisotropyy, and are thus classified with the value of
. o - When vy takes sufficiently a large positive value, it is ex-
its real part satisfies the condition pected that Eq(2.5) is similar to the Ising model. Figure 1
shows the trajectories of limit cycles for a couple of param-
eter sets,y=0.55, h=1.0, 1=0.520 [Fig. 1(@], and Q
=0.530[Fig. 1(b)]. These figures represent a couple of dif-
ferent Ising-type oscillations. Since they have a vanishing
Because of this particular symmetry, the motion with thecomponent, the trajectories in theX space are shown. For
symmetry Eq(2.14) is called the SRO, and the motion with- 1 =0.520, the Ising-SRO trajectory, which has the symme-
out this symmetry is called the SBO. tries(2.13 and(2.14), is stable, which is shown in Fig(d).

As is expected, for a sufficiently large value of the anisot-On the other hand, fof) =0.530 the Ising-SBO trajectories
ropy parametery, only the SBO is stable for a vanishing with the symmetry(2.13 but without the symmetry2.14) is
external field. As the magnitude of the external field is in-stable, and the Ising-SRO trajectory is unstable. The Ising-
creased, the spin variable tends to synchronize the variatioBBO trajectories are degenerate twofold. These two stable
of the external field. Furthermore, as is explicitly shown inand one unstable trajectories are, respectively, represented by
Appendix A, the local spin apparently shows the SBO for asolid and broken curves in Fig(l). As expected, the emer-
weak external field. Therefore, one expects that if the SR@ence of a couple of trajectories presented above confirms
stably exists, it should be observed for sufficiently large val-the existence of the DPT. Namely, there exists the transition
ues of the field amplitude. Furthermore, as the frequency opoint ), ({2,~0.525), and the Ising-SRO and the Ising-
the external field is increased, it is expected that the spi®BO phases are stable, respectively, @+ (), and for()
cannot follow the variation of the external field. >0,.

The above simple argument suggests that depending on There is also an oscillation with a nonvanishing imaginary
the amplitude and the frequency of the external field, thecomponent of the order parameter fer<0, which is re-
local dynamics(2.5 may exhibit four types of motions: ferred to as theXY-type oscillation. In the same way as the
Ising-SRO, Ising-SBOXY-SRO, andXY-SBO. Therefore, above, we compare the limit cycles for parameter valyes
we expect the existence of dynamic phase transitions among —0.05, h=1.0, =0.317, and(2=0.337. For()=0.317
these characteristic oscillations. the Ising-SRO is stable, while fd2 =0.337 theXY-SRO is

(4
2

p(t)=—y*

JTX(t)ei'mdt=o (1=0,22,%4,...). (2.15
0
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FIG. 2. Typical limit cycles in theXY-SRO phase, where pa-  FIG. 3. Typical limit cycles in theXY-SBO phase, where the
rameter values arg=—0.05,h=1.0, and(} =0.337. The unstable, parameter values are=0.30,h=1.0, and=0.851. The unstable
degenerate stable trajectories are indicated by the broken line anghd stable trajectories are indicated by the broken and solid lines in
solid lines, respectively. Arrows show the movement of the phasehe X-Y space, respectively. Arrows show the movement of the
points in the course of time. phase points in the course of time.

stable. Therefore, there exists the dynamic phase transition t@ the third parameter set. FdR3(~0.843)<(<(),, a
Q=Q,. Namely, forQ>,~0.327 a couple of degenerate couple of theXY-SRO trajectories are unstabléroken
XY-SRO trajectories are stable, while the Ising-SRO trajeclines) and fourXY-SBO trajectories are stab{solid curves.
tory is unstable. Figure 2 shows the trajectories for

=0.337 in theXY-SRO phase. B. Floguet analysis and phase diagrams

For the case wherg is between values previously argued, Numerical values of the phase transition points can be

we observe an oscillation without both types of the SYMME4htained by utilizing the Floquet analysis. Let us denote the

tries which is a proper motion in the original anisotropiy - : o
model. Characteristic behaviors for the four different param-perIOdT solution ofy(t) by (1) and the deviation o(t)

eter values) = 0.646, ()= 0.833, (1= 0.851, and) =0.869, oM ¥p(t) BY oY(D), i.e.
wherey=0.30 andh=1.0 are kept common, are as follows. X(t) Xp(t)
For Q=0.646 (1=0.833), the Ising-SR@the XY-SRO is  (t)= ( ) ()= ( ) L SP(t) = y(t) — Py(1),

stable. For(2=0.851, theXY-SBO is stable, and fof) Y(t) Yp(t) 3.1)
=0.869, the Ising-SBO is stable. Thus, there are three dy- '
namic phase transition pointQ,, (3, and Q4 asQ is  The linearized equation foBy(t) is written as
changed, which separate the four dynamical phases. Figure 3 .
shows the limit cycles in th&XY-SBO phase corresponding S(t)=G(1) Sy(t), (3.2
|
& 1+ y=3X,(1) %= Y,(1)? —2X,(1)Y (1) a2
t)= , .
® —2X,(1)Y () 1—y=Xp(1)2=3Yy(1)? 3.3

where the matrixG is the periodT function, i.e.,G(t+T)  where Q(t) is a periodT function, andA is the Floguet
=G(1). matrix defined pyl](T)=eTA. The stability of the periodic
Using the matrixJ(t) defined byO(t)zé(t)O(t) with trajectory ¢,(t) is thus measured by the eigenvalues of the

Fhe initial conditionL{(O)z 1 (1: the unit matriy, Eq. (3.2 _ rjitrzl))(/\lf gg\r:]il)(/) ?jezo;:gg ttf;]znel?r(]a:vsg;sdﬁf ?rzj)(\a]c(tjory
is solved asoy(t) =U(t) ¢/(0). From the Floquet theory it (1) is stable for any small perturbation. Therefore, transi-
can be shown that the solutidi(t) can be written in the tion points, i.e., phase boundaries among different dynamical
form [11] phases, are given by the vanishing points of the largest real
part of the eigenvalues ok. Figure 4 shows three typical
R R . behaviors of the Floguet exponentsfor stable limit cycles
U(t)=0Q(t)e'*, (3.4  asQ is changed for three typical values of By changing()
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0

Ising-SRO
-0.5

15f /’ Tsing-SRO Ising-SBO Ising-SBO
,//,/ \‘
R v a— (;;5 6 o 1' N
@ Q
O/I FIG. 5. Phase diagram foy=0.55._ The transition curve indi-
" ! cated byh;=h;(Q) separates the Ising-SRO and the Ising-SBO
05F I phases. Symbols and solid lines are obtained by the Floguet analy-
| sis and mode expansion analy&ee Sec. IV, respectively.
-1} Ising-SRO! XY-SRO
i ! ’ ~~. ] Ising-SRO and theXY-SRO. The Ising-SRO and Y-SRO
<-151 ! o TTeee ¥ phases are present fé¥, respectively, below and above the
2'_ ! //' ] transition pointQ2, (~0.709). Figure &) shows the case in
“l - ] which the successive transitions among the Ising-SRO,
_2'5_//’ : | XY-SRO, XY-SBO, and Ising-SBO are present. The transi-
r : ] tion points are located a,~0.656, (13~0.843, and(),
S ~0.859.
(b) 06 08 (12 1.2 14 As described above, using the Floquet exponents, we can
determine the transition points among different dynamical
. phases, which enables us to make phase diagrams. In the

remaining part of this section we show typical phase dia-
grams for three values of. For eachy, the transition curves

in the (Q2,h) parameter space are surveyed by searching the
vanishing points of the largest Floquet exponent. Figure 5 is
the phase diagram foy= 0.55, where there are two phases:
the Ising-SRO and the Ising-SBO phases. The transition
curve is indicated by the symbols and the solid line, respec-

<-0.5

‘ / N I | Ising-SBO , . ; ,
Ising-SRO ’ AN i tively, obtained by numerical calculation and the mode ex-
’ RN j.i i pansion analysis shown in the following section. As will be
XY-SRO 27y shown in the following section, in the regior= 3 there are

