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Diffusive thermal dynamics for the Ising ferromagnet
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We introduce a thermal dynamics for the Ising ferromagnet where the energy variations occurring within the
system exhibit a diffusive character typical of thermalizing agents such as, e.g., localized excitations. Time
evolution is provided by a walker hopping across the sites of the underlying lattice according to local prob-
abilities depending on the usual Boltzmann weight at a given temperature. Despite the canonical hopping
probabilities the walker drives the system to a stationary state which is not reducible to the canonical equilib-
rium state in a trivial way. The system still exhibits a magnetic phase transition occurring at a finite value of
the temperature larger than the canonical one. The dependence of the model on the density of walkers realizing
the dynamics is also discussed. Interestingly the differences between the stationary state and the Boltzmann
equilibrium state decrease with increasing number of walkers.
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I. INTRODUCTION AND MOTIVATIONS most by the value of a single spin variable. More precisely
the spin of the configuratioa relevant to the sité can flip
Consider an Ising ferromagnet consisting of an assemblyith probability
of N spins, each placed at a site of-@imensional Euclidean
lattice. Let lowercase italic letteiisj, . .. denote such sites

G —
ands;,s;, . _denote the relevan_t spin_ variab'Les, so that the pr(s k)= 1+exd T AE(9)] ' @
energy pertaining to a given configuratier {s;};_, has the
form where
1 AE(9) =252, § 3)
E(9=-52 s s, (1) K

i=1 j~i
: is the energy variation consequent to the process. Glauber’s
dynamics is completely defined by E) together with a

where the symbot- in the second sum restricts it to sites prescription for updating the spin system. The latter is com-
adjacent td. monly chosen in view of a computational optimization and

As is well known, the Ising moddll] is amenable of an  typically consists in an unphysical sweep along parallel lat-
exact solution on simple two-dimensional latticE3,3], tice lines[6].
whereas for more complex lattices or higher dimensions the As we mentioned above such a dynamics has a computa-
study of its thermodynamic properties strongly relies on nutional rather than physical origin, having been devised as an
meric simulations. According to the so-called dynamicefficient way to give estimates of the canonical averages.
Monte Carlo method, the thermodynamic canonical averagglevertheless a physical interpretation is usually giéh
of a generic observabl¥(s) is obtained as a simple alge- the energy variation consequent to the spin-flips realizing the
braic average over the Markov chain of configurations proevolution of the system occurs due to the coupling of the
duced by a suitable stochastic algoriti#. Indeed each spin degrees of freedom to a heat bath at temperature
configuration is obtained from the previous one so that, in |n the last decade a number of new dynamics for the Ising
the asymptotic limit, the probabilit+(s) that a given con- model were introducedi7—9], where the energy variations
figuration s occurs at temperatur€ is proportional to the are typically required to occur uniformly throughout the
Boltzmann canonical factor ekpT *E(s)] independent of whole sample. Here we introduce an alternative dynamics
the initial configuration. exhibiting the diffusive behavior of a random walk in an

One of the most commonly exploited algorithms is theevolving landscape generated by the energy of the spin cou-
Glauber’s single-spin-flip algorithib]. According to Glaub-  plings in real space. The spin flips are induced by a random
er's prescription two subsequent configurations can differ atvalker hopping across the sites of the underlying discrete
structure. The motion of such a random walker is affected by
the spin interaction, being biased towards those sites where a

*Electronic address: buonsante@polito.it spin flip is energetically more favorable. It should be re-
"Electronic address: burioni@fis.unipr.it marked that a relaxation dynamics occurring under the action
*Electronic address: cassi@fis.unipr.it of random walkers was introduced by Cre{if], and sub-
$Electronic address: vezzani@fis.unipr.it sequently exploited by many authors. However, our walkers
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act quite differently from Creutz’demonsindeed the latter well. According to Eqs(4) and(5) the evolution of the prob-
diffuse freely, unbiased by the magnetic configuration of theability P(s,i,t) that, at time step, the magnetic system is in
system and, in order to simulate the microcanonical enthe configurations while the walker is located at site is
semble, they induce a spin flip only if they can afford it, governed by the master equation

according to the individual energy they are endowed with.

