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Conserved contact process in one to five dimensions
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We analyze the conserved contact process in hypercubic lattices with dimensions ranging from one to five.
In this process particles jump around, falling down only on empty sites beside an existing particle. The model
is a version of the ordinary contact process with a strictly conserved particle number and can be seen as the
contact process in an ensemble of fixed particle number. By means of numerical simulations we determine the
critical point, the critical exponeng, and the fractal dimensioth: at the critical point. In the case of just two
particles, the stationary state is obtained exactly in any dimension.
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I. INTRODUCTION Here, we perform numerical simulations of the CCP de-
fined on hypercubic lattices with dimensiodsanging from
Recently, Tomeand de Oliveira[1] introduced the con- d=1 uptod=5. The conservation of particles allowed us to
served contact proce$§CP), a version of the ordinary con- perform numerical simulations that avoided the accidental
tact process with a strictly conserved particle number. In théall into the absorbing state. We determine the critical point
CCP, particles jump around over the sites of a regular lattic@s well as the critical exponegtrelated to the order param-
falling down only on empty sites that have at least one neigheter and the fractal dimensial at the critical point. The use
boring site occupied by a particle. In contrast with the ordi-of the constant particle number ensemble permitted us the
nary contact process, the CCP does not have an absorbiggtermination of the critical point with a very good preci-
state. Despite of lacking this important feature, it displayssion. The results fo anddg are in good agreement with the
properties that, in the thermodynamic limit, are identical tovalues of the ordinary contact process. In the special case of
those of the ordinary contact process, including universal agist two particles the stationary state is obtained exactly in
well as nonuniversal quantities. The CCP has been then ideany dimension by the use of the lattice Green function.
tified as the contact process in an ensemble of constant par- The CCP is related to the plant population model intro-
ticle number and this has been indeed confirmed by numeriduced by Bréer and Grassbergé2?] in the sense that these
cal simulation in one dimensiofl]. Later, Hilhorst and two models are conserved versions of models belonging to
Wijland [2] have provided a proof of the equivalence be-the directed percolation universality class, namely, the con-
tween the two stationary state ensembles: the ordinary eriact process and the directed percolation model, respectively.
semble(i.e., the constant rate ensembénd the conserved In the Brcker and Grassberger model, however, the conser-
ensembld(i.e., the constant particle number ensemble vation of particles is achieved in a distinct way. In their
The use of distinct ensembles to calculate the thermodymodel the conservation of particles is imposed in a global
namic properties of the system in equilibrium is well estab-way by removing the excess of particles from the system.
lished and there exists a standard procedure for passing from
one to another ensemb|8-5]. For nonequilibrium systems
no such general procedure exists. However, the possibility of
using distinct ensembles in nonequilibrium models was put The ordinary contact process comprises two subprocesses:
forward by Ziff and Brosilow[6] when they employed a 5 catalytic creation and a spontaneous annihilation of par-
constant coverage ensemble to analyze an irreversibigcles. In the basic ordinary contact proc€$8,17, particles
surface-reaction model originally defined in a constant rateyre created on the empty sites of a regular lattice with a rate
ensemble. Nz times the number of occupied nearest neighbors, where
The ordinary contact process, proposed by Hdifisis s the lattice coordination number. Particles are annihilated
the simplest nonequilibrium model displaying a phase transpontaneously with rate 1. Here, we use a definition in which
sition and critical behaviof8—17]. It exhibits a continuous  the creation rate is 2fimes the number of occupied nearest
phase transition from an active state, with nonzero density ofiejghbors, and the annihilation ratekis: 1/x.
particles, to an absorbing state, with zero density of particles, [ et ys denote byy; the occupation variable attached to
even in one d|mens!0n and belongs to the unlversahty clasge sitei, with 7:=0 or 1 according to whether the sités
of directed percolatiof18-20. The contact process id  empty or occupied. The time evolution of the probability
d|men_3|on has the same _crmcal exponents _o_f d|repted Percistribution P(7,t), where n= (71, 7,, 70 is the vec-
lation in D=d+1 dimensions. The upper critical dimension to that represents the collection of occupation variables, is
of the directed percolation was established tdhe=5 [21] governed by the master equation
so that the critical dimension for the contact processd.is
=4. Therefore, fod=4 the critical exponents are the clas- q
z[cal ones with possible logarithmic corrections at the critical d_P( )= E Wi(7YP(7 O —wi(7)P(7, 0}, (1)
imension. t |