! !‘\ only two phases, the Ising-SRO and Ising-SBO phases. This
Lh situation can be regarded as a strong anisotropic case, as is
© 06 0.7 Q 08 09 the same with the model studied in RE3)]. Figure 6 is the
phase diagram fory=—0.05. There are again two phases.
FIG. 4. Floquet exponents for three typical values ofy: (a) However, in contrast to Fig. 5, they are Ising-SRO and
y=0.55,h=1.0; (b) y=—0.05,h=1.5; and(c) y=0.30,h=1.0. ~ XY-SRO phases. As will be shown in the following section,
Solid and broken lines correspond to the first and second Floqueh the regiony=<0 only the Ising-SRO anX Y-SRO phases
exponents, respectively. The transition points separating differengyjst, namely, all the region withy<0 is essentially the
phases are indicated by dottgd broken vertical lines, at which thggme phase behavior as that for the isotrapfcmodel stud-
largest Floquet exponent vanishes. ied in Ref.[10]. Figure 7 is the phase diagram fgr=0.30.
There exist four phases: the Ising-SROY-SRO, XY-SBO,
continuously, each of the Floquet exponents is measured fand Ising-SBO. This situation is observed in the region 0
a stable limit cycle reached after the transient time is over. In< y<3, (see Sec. IV.
the present syste’s are always real. Figure(d) represents The Flogquet analysis shows that dependingydhe phase
the existence of the transition between the Ising-SRO and theéiagram spanned bly and Q) is different. In the following
Ising-SBO phases. The Ising-SRO phase exists(¥er();  section, using the mode expansion analysis, we will derive
(=~0.525), and the Ising-SBO phase exists §br- ). Fig-  approximate phase diagrams for typicgalregions giving
ure 4b) shows the existence of the transition between thehree typical phase diagrams.

1 V2 1 . 1
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2

Ising-SRO Xn+|nQXn:(1+'}’)Xn_El % XiXXn=1=m

_2 2 Y|Yan,|,m
| m
h1 — h
+§(5n,1+ 5n,71)a (4-2)
XY-SRO
Yn+inQYn=(1—y)Yn—zl %‘, Y Yo Ynoi—m
0 1
0 1 2
0 _E| % X XY e —m- (4.3

FIG. 6. Phase diagram for= —0.05._ The transition curve indi- |y the Ising-type oscillation, the imaginary componaft)
cated byh,=h,({)) separates the Ising-SRO and tXe/-SRO

i A vanishes, and thereforg,=0 (1=0,=1,£2,...). In the
phases. The meaning of symbols and solid line is the same as BrO type oscillation, the relatiof2.15 leads toX,=0 (I
Fig. 5. ' '

—0,+2,+4,...).

As the simplest approximation, we take into account only
IV. MODE EXPANSION ANALYSIS AND PHASE DIAGRAM the three modes=0 andn=+ 1. From Eqs(4.2) and(4.3),

the equations of motion for the moae=0 are given by
First, we apply the Fourier expansion Xgt) and Y(t), )
Xo=(1+y=X5—6[X1]|?=Y5—2|Y1|*)Xo
X()= 2 X 0e", Y= X Yy (t)e"?,
n=—ow n=—o

@1 Yo=(1—y=Y§—6|Y4|>=X5—2|X,|3) Y,

—2(Y1 X+ Y* X)) Xo. 4.5

whereX_,=X* andY_,=Y* . We assume that the coeffi- Similarly, the equations for the mode=1 are written as
cients{X,} and{Y,} have weak time dependence whose

V H _ _ 2_\2_ 2__ 2
time scales are much longer thdn Substituting Eq.(4.1) XitiQX = (14 y=3Xo= Yo—3|X4|*=2[Y1[) X,
into Egs.(2.6) and (2.7), and comparing the coefficients in h
both the right- and left-hand sides, we obtain —2XoYoY1— YEXT + > (4.6)

Y1 +iQY;=(1-y=3Y§—X5-3|Y1|>—2|X,]2)Y;

—2XoYoX,— X3YE 4.7

Ising-SRO

With the above simplest approximation, the stationary
state K;=Y;=0) is determined by

0=(1+y—x5—6|X312—2|Y$1?)xo
—2(X3Y§* + X5 Y$)yo—XoY5. 4.8

0=(1-y-y5-6|Y$12=2|X31?)yo

sing-SBO = 2(X3YE™ + XT™ YT X0~ Yoxs, 4.9
0 w where X3',Y3) and (xo,yo) represent the stationary solu-
0 1 2 tions of (X;,Y;) and (Xq,Y,), respectively.
Q

The symmetry argument in Sec. Il leads to the following
FIG. 7. Phase diagram foy=0.30. There are three transition results.

curves,h,, hg, andh,, separating four phases. THY-SBO phase (i) If th_e fixed pointXOZO, a_ndy0=0 is stable, the_n the
exists in a narrow region. The meaning of symbols and solid lines i@ttractor is the Ising-SRO trajectory, and the relatiof}s
the same as in Fig. 5. =0 and iQ+1+y—3|X519)X5'+h/2=0 hold.
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the attractors are the Ising-SBO trajectories, and the relations

5y—1\°2

= ) ] 4.17
Xo=*+J1+y—6[X51% Y$'=0 and (iQ+1+y—3x3
—3|X}1%)X{"+h/2=0 hold. For h>h,, the Ising-SRO is stable, and tHéY-SRO is

(iii) If the fixed pointsx,=0, andyy,#0 are stable, then siaple forh<h,.

the attractors are th8Y-SRO trajectories, and the relations (iii ) For 0< y<1%, in addition to the same expression for
yo=*\1—y—=2[X{]?, Yi{'=0 and (iQ+1+y—y3 h,, the transition curves are represented by
- 3|X51%)X5'+h/2=0 hold.

(iv) If the fixed pointsxy#0, andyy,#0 are stable, the , 9, , [1ly—4 2
attractors are thXY-SBO trajectories. he=\/27| Q%+ 277], ha=\[27) Q%+|— :

Now we consider the linear stability around the fixed (4.18
points corresponding to the above stationary state. Noting

that the modeXo,Y)) is relevant to the symmetry change of e find that the Ising-SRO, th¥Y-SRO, theX Y-SBO,

the oscillation, we assume that the relaxation time of thesnd the Ising-SBO are stable, respectively, forh,, hg
mode (X1,Y;) is faster than that ofX,Y,), and we adia- <h<h,, hy<h<hs, andh<h,. These results involve the
batically eliminateX; andY;. With this approximationX;  fundamental behaviors expected from the symmetry argu-
andY; are replaced by3' and Y3', which are functions of ment. In Figs. 5, 6, and 7 the transition curves obtained
Xo and Y,. Denoting the deviation from one of the fixed above are compared with the results of the Floquet analysis.
points asx=(§&,7), i.e., theX, and Y, components being For the transition curve related to the Ising-type phases
replaced withXy(t) =X+ &(t) andYq(t)=Yyo+ n(t) in Egs.  (Fig. 5), both results are quantitatively in agreement. How-
(4.4) and (4.5), we obtain the linearized equatior=A(t)x  ever, for the transition curves associated with other types of

for the deviation, where the matriX(t) has the elements. DPTs, i.e., FIgS 6 and 7, the deviations between both results
are rather large, although both results are qualitatively in

A=1+7y—3x5—y3—6|X51?-2|Y$%, (410 agreement. This fact implies that the analysis based on the
three modes approximation presented above is not accurate,

A= Ap=—2(XoYo+ X3V +X5*Y$Y), (4.1)  particularly in a low-frequency region. The analysis should
be carried out by taking into account higher-order modes.

