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Growing Cayley trees described by a Fermi distribution
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~Received 23 April 2002; revised manuscript received 21 May 2002; published 19 September 2002!

In growing Cayley trees with thermal noise we show that the distribution of the bond strengths~energies! is
described by the Fermi statistics. The evolution of these hierarchical networks reduces to the Eden model and
the invasion percolation model in the limitsT→0 and T→`, respectively. We discuss the relation of the
present results with the scale-free networks described by Bose statistics.
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I. INTRODUCTION

Recently it has been shown that the Bose statistics@1,2#
can be used to describe a scale-free network@3,4# with fit-
ness of the nodes@5#. Since scale-free networks are contin
ously growing and develop a power-law connectivity dist
bution, it is interesting to investigate their relation with se
organized processes@6–8#. In order to address this problem
we present a model of invasion percolation with temperat
defined on a Cayley tree, self-organized in the limitT→0.
Our results show that the model can be solved analytic
using the same technique used in the case of the scale
networks described by the Bose statistics.

The invasion percolation model@6# is the most famous
and simple example of evolution with quenched disorder
describes the displacement of a fluid in a porous medi
The porous medium is given by a random network con
tuted by bonds with different strengthsp chosen with a uni-
form probability in the interval ~0,1!. The classical
asymptotic structure generated in this way is a fractal and
distribution of the strength values at the interface conver
in time to a step functionu(p2pc), wherepc is the perco-
lation threshold of the static percolation problem. In order
include the effect of fluctuations on the dynamics of inv
sion, present in a real stochastic cases, we include a tem
turelike noiseT @9–12#. A structure in which the invasion
percolation dynamics can be defined is a Cayley tree@13,14#,
also known as the Bethe lattice. In this structure there are
loops, and the number of nodes in the bulk are of the sa
order of magnitude as the nodes at the interface. Therefo
Cayley tree is considered to be a good representation
d5` space and it is used in mean field calculations@15# and
in the study of branching processes@16#. In this work we find
that the distribution of bond strengths at the interface is
more a step function but is described by the Fermi distri
tion with temperatureT where the bond strength plays th
role of energy. By comparison with scale-free networks f
lowing the Bose statistics I show that both networks gr
continuously in time: in the power-law network at each tim
a node is connected to the network bym links while in the
Cayley tree model, at each time, a node grows giving rise
m new nodes~see Fig. 1!. The dynamics of the two network
change in time awarding with a new link the fitter nodes
the power-law network or choosing the less fit nodes to gr
in the Cayley tree network. At the same time, in the pow
law network, the distribution of the energies of the chos
1063-651X/2002/66~3!/036116~5!/$20.00 66 0361
e

ly
ree

It
.

i-

e
s

o
-
ra-

o
e
a
a

o
-

-

to

w
-
n

nodes converges to a Bose distribution while in a Cayley t
model the distribution of the energies at the interface c
verges to a Fermi distribution.

II. THE MODEL

The Cayley tree~or Bethe lattice! is a loop-free network
in which there are three classes of nodes:the root node,
which is at the origin of the tree and has connectivitym, the
nodes at the interfacewith connectivity 1; and thenodes in
the bulk~below the interface! with connectivitym11.

We start from the root of the tree~nodei 51) and we link
it to m new nodesi 52,3, . . . ,m11. We indicate each node
with a subsequent number,t i indicating the time in which it
arrives in the interface~see Fig. 2!.

At each time step we choose one node to grow, giving r
to m new nodes. Consequently, the interface of the t
grows linearly in time, and the growing node is chosen
each time from the growing number of active ones. In ord
to mimic the quenched noise of the medium we assign

FIG. 1. Symmetric construction of a power-law network and t
Cayley tree model considered in this paper.
©2002 The American Physical Society16-1
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each node of the tree an energye from a fixed random dis-
tribution p(e).