Il. THE CONSERVED CONTACT PROCESS
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where7' is the vectory'= (71,75, ..., 1= 7, . . .,my) and  The model strictly conserves the number of particies
w;(7) is the transition rate from state to staten'. For the The mean effective number of active sites per particle,
basic ordinary contact process the transtion rate is given bylenoted by, is given by
1 (Nao
Wil =5 (1=m) 2 7 sk, v a=5, )

where the first term accounts for the catalytic creation prowhere the average is to be taken over the ensemble with a
cess and the second accounts for the spontaneous annihikgnstant particle number. In the thermodynamic limit k.
tion process. The summation &is over thez nearest neigh-
bor sites. Ill. TWO PARTICLES

Empty sites with one or more occupied neighbors, which
we call active empty sites, play an important role in the
contact process since particles are created only on those sit
A quantity that measures the number of such sites is th
effective number of active empty siteg. defined as

We consider in this section the case of two particles,
=2, in an infinite lattice. In this case it is possible to solve

€ master equation exactly. Invoking the translational invari-
ance property it suffices to use the relative position of the
particles to define a given configuration. Accordingly, we fix

1 a particle at the origin of the lattice so that the positioof
“ac=z 2 (1- ni)E Nits- (3)  the other particle completely defines the configuration of the
! 0 system. We look for the probabilit,(t) that the free par-
. L ticle is at positiorr=(€,€,, ... ,£4) where(; takes integer
The number of particles is given by values. From the master equation it follows that
n= . 4 d 1
2 @ GP0=5; S PP, (O

From the master equatidi) of the ordinary contact process
it follows that the time evolution of the mean number of
particles(n) is given by

valid for |r|# 1,0, whereé represents any one of ttze= 2d
vectors of unit lenght. When= é the equation reads

d = S Pp() (1 1)P5(t)
Ge(M=(nad —k(n). (5) dt 22555 77 z
1
Therefore, the stationary condition gives +— 2 P (1). (11
2z ' (£60)
(Na@ =k(n). (6)

These equations should be solved By(t) with r#0. No-
The contact process in an ensemble of constant particléice thatPy(t) is not present above because two particles are
number is defined as follows. An empty site becomes occuRot allowed to occupy the same site.
pied in a way similar to the catalytic creation. But contrary to ~ We are interested here only in the stationary solufon
the ordinary contact process no particle is created; a rarit is possible to show that the stationary solution is given by
domly chosen particle of the system leaves its place anf23]
jumps to the empty site. Thus, both the processes of creation
and annihilation of particles of the ordinary contact process P — G (12)
are replaced by a jumping process. However, this is not an " 1-Gy’
unrestricted jumping because particles are not allowed to . . )
jump to a vacant site surrounded by empty sites; at least on&hereG; is the lattice Green function
neighbor site must be occupied. The CCP is a two-site pro-

cess governed by the following master equation: G _J’ el d’ (13
d 1 . . - ez -1 ‘ 77)d7
aiP(r0=5 2 2 (w7 P D —wy ()P(7.0}, L+d™'2, (1-cosk)

7
@ wherek=(kq,k,, ... ky) and the integral is over the Bril-
where 7 is the vector 5''=(%,,75,...,1—7,...,1 louin zone,— =< kjsw._lp one Qimension the integrél3)

— My !7]N) andwij(n) is the Jumpmg transition rate, that CE_':ln be carried out eXpI|C|tIy which with the h6|p of Hq..Z)