(i) If the fixed pointsxy,# 0, andy,=0 are stable, then
h,= \/2(1— )/){Qz-i-

App=1—y—3y3—x3—6|Y512-2|x52.  (4.12
. . V. LANDAU EXPANSIONS NEAR THE DPT

By usingx(t) =e*'x(0) [x(0)+ 0], the solutions of the char-
acteristic equation fok are given by As is well known, in equilibrium thermodynamic phase
transitions the Landau expansion is a powerful approach to

2 e=At Ayt \/(All—A22)2+4A§2. (4.13  clarify the universality class of the phase transition. In this

section, we will carry out the Landau expansion with respect

It turns out that the characteristic equation always has & the order parameter near DPTs to study the characteristics
couple of real roots because of the symmetry of the matrixof the transitions.
On the transition curves, where the symmetry changes occur,

the real part of the IargeSt eigenvalne vanishes, "g]d' Si- A. Near the DPT between Ising-SRO and Ising-SBO phases
multaneously, A1, vanishes fromxyyo=0 and Y7 =0.

Therefore, on the transition curves we get the relations In this subsection, we consider the dynamics near the
DPT between the Ising-SRO and the Ising-SBO, which is
1+y—3x3—y§—6|xit|2=0 for —1+ 27+4y§>0, observed fory=3%. This transition can be discussed in a
(4.14 similar way to the DPT in the Ising spin system reported in
Ref.[9].
1—y—3y5—x3—2|X51?=0 for —1+2y+4y3<O0. Let Xg(t) be the Ising-SRO trajectory, which is either

(4.195 stable or unstable. The Ising-SRO trajectory is numerically

found as follows. If the Ising-SRO is stable, then for any

The transition curves in the(X,h) space are determined initial condition one eventually obtains its trajectory. When
by combining Eqs(4.14) and (4.19 with the results ini),  the Ising-SRO is unstable, its trajectory can be found by

(i), and(iii ). After some algebraic operations, we obtain theconstructing the stroboscopic map for the Ising-type equation
following results: of motion,

(i) For y=3, the transition curve is given by
NP
hi=3(1+7) T) } 418 Eor an arbitrary initial conditionX(0), theintegration of the
above equation untit=T leads to a one-dimensional map
For h>h, the Ising-SRO is stable, and the Ising-SBO isX(T)=g[X(0)], and, therefore,
stable forh<h;.
(i) For y=<0, the transition curve is written as X(thr1)=0[X(t,)] (ty=nT), (5.2

X(t)=(1+y—X?)X+hcogQt). (5.1

1+
Q2%+
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where g(X) is a nonlinear mapping function of, whose
form depends on both and(}. As was discussed in RgB],
if the Ising-SRO is stable, there exists one fixed pofat
with the slope|g’ (X;)| less than unity. On the other hand,

when the Ising-SRO is unstable and the Ising-SBOs are

stable, there appear three fixed points, one of whighwith

lg’ (Xy)|>1, gives the unstable Ising-SRO, and others of

which, Xs; and X, with |g"(Xs1)|=|9'(Xs2)|<1, corre-

spond to the stable Ising-SBO. Numerical determination of

X, gives the initial condition for the unstable Ising-SRO tra-
jectory.
Using X(t) = Xg(t) +x(t), Y(t)=0, and

t —
x(1)=Qgr(D&(), Qr(t)= EX{ - 3JO{XR(S)2_ Xﬁ}ds},

(5.3

we get
E)=NE—3Xr(DQR(DEF—QR(1)%E%, (5.4

where
N=1+y—3X3 (5.5)

PHYSICAL REVIEW E 66, 036123 (2002

0.02

-0.02
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FIG. 8. Comparison of the trajectory obtained with the Landau
expansion(solid line) from Eg. (5.6) with the exact ongbroken
line) from Eq. (2.5 near the DPT between Ising-SRO and Ising-
SBO for the parameter valueg=0.55,h=1.0, and()=0.52557
=0,;+10% and x(t)=X(t)—Xg(1),Y(t)=0. The arrow shows
the movement of the phase point in the course of time.

B. Near the DPT between Ising-type andY-type oscillations

In this subsection, we consider the critical dynamics near
the DPT between the Ising-type motion and tK&-type
motion observed fory<3, i.e., (i) the DPT between the

is the Floquet exponent of the Ising-SRO. When the Ising4sing-SRO and theX Y-SRO, and(ii) the DPT between the

SRO is stable(unstable, N\ is negative(positive. The A
stands for the time average A{t) over one periodr.

Near the DPTA~0, and therefore the time scabg| ~* of
¢ is quite long. We can replace the coefficientofn Eq.
(5.4) by its time average over one periddof the external
field. One thus obtains

E=ré—c&® (c=QR). (5.6
Here we used the fact that the symmedy(t) = — Xg(t
+T/2) leads toXgQr=0. One thus finds thads, the aver-
age of¢ over one periodT, is of orderyA«Q—Q, for Q
slightly beyond(},, the DPT point between the Ising-SRO

and the Ising-SBO. The comparison of the trajectory ob-

tained from Eq(5.3) and Eq.(5.6) with that exactly obtained
from Eq. (2.5 is made in Fig. 8. From the symmetry there

exist two 1sing-SBO trajectories fot>0 andX<0. In the

figure, one of them corresponding to that %0 is drawn.
The period ofx derived from Egs(5.3) and(5.6) is T/2, and

Ising-SBO and theXY-SBO.

Let X,(t) be the motion with the Ising-type trajectory,
either SRO and SBO. Near their DPTs, the insertion of
X(t) =X, (t) +x(t), Y(t)=y(t) with

the trajectory is surrounded by that obtained by numericallyynere

integrating Eq.(2.5. As the transition point is approached,
the two trajectories tend to coincide with each other.

One should note that when the spatial variation of the

order parameter exists, E(p.6) should be replaced by

Ert)=NE—cE+ V2, (5.7

Therefore, the DPT between the Ising-SRO and Ising—SBdlZ
and the Ising-SBO belongs to the same universality class as

that of the Ising spin system in thermal equilibrid®. As
will be discussed in Sec. VI Eq5.7) has the Nel wall
solution.

X(H)=Qa(D &), y(H)=Qq(t)n(t), (5.8

t R
Qn(t)zexp{—nf {X,(S)Z—Xf}ds (5.9

0
into Eq. (2.5 yields
E()=N1E—3X,(1)Qa(1) E2 =X, (1) Q_1(1) 7?

—[Qe(t) €2+ Qu(t) n?1¢, (5.10

n()=Nam—2X,(1)Qa(t)én
—[Qs(t) £+ Qu(t) %] 7, (5.11
N=1+7y—-3X2, Ny=1—y—X2. (5.12

One should note that near the DPN3;~0 and\, keeps
negative, and therefoedecays faster than. By taking into
account this fact and using the estimatién O(|\,|) and
O(V[\,]), Egs.(5.10 and(5.11) are simplified into

E()=N1E— X (D)Q_1(1) 7, (5.13

() =Ny7—2X,()Q3(1)én—Qa(t) 5. (5.14

036123-8
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FIG. 9. Comparison of the trajectories obtained with the Landau expaisadid lines Egs. (5.13 and (5.14 with the exact ones
(broken lineg from Eq. (2.5 near the DPT between the Ising-type oscillation andXhetype oscillation for the parameter valug y
=0.30,h=1.0, and 0=0.656306=0,+10"% and (b) y=0.30, h=1.0, and 2=0.85903=0,—10"*, and x(t)=X(t) = X,(t),y(t)
=Y(t)-Y,(t). Arrows show the movement of the phase points in the course of time.

Near the DPT point between the Ising-SRO and thethat the difference between the exact trajectory and the ap-
XY-SRO, the Ising-SRO trajectory is obtained as follows.proximate one is more remarkable near the Ising-SBO vs
When the Ising-SRO is stable, one immediately gets its traXY-SBO transition than near the Ising-SRO ¥&/-SRO
jectory by simply integrating the original equation of motion transition. This is because in the former the Ising-SBO vs
for an arbitrary initial condition.On the contrary, when it is XY-SBO transition is close to theY-SRO vsXY-SBO tran-
unstable in the region where th€Y-SRO stably exists, we sition, and the transition property of thXY-SRO vs
can obtain the unstable Ising-SRO trajectory by integrating< Y-SBO affects the Ising-SBO WsY-SBO transition. In the
the equation of motion starting from an initial phase point onabove simple treatment, however, we did not take into ac-
the axisY=0. The comparison of the trajectory obtained count the inter-relation of each other.
from Eqgs.(5.8), (5.9), (5.13), and(5.14 with that from Eq. In the case when there exists a spatial variation of the
(2.5 for y>0 is made in Fig. @). The figure shows the order parameter, we can repeat the previous treatment for the
difference of the trajectory from the unstable orb{;,0) just DPT between the Ising-SRO and tKe&/-SRO. By usinga,,
after the DPT between the Ising-SRO and X€-SRO. In  =X,Q,, the resulting equations obtained in this way are

the figure, the trajectory for>0 of two equivalenXY-SRO
attractors is shown.