We assume that higher energy nodes are more likely
grow than lower energy ones and that the probabilityP i for
the active nodei ~with energye i) to grow at timet is given
by

P i5
ebe i

(
j PInt(t)

ebe j

, ~1!

where the sum in the denominator is extended to all nodj
that belong to the interface Int(t) at time t. The model de-
pends on the parameterb. Tuningb we change the nature o

FIG. 2. Description of the dynamics of the model withm52. At
time t51 the root nodei 51 with energye1 grows giving rise tom
new nodesi 52,3 with energiese2 ,e3. Node i 51 is in the bulk or
below the interface~connectivitym) while the nodesi 52,3 have
connectivity 1 and are at the interface. At timet52 the nodei
52 is chosen to grow, it leaves the interface giving rise tom new
nodes,i 54,5. At time t53,4 nodesi 54 and i 53 are chosen to
grow. On the right-hand side of the figure we plot the density
states of the node in the interface. For example, at timet54 the
nodes at the interface arei 55,6,7,8,9 and we can draw the dens
of states of the node at the interface by placing a particle in
energy levelse55e8 , e9,e6,e7 as indicated in the picture.
03611
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the model and the spatial aspect of the tree. In theb→0
limit, high and low energy nodes are equally probable
grow and the model reduces to theEden modelwhile in the
b→` limit the dynamics becomes extremal such that o
the nodes with the highest energy value are allowed to g
and the model reduces toinvasion percolation@6# on a Cay-
ley tree.

III. EDEN MODEL ON A CAYLEY TREE

Let us assume that every node has the same energye0,
i.e., p(e)5d(e2e0). In this case all nodes at the interfac
are equally likely to grow and we call this model the Ed
model on a Cayley tree. The probability that a nodei of the
interface Int(t) grows at timet is given by P i51/NInt(t),
whereNInt(t) is the total number of active nodes. Since
each time step a node of the interface grows, becoming
of the bulk, andm new active nodes are generated, aftet
time steps the model generates an interface ofNInt(t) nodes,
with NInt(t)5(m21)t11.

We denote byr(t,t i) the probability that a node born a
time t i is still active at timet. Since every node grows with
probabilityP i only if i is a node of the interface in the mea
field, r(t,t i) follows

]r~ t,t i !

]t
52

r~ t,t i !

NInt~ t !
. ~2!

Substituting NInt(t)5(m21)t11 in Eq. ~2! in the limit
t→` we get the solution

r~ t,t i !5S t i

t D
1/(m21)

. ~3!

Consequently each nodei that arrives at the surface at tim
t i , remains at the surface with a probability that decrease
time as a power law. On the other hand the same power
describes also the distribution of the aget of the nodes at the
interface observed at timet. In fact, the probabilityP(t) that
a node born at timet is still active at timet, is given by

P~t!5S t

t D
1/(m21)

. ~4!

Thus asymptotically in time the same power law describ
the time evolution of the nodes born at timet i , @r(t,t i)# and
the age distribution of the nodes in the interface@P(t)#. In
order to verify the theoretical predictions, we have p
formed numerical simulations of the Eden model on a C
ley tree withm52,4,6. In Fig. 3, we report the age distribu
tion P(t) of the nodes at the interface for Cayley trees w
m3104 nodes andm52,4,6. The data, averaged over 10
runs, follows the power law predicted by Eq.~4!. Numerical
data are reported together with the theoretically predic
power law Eq.~4!.
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IV. CAYLEY TREE WITH ENERGIES

At finite temperature,bÞ0 it is necessary to take int
account the fact that each node has a different energy
defines its dynamics.

Since only nodes at the interface can grow, the probab
that nodei would leave the interface at timet is given by the
product ofr i(tue i ,t i) ~the probability that the node is activ
at time t) andP i given by Eq.~1! ~the probability that the
node is chosen to grow in between the active nodes!. Con-
sequently, in the mean field,r i(tue i ,t i) decreases in time
following

]r~ tue t i
,t i !

]t
52

ebe t ir~ tue i ,t i !

(
j

ebe jr~ tue j ,t j !

. ~5!

In order to solve Eq.~5! we assume that in the thermod
namic limit the sumZS in the denominator of the left han
side of Eq.~5!, given by

ZS5(
j

ebe jr~ tue j ,t j !, ~6!

self averages and converges to its mean value, approxima
the sum overj with an integral overt j

ZS→^ZS&5E
0

t

dtjE de j p~e j !e
be jr~ tue j ,t j !. ~7!

