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We report on the conformational properties and transitions of an ideal polymer chain near a solid surface.
The chain is tethered with one of its ends at distaceom an adsorbing surface. The surface is characterized
by an adsorption parameter The exact expression for the partition function is available. We obtained the
distribution of complex zeros of this function. The comparison with the Yang-Lee theory allows the charac-
terization of the phase transitions. A first-order conformational transition from a coil(émsorbed flower
conformation occurs at* =6z,/N. The flower is composed of a strongly stretched stem and a pancake that
collects the remaining adsorbed segments. The degree of stretching of the coil or of the stem serves as an order
parameter which parametrizes the analytical expressions of the Landau free energy. The phase diagram with
one binodal and two spinodal lines is presented. The height of the barriers between metastable and stable states
is obtained and the lifetime of metastable states is estimated. A two-state ansatz is used to develop scaling
arguments to account for the effects of excluded volume.
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[. INTRODUCTION stable phase proceeds by the formation of nuclei of the stable
phase and their subsequent growth. For a supercooled gas,
Polymer chains at an interface can undergo conformathese are liquid droplets. The lifetime of a metastable state is
tional phase transitions. One of the classical examples is théetermined by the nucleation kinetics, which is mostly con-
escape transition of a chain end grafted onto a substrateolled by the nucleation barrier.
squeezed by a pistdri,2]. The conformations go jumplike Metastable states are especially important for polymer
from a confined “mushroom” to an inhomogeneously par- systems. The relaxation of a metastable conformation in-
tially confined “flower.” The flower has a stretched chain volves the reorganization of many segments of the chain, and
fragment, which is called the “stem,” and an undeformedthis is intrinsically slow. A rigorous description of metastable
coil-like chain fragment, the “crown,” and may be consid- states in polymer systems is an outstanding problem of sta-
ered as a different type of chain conformation. Other singléistical physics. The difficulty lies in finding the stable and
chain conformational transitions were studied for polymeranetastable domains in a multidimensional phase space as
near a liquid-liquid interfacg3]. In the limit of infinite chain  well as the height of the barrier that separates them. A stra-
length a conformational transition from a confined coil to ategic direction in treating these problems involves introduc-
partially escaped flower becomes first order. For a systering an order parameter and the Landau free enggyyTypi-
with a first-order phase transition one can typically identifycally, the order parameter has to be defined as a local
stable and unstable states of the system. The focus in thfictuating quantity. According to fluctuation theory of phase
paper is, however, on states in between these, which ateansitions, the height of the barrier is associated with the
called metastable. Ginzburg number. The Ginzburg number characterizes the
The term “metastable” is a combination of the Greek intensity of the interactions of correlated fluctuations of the
word metg which means change of state, and the Latin wordorder parameter. When this number is small, self-consistent-
stabilis which means stable. This terminology was intro-field theory works. In the general case, when the Ginzburg
duced by Ostwald4] in 1897 for a state of matter which number is not small, the problem becomes mathematically
precedes a stable state. Ostwald considered metastable staggtremely involved. Typically, the functional form of the
as a fundamental property of matter. From a thermodynamitandau free energy has always been postulated on very gen-
point of view metastable states correspond to local minimaral grounds, i.e., as a series expansion in the order param-
of the free energy where the system is stable with respect teter with phenomenological coefficients. An exact analytical
small fluctuations. This minimum is not the lowest one and acalculation for a given model is a route which is followed in
metastable state decays with a finite lifetime albeit that thisextremely few cases in the literature. One of the problems is
lifetime may be very long. to identify the order parameter in the problem. There are no
As told, the existence of metastable states is usually assgeneral guidelines available for doing this.
ciated with first-order phase transitions. The decay of a meta- The aim of this paper is to present a simple model of an
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segments in the chain are not confined and therefore the
chain of interest can assume many different conformations.

] % Not all possible conformations are equally likely, because
ol there is, in the proximity of the chain, an impenetrable sur-
face with which the polymer chain can interact. We will con-

stem P sider the case in which the polymer segments are attracted to

the surface, i.e., that the enthalpic interaction energy exceeds
a critical value. The solvent-mediated interaction between

the surface and the polymer segments is described by the
adsorption parameter. All the energy parameters are ex-

FIG. 1. lllustration of the systems of interest. An isolated Gausspressed irkg T units and the segment lengthserves as the
ian chain is fixed with one of its ends at a positipfabove an  ynit distance.

impenetrable adsorbing surface. The tether points are indicated by | et ys consider an ideal Gaussian chain consistiniyl of
the black dots. Théclose t9 unperturbed coil and the flower con- segments tethered by one end at a distagdeom the solid-
formation are indicated. The flower is composed of a stronglyjiqyid planar surface and with the other endznOnly the
stretched stem and an adsorbed fragment, i.e., the pancake. At SOk action normal to the surface. axis. is of interest here
critical coordinatezg two conformations can be equally likely, i.e., since the walk in thecy plane is u,ncon,strained and therefo,re
the COi.I and the flower. Fatp<z th? flower is t_he preferred state. described by the standard Gaussian function. The statistical
The thin spheres are drawn to assist the scaling arguments. weight G(N. zo,2) of a chain with the end segments at dis-
fancesz, andz from the interface satisfies the diffusion equa-

ideal chain near a surface. We will show that for this mode
the stretching of the chain is a useful order parameter. Thidon [8]
order parameter characterizes a polymer chain as a whole. As ’
a result the correlations of fluctuations of the order parameter IG(N,29,2) 1 9°G(N,2p,2) 0
are coupled throughout the whole system and the Ginzburg N 6 9z°
number is strictly zero. In other words, the system features
mean-field behavior. As a result it is possible to elaborate onvith the initial conditionG(N,z,,z) = 8(z—z,). The short-
the route specified above by using the Landau free energsanged interaction with the surface is introduced through the
similarly as was done in a very limited number of cases inde Genne$9] boundary condition
the literature for closely related probler6,7.