When the spatial variation is taken into account, we
should add theV?¢ and V2% terms, respectively, in Egs.
(5.13 and(5.14). If we use the approximation to replace the 7(F 1) =Nom— 28267 — Co 13+ V20, 51
coefficientsX, (1) Q,(t) (n=-1,3) andQ,(t), respectively, nrH=hem 72T 7 (619
by their time averages 0 argd(>0), we get coupled equa-
tions of motion for&(r,t) and »(r,t). Sincex;<0 near the
transition point\,~0, and¢ eventually vanishes. Thus one
arrives at

Er)=Nié—a_ n*+ V2, (5.16

One should note that in the present cagedoes not vanish
because the reference trajectory does not safigfyt) =
—X,(t+T/2). Sincer 1 <0, one may adiabatically eliminate
¢, the insertion of which into Eq5.17) leads to

57(r,t)=)\21;—02773+V277. (5.15

2| 2+V2y. (518

. . . : =N,7—| Cot
This also confirms that the present transition also belongs to 7LD =A2n—| ¢

the universality class of the Ising spin system in thermal
equilibrium.

Figure 9b) shows the difference of the trajectory from the
unstable orbit X,,0) just after the DPT between the Ising-

SEtO arédbth@iY_S?O’ mhere thte_z Ismfg-SI?_O tr:;ue;:_tor;:c IS " andau equatiol.15), the enhancement of the difference of
obtained by integrating the equation ot motion starting oMy, gcgles sufficiently near DPT confirms that the reduced

a phase point or¥=0. In the figure, the trajectory foX  equations(5.16 and (5.17) again can be reduced to the
>0 and Y>O0 of four equivalentXY-SBO attractors is Ginzburg-Landau equatior5.18. This implies that the
shown. We find that the above approximations explain theresent transition again belongs to the universality class of
exact dynamics quite well near the DPTs. It should be notedhe Ising spin system.

This equation has the meanings when the inequality
+2a_,a3/\1>0 holds. It is worth noting that although Egs.
(5.16 and (5.17) are different from the type of Ginzburg-

036123-9
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VI. SPATIAL VARIATION AND DOMAIN WALLS b(r t)=ﬁb—5(a2+b2)b+vzb (6.7)
There are two stable oscillating states both in the Ising-

SBO phase and in th€Y-SRO phase, and four stable oscil- Here we used the fact that the symmeXy (t)=—X, (t

lating states in theXY-SBO phase. In this section, deriving +7T/2) yieldsf_=0. In addition to the spatially uniform so-

the fundamental equations of motion describing the spatig|,iionsa=+1b=0. one finds that Eq¢6.6) and(6.7) pos-

variation of a spin variablérder parametgywe will discuss

sess stationary domain wall solutions in a one-dimensional

domain walls connecting a couple of the stable oscillatingSystem with the boundary conditiopa(+=),a(—=)]=

states in one dimension.

A. Domain walls in the Ising-SBO phase

Let C,g denote spatially uniform perio@-limit cycles in
the Ising-SBO phase, whef@; andC,g indicate the oscil-

lations corresponding t&X>0 and X<0, respectively. Let

X4 (t)=[X<(t),0] stand for the spin variable of the Ising-
SBO trajectoryC,g at time t. We introduce the quantity

[a(t),b(t)] which is identical to (-1,0) [(—1,0)] when the
phase point is oIC;; (C;g) at timet. This quantity can be

(+1,—1) or (—1,+1) andb(*x%«)=0. We find that there
are two types of domain walls. The first is the llevall, z
being the spatial coordinate,

z—zo) \P
, b(2)=0, ¢&=1\/= (6.9
¢ g

wherez, is the position of the wall. One should note tHaits
always positive. The second is the Bloch wall

a(z)= itan)‘(

extended to the case when there exists spatial variation of

spin variables. Namely, the variabla¢r,t) andb(r,t) de-
fined by

1+a(r,t) 1-a(r,t)
X(r,h)=—S5""X (0 + —5=X (1, (63
Y(r,t)=wb(r,t) 6.2)

measure how close the local order paramexdr,t),Y(r,t)]
is to the trajectory of eithe€, or C,5 . The insertion of Egs.
(6.1) and(6.2) into Eq.(2.1) yields

a(r,t)=3f(t)+g(t)a—f(t)(3a2+b?) —g(t)(a?+b?)a

+V?a, (6.3

b(r,t)=h(t)b—2f(t)ab—g(t)(a+b?)b+V2b,
(6.4)

with
1
f(H)=Z[X (D2 =X_(1)%],
1
9(H) =7 [Xs(H=X_(O]%
h(t)= %[3X+(t)2+ 2X, (1) X_(t)+3X_(t)>—8y].

(6.9

In order to see the long-time behaviorafndb, we use

o ’_(z—zo) b7 = y{z—zo
a(z)=*tan £ (z)=*xpsec l
(6.9
1 h—g
f=\—= p=\—2 (6.10
g—h g

Of course, this solution has the meaning only when the in-
equalityh<g<2h holds. We confirmed that for the param-
eter values we used, except the DPT, this inequality holds.
However, as the parameter value is approached to the transi-
tion curveh, (Fig. 5), g<h is satisfied. This fact implies that
near the DPT only the N& wall exists.

It turns out that these domain wall solutions reduce to the
solutions in the absence of external fields in the zero field
limit h—0, X.(t)—*=J1+vy [Eqg. (2.9)], i.e., we findf(t)

—0, g(t)—1+1y, andh(t)—1— v in that limit, and thus
the solutiong6.8) and (6.9) agree with the walls in the zero
field.

B. Domain walls in the XY-SRO phase

Let Cyygr denote spatially uniform period@-limit cycles
in the XY-SRO phase, wher@yr" andCyyy indicate the

oscillations corresponding t¥>0 andY<O0, respectively.

Let X.(t)=[Xq(t),Y~(t)] denote the spin variable of the
XY-SRO trajectoryCyyg_ at timet. We introduce the quan-
tity [a(t),b(t)] which takes the value (&,1) [(0,—1)]
when the phase point is dByyr" (Cyyg ) at timet. This
quantity can be also extended to the case when spatial varia-
tion of spin variables is present. Namely, the varialalést)

the approximation to replace temporally periodic coefficients fi
such asf(t) andg(t) in the above equations of motion by andb(r.t) defined by
their time averages over one period. The resulting equations

_ Yo ()-Y_(1)
are given as

X(r,t)=Xq(t)+ fa(r,t)

a(r,t)y=ga—g(a2+b?a+V3a, (6.6) =Xo(H)+ Y (D)a(r,t), (6.11)
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v B 1+b(r,t)Y 1—b(r,t)Y
(r,t)= — Y () Y
=Y, (t)b(r,t) (6.12

measure how close the local order paramexdr,t),Y(r,t)]

is to eitherCyyg" Or Cyyr . Here we used the fact that

Y_(t)=-Y,(t). Inserting Egs.(6.11) and (6.12 into Eq.
(2.1), we obtain

a(r,t)=h(t)+[g(t)—f(t)]a—h(t)(3a%+b?)

