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Growing Cayley trees described by a Fermi distribution

Ginestra Bianconi
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556
(Received 23 April 2002; revised manuscript received 21 May 2002; published 19 September 2002

In growing Cayley trees with thermal noise we show that the distribution of the bond stréagérgiegis
described by the Fermi statistics. The evolution of these hierarchical networks reduces to the Eden model and
the invasion percolation model in the limis—0 and T—«, respectively. We discuss the relation of the
present results with the scale-free networks described by Bose statistics.
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[. INTRODUCTION nodes converges to a Bose distribution while in a Cayley tree
model the distribution of the energies at the interface con-
Recently it has been shown that the Bose stati§ticg]  verges to a Fermi distribution.
can be used to describe a scale-free netwW8r#] with fit-
ness of the nodd$]. Since scale-free networks are continu- Il. THE MODEL
ously growing and develop a power-law connectivity distri- e
butign?it is inqceresting to ir?vesﬁigate their relation wi)':h self- . The Cayley tredor Bethe latticgis a loop-free network

; . : in which there are three classes of nodd® root node
organized process¢é E_S]. In order to address this problem é(vhich is at the origin of the tree and has connectivitythe

defined on a Cayley tree, self-organized in the liffiit-0 nodes at the interfacwith connectivity 1; and theodes in

Our results show that the model can be solved analyticall);he bulk(below the interfacewith connectivitym+1.

using the same technique used in the case of the scale-free We start from t_he root of the tre(eode_| :_1) and we link
networks described by the Bose statistics. itto mnew nodes=2,3,... m+1. We indicate each node

The invasion percolation modé6] is the most famous with a subsequent numbeyr,indicating the time in which it

and simple example of evolution with quenched disorder. narr'lg\/es mhthe mterfacéseeh Fig. 2 d L
describes the displacement of a fluid in a porous medium, “\t €achtime step we choose one node to grow, giving rise

The porous medium is given by a random network constilo M new nodes. Consequently, the interface of the tree

tuted by bonds with different strengtipschosen with a uni- grows_linearly in time, a_nd the growing n_ode IS chosen at
form probability in the interval (0,1). The classical each. time from the growing number of active ones. In _order
asymptotic structure generated in this way is a fractal and thi mimic the quenched noise of the medium we assign to
distribution of the strength values at the interface converges s e

in time to a step functio®(p—p.), wherep. is the perco- Power-law network Bose distribution

lation threshold of the static percolation problem. In order to
include the effect of fluctuations on the dynamics of inva-
sion, present in a real stochastic cases, we include a temper:
turelike noiseT [9—-12]. A structure in which the invasion
percolation dynamics can be defined is a Cayley [ti€el4],

also known as the Bethe lattice. In this structure there are nc
loops, and the number of nodes in the bulk are of the same
order of magnitude as the nodes at the interface. Therefore
Cayley tree is considered to be a good representation of «
d= o space and it is used in mean field calculatift] and

in the study of branching procesdds$]. In this work we find
that the distribution of bond strengths at the interface is no T
more a step function but is described by the Fermi distribu- Cayley tree network Fermi distribution
tion with temperaturel where the bond strength plays the

role of energy. By comparison with scale-free networks fol-

lowing the Bose statistics | show that both networks grow @ //(r@
continuously in time: in the power-law network at each time .

a node is connected to the network foylinks while in the @/’ o

Cayley tree model, at each time, a node grows giving rise ta ° €
m new nodegsee Fig. 1L The dynamics of the two networks /

change in time awarding with a new link the fitter nodes in — o —o0—
the power-law network or choosing the less fit nodes to grow

in the Cayley tree network. At the same time, in the power- FIG. 1. Symmetric construction of a power-law network and the
law network, the distribution of the energies of the chosenCayley tree model considered in this paper.
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the model and the spatial aspect of the tree. In he0
limit, high and low energy nodes are equally probable to
————— grow and the model reduces to tReen modeivhile in the
® . ° £ B— limit the dynamics becomes extremal such that only
t=1 \ /‘ the nodes with the highest energy value are allowed to grow
€ _ and the model reduces tavasion percolatiorj6] on a Cay-
ley tree.