The remainder of this paper is the following. First we will 1 IG(N,zq,2)
elaborate on various variants of the model that feature con- =—cC. 2

. . . : G(N,zy,2) 0z

formational coil-to-flower transitions. From the analogy with
systems with similar type of conformational transitions, it is
possible to conjecture a scaling analysis and account for The physical meaning af can easily be derived from Eq.
excluded-volume effects even before the exact results ar&). Whenc<0 the functionG increases withz and this
analyzed. Then we will proceed with presenting results thameans that the chain molecule avoids the surface. In the
can be derived from the exact partition functions. Our goal igther limit c>0 the polymers stick to the surface and the
to collect a complete set of important results for the modelcrossover value=0 corresponds to the critical conditions.
These include the analysis of the distribution of complexWe will consider the strong adsorption case only.
zeros. Apart from a rigorous classification of the phase tran- The solution of Eqs(1) and(2) first found by Lepine and
sitions, it gives an idea for the order parameter in the systenfzaille [10] and later by Eisenriegleet al. [11] is naturally
Using this order parameter we can elaborate on the Landagxpressed in reduced variabls-z/2R, Zy=2,/2R, andC
function. This will give the full phase diagram and allows us =cR. It can be presented to be composed of two contribu-
to analyze the barriers between the stable and metastaliens, i.e., one from the coil conformationS.,; , and one
states, including finite chain length effects. From these barfrom the flower conformationsGy, ,
riers it is possible to analyze the lifetime of the system in the
metastable states. At the end of the paper we will mention G(Z,Z,C)=G¢pil(Z9,Z)+G¢(Zy,Z,C), (3
the analogy of the present model with strongly related prob-

lems and discuss the chances to measure conformationghere the coil contribution contains all possible conforma-
transitions by AFM experiments. tions of the chain starting at coordinaZg and ending aZ
without touching the surface even once,

(€Y

II. IDEAL CHAIN NEAR ADSORBING SURFACE

Basically we will consider conformational properties of . _ 1 (77 \21_ _ 2
ideal, isolated polymer chains as schematically presented i(n;w"(Z’ZO)_ ZR\/;{exr[ (2=Zo)" ]~ exd = (Z2+2Zo)"]}
Fig. 1. In the model, one chain end is fixed to a preset coor- 4
dinate. We refer to the coordinate for the tethered end,as

and choose typicallg,>R, whereR is the radius of gyration and Gy, collects all conformations that touch the surface at
of the chain,R=/(N/6). Further we takey<z,. All other  least once,
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conformation of course decreases with The continuous

o : e e NN = bl lines in Fig. 2 correspond to the stable parts and the dashed

coil continuations of these lines are metastable branches of the

Fic) system. The crossing point of the two lines correspond to the
s flower binodal condition as given by E@7). At a given adsorption

parameter, the lower branch describes the thermodynami-
cally stable state. The analysis of the partition function does
not allow us to determine whether the other brafwith a
-0.4 higher free energycorresponds to a metastable or an un-
stable state. We will address this question below.

0 0.8 1.8 2.4 It is well known that when the grafting poid, is placed

c near the surface ante0, we find
FIG. 2. Free energy of the system as a function of the reduced 5

adsorption energyC. Two branches, coil and flower, of the free Faas(0,C)=—In[Q(0,C)]=—c*N/6. )
energy are drawn. The crossing point, i.e., the binodal, is indicated.
The dashed line correspond to the metastable extensions of the free

This equation suggests a simple scaling picture. The ad-

energy. Here we have takeg/N=0.2. sorbed layer can, in akkT per blob ansatz, be presented by
Nc?/6 blobs. Each blob consists gf=6/c? segments. From
ex — (Z+2Z,)?] f[his we find thg physical meaning of tlieparameter as the
Gy(Z,Z29,C)= [1+ \/;cy(z+zo_c)], inverse blob siz&=1/c.
R\/; It is of interest to mention that Eq8) shows that the

(5) effect of the adsorbing surface is similar to the effect of an

) ) ~_ external (adsorption field u,qs felt by all the segments:
In these equations, the notation of the end-point distribug_ —y_. N, whereu, 4= —c?/6. There is a strong analogy

. . . . a

tion G has been modified to indicated the use of the reduceg;ith other systems recently discussed in the literature which
variables. For clarity we also introduced the varia®li the  phaye similar characteristics, e.g., the chain confined under a
arguments of3y in addition to the arguments used Grin sk featuring the escape transitifh2,12—19, and the coil-
Egs. (1) and (2). In Eq. (5 the function Y(X)  to-flower transition for a chain pinned near a step in the
=experfc(x). When x>1 we can approximater(x)  external potential3,7,20. From this analogy we know that
~1/(x/m), when x<—1 the limiting behavior isY(X)  the conformational transition in the model can be found from
~2 expf’), and in between these cases, i.e., whdr<1,  a two-state ansatz. It is of interest to briefly present the ar-

Y(x)~1—2x/\/; guments to obtain the central result.

After integration over all coordinates of tidth segment Within the two-state approach we conjecture that the
the partition functiorQ(Z,,C) for a chain tethered with one chain should choose between either the coil or the flower
end atZ, is found: conformation. The coil has a free enefgy,; =0 as it is the

reference state. Let us assume that the flower is composed of
Q(Zy,C)=Qcoil(Zo) +Q11(Z0,C) a stem withn=N—m segments and thus that there ane
= erf(Zg) +exp — Z2)Y(Zo—C). 6) =N-—n segments in the crown. Then the free energy of the

- . . flower is given by a contribution of the stem and the disk.
The partition functionQci(Zo) describes the state of @ g first part is given by the stretching of the Gaussian
weakly perturbed coil, having no contacts with the adsorbing.p-in For the disk we use the result of E8):

surface, whileQ¢(Zy,C) describes the sum over all inho-

mogeneous conformations consisting of an adsorbed part Friower(M) = Fsrend N—m) + Faqdm)
with at least one contact and a stretched stem connecting the
grafting point and the adsorbing surface. =3H%2(N—m)—mc?/6. 9
The free energy corresponding to the coil and flower par-
tition functions are obtained from Eg6). For fixed Zo>1 Optimization of the free energy of the flower with respect
andC>1 we find that the two branches of the free energy!0 M gives
cross at
N—m=3H/c. (10
C* =27, (7)

Inserting this result in Eq(9) and equating this to zero,
or in the original variables at* =6z,/N. This result is iden- i.e., the free energy of the coil, we find that the transition
tical to the scaling result given above. As the two branches ofakes place aH* =Nc/6. Also, it is of interest that at the
the free energy cross each other, we expect that the coil-tdransition the number of segments in the stem is exactly
flower transition is of the first-order type. equal to the number of segments in the disk=N/2. It is