In fact our model in inspired by the physical behavior of . i 4 . G
manganiteg11], such as LgCa _,MnOs, where the spin  Pr(Si,t+1)—=Pr(si,t)=(2d) ZI [P+(s.J,0) pr(s’,i)
dynamics is determined by the presence of diffusing excita- :
tions interacting with the magnetic degrees of freedom. In —P(si,t) p$(s,j)], (6)
particular, for manganites the excitations are given by the

charged carriers, electrons, and vacancies, present in the nGjhere s, is a shorthand notation for the configuration ob-
stoichiometrical compounds. Opviously, this_ model is not in-tained flipping the spirs, of s. Unfortunately the master
tended to be a phenomenological description of such comequation approach is of very little use in analyzing the long-
plex systems, but rather to evidence the influence ofime behavior of this process. Actually in the canonical heat
diffusing excitations interacting with spins on the thermody-path case the master equation was exploited to build a dy-
namic behavior of the paradigmatic model of all magnetichamics driving the system to a known asymptotic probabil-
phase transitions. ity. This was obtained by imposing the quite restrictive de-
The analysis of the diffusive dynamics is carried out fromgjled balance condition. Conversely, we introduced an
the numerical point of view. All the simulations illustrated in ayolution algorithm and our aim is the study of the resulting
the present paper refer to two-dimensional arrays of spins, sgsymptotic state of the Ising system, if any. Hence we carry
that the observed features of the statistical model can bgyt qur analysis mainly by means of numerical simulations.
compared to the analytically known results pertaining to the=or a better comparison we focus on the two-dimensional
canonical Ising model. ~ system, where most of the results pertaining to the canonical
The plan of the paper is as follows. In Sec. Il we describgsing model are exactly known. Hence all of our simulations
and briefly discuss the diffusive algorithm. Sections Ill andyefer to an Ising system consisting Wf=L2 spins placed at
IV are devoted to the analysis of the limit situation where theyne sites of a two-dimensional square lattice. In order to
dynamics is realized by a single walker. In the former weayoid time consuming procedures dealing with the walkers
provide numerical evidences that the magnetic system i5umping into the borders of the system we adopt periodic
driven to a thermodynamically well-behaved steady stat§oundary conditions.
which differs from the canonical equilibrium state in a non- | the next two sections we focus on the situation where
trivial manner. Since a magnetic phase transition is still obthe evolution of the Ising system is realized by a single
served, the consequent critical behavior is analyzed in Segyglker. This is a limiting case, in that, for a reasonably mac-
IV. The estimated critical exponents do not deviate Signiﬁ'roscopic system, it corresponds to a vanishing density of

cantly from the values pertaining to the canonical Isingyalkers. The results pertaining to larger densities are dis-
model. In Sec. V the results of simulations where the systend;;ssed in Sec. V.

is subject to more than a single walker are analyzed. Section

VI contains our conclusions.
11l. NONCANONICAL EQUILIBRIUM STATES

Il. DIFFUSIVE THERMAL DYNAMICS In the following we give numerical evidence that the spin-
As we mentioned in the previous section the relaxationﬂip dynamics realized by agingle walker drives the magnetic
dynamics we propose is realized by means of random wal system o a thermodynamlc_ally we!l_—be_zhaved stgady state

e ; . which differs from the canonical equilibrium state in a non-
ers diffusing through the sites of the Ising system. The prob:

ability that a walker located at siihops on sitd and flips trivial manner. All the simulations we performed show that,

the relevant spin. whereis one of the 2 neiahbors ofi. is at a given value of the external paramelahe system even-
given by pin, e 9 ' tually reaches a steady state, characterized by a well defined

value of the(time) average of the macroscopic observables.
pT(s,i,j)=(2d)‘1p$(s,j). (4) These features are clearly recognizable il_"n_ Figs. 1 and 2,