—g(t)(a®+b%a+V?a, (6.13
b(r,t)=g(t)b—2h(t)ab
—g(t)(a®+b?)b+V?b, (6.14
with
f()=2[Xo(t)?= 71,
g(=Y.(1)?
h(t)=Xo(t) Y. (1). (6.19

In order to see the long-time behaviorafindb, we use
the approximation to replace temporally periodic coefficient
such asf(t) andg(t) by their time average values over one

period. The resulting equations are written as
a(r,t)=(g—f)a—g(a2+b?a+Vaa, (6.16)
b(r,t)=gb—g(a2+b?)b+V?2b. (6.17)

Here we used the fact that the syanetrbe(;(t)=—Xo(t

PHYSICAL REVIEW E 66, 036123 (2002

Needless to saﬁ>0. For the parameter values we used, we

find f>0 andg>2f. Near the DPT, we findj<2f, which
implies that only the Nel wall is observed near the DPT.

The above domain walls are reduced to those without an
oscillating external field. This can be shown as follows.
Since in the limith—0, Xy(t)—0, Y. (t)—*=+v1—vy [Eq.
(2.10], we find f(t)— -2y, g(t)—1—1v, andh(t)—0 in
the zero field limit. Inserting the N wall solution (6.18
into Egs.(6.11) and (6.12, we obtain the Nel wall in the
zero field. In a similar way, inserting the Bloch wall solution
(6.19 into Egs.(6.11) and(6.12, one arrives at the Bloch
wall solution without an oscillating external field.

C. Domain walls across theX axis in the XY-SBO phase

Let Cxyg; (J=1,2,3,4) be spatially uniform perio@-
limit cycles in theXY-SBO phase. Her€yyg; denotes the
oscillation forX>0 andY>0, Cyyg for X>0 andY <O,

Cyyrs for X<0 andY<0, andCyypg for X<0 andY>0.
The quantityX;(t) =[X;(t),Y;(t)] stands for the spin vari-
able of theXY-SBO trajectoryCyygj. Since the local oscil-
lation is one of four limit cycle€yyg;j (j =1,2,3,4), we have
to take into account the coexistence of these four oscillating
states. However, for simplicity, in this paper we discuss only
the coexistence of two of the four oscillatory states.

First we consider the domain walls connectibgy g and

Lxvr. From the symmetry of the solutions, those @y g,

and Cyy gz can be considered in the same way as those for
Cyxym andCyy . Let[a(t),b(t)] be the quantity that takes
the value (04 1) [(0,—1)] when the phase point is on
Cxvm (Cxyg) attimet. a(t) andb(t) are extended so as to
include the position dependence when there exists spatial
variation. Namely, the quantities(r,t) and b(r,t) defined

by

Ya(t) = Yo(t)

X(r,t)=X;(t)+ a(r,t)y=Xq(t)+Y(t)a(r,t),

+T/2) andY, (1))=Y, (t+T/2) lead toh=0. 2
Consider a one-dimensional system with the coordirate (6.22
It is easy to see that in addition to the stable spatially uni-
form solutionsa=0,b|=1, Egs.(6.16 and (6.17 possess 1+b(r,t) 1-Db(r,t)
stationary domain wall solutions for the boundary condition "(""Y="%5 "1 TYZ(U:Yl(t)b(r't)

a(*=)=0 and[b(+%),b(—)]=(+1,—1) or (—1,+1).

Particularly, we find two types of domain walls. The first is

the Neel wall
{2
a(z)=0, b(z)==tan , &=\/=
& 9
(6.18
The second is the Bloch wall
[,
a(z)==*psec £ | (z)==*tan £ )
(6.19
1 lg—2f
é= \[:, p= Eiall —. (6.20
f g

(6.22

measure how close the local order paramgxdrr,t),Y(r,t)]

is to eitherCyyg Or Cyym. Here we used the fact that
Y,(t)=—Y4(t). Inserting Eqs.(6.21) and (6.22 into Eq.
(2.1), after some algebra we get

a(r,t)=h(t)+[g(t)—f(t)]Ja—h(t)(3a+b?)

—g(t)(a®+b?a+V?a, (6.23
b(r,t)=g(t)b—2h(t)ab
—g(t)(a®*+b?)b+V?b, (6.24

with

f(t)=2[Xy(t)2— ],
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FIG. 10. Numerical solution of Eq€$6.26) and (6.27), which
corresponds to the boundary conditiai=o)=0b(*w)==*1.
Solid and broken lines, respectively, denditgz) and a(z). The
parameters arg=0.30h=1.000=0.85

g(t)=Y4(t)?,

h(t)=X1(1)Y4(t). (6.2

In order to observe the long-time behavior afand b, we
replace temporally periodic coefficients such fg$) and
g(t) by their time averages. The resulting equations are
given as

a(r,t)=h+(g—f)a—h(3a2+b?)—g(a2+b?)a+V2a,
(6.26)

b(r,t)=gb—2hab—g(a2+b?b+V2b. (6.27)

Consider a one-dimensional system with the spatial coor-
dinatez. Figure 10 shows the steady-state pattern obtained

from numerical integration of the above equations of motion
with the boundary conditionfa(==)|=0,b(=)|=1 for

the parameteryy=0.30h=1.001=0.85. We conclude that
the solution observed in this case is thus the Bloch type wall.

D. Domain wall across theY axis in the XY-SBO phase

Next let us consider the coexistence@fy g andCyy -
From the symmetry of the solutions, domain walls connect-
ing Cxyp and Cyygs Can be studied in the same way as
those in the preceding subsection. [a(t),b(t)] be (+1,
+1) [(—1,—1)] when the phase point is @yvg (Cxyps)
at timet. The quantitiesa(t) andb(t) are extended to the
case when there exists spatial variation. The quantifeg)
andb(r,t) defined by

_1+a(rn) 1—a(r,t)

X(r,t)—T 1 t +TX4(t), (628)
1+b(r,t) 1-b(r,t)
Y(r,t)= TYl(t)'F TY‘l(t) (6.29

measure how close the local order parampXr,t),Y(r,t)]
is to eitherCyyg Or Cxypa.

PHYSICAL REVIEW E 66, 036123 (2002

Inserting Eqs(6.28 and(6.29 into Eq.(2.1), after some

algebra we get

a(r,t)=f,(t)+f(t)a—fa(t)b—3f,(t)a?—f-(t)b3(t)
—2fg4(t)ab—f,(t)a—fg(t)ab®+V?a, (6.30

b(r,t)=g1(t)+ga(t)b—gs(t)a—3fe(t)b2—gs(t)a?(t)
—2f (t)ba—fg(t)b3—f,(t)ba®+V?b, (6.3D)

with

3
fi(t)= Z[Xl(t)Z—X4(t)2]

3 [X1(t) +Xa(D)ILY1(t) + Y4(t) ]2
A[ X1 (1) —X4(1)]
Y1(1)2Xq (1) +Y4(1) X (1)
X1(1) = X4(t) ’

1 1
fa(t)= 7 [Xa ()~ X4(D)]?~ ZLYa(O+ Y4(D)]?

Y1(1)2X1 (1) = Y4(1)2X4(t)
X1(t) = Xq4(t) '

[X1() +Xa(DILY1(D)2 = Ya(1)?]

falt)= 21X () = Xa(0)] ’

1
fa(t)= Z[Xl(t)z_ X4()?],

_ [Xa() + X (OIY(D) — Ya()]?
A[X1(1) = Xy(1)] ’

f5(t)
1
fe(t)= Z[Yl(t)z_Y4(t)2],
1 1
fo(D) = Z[Xa(O =X (D% fa(t)= Z[Y2(D = V4]

3
91(1) = Z[Y1(D)* = Y4(1)?]
_ [Ya)+Ya(0]Xa(D) + Xa(1)]?
ALY1(1) = Ya(D)]

X1()2Y1(t) +X4(1)2Y4(1)
Y (1) —Yy(t) ’