IIl. EDEN MODEL ON A CAYLEY TREE
’ e

. - Let us assume that every node has the same enéigy
./( ° e i.e., p(€)=8(e— €. In this case all nodes at the interface
t= \ / are equally likely to grow and we call this model the Eden

@ S model on a Cayley tree. The probability that a nodd the
interface Intf) grows at timet is given by IT;=1/N;(t),
where N,(t) is the total number of active nodes. Since at

each time step a node of the interface grows, becoming part

© of the bulk, andm new active nodes are generated, after

time steps the model generates an interfac,g{t) nodes,
./ — with Ny (t)=(m—1)t+1.

t= @%\ /4 L We denote byp(t,t;) the probability that a node born at
time t; is still active at timet. Since every node grows with
probability IT; only if i is a node of the interface in the mean
field, p(t,t;) follows

® ® Ip(tt)  p(tt)

® \ ’  — Nt
t=4 \@\ & s E t

/ Substituting N (t) =(m—1)t+1 in Eq. (2) in the limit
@ t—oo we get the solution

@

FIG. 2. Description of the dynamics of the model with=2. At
timet=1 the root nodé=1 with energye,; grows giving rise tan t;| Y(m-1)
new nodes =2,3 with energies,,e3. Nodei=1 is in the bulk or p(t,t)= (T)
below the interfacdconnectivitym) while the nodes =2,3 have
connectivity 1 and are at the interface. At tihe 2 the nodei
=2 is chosen to grow, it leaves the interface giving risentoew  Consequently each nodehat arrives at the surface at time
nodes,i=4,5. At timet=3,4 nodesi =4 andi=3 are chosen to t;, remains at the surface with a probability that decreases in
grow. On the right-hand side of the figure we plot the density oftime as a power law. On the other hand the same power law
states of the node in the interface. For example, at imé the  describes also the distribution of the agef the nodes at the
nodes at the interface aie=5,6,7,8,9 and we can draw the density jhterface observed at tinteln fact, the probabilityP( ) that

of states of the node at the interface by placing a particle in they nnde born at time is still active at timet. is given by
energy levelss=eg, €9<eg<e; as indicated in the picture. '

()

4

each node of the tree an energyrom a fixed random dis- T 1m-1)
tribution p(e). P(1)=|t

We assume that higher energy nodes are more likely to
grow than lower energy ones and that the probabliiyfor

the active nodé (with energye;) to grow at timet is given Thus asymptotically in time the same power law describes

the time evolution of the nodes born at time [ p(t,t;)] and

by the age distribution of the nodes in the interfa&¥ 7)]. In
e order to verify the theoretical predictions, we have per-
=——, (1)  formed numerical simulations of the Eden model on a Cay-
ehBej ley tree withm=2,4,6. In Fig. 3, we report the age distribu-
jemnt(t) tion P(7) of the nodes at the interface for Cayley trees with

mx 10* nodes andn=2,4,6. The data, averaged over 100
where the sum in the denominator is extended to all npdesruns, follows the power law predicted by Ed). Numerical
that belong to the interface In)( at timet. The model de- data are reported together with the theoretically predicted
pends on the parametg8t Tuning 8 we change the nature of power law Eq.(4).
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! Substituting this expression in the denominator sum in the

10
dynamic Eq.(5) we found that the time evolution of
pi(t|€ ,t;) follows a power-law
t;\ <)
10" pi(t|e; yti):(?> : 9
E but there is multiscaling in the system, i.e., the dynamic ex-
, ponent depends on the energyof the node,
10
f(e)=ePlerr), (10)
The probabilityP(7) that a node born at timeis still active
0° at timet is given by a power law

eB(G’ ME) (

)
g P(T)=f dep(e)(% Z) . (11)

t
FIG. 3. Age distributionP(7) of the nodes at the interface of a L . .
Cayley tree with connectivitiem=2,4,6, and 1Hgenerations. Data After substitutingp;(t|e; ,t;) from Eq.(9) with f(e) given

have been averaged over 100 runs. The solid lines represent thY Ed-(10), into Eq.(8), and the sum with an integral, we
power-laws predicted by E¢4) with exponent 1 1/m. get the self-consistent equation fag