where the average values of the specific enerfy)
Hence, for any configuratios of the Ising system and for =N"'E(s) and magnetizatiom(s)=N"S,s; are plotted
any value of the temperatufle the diffusion of the walker is  for systems with different sizes, at a fixed value of the tem-
biased towards those sites where a spin flip is more likely tgperature parameter. Furthermore, as one would require, the
occur according to Glauber's probability, E@). Note that  entire sample and any reasonably macroscopic portion of it
Eq. (4) implicitly yields the probability are characterized by the same specific values of the thermo-
dynamic observables. As is clearly shown in Figs. 3 and 4,
the fluctuations about the average value of the specific ther-
modynamic observables exhibit the expected scaling behav-
ior, decreasing as the inverse square root of the system size.
that the walker does not move. If this is the case the magFigure 5 shows the average values of the specific energy and
netic configuration of the systers remains unchanged as magnetization at different values of the temperature param-

|oT(s,i,i>=1—<2o|>-1k2i pS(sk) (5)
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FIG. 3. Finite size scaling for the fluctuation about the average
FIG. 1. Finite size scaling for the specific energy of an Ising Value of the specific energy for an Ising system subject to the dif-

system subject to the diffusive dynamics described in Sec. Tl at fusive dynamics described in Sec. Il &&2.4. The slope of the

—2.4. All the measurements were carried out in the stationary relinear fit (dotted ling of the measured date®() —0.48+0.02 is in

gime. The error bars represent the fluctuations about the averag©0d agreement with the expected value 0.5. All the measurements
values. were carried out in the stationary regime.

1 . _ _ orientation of the specific magnetization are in principle
eterT=p"". Note that, similar to the canonical Ising model, gqually likely, but a strongly magnetized initial configuration
the system exhibits a magnetic phase transition. We verifieg very likely to evolve in a stationary state exhibiting a
that the long time behavior of the macroscopic observablegpontaneous magnetization along the same direction. When
of the system is uniquely determined by the only externathe initial configuration has no net magnetization there is no
parameter characterizing the dynamics, namely, the temperaias on the direction of the spontaneous magnetization ex-
ture T. In particular different choices for the initial configu- hibited by the system below the critical temperature. In this
ration of the magnetic system do not affect the asymptotigituation the formation of macroscopic domains exhibiting
behavior of the system, except for a possible trivial bias oropposite net magnetization is observsge Fig. 6. In the
the orientation of the spontaneous magnetization. Similar t@ong time regime one of the domains eventually prevails
what happens in the heat bath case, both of the possiblggainst the others. As we already mentioned, the system ex-

hibits a magnetic phase transition. From Figs. 5 and 6, it is

0.88 T y T T y clear that the criti-
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FIG. 2. Finite size scaling for the specific magnetization of an

Ising system subject to the diffusive dynamics described in Sec. Il FIG. 4. Finite size scaling for the fluctuation about the average
at T=2.4. All the measurements were carried out in the stationaryalue of the specific magnetization for an Ising system subject to
regime. The error bars represent the fluctuations about the averagige diffusive dynamics described in Sec. IITat 2.4. The slope of
values. Note that despite the symmetry of the Hamiltonian the meathe linear fit(dotted ling of the measured dat®() —0.48+0.02 is
sured value for the specific magnetization is nonzero. Similar to thén good agreement with the expected value 0.5. All the measure-
canonical case the Ising system displays a phase transition. ments were carried out in the stationary regime.
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FIG. 7. Normalized joint distribution®(e,m,T) for a 20x 20

Ising array subject to the diffusive dynamics. All of the curves refer
to the specific energy=0.220. Open circles®), T=2.25; filled
circles (@), T=2.50; crossesX), T=2.75; and dotted line, heat

ath dynamicgtemperature independent

FIG. 5. Macroscopic observables for a 40800 Ising array.
Filled circles @), specific magnetization; open circle®), spe-

cific energy.