1 1
9a(1)= Z1Y2(1) = Ya(D) 2= ZIXa(0+ X017

X1(D)2Y1(t) = Xa(1)?Y4(1)
Y1(1) = Ya(t)
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[Y1(0) + YD) ][ X1 (1) 2= X4(1)?] that takes the value«{1,+1) [(—1,—1)] when the phase
ga(t)= 2V ()= YD) ; point is onCyv g (Cxygs) at timet. The quantitiesa(t) and
! 4 b(t) are extended to the case when there exist spatial varia-
[Y1(0)+Ya() [ X1 (1) — X,4(1) ]2 tions. The variablea(r,t) andb(r,t) defined by
t = . 63
9:(1) ATY,(D—Ya(U)] (6:32 Lray | 1-a(my
Here the coefficients satisfy
fo(t)—f3(t)=02(t) —0g3(t) 1+b(r,t) 1-b(r,t)
2 3 92 O3 Y(r,t)= — — Y3(t) (6.39
=f(t) +1fg(t)
1 1 measure how close the local order paramgxdrr,t),Y(r,t) ]
= Z[X1(t)—x4(t)]2+ Z[Yl(t)_Y4(t)]2 is to eitherCyyg or Cyygs. INserting Eqs(6.38 and(6.39
into Eq.(2.1), after some algebra we obtain the equations the
=h(t). (6.33 same as Eq96.30, (6.3)), (6.32, and (6.33 with the re-

placement ofX,(t) by X3(t) and Y,(t) by Y;(t) in Egs.
In order to see the long-time behavior afand b, we  (6.32 and(6.33.

replace temporally periodic coefficient$;(t)} and{g;(t)} In order to see the long-time dynamics afand b, we

of the above equations of motion by their time averages. Theeplace temporally periodic coefficients of the equations for

resulting equations are found to be a and b by their time averages. One easily finds that the
) o o o _ equations of motion foa andb with the averaged coefficient
a(r,t)y="f,(a—b)+(f;+fg)b—(f;a2+ fgh?)a+ V2a, again yield the particular solutioa(r,t)=b(r,t). This fact

(6.3  makes us consider the particular case,t)=b(r,t). In this
. _ _ _ _ case, we obtain the equation the same as (E®6. In a
b(r,t)=g,(b—a)+(f,+fg)a—(f;a%+ fgh?)b+V2b. one-dimensional system with the coordinaiehe equation
(6.39 for a possesses the stationary kink and antikink solutions for
the bound diti +o)|=1 which has th
Here we used the fact that the symmefidy,(t),Y,(t)]= fo?m ;)Suréqa.l(rgac?()).n torfa(==)| =1 whieh has the same
[—Xy(t+T/2),Y,(t+T/2)] leads to fy=f,=fs=fc=0, An alternative discussion on the domain walls for spin
=gs=0. We carried out numerical integration of E¢6.34) variables themselves is given in Appendix B.
and(6.35 for y=0.3 andh=1 with three different values of

Q) in one dimension, for five different initial conditions of VII. SUMMARY AND CONCLUDING REMARKS
{a(z,0),b(z,0)} for each value of the set of, h, Q. All the _ ) _ _
numerical integrations ultimately give the resud(z,t) In the present paper, we discussed DPTs in the anisotropic

=b(z,t) for the whole space. One easily confirms the exis-XY Spin system in a periodically oscillating magnetic field
tence of this particular solution. Noting this fact, we considerP€low the critical temperaturd., using the Ginzburg-
the particular casea(r,t)=b(r,t). Equations(6.33 and Landau equation with an oscillating magnetic field.

(6.34) are reduced to In the first half of the present paper, we studied types of
spatially uniform oscillation, dropping out thé?y term. Af-
a(r,t)=ha—ha3+Vv3a. (6.36  ter discussing the particular symmetries of the present sys-

tem, we examined the stability of the SRO for different val-
For a one-dimensional system, E®.36) possesses the ues of the amplitudé and the frequency) of the external
stationary kink and antikink solutions for the boundary con-field. This was done by numerically calculating the largest
dition |a(*x=)|=1, Floquet exponent of the particular oscillation. Thus we ob-
tained the phase diagram in the space spanndd bgdh. It
2 was found that there are at most four types of oscillations,
\/: (6.37) depending on the magnitude of the anisotropy paramgeter
Furthermore, we developed the Landau expansion of the
It should be noted that the particular solutica(r,t) equation of motion near several kinds of DPTs to clarify their

=h(r,t) for anyr exists only for Eqs(6.34 and (6.35, but universality classes. All the transitions seem to be the same
not for Eqs.(6.30 and (6.31. ’ as that of the Ising spin system in thermal equilibrium. How-

ever, since we used the Landau equation with the time-
averaged coefficients, some of the characteristic features of
the DPTs might be lost. This is one of the future problems of
studying explicit oscillatory characteristics of the DPTSs.
Finally we consider the coexistence ©fyg andCyy g. In the second half of the present paper, we discussed pos-
From the symmetry of the solutions, domain walls connectsible forms of the domain walls connecting several types of
ing Cxyg and Cyypgs can be discussed in the same way asdynamical phases in a one-dimensional system, employing
those forCyvg and Cyygs. Let [a(t),b(t)] be a quantity the variablesa andb to parametrize the domain structure. In

zZ— 2y
a(z)=b(z)=itanl‘( z ) &=

E. Domain walls betweenCyyg; and Cyygs in the XY-SBO
phase
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the Ising-SBO phase with a positive anisotropy and also inAPPENDIX A: ASYMPTOTIC SOLUTIONS FOR A WEAK
the XY-SRO phase for a negative anisotropy, it turned out FIELD OR A HIGH FREQUENCY

that possible forms of the domains are described with the |, this appendix, the perturbation expansion of asymptotic

Neel wall and the Bloch wall known in the anisotropitY  solutions for a weak field or a high frequency are briefly
spin system without an external field. Furthermore, the walyescribed.

structure in theXY-SBO phase is found to be different from

the ordinary Bloch wall form. Although we reported possible 1. Oscillation in a weak field
types of domain walls in the present paper, their precise sta- |n a weak external field the dynamics shows small ampli-
bility should be examined in the future. tude oscillations around the stable zero-field fixed points

In comparison with the DPT observed in the Ising spinxss=(XxssYs9). By expanding the deviationX—X3S, Y
systems, there are several differences in the DPTs in the an-Yssin the power series di, and by inserting these expres-
isotropic XY spin system. First, in contrast to that there issions into Eq.(2.5), the low-order equations ih yield the
only one DPT in the Ising spin system, there can exist thre@erturbation equations of motion for the deviations. The re-
kinds of DPTs, depending on the magnitude of the anisotropgults are summarized as follows.
parametety. This fact is due to the existence of four dynami- Case A y>0. To the lowest order with respect kp the
cal phases in the present system: Ising-SRO, Ising-SBCgquations of motion are solved as
XY-SRO, andXY-SBO. The second is about the universality —
class of DPTs. In a previous pad®i, we confirmed that the (X(t)) :< V1 7+X1(t)h) (A1)
DPT observed in the Ising spin system belongs to the same Y(t) 0 '
universality class as that of the Ising spin system of conven-

tional critical phenomena in thermodynamic equilibrium. 1

This was shown by deriving the Landau-type effective equa- Xy ()= WCOE{QF ay), (A2)
tion of motion around the SRO near the DPT. As shown in 4

Sec. lll, however, associated with the transitions between O

Ising-SRO andXY-SRO and also the transition between tanalzm-

Ising-SBO andXY-SBO, the number of order parameters
relevant to the transition changes. The third is the possibility Equations(Al) and(A2) have the Ising-SBO symmetry.
of the existence of the DPT above. Examining the Flo- These trajectories are compared in Figial With those from
quet exponent of the SRO, one can prove that there exists ribe original equation of motiof2.5. One finds that the dy-
DPT in the Ising spin system aboie. However, we cannot namics under a weak field for>0 is well approximated by
prove the nonexistence of DPTs in the anisotropic XY spinEds-(Al) and(A2). . " .
system in an oscillating field abovie . The fourth difference Case B y=0. By putting ¢=p€'’, p and ¢ being the
is about the form of domain walls. In the Ising spin system,@MPlitude and the phase, respectively, and by inserting the
the domain wall is the N& wall. On the contrary, in the €XPansion
anisotropicX,Y spin system, one observes the Bloch wall as p=1+ash+a,h’+--. (A3)
well as the Nel wall which connect two oscillatory domains.