1 1
1—E=J'd6p(€)m, (12)

%rmally equivalent to the definition of the chemical poten-

, . ... tial in an equilibrium Fermi gassuggesting that many prop-
Since pnly nodes at the !nterface can gr_ow,_the prObab'l'werties of this model can be described by the Fermi statistics.

that node would leave the interface at timigs given by the Some attention should be given to the special limits

product ofp;(t|e; ,t;) (the probability that the node is active B—0 andB—o

at timet) andIl; given by Eq.(1) (the probability that the :

node is chosen to grow in between the active nhdésn-

sequently, in the mean fielgh;(t|e;,t;) decreases in time

following

IV. CAYLEY TREE WITH ENERGIES

At finite temperature3#0 it is necessary to take into
account the fact that each node has a different energy th
defines its dynamics.

B—0 limit. In this case we recover the solution of the
Eden model on the tregz=m—1. Since the probability
distributionp(€) is normalizable and the occupation number

ap(t|6ti'ti) B eBEtip(t|Ei ,ti) nF(e)_> (13)

-1 1
_ ze +1
pn (5) F

Bej St
; eip(tle;.t) Eq. (12) reduces t@r—m—1 and thusBur—In(m—1) in
such a way thaup=0 (zz>1) if m>2.
In order to solve Eq(5) we assume that in the thermody-  B— limit. In this limit the Fermi-Dirac distribution con-
namic limit the sumzS in the denominator of the left hand Verges to the step function

side of Eq.(5), given by Ne(€)— B(e— pg) (14)

ZS:Z eﬁejp(t|€j 1), 6) and the self-consistent E(¢L2) becomes
J
1

1——=L<#Fp(e). (15)

self averages and converges to its mean value, approximating m

the sum ovejj with an integral ovet;
' g ) In this limit and in the case of a uniform probability distri-

¢ bution of the energieq(e)=1 ande < (0,1) the model re-
ZS*)<ZS>:J dtjf dejp(ej)el€ip(t]e t;). (7)  duces to invasion percolation on a Cayley tree, with the
0 known resultuz=1—1/m.
Choosing the node energy from a uniform distribution
Moreover, sinceZ® is an extensive quantity we can self- p(e)=1 with e[0,1], we have simulated the growth of a
consistently assume th&ZS) grows linearly in time and we Cayley tree withm=2 and various values g. In Fig. 4 the

define the constanig through distribution of the age of the nodes at the interface is shown
for 3=2,5,10,20 and compared to the theoretical prediction
t—oo of Eq. (11), P(7)~ (/t)? for the uniform distributionp(e)
(Z5) — ePrrt, (80 =1, e<[0,1]. In Fig. 5 we report the distribution of the
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10° tion t;. Moreover, in the thermodynamic limit we can ap-
proximate the sum overwith an integral ovet;, the mass
conservation relation becoming
10" ‘
(m—l)t=mj dep(e)f drp(t|e,7)
1
C
A t T eﬁ(f’ﬂp)
107 =mJ dep(e)f dr(?)
1
. =mt| d —_—, 1
w0 O o 5 . f P& Bt unt 1 17

10 10

where in the last equation we have neglected terms of order
_ FIG. 4_. Probability distrib_ution of the_ageof the nodes_at the O(t™%). Thus both the mass conservation relati@6) and
interface in a Cayley tree witm=2 and time 10 as a function of  he self-consistent relatiaf12) allow us to define the chemi-
£=25.10,20. cal potentialug, describing the evolution of the network as
the chemical potential of an equilibrium Fermi gas with spe-
cific volumev.=1+1/m. However this last expression ex-
plains the meaning of that relation. In fact, the number
N.i(€) of nodes with energy at the interface at timé is
given by

energies of the active nodes for a network of site 2

% 10* nodes for8=5,10,30. The solid line in the figure rep-
resents the theoretical prediction described by Et®. and
(19) with a chemical potential given by E¢L2).