cal temperature for the diffusive dynamics is significantlyb
larger than the value pertaining to the canonical Ising modelyere
Such a value, TE"9=2/In(1+2)~2.269 is analytically

known and the heat bath dynamics yield quite satisfactory

numerical estimates of it. As we will see in the next section, I \m)=2 (e’ —e(s)s(m’ —m(s)) ®
accurate estimates yield the vallig=2.612+0.002 for the s

critical temperature of an Ising system evolving under thegq

action of a single walker. However, such a quantitative dif-

ference cannot be accounted for by means of a simple res- S L

caling of the temperature. Indeed if the diffusive dynamics ~ Z(T)= 2, J(e',m)e T N'=> e T EG& (9
acted as heat bath dynamics with a rescaled tempera&ture me s

= 7(T), the generic configuratioeiwould occur with a prob- The last equality of Eq9) was obtained making use of Eq.

(8). Now note that, according to Eg&Z) and (8),

ability P(s T)xexd—T "'E(s)] in the asymptotic regime

[4]. Hence the joint probability for the occurrence of a con-

figuration such that(s)=¢€" andm(s)=m’ would be of the 5 Pe,m,T) J(e,m)

form Ple,m,T)= S PlemT) = S 3em)’ (10

p(fr,mf,T):z(T)J(ef,m/)e—T”lNe’, 7) Hence, if the rescaling hypothesis was true, the plot of
P(e,m,T) versusm at a fixed value of the specific energy
would not depend on the temperature: the curves pertaining
to the same specific energy at different values of the tem-
peratureT would overlap. This can be verified with great
precision in the case of the heat bath dynanjit2]. The
numeric estimates of these curves for two different values of
the specific energy are plotted in Figs. 7 and 8. The fact
that the curves pertaining to the diffusive dynamics at differ-
ent temperatures are very distinct from one another and from
the (temperature independenturve characterizing the ca-
‘ nonical Ising model proves that the differences between the
FIG. 6. Typical configurations for a 460400 Ising array with diffusive and the.heat bath dynamics cannot be accounted for
magnetizatior{m) =0.86 for the diffusive dynamicdeft pane) and ~ PY means of a simple rescaling of the temperature.
the Glauber’s dynamicgight pane). Note that the same magneti- N summary the steady state asymptotically reached by an
zation is attained for different temperatures. More precigefff  Ising system subject to the action of the diffusive dynamics
=2.4>T'S9 gnd TORUbEL 2 13<T!SN9 where T!S"=2/In(1+2) is thermodynamically well behaved, and yet it is nontrivially
~2.269 is the critical temperature of the canonical Ising modeldifferent from the canonical equilibrium of the Ising model.

Note further that in the diffusive case the domains present smoothdilence we will refer to the steady state of the diffusive dy-
namics as a noncanonical equilibrium state. In the following

boundaries.
036121-4
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FIG. 8. Normalized joint distribution®(e,m,T) for a 20x20 FIG. 9. Critical exponenf3 of the magnetization for an Ising

Ising array subject to the diffusive dynamics. All of the curves refersystem subject to the diffusive dynamics. The measures were per-
to the specific energye=0.345. Open circles @), T=2.50;  formed on a system consisting bf=2000x 2000 spins. The error
crosses X), T=2.75; diamonds ¢ ), T=3.00; and dotted line, pars denote the standard deviation of the measures. The dotted line
heat bath dynamic&emperature independent is the best fity=A |T—T.|2. The estimated values for the critical

temperature and for the exponent afg=2.612+0.001 andpg

=0.127£0.002, respectively. The latter is consistent with the rel-
section we analyze the critical behavior of the Ising systenevant critical exponent of the canonical Ising moggl;,,=1/8.
subject to the diffusive dynamics. The vertical dashed line indicates the critical temperature.