In the SBO phase of the Ginzburg-Landau equation in ainto Eq.(2.5), the lowest-order equations are determined as
oscillating field (1.1), the switching phenomenon between . .
two SBO phases in the presence of thermal noise has been 8(t)= —h(1-a.h)cod Q)sine, (A4)
reported 9]. It is expected that the presence of thermal noise : _
may cause the switching phenomena between several kinds a,(1)= —2a; +cog(2t)cose. (AS)
of dynamical phases in the present system. The study on thishe expansion coefficienta,, etc., are successively ob-
subject is left for a future study. Furthermore, study on thetained, e.g., as
ordering process beyond the DPTs in this system is an inter- i
esting problem. This is left for a future study, as well. The a,(t)=—2a,—3a3. (AB)
study of anisotropic spin system with an oscillating magnetic
field is quite interesting, and is important from the viewpoint
of nonlinear-nonequilibrium dynamics of spin systems. Ex-

Case C y<0. To the lowest order with respect Ip the
equations of motion are solved as

perimental study as well as theoretical study is strongly ex- X(t) X¢(t)h
pected to be carried o{il2]. = — o | (A7)

Note added in proofVery recently, Monte Carlo studies (D) V1= yHya(D)h7]
of the dynamic phase transition in a ferromagnetic aniso- 1
tropic Heisenberg spin system in an oscillating magnetic X4 (1) = ————c0g Ot — a,), (A8)
field in a thin film were carried out ifl2]. ' VAy?+ Q02 2

yo(t)=A+Bcog20t— a3), (A9)
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FIG. 11. Comparison of the approximate trajectorigslid lineg with the exact onegbroken line$ for a weak amplitude fox=X
—XS%andy=Y —Y*S, where the parameter values & y=0.30,h=0.01, andQ) = 1.0, and(b) y=—0.05,h=0.01, and =1.0. Arrows

show the movement of the phase points in the course of tim@) lmne of the two symmetric Ising-SBO trajectories with- 0 is plotted.
In (b), one of the two symmetriXY-SRO trajectories witty>0 is plotted.

Vi—vy X(t)=x(t),

4492+ Q%) (1—y) o
(4y )(1=7) Y(t)== 1 y+y(t)(y=<0),

with small |x(t)| and|y(t)|. The dynamics of the perturba-
B tions x andy with the mode expansion are summarized as

follows.
2 2 2 2 2 2
_ VA= p{[(By+1)Q%+49y*(y—1)]*+ Q% (Q*~4y) }_ Case A y>0. With the mode expansion(t)=Xo(7)
[4(1-v)%+40%](49y%+0?)2 +x (7)€" +x5(n)e”'" (r=Qt) by discarding high-

frequency modes, and by making use of the evaluatign
=0(x?), we obtain

These equations have theY-SRO symmetry. The com- dxo(7)
parison of the trajectory obtained from E@8.7), (A8), and P e(—2a% xo—6a,|x,|?), (A12)
(A9) with that from Eq.(2.5) is made in Fig. 1(b). One finds T
that the dynamics under a weak field fprx0 is well ap- q ) N
i Xq(7
proximated by Eqs(A7), (A8), and(A9). dl(r +ix;=€| —2a%x;—6a, xgx;+ ik (A13)

wherea, =+ 1+ y ande=( 1. The steady-state solution

is given asx;~ —ihe/2 andx,=—3h2€e?/4a, , and there-
Let us consider the asymptotic dynamics for a high-fore one obtains

frequency region. Numerical simulation shows that the spin

is almost perpendicular to the applied field for a sufficiently h

large frequency. This is because the spin variable cannot si- X(t)~a,+ ﬁsin(()t)— la.

multaneously follow the rapid change of the applied field. *

Furthermore, it is observed that the Ising-SBO and the _ : .

XY-SRO stably exist, respectively, for>0 ang fory=0 in Up t0O(Q %), andY(t)=0. One can easily prove the linear

a high-frequency field. These observations suggest the use gﬁability O.f the above solution. The comparison of the t_rajec-
follo%ving gxpangion: 99 tory obtained from Eq(A14) with that from Eq.(2.5 is

made in Fig. 12a). In the figure, from the symmetry of the
Ising-SBO solutions, there exists another trajectory, which is
not shown in Fig. 1@&). One finds that EqA14) gives quite

2. Oscillation in a high-frequency region

h 2
5) , (A14)

X(t)=+ \/1Ty+ X(1) a good approximation foy>0 in a high-frequency region.
Case B y=<0. With the expansionx(t)=x;(7)e'"
(=00 (A0 (e and y() =yo(7) +ya(M)E" HyE (e ?7 (7
Y(t)=0 =0t), we get
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1.0f ' R O '
ﬁ ] FIG. 12. Comparison of the
0.5- _ I approximate trajectories (solid
lines) with the exact onegbroken
’ lineg) for a high-frequency oscilla-
= 0.0 > 55107 N tion for x=X-X%% and y=Y
l D I —Y®S where the parameter values
1 T =TI are (@ y=0.30, h=1.00, O
0.5k - i =20.0 and (b) y=-0.05 h
=1.00, 2=20.0. Arrows show
the movement of the phase points
-1.01 | L a0 L in the course of time.
10 05 00 05 1.0 X107 00 00 00 00 00 ol
(@ (b) X
dx,(7) ) Vi—V,i. The equations of motion for the real and imagi-
q;  xaTe —3|xq|"%1—2a_x1yo nary components are given by
. AX—v (1) VX=X~ (X2+Y2)X+ yX+V2X+h cog OQt),
—2a_X7Y,t+2yx;+ 5 (A15) (B1)
dyo(7) , , AY—v()V,Y=Y—(X2+Y2)Y—yY+VIY. (B2
T: —e(2aZypt+ 2a,|xl| ), (A16)
Let us expandX andY in terms of Fourier components as
dy(7) . 2 2 * %
dr +2iy,=—€(2aZy,+a_xj), (A7) X(z,t)= Z Xn(z,t)ei“m, Y(zt)= E Yn(z,t)ei”“t,
n=-—o n=-—o

wherea_=+\/1—y and e=( . Solving the steady state (B3)

solution of the above equation, we obtain whereX,=X*  andY,=YZ* . Likewise,v(t) is expanded

2+ ha- in(2Qt) "
——SI
408

(A18)

h 1
X(t)=gsint), Y()=a - —|q

v(t)=n:2_ v, v=vE,. (B4)

up to O(Q ~3). After a slight calculation, one can prove the _— . .
linear stability of the above solution. The comparison of theThe substitution of these expansions into H@H) and(B2)

trajectory obtained from EqA18) with that from Eq.(2.5 yields a set of equations fo,(z,t) andYn(z.1),
is made in Fig. 1th). From the symmetry of th&XY-SRO
solutions, there exists another trajectory, which is not shown
in Fig. 12b). One finds that Eq(A18) gives quite a good
approximation fory=<0 in a high-frequency region.