Before moving on it is useful to illustrate graphically the easily shown that the blob size in the stefge.,=1/c
behavior of the free energy and how the transition comes= £,4s- In Fig. 1 the blobs are indicated by thin spheres.
about. In Fig. 2 it is shown that the free energy of the coil isBelow we will apply the scaling approach to include
independent of the reduced adsorption en&gyhe flower  excluded-volume effects.
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ll. COMPLEX ZEROS OF THE PARTITION FUNCTION sitions and to express the main characteristics of a transition

. . . . (jump magnitudes, critical indices, and amplitudéy the

h At a phaszla Fransmon . pomrt], thErmOdynr‘?m'Cdfu.nCt'andensity of zerog along the support lines. They assumed that
ave a singularity, meaning that they or their derivativesy,, qensity of zeros is a power-law function of the coordinate

have a finite or infinite discontinuity. On the other hand thealong the imaginary axis: g(y) ~ Yy~ . Using this assump-

partition functionQ=X; exp(—E;/kgT) is just a sum of ex- o several cases can be distinguished, and among them the

ponentials and thus has no singularities as a function of exgjlowing two are relevant for our model.

ternal parameters. Since the free energy is the logarithm of (1) |f ¢=1, i.e., the density of zerog(y) tends to a

the partition function, and the logarithmic function has a sin-constant at smay, then the zeros necessarily approach the
gularity at zero argument, the only possibility left is that thereal axis at a straight angle= 7/2 and the energy has a
partition function should vanisfor at least, in some sense, finite jump AE=27g(0) upon touching the8= . point.
tend to zerp when the system approaches the transitionThis obviously corresponds to a first order transition with a
point. It is obvious though, that the partition function is posi- 5-peak singularity in the specific heat.

tive and cannot be zero at any real value of external param- (2) If «=0, the density of zeros grows linearly with
eters. It was also realized very early that a true mathematicand the support lines cross the real axisvat /4, the en-
singularity of the free energy can develop only in the ther-ergy is continuous but the specific heat has a finite jump
modynamic limit, when the number of particles tends to in-discontinuity, as in a classical mean-field second-order tran-
finity. sition.

The approach pioneered by Lee and Y42 related the These predictions were supported by the exact solved
singularities to complex zeros of the partition function. Theirmodel of an ideal Gaussian chain attached by one end to a
original papers dealt with the liquid-gas transition inducedplanar adsorbing surface in the presence of a constant normal
by the change in fugacity, so these were the analytical propforce applied to the free end of the ch4B]. Results of the
erties of the grand partition function in the complex plane ofPresent paper are strongly related to this paper.
the fugacity(the fugacity was represented as a complex num- From the above, it is clear that the adsorption parameter
ber with a real and an imaginary pathat were the object of is analogous to the inverse temperatgréAnd therefore it is
investigation. Similarly, temperature-induced transitionshatural to introduce the complex representation for the ad-
should be described in terms of the zero distribution for thesorption parameter= p exp(x) (wherep is the amplitudey
canonical partition function in the complex plane of the tem-the polar coordinate, arid=y/— 1) in the partition functions.
perature(or B=1/kgT). These are commonly called Fisher Here we will review the important results and refer to Ap-
zeros[22] in order to distinguish them from the Yang-Lee pendix A for some more details.
zeros in the fugacity plane. Obviously, the general approach The zeros close to the real axis., with smally) can be
is applicable to phase transitions induced by changing angumbered by an indek=0, 1, 2,...:
other external parameter as well.

Lee and Yang showed that for finité the partition func- 7(2k+1)N
tion can have only complex conjugated zeros but no zeros on 623 '
the real positive axis. As the number of particles increases,
the complex zeros come closer and closer to the real positivand thus the closest zero is characterized by the polar angle
axis, and eventually, in thid— oo limit, they pinch upon the

Xk= (11

real axis at the transition point. While the Yang-Lee theorem onw—Nz- (12)
states that the zeros in the fugacity plane have to be located 6z,

on a unit circle, there are no general results known for Fisher ) ) ) )
zeros. Empirical regularities show, however, that they tend to FOr @ fixed value of the ra_t|10/N and increasing\, xo
fall on smooth arcs that cross the real axis at a certain ang@_ppggaches the real axis &6 *. At distances of ordee
In the thermodynamic limit, the free energy and its de-=N"" the deviation of the polar angle from zero is on the
rivatives can be represented as integrals over the continuo@der of unity and one certainly cannot speak of a first-order
distribution of zeros characterized by some limiting densitytransition. _ _
function. But the problem of finding the actual distribution of ~ At the point of touching the real axisx(0, p
zeros for the partition function of even a simple model—6%0/N), i.e., for largeN, the density of zeros tends to a
proves to be formidable. In practice, for a given model theconstant valugo=2,/(27N). According to Grossman and
zeros are calculated numerically for small samples and theRRosenhauer, this falls into the category of first-order transi-
some extrapolation is employéa3,24. tions with a finite jump in the energy. The magnitude of the
There exists a phenomenological approach relating certailymp must be
features of a phase transitiGmamplitudes and critical indices
to the characteristics of the distribution of zef&s], as well

as scaling predictions for this distributi¢@6]. ‘and is a function of the grafting coordinate and the chain
Assuming that the zeros concentrate on two symmetrigangth only. This is an interesting result. Let us introduce a

support lines which cross the real axis at the p@rt 8. shorthand notation for the right hand side of Etg):
making an anglev with it, Grossmann and Rosenhaii2b|

were able to present an extensive classification of phase tran- s=z,/N. (14

AE=2mg(0)=2,/N (13)
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is the chain stretching parameter that grows continuously.
:'-"/“ } For the deformed coil, the parameter refers to the chain as a
Imie] -~ ] whole, while for the flower it refers only to the stem. Hence
' the order parametexis defined as follows. For the coil state
- : where the coordinates of the first and last segmentszare
w., \ and zy, respectively, we have=(zy—zy)/N, and for the
flower states=z,/n, wheren is the number of segments in
\‘\ the stem, i.e., the number of segments between the grafting
. point and the first contact with the=0 boundary.
Re(c) It should be realized that the number of segments in the
stem is fluctuating. The average order parameter has two
FIG. 3. The distribution of zeros in the complex plane of the contributions, one from the coil state with no contacts, and
adsorption parameter=Re(c)+i Im(c). The lines are drawn to the other from the flower state:
guide the eye. The chain lengttt=400 and three values of the
tether pointzo/N=0, 0.1, 0.2 are indicated. The lines are calcu- Qcoil