1. Mass conservation

_ _ , Nind(€) =mtne(e)p(e), (18)
The self-consistent relatiof12) can also be derived from
mass conservation, i.e., from the knowledge that the tOta\}vherenF(e) is given by the Fermi occupation number
number of nodes at the interface is given Ky (m—1)t.
Consequently, 1

- eBle—rp) 11 ' (19

Ne(e€)
N=(m-1)t=2 p(t€.t). (16)
I In other words, the distribution of the energy at the interface
We can substitute the sum in the right hand side of (E6) reaches a stationary limit given by E@8) and is defined by

with the mean over the energiesof the nodes of genera- & Fermi distribution with chemical potential given by Eq.
(12). In the mean time the density of nodes with eneegy

3 , present in the bulkNg,«(€), reaches a stationary limit as
well. In fact, since the nodes in the bulk are those of the
network that are not at the interface, using Ef), we have

o B=5
. =10

Npui(€)=p(e)[1—ng(e)]. (20

2. Asymptotic dynamics

The dynamical evolution of the network brings the system
to the stationary statfl7,18 described by the distribution
function (19), as it has been shown by the solution of the
dynamical Eq.(5). Moreover, the dynamics stabilizes this
distribution. In fact, in the asymptotic limit, when the surviv-
ability follows Eq.(9) the probability that a node of energy

0 ‘ ‘ : will grow and leave the interface is given by
0 0.2 04 0.6 0.8 1
t ! !
& WF(e,t)=mf de’p(e’)J ar?PUE ) oy
FIG. 5. The energy distribution of the nodes in the interface for 1 Jt

5="5,10,30 in the case of a uniform energy distributjfe) = 1 for (22)
ee[0,1], m=2 and predicted chemical potential-=1/2. The

solid lines indicate the predicted Fermi distribution. which can be estimated to be
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t eflemrrp(t|e t) (2) Time dependent dynamicEach node can percolate
WF(GI)=I dé'mp(f')J dt’ N —€')  only once and the probability for a node to be chosen as the
! percolating one is a decreasing function of time.
~mp(€e)[1-ng(€)]. (22 These characteristics are shared with scale-free networks
that are characterized by growthew nodes being continu-
Consequently, the probability that a node of ene¢dgaves ously added to the networland a time dependent dynamics
the interface, asymptotically in time, reaches a stationarknown as preferential attachmefrtodes acquiring links in
limit independent of the particular evolution of the network proportion to their connectivily The stochastic model be-
given by hind the construction of the two networks always involves
the choice of a node in between a growing number of nodes,
me(et) — 7 (e)=p(e)[1—ne(e)]. (23)  put while in the Cayley tree a chosen node is removed from
the interface and cannot be chosen any more, in a scale-free
networks there is no limit to the number of links a node can
ﬁcquire. Consequently the Cayley tree is described by a
Fermi distribution while the scale-free network is described
by a Bose distribution.

If we observe an evolving network and we have no knowl-
edge of the age of the nodes, but only of their energies, th
complete dynamics is determined bye,t) describing what
is the probability that a node with energywill leave the
interface at timet. While the complete dynamic¢5) is We have solved analytically the model studying its char-
clearly dependent on timer(e,t) reaches the stationary eter in the limit3=0 and then at finite temperature. The
limit ¢ (¢) defining the invariant dynamics of the system. gistripution of bond strengths follows a Fermi distribution
The stability of the distributiolN,(€) of the energies in a4 the dynamics replicates and stabilizes this distribution,
the bulk is thus enforced by the dynamics. In fact, we haveysymptotically in time. The bond strength plays the role of
found that, asymptotically in time, the probability that a nodeenergy in the Fermi distribution. The distribution of ages of
with energye is chosen to growr (e) is proportional to the  the node at the interface follows an effective power law.

number of nodes in the bulMy,(€) given by Eq.(20). Finally this system is a symmetric construction of a power-
law network following a Bose distribution, as shown in Fig.
V. CONCLUSIONS 1 and it opens the way to understand the self-organized na-

. . . ture of scale-free networkd ].
In this work we have introduced a model for a growing Hel]

Cayley tree with thermal noise characterized by the follow-
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