IV. CRITICAL BEHAVIOR

versus|T—T|. The data are consistent with a power law of
She form x;(T)~|T—T.|”, and the slopey=1.73+0.06 of
the linear fit is in good agreement with the critical exponent

: . . . ._governing the behavior of the same quantity in the of the
Fig. 5. Similar to what happens with the Ising model, this 8anonical caseygng—=7/4. We recall that for a system at

phenomenon is accompanied by a singular behavior of th . v Isin ) Lo
thermodynamic functions. In Fig. 9 accurate data for thecgnonlcal equilibrium the fluctuation-dissipation theorem

magnetization of an Ising system subject to the diffusive dyYields the relatione(T)=c(T) and x(T)=x(T), where
namics are plotted. The error bars represent the standard de-
viations about the average values. Similar to the canonica’ y y i -
case, the data show a good agreement with a critical behavic
of the formm(T)~|T—T|#, where the estimated values for
the critical temperature and for the critical exponent Bge
=2.612+0.001 and3=0.127+0.02, respectively. The latter ;
result is in good agreement with the relevant critical expo- 121 ¢
nent of the two-dimensional canonical Ising Modglsing
=1/8. As we already discussed in the previous section, the, !
critical temperature is appreciably larger than the canonical gl '
value Tg"9~2.269. .
Figure 10 shows the specific hedfT) =d (e)/d T for a .
400x 400 Ising array subject to the diffusive dynamics as a
function of the temperatur®. The vertical dashed lines are
placed at the critical value of the temperature. The dotted e
curves refer to functions of the fornfi(T)=a-+blog(T o
—T.)), and they fit the data quite satisfactorily. Hence, similar 0 5 5 _
to the canonical case, there is a strong signature of a loga T
rithmic divergence of the specific heat at the critical tempera-
ture. Figure 11 shows a log-log scale plot of the quantity

As we already observed in the previous section, an Isin
system subject to a single diffusive walker exhibits a mag
netic phase transition at a finite value of the temperasee

0.4} oo’

FIG. 10. Specific heat for an Ising system subject to diffusive
dynamics @). The dotted curves fitting the data are of the form
N f(T)=a+blog(T—T,). The vertical dashed line indicates the es-

T= —[{(m2)——(m)2 11 timated value of the critical temperatur€,=2.612+0.002. The
xi(T) T (M7= (m)7] (1D diamonds @) refer to the quantityc; (T) defined in Eq.(12).
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FIG. 11. Log-log scale plot of the magnetic susceptibility
(defined in terms of the magnetic fluctuations, see (E#)) versus
|T—T|. The estimated slope of the straight line fitting the data is
—1.73+0.07. This value is consistent with the critical behavior of
the magnetic susceptibility for the two-dimensional canonical Ising
model, characterized by the critical exponeng,,= 7/4.

FIG. 12. Correlation length as a function of the temperature for
a 600x 600 Ising array subject to the diffusive dynamics. Due to
finite size effects, the critical behavior is exhibited for temperature
slightly higher than the estimated critical vallig=2.612+0.002.

that this maximum suggests a critical temperature slightly
larger than the value previousland more accuratelyesti-
c(T)= ﬁ[(&h—(e)%] (12) mated must be ascri_bed to finite size effects. We _further men-
T2 tion that the correlation lengths are roughly consistent with a
power-law divergence of the for@(T)~|T—T.| 7, the es-
andx(T)=d(m)t ,/dh is the magnetic susceptibility of the timated exponent being remarkably close to the relevant
system. In our case this is not necessarily true, since theritical exponent of the canonical two-dimensional Ising
equilibrium distribution for a diffusive dynamics at the tem- model vigny=1. As is well known[14], for temperatures
peratureT is not proportional to the canonical Boltzmann very close to the critical value, and hence for correlation
factor exp—T~'H], as we discussed in the previous section.lengths very large compared to the lattice constant, the cor-
Hence the critical behavior of two quantities canonically re-relation function of the canonical Ising model is character-
lated by a fluctuation-dissipation relation should be explicitlyized by a power-law behavior of the forki(i ,j)ocripj . The
analyzed and compared. A preliminary step in this sense ifelevant critical exponent is defined to bg=p—d+2,
shown in Fig. 10, where the diamonds represent the estivhere d is the dimensionality of the Ising array. For the
mates of the quantitg¢(T) defined in Eq(12). These results  two-dimensional canonical Ising model its value is exactly
seem to indicate that the diffusive character of the dynamicgnown to benising=1/4. Such a behavior is expected to be
does not produce large deviations from the fluctuationphservable in the distance ranged, ;<£(T). As is shown
dissipation relation. Of course this result needs to be checke Fig. 13, the data yielding the largest correlation length are
through the analysis of the response of the system to afot consistent with a pure power law behavior, not even for
external magnetic field. However, we mention that otherrelatively small distances. This suggests that the relevant
studies[13] of Ising systems subject to dynamics which do temperatureT=2.63 is not sufficiently close to the critical
not yield the canonical equilibrium state actually estimate the/alue. Moreover it should be recalled that the finite size of
critical exponenty in terms of the quantityy¢(T) defined in  the system can introduce appreciable deviations from the