lated using Eq(A3). (s)=(Scoil) Q(Z.C) +(sn) Q(gﬂc)- (195

[~}
Il

Indeed,s can be identified as the level of stretching of the £ he coil state, the stretching parametero)/N is
coil when it starts ary and reaches the surface aftésteps. averaged withG(Z,Z,) of Eq. (4). The result is
In terms of an order parameter, it is known that at a first-
order transition the order parameter should jump. Equation 2, erfo(Z,)
(13) indicates thas may be identified by the order parameter (Seoi)=— = —5—-
in the system. According to Eq13) the jump in the energy N erf(Zo)
in the system is accompanied by a jump in the order param- ) . L
eter: it ig close to zero vr\)/hen theychejlin igin the coil stapte and 10 obtain the corresponding property for the flower, it is

jumps toz,/N after the transition. Below we will elaborate COnvenient to use=N-—m for the number of segments in
on this idea. the stem. For the flower state, the averaging is performed

On the asymptotic wings of the hyperbolg,— /4 and ~ With the weightGsien{Zo,n) Qags(C,N—n). Now, Gster is
the density of zeros increases linearly with the distance fronf®Und again from Eq(4). For sufficient largezo and a very
the transition point along the curvg= p/(6). sma[l distancez,= 6 or the second end position, we can

When the distance from the adsorbing plane to the graftf@Write Eq.(4) as
ing point, zy, decreases, so does, accordingly, the dergjty
and the magnitude of the jump in the order parameter. Even- 3V6 756 375
tually, atz,=0, the curve degenerates into two straight lines Gstenf 20, 5’”):T P .
at an anglev= * /4 with the crossing of the real axis at the ™
origin. The density of zeros is then a linear function of the
distance from the critical value=0. Hence, the transition
becomes second order, which is a well-known result.

An example of the distribution of zeros is given in Fig. 3 2 ey
for a first-order and second-order transitions. In this figure (sﬂ):Qf‘ll(—) Zof dn(ﬁ)n—s/z
the grafting distanc&, is varied. The complex zeros are, 2 0 n
with increasingg,, distributed along the support line accord- 5
ing to the characteristics of a first-order transition. For ex- v exp{ _ %
ample, the supporting line, which is drawn to guide the eye, 2n
approaches the real axis at an angler# and the density of

(16)

) ' (17)

where§=1/6 is an internally consistent choice. The average
order parameter in the flower can thus be written as

Y(—cyN—n), (18

zeros along the line go to a constay{n). whereQs, may be presented as
3\ (N 375
IV. AVERAGE ORDER PARAMETER Q=|-— Zof dnn32exg — —|Y(—cyN—n)
21 0 2n ’
It is essential to elaborate on the selection of the order (19)
parameter. In the preceding section it was conjectured that
the stretching of the chain can be used as such. Combining the integral representation of the partition

~ In order to choose the appropriate order parameter it iynction Q, with the closed analytical form of Eq6), and

initial random coil to the inhomogeneous flower state. Firstyariaples relating the average stretchBg sR to the force:
the coil is stretched so that it can reach the favorable surface.

Then, a(nucleation seed is formed at the surface. This seed Z, 1/ 1 Qs
grows and forms the pancakerown) at the expense of the (Sy=—+ —(——ZOY(ZO)+ —— . (20
stem until an equilibrium state is reached. In this process, it 3 Jr 2Z,Q(Z,,C)
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8

0.4 FIG. 4. (@) The average
stretching (s) (order parameter
L1 and the averag@bsolute value of

| the) force (f)/3 as a function of
. oz L1 < G =3 the reduced distanc&,= z,/2R of
oo T = ', is? jr the grafting point. The second end
< fa/3 _\ E: iclani \ is unrestricted.(b) The fluctua-

\ tions of the stretching 6s?) and
: oo

a L ! i, TSR PSRt o] v, - S TR the fluctuations of the force
o ' 2 3.5 4 5 0 1 2 5 (5f23) as a function of the sepa-
a t ration. Parameters afd=600, c
=0.6.
For a well-developed flower stateCg&1 and Zy<Z§), dInQ(N,zy,C)
expression(20) simplifies to f=-— o (24)
¢ 1 ! 21
(=3 1+ cz) 2Y) Indeed the force is negative, which means that the the

The main term corresponds to the most probable sterghain is pulled towards the surface. Here and below we will
length while the second term represents the correction due @it the minus sign of the force and present the absolute
fluctuations. The fluctuation correction damps out with in-value of it. Since the average order parameter was introduced
creasingz, and the factor I/=¢,4s, the adsorption correla- @S the stretching degree, it is obvious that these two quanti-
tion length, gives the amplitude of the fluctuation contribu-ties are closely related. However, the properly averaged or-
tion. der parameter is not strictly proportional to the average force.

In Fig. 4a) the average order parameteverage stretch- The difference is clearly seen in Fig(a4. This is primarily
ing) is shown as a function of the separatidg=z,/2R.  due to the fluctuations in the number of segments that form
Near the transition point the two quantities behave, as exthe stem. These fluctuations are essential when the grafting
plained above, nearly the same. Only for very small grafting?0int is relatively close to the surface, and the stem includes
coordinates, there is a small noticeable differefice Eq. ~ Only @ small fraction of all the segments. A comparison of
(20)]. the mean-squared fluctuations for the order parameter and
The squared fluctuations of the stretching functimr2 the forc_e in Fig. 4b) demqnstrates .the same effect: the force
=(s?)—(s)2, can also be found in a closed analytical form,fluctuatlons do not e>_<h|b|t_a maximum at st_B as op-
although the expression is quite lengthy. Therefore wePosed to the fluctuations in The forces are discussed in
choose to present the results in a graphical form only. Th&uch more detail below.
fluctuations in the stretching display two maxima: one at
z4/2R—0, which corresponds to a very short stem, and the
other at the transition poirtf;/2R=c/6 (for the parameters V. LANDAU FUNCTION

used in Fig. 4 this mear&,=3). Here, the chain fluctuates | the following we will mainly concentrate on the stable

between the coil state with effectively zero stretching and theynd metastable states of the first-order coil-to-flower transi-
ordered flower state. In the first region, the fluctuations cafions of a chain near an impenetrable surface.

be approximated as The first step is to define the Landau free endfyin
5 ) terms of the order parametsr For the coil we uses=(z
2_[C)7 ¢ § —Zz9)/N and Eq.(4) can be written as
o?=|=| |[=+2( =] |. (22)
3/ |79 Z
The height of the second peak is given by 3 3
Geoil(S)= SN Est . (25)
2 Jal ?
Opeak— N (23

For long enough chains the Landau functidg,; (s) re-

Apart from the average order parameter, Figg)4hows duces to a simple parabolic dependence:
the average force acting on the fixed end of the chain. The
force can be easily calculated from the partition function
from taking the derivative with respect to the distance of the

1 3
grafting point: Peoi(s)=—n Geoil(8) =557 (26)

2
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b zﬂfﬂy
S04

FIG. 5. The Landau free energy as a function of the order paraméiethe coil and flower conformationé&) For fixedz,/N=0.2 and
several values of the adsorption parametas indicated(b) For fixed adsorption parameter= 1.2 and for various values of the tether point
Zo/N as indicatedN= 1000 in both cases.