is, the transition rate from state to staten" given by gives

. g Pi=——(2- 3 14
Wij("’])_ﬂiz( - ;) ~ Ni+s- (8) e—\/§_1 )
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TABLE |. Mean effective number of active sites per partiale 400 : .
of the CCP in an infinite hypercubic lattice of dimensions ranging ",'--_rfp
fromd=1 tod=5, in the subcritical regime. The last row gives the - .'.l::
order of the magnitude of the statistical errors of the results.
300 - .
n d=1  d=2  d=3 d=4 d=5 g3 e
o~ Tl -‘i'"' n
2 0.633974 0.842079 0.901897 0.9292383 0.9447486 - =5,
3 0.52357 0.78149 0.86573 0.903985 0.925421 Y 200 - - b
4 0.46964 0.74570 0.84516 0.890173 0.915127
6 0.41611 0.70650 0.82219 0.875190 0.904183 b -
8 0.38909 0.68508 0.80942 0.867049 0.898388 100 | £ “ |
12 0.36174 0.66202 0.79539 0.858281  0.892299 ‘_‘q‘s‘-‘?"
16 0.34790 0.64969 0.78777 0.853580 0.889080 ™ -
20 0.33944 0.64200 0.78291 0.850627 0.887106
28 0.32956 0.63281 0.77705 0.847076 0.884772 0 L L
40 032206 0.62561 0.77237 0.844271 0.882960 0 0 200 800
56  0.31698 0.62060 0.76906 0.842302 0.881708
80 0.31299 0.61667 0.76646 0.840768 0.880748 FIG. 1. Snapshot of a configuration of=900 particles in an
112 0.31034 0.61396 0.76464 0.839701 0.880095 infinite square lattice, in the subcritical regime. Thandy axes
160 0.30825 0.61187 0.76320 0.838882 0.879592 give the coordinates of the occupied SiteS, represented by small
224  0.30689 0.61045 076220 0.838308 0.879252 black squares. The origin of the coordinate axes is arbitrary.
320 0.30585 0.60933 0.76143  0.837867 0.878993 happens in the ordinary contact process. Thus, the quasista-
450  0.30508 0.60856 0.76089  0.837561  0.878819 tipnary stateg17] observed in the ordinary contact process,
640 0.30456 0.60799 0.76048 0.837333  0.878686 in the subcritical regime, become genuine stationary states in
900 0.30420 0.60758 0.76019 0.837170 0.878597 the CCP.
1300 0.30388 0.60728 0.75996 0.837042 0.878527 We have simulated the CCP on an infindlimensional
1800 0.30373 0.60708 0.75982 0.836966 0.878487 hypercubic lattice withd=1, 2, 3, 4, and 5 for several values
2600 0.30355 0.60692 0.75970 0.836900 0.878448 of the number of particles from n=2 up ton=2600. In an
0.00002 0.00001 0.00001 0.000005 0.000005 infinite lattice the particles do not scatter to infinity, as one

could expect, but remain close together forming a fractal

cluster as can be seen in Fig. 1. The reason is that the par-

where{=*x1,£2,....

The mean number of active sites=(n,.)/2, is calcu-
lated by using the expressian=1—P ;. Using Eq.(12) and
taking into account thaG; is related toGy by G;=2G,
—1, we obtain

1

a=3— 1-G,

(15

The mean distance between particlBsis given by R
=(|r|*) where

1
rI?Pr=1—o"

(Ir7)= e

r(+0)

(16)

In one dimensiorGy=1/\/3 from which follows = (3
—/3)/2 andR=[(3+ /3)/2]*2. In other dimensions the in-

ticles are not allowed to jump to any site of the lattice but
only to those sites that are adjacent to an existing particle.

The simulation of a system with particles is performed
as follows. At each time step one of theoccupied sites is
picked up at random and one of itsneighboring sites is
chosen at random. If this neighboring site is empty then it
will be occupied by one of tha particles, chosen randomly.

If, otherwise, the neighboring site is already occupied the
state remains the same. A Monte Carlo step is defined as
such time steps. Each simulation was performed by starting
from a configuration were all particles are close together. The
quantities of interest, such 48y, were estimated by using

a number of Monte Carlo steps ranging fronY 16 1¢°.

Since the lattice is infinite and the number of particiés
finite, the density of particles is zero and the system is natu-
rally constrained to be into the subcritical regime. Table |
shows the numerical values @f=(n,)/n obtained from

tegral (13) for G, can be performed numerically. Using this Simulations. The results shown for the case2 were ex-
method we have obtained the numerical results shown in thactly calculated in the preceding section. s> the effec-

first row (n=2) of Table I.