Eq. (11). theoretical prediction, which is strictly true in the thermody-
For temperatures sufficiently far from the critical value namic limit. Nevertheless we mention that a function of the
the correlation function form
Ui, ) =(sispr—(si)r(sp)r (13 r
. . ) f(r)=aex;{—— r—7 (15
exhibits an exponential decrease as the distance between the &(T)
relevant sites; ;=||i —j|| increases:

fits the data quite satisfactorily over a wide range of dis-
. i tances. The estimate for the exponept0.252+0.002 is
Ir(i,j)<cexp — el (14 remarkably close to the critical exponeni,, of the two-
dimensional Ising model. A fit of the same kind satisfactorily
As is shown in Fig. 12 the correlation distangél) features applies to the data relevant to the temperaflize2.64, and
a maximum very close to the critical temperature. The facit gives a critical exponenyy=0.266+0.002 once again in
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FIG. 13. Log-log scale plot of the correlation function 199,40

FT:.2'63(i ,J) versus the interspin digtancel - The datg appreciably FIG. 14. Critical temperatures with increasing density of walk-
deviate from a power law behavior. The dotted line refers to a

function of the form defined by Eq15). The exponent; is quite ers for a 40& 400 Ising array. The horizpntgl dotted Iilnes are
. ' ) . placed at the critical temperatures of the diffusive dynamics with a
close to the critical exponenpising= 1/4' Mpre preqsely we esti- single walker T,~2.612) and at the critical temperature of the
mate 7, ¢z= 0.252+ 0.002. The same fit satisfactorily applies to the canonical Ising model 5™~ 2.269).
data relevant td =2.64, where the exponent, ¢,—=0.266+0.003 ¢
is once again in good agreement with the canonical value.
progressive sequence. When its turn comes, a given walker
good agreement with the canonical value. These resultacts as if the other ones were not present. A qualitative argu-
could be an indication of the fact that, in the suitable regimement leads us to expect that in the case of an infinite density
the correlation functiod’r_+ (i j) actually exhibits a power of walkers the results pertaining to the canonical Ising model
law behavior characterized by the same critical exponent adre recovered. Consider a very large density of walkers, such
the two-dimensional canonical Ising model. thatn>N. In this situation the effect of a single step of the
The resu|ts i”ustrated o) far Suggest that a two_simu-latior.] iS Very Similar to the aCtion of the Glauber,s dy' )
dimensional Ising ferromagnet subject to the diffusive dy-namics with a random sequence update. Indeed the probabil-
namics exhibits a critical behavior belonging to the samédty that a walker flips a given spis is given by the product
universality class as the canonical case. Before concludingf the probability 4N that it is located at one of the four
the present section we mention a further result which has nBeighbors of site times the hopping probabilitp®(s,i)/4.
counterpart in the canonical case. Indeed, in the diffusivdut p(s,i)/N is exactly the probability that the spis is
case, it is possible to relate the configuration of the magnetiflipped at any step of the Glauber’s heat bath dynamics with
system to the position of the random walker causing its evo@ random site update. Hence, in the limit case of an infinite
lution. More precise|y it is possib|e to measure to what ex.density of walkers, the diffusive dynamics should necessarily
tent the presence of the random walker at a givenisited  drive the system to the same asymptotic state as the heat bath
the local magnetization at a given sjtsfluence each other. dynamics, thus reproducing the results of the canonical Ising
Numerical estimates of such correlation, which we illustratenodel. The same should be clearly true for a sufficiently
elsewherg[15], show that it exhibits a critical behavior in large density of walkers, provided that the consequent num-

correspondence with the critical temperature. ber of elementary steps of the heat bath dynamics drive the
system sufficiently close to the canonical equilibrium state.