Xn+inQXo= 2 vy V,Xnn + (14 )X,
N1

- E anxnzxn—nl—n2
ny,No

APPENDIX B: MODE EXPANSION ANALYSIS FOR

DOMAIN WALL SOLUTIONS 2
. . . . - E YnlYnzxn—nl—n2+VzXn
Topological kinks or domain wall solutions for E(.1)

in a one-dimensional system are again discussed from a

slightly different viewpoint by employing the mode expan- + E(gn 1+6n-1), (B5)

sion analysis discussed in Sec. IV. In this appendix, the space 2° " '

coordinate is represented by

There is a possibility that the entire spatial configuration VT _ B

oscillates along the one-dimensional axis in response to the Y“+mQY”_n21 Un, V2Ynon, + (1= %)¥s

oscillating field. This may be taken into account by introduc-

ing the time-dependent “drift velocityd (t). Thus using the _ E Y Y. Y

moving flame,z=x—x,(t), whose coordinate center is time mom, 1 M2 MM

dependent with the velocity (t)=xo(t), let us replace

P(x,t) with ¢ x—xg(t),t] in Eqg. (2.1). Then, the time and — > XnXnYnon-n +V2Y,. (B6)
1 2 1 2

spatial derivatives ofy are replaced a& y— d;—v 9,4 and ny.ny
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Hereafter, we use the simplest approximation to retairHere the roots foiX, andY, are degenerate, and satisfy

only the modesn=0,+1. As seen in Sec. IV, this set of

IX5]=1Xo | and|Yg |=|Y,]| from the symmetry.

modes is the minimum one describing DPTs. The equations \we use the boundary conditiong = —X_ and Y5 =0

of motion forn=0 in Egs.(B5) and (B6) are given as
X0200VZXO+U_1VZX1+U]_VZX_1+[1+ ’y_6|X1|2
=2[Y1[*IXo— (X5+ Y§)Xo

—2(X.Y_1+X_1Y1) Yo+ V2X,, (B7)

Yo=vo%Yotv_1V,Y1+0v,V,Y_1+[1—y—6|Y,|?
—2[X4|2]Yo = (Y§+X3) Yo
—2(Y1X_1+Y_1X1) X0+ V2Y,. (B8)

Likewise, those fon=1 are written as

X1+1QX, =0V, X, +0,V,Xo+[1+ y—3X3
—2|Y1[= YE1X1 =3[ Xy X1 = 2%, Yo Y1

2 2 h
_Y1X_1+ VZX1+ E,

(B9)
Y1+iQY,=0voV,Y +0,V,Yo+[1— y—3Y2
= 2Xg| 2= XG1Y1= 3| Y1]2Y1 = 2XoYoXy

—X3Y_,;+V2Y,. (B10)

for the Ising-SBO phase, andy =0, Y, =—Y, for the
XY-SRO phase. In additiory; =0 holds for both phases.
SubstitutingXy Yy =0 andY; =0 into Eq.(B14), we obtain

he tan~ 1(Q/AY)
2\0%+A2 7

A.=1+y=-3X5 >~ Y5 2= 3|X; |2

+

Xi=-—

(B16)

Thus it is found thaX is uniquely determined and common
at both boundaries in both Ising-SBO aK&-SRO phases,
i.e., X; =X7, sinceX; are functions ofX, | and|Y;].

The boundary conditions for thXY-SBO phases are
somewhat complicated, sincé; #0 and Xy Yy #0. We
have a possibility to use the following three different bound-
ary conditions forXy andY:

() (Xg,Yo)=(Xg,~Yg),
(i) (Xg,Yo)=(=Xg.Yg),
(iil) (Xg,Yo)=(=Xg, = Yo). (B17)

It is natural to require that the boundary condition ¥or is
the same at both boundaries, i.¥;, =X; , as a physically

Now we focus our qttentiqn to domair_1 wall solutions, a”dpreferable state. For ca@, from Eqgs.(B14) and (B15), to
regardz as the one-dimensional coordinate. The boundarygye the boundary condition fof; so as to have the same

conditions for the sets of the field variableXq(Y,) and
(X41,Y4) in a single-wall configuration are given as
(>(O|Y())*>(>(()t iYOi)! (X]_!Yl);)(xf lYlt)r (Bll)
where each of the superscript specifies the boundary value
of (X;,Y;) (j=0,1) at each of boundarigs- * . It is natu-

ral to impose that the boundary values; (Y;) (j=0,1) be-
long to the uniform stationary solutions of Eq87), (B8),

parity asYy, i.e., Y; =(Yo/Ys)Y1, allows us to set the
condition X; =X; . Similarly, for case(ii), to take the
boundary condition foly; so as to have the same parity as
Xo, i.€., Y7 =(Xo/X5)Y7 , allows us to set the condition
X{ =X . For casdiii ), the simplest boundary conditions for
X; andY; areX; =X; andY; =Y, . Therefore, the condi-
tions Y, =(Xo Yo/Xg Yg)Y; and X; =X; satisfy all the
cases including; =0. This also indicates that, necessar-

(B9), and (B10). Thus the boundary values are determinedily has a kink structure when eithet, or Y, has a domain

by
0=[1+y—6|X;|>=2|Y7 >~ (X5 2+ Y5 5)1Xg

—2(X7YZ X5, Y)Y, (B12)

0=[1-y—6|Y7|?=2|X; [~ (Y5 *+Xs )Y,

—2(YI X +YI X)X, (B13)

h + =+ + -+ -+

— 5 =[1+y=i0=3X5 = Yo *=2|Y1 2= 3[X7 [1X

—(2Xo Yo +YIXEDYT, (B14)
0=[1-y—i0-3Y5?~ X5 2|X7|*=3|Y; |)]Y;

—(2Xo Yo +XTYEDXT . (B15)

wall structure in theXY-SBO phase.

In the Ising-SBO andXY-SRO phases, the lowest-order
variables for describing a domain wall configuration e
and Y,, while, in the XY-SBO phaseY; also participates
with them for the boundary conditiong) and (ii). In the
following, we will deal with the domain wall solutions for
the Ising-SBO phase& Y-SRO phase, and also with the case
for the boundary conditioriii) in the XY-SBO phase. For
these situations, the domain wall solutions XgrandY, are
approximated by regardink; and Y, as uniform in Egs.
(B7) and (B8). SubstitutingX,;=X; and Y;=Y; (=Y;)
into Egs. (B7) and (B8), the equation determining the do-
main wall solution foriy=Xy+iY is written as

—od,h0= Cotho— | Yol * Yo+ Yous + 32y,  (B1Y)

Co=1-4|X{ >~ 4|Y] %, (B19)
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Here the condition y(z=—)=—1g(z=») leads to
pu(@)=u(—>), and therefore we gety=0. Equation
(B18), usingvy=0, yields domain wall solutions whety,
>0, which turn out to have the following two types of solu-
tions:

Yo=v—2|XT |2+ 2]YT|2=2i(X] YT+ X, Y)),
(B20)

where the boundary valuegXy(z= *®),Yo(z=*»)]=
(=Xg,%Yg) and (X;,Y;) must satisfy Eqs(B14) and
(B15). In Eq. (B20) the effective anisotropy parametegg is

complex if Y; #0, whose phase defined lpy=|vy,|e? % is Po(2)=co+|yoltanH V(co+ | vo))/22] (| y0l>co/3),
determined as (B25)
XyYE XYY Y5(2)=Xgtanh(z/ &) £iY / 0<|yol<co/3
tan 20— — 2L 1 1¥1 (B21) Yo(2)=Xgtanh(z/ég) £iYgsectiz/&s)  (0<| vyl C?BZ)E,S)

y=2IXg F+2 v >
whereXg=vco+[ol, Y= VCo—3|v0l, é=1/2|7,|, and

the corresponding solutions fo#, are obtained asy,
=Te' 0.

Since for one value oY; there is another degenerate value
—Y; , the phase&), has two opposite values.

. _~ '9
By replacing the phase af, as o= ’z”O_el ?, we hgrer?\fter We can perturbatively get the solution by incorporating
solve Eq.(B18) for 4. In order to determineo, multiplying  the spatial variation ofX; and Y;. Namely, denoting the
Eq. (B18) by 4,¢% and adding its complex conjugate to it, solutions obtained above a§” andy{”), we can expang,
we get andy; as
o=+ ey eyt

— 20| do0|?= 9,(2), (B22)

where =0+ e+ 2y P+

~ 1~ 1 ~ ~ ~ vo=vP+evP+ 2P+ -
1(2) = Colthol = 5[l *+ 5 7ol (05 *+ ) + [ 72300l om0 T e o
(B23) vl=v(10)+ev(11)+62v(12)+--~,

(B27)

By integrating both sides from= —o0 to «, v, is deter-
mined as

1 o ~
vo= = gl —p(—=)), o= dda ol
(B24)

with a certain smallness parameter and then calculate
quantitiesy, vj (1=1,2, .. .)order by order in power oé.
For the Ising-SBO anX Y-SRO phases;(” vanishes in the
lowest-order approximation, since we assumed ¥aand
Y, are uniform. For that case the series expansionuvfor
begins with the ordee.
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