Moreover, sinceZS is an extensive quantity we can se
consistently assume that^ZS& grows linearly in time and we
define the constantmF through

^ZS& →
t→`

ebmFt, ~8!

FIG. 3. Age distributionP(t) of the nodes at the interface of
Cayley tree with connectivitiesm52,4,6, and 104 generations. Data
have been averaged over 100 runs. The solid lines represen
power-laws predicted by Eq.~4! with exponent 121/m.
03611
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Substituting this expression in the denominator sum in
dynamic Eq. ~5! we found that the time evolution o
r i(tue i ,t i) follows a power-law

r i~ tue i ,t i !5S t i

t D
f (e i )

, ~9!

but there is multiscaling in the system, i.e., the dynamic
ponent depends on the energye i of the node,

f ~e!5eb(e2mF). ~10!

The probabilityP(t) that a node born at timet is still active
at time t is given by a power law

P~t!5E dep~e!S t

t D
eb(e2mF)

;S t

t D
d

. ~11!

After substitutingr i(tue i ,t i) from Eq.~9! with f (e) given
by Eq. ~10!, into Eq. ~8!, and the sum with an integral, w
get the self-consistent equation formF

12
1

m
5E dep~e!

1

eb(e2mF)11
, ~12!

formally equivalent to the definition of the chemical pote
tial in an equilibrium Fermi gassuggesting that many prop
erties of this model can be described by the Fermi statist

Some attention should be given to the special lim
b→0 andb→`.

b→0 limit. In this case we recover the solution of th
Eden model on the tree,zF5m21. Since the probability
distributionp(e) is normalizable and the occupation numb

nF~e!→ 1

zF
2111

, ~13!

Eq. ~12! reduces tozF→m21 and thusbmF→ ln(m21) in
such a way thatmF>0 (zF.1) if m.2.

b→` limit. In this limit the Fermi-Dirac distribution con-
verges to the step function

nF~e!→u~e2mF! ~14!

and the self-consistent Eq.~12! becomes

12
1

m
5E

e,mF

p~e!. ~15!

In this limit and in the case of a uniform probability distr
bution of the energies,p(e)51 andeP(0,1) the model re-
duces to invasion percolation on a Cayley tree, with
known resultmF5121/m.

Choosing the node energy from a uniform distributi
p(e)51 with eP@0,1#, we have simulated the growth of
Cayley tree withm52 and various values ofb. In Fig. 4 the
distribution of the age of the nodes at the interface is sho
for b52,5,10,20 and compared to the theoretical predict
of Eq. ~11!, P(t);(t/t)d for the uniform distributionp(e)
51, eP@0,1#. In Fig. 5 we report the distribution of the

the
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energies of the active nodes for a network of sizeN52
3104 nodes forb55,10,30. The solid line in the figure rep
resents the theoretical prediction described by Eqs.~18! and
~19! with a chemical potential given by Eq.~12!.

1. Mass conservation

The self-consistent relation~12! can also be derived from
mass conservation, i.e., from the knowledge that the t
number of nodes at the interface is given byN5(m21)t.
Consequently,

N5~m21!t5(
i

r~ tue i ,t i !. ~16!

We can substitute the sum in the right hand side of Eq.~16!
with the mean over the energiese i of the nodesi of genera-

FIG. 4. Probability distribution of the aget of the nodes at the
interface in a Cayley tree withm52 and time 104 as a function of
b52,5,10,20.

FIG. 5. The energy distribution of the nodes in the interface
b55,10,30 in the case of a uniform energy distributionp(e)51 for
eP@0,1#, m52 and predicted chemical potentialmF51/2. The
solid lines indicate the predicted Fermi distribution.
03611
al

tion t i . Moreover, in the thermodynamic limit we can a
proximate the sum overi with an integral overt i , the mass
conservation relation becoming

~m21!t5mE dep~e!E
1

t

dtr~ tue,t!