The maximum value of the order parameter in the coil VI. BARRIER HEIGHTS SEPARATING STABLE AND
states, is achieved when the free end is just touching the METASTABLE STATES

surface,sozzo( N. . . The analytical expressions for the Landau function allow
The flower is an inhomogeneous conformation, and only

one part of the chain is stretched. Now the order parameter 2> to compute the height of the barrier separating the two

associated with the number of segmentsjn the stem.s Minima. The barrier height counted from the coil state mini-

=Zz,/n. The Landau function is calculated ds;(z,,n,c) mum is simply given by
= —1/NIN[GgienZ:N) Qcrowr( N—N4C) ], which can be re-

. ; 3
written to give Acoi,zst%, (29)
dy(s,c)= Esso— im Y( C /(1_ i) ” and barrier height with respect to the flower state minimum
2 N S is given by
1 3Ns 2
S 3 c
2N'”( 2775)' @ An=§N<so— 5) , (30)

In the thermodynamic limit, the flower branch simplifies

o provided of course that> 3s;,.

It is of interest to note that\.,;=32z5/2N is the free
c2 So energy of stretching the chakfy;,, while that of the flower
E( 1- —) . (28 contains the combination of the free energy of stretching and
that of adsorption

The discussion of the Landau function is facilitated by 32 N\ 2
illustrations in graphical form. In Fig.(8) results are pre- N e \ﬁ) _ _F )2
sented for the Landau free energy as a function of the order An ( 2N “Vs (s VFaed® (3
parameter for various values of the adsorption parameter and
for a fixed grafting coordinate. From this graph it is easily ~The importance of the barrier height as counted from the
seen that the two branches of the Landau function match dnetastablguppey minimum is related to the kinetic aspect
s=s,. Neither the coil state branch nor the posigtwhere  Of the problem which we discuss below.
two branches meet depend on the adsorption paramseter ~ The first spinodal line corresponds of courseAn=0
while the flower state branch is of course affected by it. Withand thusc** =3s,. Formally, the second spinodal branch
increasing affinity for the surface, the minimum in the flower should be found from\.,;=0. This givess;* =0. This is
branch becomes more pronounced. indeed correct in the thermodynamic limit. Physically, it is
In Fig. 5b) the other control parametey is varied andc ~ obvious that at small grafting distanceg~R the coil can
is fixed. Again, the Landau function of the coil remains theeasily touch the adsorbing surface, and the metastability is
same, i.e., it does not depend on the control parameter, bidgst. Therefore, the spinodal conditisy* =1/yN is more
now the point where the two branches of the Landau funcaccurate.
tion cross is a function of. The evaluation of the height of the barriers is a central
The minimum of the Landau function determines the av-result of this paper. Therefore it is natural to present the
erage value of the order parameter in {feeal) minimum of  predictions of Eqs(29) and(30) also in graphical form. This
the system. The binodal condition is found when the twois realized in Fig. 6. Some comments on these figures are in
minima of the Landau function are equally deep. Of courseorder. In Fig. 6a) the height of the barriers is given as a
this condition can be found by either varyigg or c. function of the positional control parameter. At small sepa-

3
‘Dﬂ(S,C):ESSo— s
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line. Whenc<3s,, there is no barrier for the flower any
more. Between §<c<6s, the flowers are metastable and
whenc>6s, the coils are metastable.
There is yet one more variable in the problem. For a fixed
value of the adsorption parameteand grafting distance,
it is possible to study the effect of the molecular weight on
the barrier height. An example of this is given in Figcs
The barrier height for the coil is a decreasing functiorNof
whereas the barrier height increases from the flower side.
The implication of the fact that there exists metastable
states is the possibility to have hysteresis effects. Depending
on the history of the system, the chain may be temporarily
trapped in a metastable state, i.e., it can be in the metastable
flower state when the free energy of the coil state is lower.
The opposite can also occur, i.e., the system may be trapped
in the coil state whereas the flower may be more favorable.

VII. STABLE AND METASTABLE STATES

Let us discuss in some more detail the model from a Lan-
dau free energy perspective. Within a certain range of the
two governing parameters,=2z,/N and c, there are two
minima of the Landau function. The minimum close 40
=0 corresponds to a weakly perturbed coil adqs,.;)
~0. The second minimum corresponding to the flower state

is found at
sfl=c/3. (32)

The depth of the minimum is found by inserting E§2) into
Eq. (27):

d(sq)=Ccsy—C%/6. (33

At the binodal condition the two minima are equally deep.
This leads to
c* =6sp. (34

In the thermodynamic limiN— oo, this defines the line of
the first-order phase transitions. In terms of the original vari-

The thick parts represent the cases where the coil or the flower igplesc and z,, the coexistence line equation reads, as we

stable, the thin lines correspond to the metastable stdigShe
reduced barrier height as a function of the adsorption parameter
Line choices are similar to gragl). (c) The barrier heighiA as a
function of the degree of polymerizatidffor a particular choice of
Zo=20 andc=1.

discussed aboves* =6z,/N, or in reduced variablesC*
=2Z,. In the case ofzy=0 (the chain is attached to the
surface, the transition at=0 becomes second order. It was
shown in[6] that in the presence of a constant external end
force,c=0 is a bicritical point.