V. RECOVERING THE CANONICAL EQUILIBRIUM: '(Ij'_?fe qumzncal s.|mu(IjaF|ons \;]ve pgrformed ewdencehd thatdthe
DENSITY OF WALKERS iffusive dynamics drives the Ising system to a thermody-

namically well behaved stationary state, so that the average
The results illustrated in the previous two sections refer tovalues of the specific energy and magnetization are charac-
the case of an Ising system subject to the action of a singleerized only by the temperatufieand the density of walkers
walker. Here we analyze the results of simulations where the. In particular they confirmed the qualitative argument dis-
evolution of a square Ising array consisting Mfspins is  cussed above: the results pertaining to the canonical Ising
realized byn noninteracting walkers. The simulation is ini- model at a given temperatufiewere recovered for a suffi-
tialized giving each walker a randomly chosen position. Twociently large density of walkers. More generally we verified
or more walkers are allowed to occupy the same site of théhat the average value of a macroscopic observable relevant
system. Actually this is very likely to happen for a suffi- to a finite density lies within the interval between the values
ciently large density of walkers=n/N. An elementary step pertaining to the limit situations, namely, the vanishing den-
of the simulation consists in the application of the algorithmsity limit p=N"1~0 analyzed in Secs. Il and IV, and the
described in Sec. Il to all of the walkers, according to a fixedcanonical Ising model. The influence of the density
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of walkers is synthesized in Fig. 14, where the estimatedesults of Sec. IV suggest that the study of the critical behav-
values of the critical temperature are plotted. Note that théor is not particularly significant. Indeed the latter does not

larger variation occurs for densities between 1@nd 1. allow one to discriminate between the canonical and diffu-
sive dynamics.
VI. CONCLUSIONS AND PERSPECTIVES On the other hand, the results illustrated in Sec. V indicate

) ) S ) that the velocity of the nonequilibrium dynami¢®lated to
_In this paper we exploited the basic microscopic model ofthe degree of coupling of the spins to the thermal vibrations,
diffusion, namely, the random walk, to build a dynamics forj e | to the density of excitations induced in the system by an
the Ising ferromagnet which retains the diffusive character ogyternal sourdesignificantly affects the critical temperature
the thermal motion of a localized excitation. In this frame-f the system. Hence the same system subject to diffusive
work the density of walkers is related both to the intensitythermal dynamics with different velocities should display
and spatial extent of the coupling of the spins to the thermagjiterent critical temperatures. Furthermore we remark that
degrees of freedom of the system, and hence to the velocityjy. 6 suggests that the velocity of the dynamics influences
of the thermal dynamics. The larger the density of walkersipe shape and growth of the macroscopic magnetic domains.
the faster the dynamics and the closer to the uniform heat | particular a very slow diffusive dynamics gives rise to
bath are its effects. o _ domains with smoother boundaries. This feature suggests
Even if our model is rather simplified with respect to the that the final shape of the magnetic domains within a physi-
real physical systems which inspired it, it exhibits importantsg) system possibly governed by a diffusive thermal dynam-
qualitative features which should be relevant even in morgqs could be controlled by fine tuning the density of excita-
complex and realistic situations. Therefore it would be oftigng mediating the coupling to the thermal degrees of
great interest to verify whether the diffusive thermal dynam-freedom. A detailed study of domain growth in the diffusive

ics gives a satisfactory description for the slow evolution Ofdynamics will be the subject of a forthcoming pap&s).
a magnetic system with hopping excitations. This would of

course require the extension of the study of its effect to the
more realistic three-dimensional lattice. In view of recogniz-
ing the action of a diffusive dynamics in a real system, the We are grateful to R. De Renzi for useful discussions.
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