IV. SUBCRITICAL REGIME

tive number of active sites per partickeapproaches its criti-
cal value .. The critical valuea, was obtained by the
following extrapolation scheme applied to the data of Table |
corresponding tm=28. To each set of three consecutive

Due to the fact that the dynamics conserves the number gfoints (aj_1,Xj-1), (@j.X;), and (@j;1,Xj+1), Wherex
particles, the CCP does not have an absorbing state. This1/n, we fitted a straight line from which we withdrew a
conservation law allows us to carry out numerical simula-trial extrapolated valuer;. The final extrapolated value,
tions without the danger of falling into the absorbing state asvas then obtained by a quadratic regression over the points
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TABLE Il. Values of ., \;=1/a., the exponen{3 and the 0 , . , . . .
fractal dimensiondg for dimensions ranging frond=1 to d=5,
obtained for the CCP. The values. are extrapolations from the
results given in Table | by the method explained in the text.
d ¢33 )\C B d;: 2} i
1 0.3032%2) 3.29782) 0.2711) 0.7474) =
2 0.606581)  1.648723)  0.5854) 1.201) t'so
3 0.759401) 1.316832) 0.781) 1.563) =
4 0.836741) 1.195111) 1 2 -
5 0.8783711) 1.138471) 1 2 4T |
(acj,X;). The extrapolated value af. is shown in Table II
together with\ .= 1/, .
A measure of the size of the cluster is given by the quan- -6 15 > 05 0
tity R= \/<r2may) wherer ,,.(7) is the maximum distance be- Inp

tween two particles of the cluster. As long as is finite the
mean linear sizeR of the cluster is also finite but diverges  FIG. 3. Double-log plot ofa;— a versus the density, in the
whenn—c«. We assume the asymptotic beha\ia2] supercritical regime. For comparison we show a straight line with
slope equal to 1.
anl/d,:, (17)

) ) ) ) ticles must be infinite. If the ratio/N=p is kept fixed and
whered is the fractal dimension. Figure 2 show&sas a  the limit N— = is taken, then the system is confined into the
function of n in a double-log plot for dimensions ranging gypercritical regime ip is nonzero. We have also simulated
from one to five. The slopes of the straight lines fitted to theine ccP model on a finite hypercubic lattice withsites,
data points corresponding =1, 2, and 3 are 1.338),  \jth n particles and periodic boundary conditions. The larg-
0.8348), and0.641), respectively. Ford=4 and 5, the gt values ofN used in simulations werél= 10000, N
slopes are consistent with the classical value 1/2. The inverse 10 N=25%, N=10¢, andN=6%, for d=1, 2, 3, 4, and
of these values give the fractal dimensidi shown in g—_5 respectively. To estimate the averdge) we used a
Table II. number of Monte Carlo steps ranging from®1® 10. A

Monte Carlo step is defined here Hgtime steps defined in
V. SUPERCRITICAL REGIME the preceding section. The quantiywas then obtained by
Eqg. (9).

In the supercritical regime the density of particless For sufficient largeN one expects the following behavior:

nonzero. Therefore, in an infinite lattice the number of par-

10 . . ac—a~pl/'3, (18)
where 8 is the order parameter exponent. Figure 3 shows a
8t double-log plot ofa.— « versus the density of particles
where we used the values af, obtained in the preceding
section and shown in Table Il. The slope of the straight line
fitted to the data points gives the values §B11 1.71(2),
E 6 - and 1.26(2) fod=1, 2, and 3, respectively. Fat=4 and
5, the slopes are consistent with the classical value 1. The
inverse of these values give the exponghtshown in
Table II.
4 L
VI. CONCLUSIONS
2 We have analyzed the CCP in hypercubic lattices with
2

dimensions ranging from one to five. The critical exponént

and the fractal dimensiodg obtained by numerical simula-
FIG. 2. Mean size of the systeR) in the subcritical regime, as tions are in good agreement with the respective values of the

a function of the number of particlesfor dimensions ranging from ordinary contact proceg¢47]. The critical parametens, ob-

one to five on a double-log plot. For comparison we show a straightained here are in excelent agreement with those of the ordi-

line with a slope equal to 1/2. nary contact procedd.7]. In fact, the results presented here

Inn
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for \. are the best estimates, with the exception of the cassense that no adjustable parameter is necessary to drive the
d=1. In the subcritical regime the CCP has a remarkablesystem to criticality.
property. As one increases the number of particles in an in-

finite system it approaches criticality, armdapproaches its

critical value o, as can be seen in Table I. The CCP has,
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