Going away from the binodal condition by increasing the

rations the coil is metastable and the barrier height to th‘?educed grafting distanc or by decreasing the adsorption
other minimum increases with increasing separation. At th arameter, the flower state becomes metastable; the depth
same time, the flower state is stable and the height of thg¢ e minimum for the flower is not as deep as the minimum
barrier decreases with increasing distance. At the transitioBf the coil[®(s;)>0]. Once the position of the flower state
point (binoda) the height of the barrier is equal as Countedminimumsf, coincides with the barrier positicsy, the mini-

from the coil and th_e flower state. At a d_istance further ou_t,r.num disappears completely. This gives the equation of one
Zo/N>c/3, the barrier for the flower vanishes, and there ISof the spinodal lines:

just one minimum.

Alternatively, in Fig. &b) the adsorption parameteris
the control parameter. From the above we know that the
height of the barrier from the coil side does not depend.on or in reduced variableC* =Z,,
The height of the flower branch increases with increasing To visualize metastable flower states more clearly, it is
Again the crossing of the lines correspond to the binodalnstructive to find the number of segments belonging to the

c** =35, (35
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finite-size effects to be quite pronounced in the region near

the origin Zy<1, C<1).
coil stable The binodal ling(with the finite-size correctionss found
z flower unstable over from the condition thaQ,,;;= Qs , to give
s Cc* N In2 36
1 0T 2 " 2c*
fl(lwwer stable
RlBEEEEE for C*>1. In the natural coordinates this read/N
0 : =c*/6+In2/(Nc*). In the limit of C* —0, the binodal line
0 1 (which has only a formal meaning hermtersects theZ,
Cc .
axis atZ* =0.48.
FIG. 7. Phase diagram in the reduced varialfeand Z. The The W|dth Of the binodal Iine |tse|f iS estimated from the

binodal line as well as both spinodal lines are indicated. In theslope of the force distance cur¥€z,/N) at the binodal. The
region of the gray scaling the finite-size effects are important. Theravidth of the binodal region is given by the ratio of the slope
are a number of regiong1) the coil is stable and the flower is Of the force and the magnitude of it. The drop is
unstable,2) the coil is stable and the flower is metastali®,the

coil is metastable and the flower is stal#), the coils are unstable Af 1

and the flowers are stable. These regions are found going from left AZy= N(af/aZy) TN+ (37
to right and from top to bottom. The region of small systems is near

the origin C<1R<1). or in scaling variabled Z,~ 1/C* [cf. Eq.(43) below]. Thus

e binodal region narrows as one moves away from the
rigin. In Fig. 7 this is schematically drawn by the thinning
of the gray region around the binodal for increasing values of
C. Near the origin there is a region where both the width of

) e . the binodal as well as the value 8} is of order unity. This
odal line, n3;; =N, which means that the adsorbed crown may be called the “small system” region.

just did not develop. We conclude that metastable flowers the gpinodal lines are also characterized by a finite effec-

have more than half of the segments in the stem; the smallgfe \yidth. This width may be estimated from the argument
the adsorbed part is, the closer we are to the spinodal.  ih4t when the barrier height is of ordesT it is easily over-

We are now in a position to present the phase diagram ofyme py thermal fluctuations. Takirty, =1 in Eq. (30) we
the system including the binodal and spinodal lines. The;nq the width for the first branch of the spinodal:
graphical presentation of this is given in Fig. 7. The binodal

line separates the parameter space in regions where the ZrE — x4 (39)
flower is stable(bottom from that where the coil is stable 0 ’

(top). The top spinodal line is the border line to have meta-__ . ; Kk _ ok
. L or in natural coordinates;™ =c** /3+ 2/(3N).
stable flowers, and the bottom spinodal line indicates the loss As explained above, the finite-size effects are essential for

of metastable coils. In Fig. 7 there is also a gray scalin . ; . NS
around the binodal and spinodal lines. These correspond %c:)]e second spinodal fine. Itis found by takidg,; =1, and

the finite-size effects discussed below. om Eq.(29) we find

stem in the region between the binodal and the spinod
lines. As follows from Eq(32) and the definition of the order
parameter for the flowers=sy/n, Ngien=2/S;=32y/cC.
Along the binodal line this gives},. = N/2. Along the spin-

[2
VIII. FINITE-SIZE EFFECTS o=\ 3N (39

It is of interest to pay some more attention to the case of
finite chain lengths because this is the experimentally accesr Z§* =1. Again, the coil becomes unstable once it can
sible case. easily touch the adsorbing surface. Note that the width of the
All the above is based on the ansatz that a single macraspinodal regions remain constant everywhere in €&,
molecule may be treated as a thermodynamic system arghase diagram, in contrast to the narrowing binodal region
certain subsets of conformations are associated with phasdsf. Fig. 7).
Clearly, one expects some deviations from this thermody-
namic picture if the polymerizat_i(_)n index is not large. We IX. CHAIN STRETCHING AND LOCALIZATION FORCE
can expect, e.g., that the transition occurs more gradually.
The phase behavior becomes also blurred near the transition In the preceding part it was found that when the grafting
line if the interaction parameters are small. point zo>R the coil-to-flower transition is first order. This
We have an exact analytical expressi@h for the parti-  transition has also consequences for the force needed to
tion function as a function of the two control variablgg  maintain the end point at the specified coordirngte
andC. It is obvious that the larger the values of the scaling As told above, the force can be easily calculated from the
variables areZ,>1 andC>1, the more pronounced is the partition function[cf. Eq. (24)]. The result can best be pre-
phase behavior. In th&-C phase diagram, we expect the sented in the scaling variables,
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CY(Zy—C) ‘ : :
F=exp(—Z)—-——, 40 .
F( 0) Q(ZO,C) ( ) & c=08
f
whereF = fR. Again, the negative sign was omitted since we 08 oF

are only interested in the magnitude of the force. The

asymptotic behavior of the force as a functioncaindz in 04 o
the limit of largeN is quite simple: s
nE
c, 2,<2} L\
a

F={ P —(F)220-25),  Z0~25 (4D o

7 YAClZo)exp —23), Zo>Z%, b

&n

whereZj =C/2 as before and* =2C/3 is the force at the
transition point. In the thermodynamic linlit— <« the force
f exhibits a very simple behavior as a function of thea- 2
rameter:

0, c<c*

f= c, c=c*. (42 a

In Fig. 8@ we give an example of the force needed to
keep the chain grafted at the coordinagdfor several values
of the adsorption parameter As the chain end is moved
away from the adsorbing surface, the force remains constant
until we approach the binodal distangg. In the vicinity of
the transition pointz,/N=c/6 the force decreases linearly
with zg:

(f*)?

f~f*— 5 (zo—2z3). (43

0.2

At larger distances, the chain is effectively unable to reach o
the adsorbing surface and the force is practically zero. The FIG. 8. (a) The forcef needed to keep the tethered chain with

slope of the force distance relation near the transition iéfhe end atz vzla.rsus the_redgced diste:}nzg/?._ The sign Ofdthe o
given by (af/aZo)Z:Zo:N(f*)Z%NCZ. The '[I‘ansition thUS orce Is In rea |ty negatlve ecause the chain is attracted to the

o . surface. Parameters ale=1000 and thec parameter is varied as
becomes more abrupt with increasing The graphs pre- ingicated.(b) The force versus the adsorption parametéor vari-

sented in Fig. &) show the force at a fixethormalized  oys values of the chain length as indicated andzigN=0.2. The
separation as a function of the adsorption strength. In th@ashed lines with the arrows represent the hysteresis efi@sts.
flower state, i.e., at high values ofthe force is proportional  Example of a reduced force as a function of the reduced distance is
to c. The drop to virtually zero force takes place whenpresented for=0.6 andN=1000, with special attention to the
c<c*. hysteresis effect indicated by the dashed lines with the arrows.
The description in terms of the Landau function allows us
to introduce the force associated with meta_staple states. T & all for very small values o, then jumps at the transition
force due to a metastable flower conformation is determined .~ " . "~ 7 , : .
by the stem stretching, which is given by the position at th omt_ c=c 2, _an(_j finally grows linearly witfc. If the
corresponding minimum of the Landau functien=c/3. grafting d_|stance Is fixed a_t large enough valugg; R, one .
Neglecting the fluctuations in the number of segments com®f the spinodal branches is never crossed, namely, the coil
prising the stem, we use the simple expression relating thetaté never becomes absolutely unstable. Hence the hyster-
average force to the stretching parameter3s, . esis 'Ioop for the forcg_ in Flg.(B) is not closed.' Both the
It follows immediately that the force associated with thePosition of the transition point and the magnitude of the
metastable flower state is the sarfie,c, as in the case when JUmp in the force are proportional to the reduced grafting
the flower state corresponds to the true equilibrium. Uporflistance.
crossing one of the branches of the spinodal line, metastabil- The hysteresis loop in Fig.(8 is completely closed. In
ity is lost and the force is determined by the only stable statéhis graphc is fixed and the force is plotted as a function of
left. As a result, hysteresis effects can be very pronounced, dbe position of the fixed end. The force in the metastable
illustrated by the dashed arrows in FiggbBand &c). branches eventually jump either when the coil becomes un-
The change in the force with the adsorption parametdr  stable, i.e., whezy<R, or when the separation is just twice
fixed grafting distance, is given in Fig. 8b). The force is the value corresponding to the binodal.
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X. LIFETIME ANALYSIS diffusion coefficient along the configuration space path de-

. . .scribed by the order parameter
As we showed above, there exist metastable states in the To understand the meaning @i(s), we start with the

vicinity of the binodal line. The spinodal condition and cor- conventional translational diffusion coefficiem for the

responding hysteresis ?ﬁeCtS are .Of course .Of a kinetic naturc(:aenter—of—mass coordinate of a free-draining chain, which is
and depend on the ratio of a typical experimental measure-.

. _ 71 . - . ._
ment time and the internal relaxation time. simply given byD=(N¢) ", where( is the friction coeff

It is well known that the relaxation time for a process cient per segment. In this problem, we are dealing with the

. ; . L L —— case that one end of the chain is fixed. For this case a single
involving a barrier crossing is exponential in the barrier : : . : : .

: . . dynamic variable is associated with the end-to-end distance.
height. The barriers separating metastable states from t

e diffusion coefficient to be ascribed to the free end differs
stable ones were calculated above. We expect the charact?r- : . .
rom that associated with the center-of-mass motion only by

istic lifetime of a metastable coil to be of the order of . g . . .
o . a numerical coefficient of the order of unity, which will be
exp@coin)=exf(3/2N)z5], independent of the adsorption pa- omitted

rameterc. For a metastable flower, the lifetime is expected to : . L L
s . Since the time required for a certain displacement is in-
_ _ A%k 2
be of the Order of prﬁ(_ﬂ)—ex;ﬂN/G)(c c*) ]._In_ this \ariant with respect to the choice of the dynamic variable,
case, the barrier height is controlled by the proximity to thedt=(ds)2/D(s)=(dz)2/D For the coil state, s=(z
spinodal value of the adsorption paramatét . . —20)/N, and henceD(s)=N"3¢"1. Further analysis shows
From the point of view of potential applications, the situ- that in the simplest approximation, the same expression can

ation when the lifetime of the metastable state is not Very . used for the diffusion coefficierd(s) of a metastable
large may be of particular interest. In this case the eStimateﬁ;ower

based only on the barrier height become too crude. Agene_ral The exponential term efNd,,;(s)] is simply the inverse
approach for diffusion-controlled processes for ponmencOf the Green's functiorfEq. (25)]. The final result of the

systems has been put forward by de Gen#§ and later . P . . .
elaborated on by Fredrickson and Leib[2B]. This machin- i?;ﬁgﬁggn_ is conveniently expressed in terms of the scaling
O.

ery may be applied to coil-to-flower transitions, however we
have chosen to apply the Fokker-Plank equation formalism
to find a more accurate estimate for the characteristic decay
time of the metastable states. A complete description of the
c_oiI-fI_ower trans_ition k_inetics woyld require solving an equa-,yhere Trouse=N2¢ is the Rouse fundamental relaxation
tion in a 3N-dimensional configuration space. HOWEVeT, yimq erfiz,) is the error function on the imaginary axis. For

7T .
7'coiI:§7'Rouseerf(zo)em(zo): (46)

since we are interested in the slowest process only, the proﬁ’érge values of the argumentZy>0 erfiZ,)

lem is simplified drastically. Assuming that the slowest mode 2 ; ’

. - . . ~ (LN 7Zgy)ex .ForZy>1 on in

is associated with the relaxation of the order parameter and (1mZo)e P&o). For Zg one obtains

all the other degrees of freedom equilibrate quickly, we can .

write a one-dimensional Fokker-Plank equation for the prob- Teoil = gTRouseEXD(Acon)- 47
0

ability density P(s,t), with the Landau functionN®(s)

playing the role of the effective potential: The situation withZ;<1 means that the colil state is un-

stable. The spinodal region correspond€e-1, with 7.;
on the order of the Rouse fundamental relaxation time.