5mE dep~e!E
1

t

dtS t

t D
eb(e2mF)

.mtE dep~e!
1

eb(e2mF)11
, ~17!

where in the last equation we have neglected terms of o
O(t2a). Thus both the mass conservation relation~16! and
the self-consistent relation~12! allow us to define the chemi
cal potentialmF , describing the evolution of the network a
the chemical potential of an equilibrium Fermi gas with sp
cific volume vc5111/m. However this last expression ex
plains the meaning of that relation. In fact, the numb
NInt(e) of nodes with energye at the interface at timet is
given by

NInt~e!5mtnF~e!p~e!, ~18!

wherenF(e) is given by the Fermi occupation number

nF~e!5
1

eb(e2mF)11
. ~19!

In other words, the distribution of the energy at the interfa
reaches a stationary limit given by Eq.~18! and is defined by
a Fermi distribution with chemical potential given by E
~12!. In the mean time the density of nodes with energye
present in the bulk,NBulk(e), reaches a stationary limit a
well. In fact, since the nodes in the bulk are those of
network that are not at the interface, using Eq.~18!, we have

Nbulk~e!5p~e!@12nF~e!#. ~20!

2. Asymptotic dynamics

The dynamical evolution of the network brings the syste
to the stationary state@17,18# described by the distribution
function ~19!, as it has been shown by the solution of t
dynamical Eq.~5!. Moreover, the dynamics stabilizes th
distribution. In fact, in the asymptotic limit, when the surviv
ability follows Eq.~9! the probability that a node of energye
will grow and leave the interface is given by

pF~e,t !5mE de8p~e8!E
1

t

dt8
]r~ tue8,t8!

]t
d~e2e8! ,

~21!

which can be estimated to be

r
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pF~e,t !5E de8mp~e8!E
1

t

dt8
eb(e2mF)r~ tue8,t8!

t
d~e2e8!

.mp~e!@12nF~e!#. ~22!

Consequently, the probability that a node of energye leaves
the interface, asymptotically in time, reaches a station
limit independent of the particular evolution of the netwo
given by

pF~e,t !→pF* ~e!5p~e!@12nF~e!#. ~23!

If we observe an evolving network and we have no kno
edge of the age of the nodes, but only of their energies,
complete dynamics is determined byp(e,t) describing what
is the probability that a node with energye will leave the
interface at timet. While the complete dynamics~5! is
clearly dependent on time,p(e,t) reaches the stationar
limit pF* (e) defining the invariant dynamics of the system

The stability of the distributionNbulk(e) of the energies in
the bulk is thus enforced by the dynamics. In fact, we ha
found that, asymptotically in time, the probability that a no
with energye is chosen to growpF* (e) is proportional to the
number of nodes in the bulkNbulk(e) given by Eq.~20!.

V. CONCLUSIONS

In this work we have introduced a model for a growin
Cayley tree with thermal noise characterized by the follo
ing points.

~1! Growth.At each time exactlym nodes are added an
one is eliminated at the interface, the number of nodes
which percolation can occur grows linearly in time asN
5(m21)t nodes.
03611
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~2! Time dependent dynamics.Each node can percolat
only once and the probability for a node to be chosen as
percolating one is a decreasing function of time.

These characteristics are shared with scale-free netw
that are characterized by growth~new nodes being continu
ously added to the network! and a time dependent dynamic
known as preferential attachment~nodes acquiring links in
proportion to their connectivity!. The stochastic model be
hind the construction of the two networks always involv
the choice of a node in between a growing number of nod
but while in the Cayley tree a chosen node is removed fr
the interface and cannot be chosen any more, in a scale
networks there is no limit to the number of links a node c
acquire. Consequently the Cayley tree is described b
Fermi distribution while the scale-free network is describ
by a Bose distribution.

We have solved analytically the model studying its ch
acter in the limitb50 and then at finite temperature. Th
distribution of bond strengths follows a Fermi distributio
and the dynamics replicates and stabilizes this distribut
asymptotically in time. The bond strength plays the role
energy in the Fermi distribution. The distribution of ages
the node at the interface follows an effective power la
Finally this system is a symmetric construction of a pow
law network following a Bose distribution, as shown in Fi
1 and it opens the way to understand the self-organized
ture of scale-free networks@1#.
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