In the same approximation of replacing the internal inte-
gral by the partition function, the mean first passage time for
the chain initially in the flower stater;;, has the form

JP(s,t)
s

ID(s)
+ P(S,t)NT .

J _ J
EP(S,t)— gD(S)

(44)

HereD(s) is the diffusion coefficient along the configu-
ration space path described by the order paranetdihe
Landau function®(s) in the two branches is given by Egs.
(26) and (28).

Standard analysig29,30 provides an expression for the
mean first passage time,;, i.e., the time required by the
chain initially in the coil state to go to the top of the barrier:

So
Teoil — fo ds

where agains,=z,/N. The usual way of dealing with this
expression is to approximate the internal integral aydly ~ C** =Z, is the spinodal conditiofiexcluding finiteN cor-
extending the upper limit of integration 8. Then, by defi-  rections, and e=1—(C** /C)? characterizes the relative
nition of the Landau function, it has the meaning of the par-deviation from the spinodal. Away from the spinodél,

1= Trous QN f "dsexgNdy(s)].  (49)
So

Using the asymptotic expansion of the integisée Ap-
pendix B one arrives at the following expression in the scal-
ing variables:

2\

3

exd NP i(s)] (s
%fﬁdqexq—wwn(qn,

(49)

C**
TRouseTY(C** —C)Dw(eCl2), (49

TH=

whereDw(y) = exp(—y?) [¥expt?)dt is the Dawson integral,

tition function of the coil state,Q.q;=erfsyV(3N/2)],
which can be taken out of the integral overD(s) is the

—C** >1, the lifetime contains the expected exponential
factor,
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A\ C** to that of the adsorption blolg= 1/f =1/c. As the end point
TH= 3 TRousecz_(C** )zexp(Af,). (50 is moved further away from the surface, the number of blobs

in the stemgz, /&, grows linearly withz,, while the blob size

For C—C** <1 the lifetime is linear in the deviation remains the same. The scaling picture gives the correct value

from the spinodal:, for the equilibrium transition point. Equating the free energy

of the flower state to that of the coik.=0, one obtains

2w . againz§/N=c/6. It also follows that at the binodal line, the
TH="3"Trousd C—C ). (31 stem comprises exactly half of the chaiiN=1/2.

The scaling picture is quite useful for estimating the effect

The fact thatr;; vanishes whei€— C** simply reflects  of excluded-volume interactions on the coil-to-flower transi-
the situation where the stem comprises nearly all the segion. The flower free energy is modified to

ments and the adsorbed chain fragment disappears.

2\ U(1-v)
) , (54

Fr=— B(N—n)cl/(l‘V)JrA(—V
XI. ESTIMATION OF THE LIFETIME OF A METASTABLE n

STATE . -
where A and B are numerical coefficientsA=3/2 andB

It is useful to try to put some numbers to the above pre-=1/6 for an ideal three-dimension@D) coil], andv is the
dictions. The elementary relaxation time of a segménf  Flory exponent equal to 3/5 for chains with excluded volume
{b?/kgT in standard unitsis, for typical segment lengths and 1/2 for ideal coils. Minimization with respect toyields
and typical solvent viscosities, on the order of several nano-

seconds, 10° s. This is what is seen, e.g., in polarized lu- B 1( Av )1_V

i n=zc *| =——— (55
minescence. B(l-v)

A crude estimate of the lifetime of a metastable state is
the following: The free energy is given by

TRouseS T TRouseEXP A may), (52 Fri= _BNCl/(17V)+KZCV/(17V)’ (56)

whereA = (3/2)N(c/6)? is the maximum barrier heigliat ~ Where
the binodal ling. This applies to both the metastable coil and v 1\
the metastable flower. K:AlVB"(( v ) ( V) )

The lower bound gives an idea of the characteristic time 1-v 4

near a spinodafthough the lifetime may be even smalter
the upper bound provides an estimate for the lifetime of
very metastable stat@lmost stable

Let us takec=1 as a parameter for reasonably strong

dt follows that the adsorbed part still exerts a constant
stretching force, which now scales s c”(*~"). The equi-
librium transition point(the equation of the coexistence ljne

adsorption, them\ ,,,,=N/24. Consequently, we arrive at the reads
following bounds: *
z, B 57
—=—C.
N2x 108 s<7<N2x10 ®expN/24)s. (53 N K (
ForN=100, we arrive at 10* s<7<10 2 s, depending One can see that the excluded-volume effects do not af-
on how far we are from the spinodal. Similarly, fot fect the scaling form of the coexistence line. The fraction of
=500, 10°° s<r<1C s. segments in the stem at the binodal line is found to be

For a much weaker adsorptiom;=0.2, A,.~(1.7 n*/N=w» and thus the fraction of segments in the adsorbed
x 103N, so that for chains witiN<10® we cannot even part equals l—n*)/N=1—»; both still independent of,

start to speak about metastability. andc. The value of 1/2 is of course recovered in the Gauss-
ian case. The spinodal conditions are modified correspond-
XIl. EXCLUDED-VOLUME SCALING ingly. One spinodal line associated with the instability of the

coil state is obviously given by
Above, it was shown how to construct a scaling picture of
the coil-to-flower transition. Again, the flower consists of a 75" ~R~N". (58
stem ofn segments and the adsorbed parlNef n segments. _ ) ) ) )
In the absence of excluded-volume effects, the free energy of The other spinodal line, associated with the disappearance
the flower state has the stretching teraﬁfzn and the ad- o©f the flowgr, is found frpm the condm_on that the number of
sorption term— c2(N—n)/6. Minimization with respect tm ~ S€gments in the stem is equal ko Since the number of

givesn=23z,/c. The free energy of the flower state is there-S€IMenNts in the stem is linear #y, one can immediately
fore F = — Nc2/6+ zyC. It follows immediately that the de- ©Ptain from the combination of Eq55) and (57),
gree of stretching of the stem ®n=c/3, while the elastic 7 1

force isf=c. The condition of stabilityor metastability of 0_* == (59)
the flower means that the size of the stretching blob is equal Z, v
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The binodal and spinodal lines come closer to each othelindeed, the jump irs vanishes in the limit where the model
than in the case of Gaussian chains. The region where metéeatures a second-order transition, i.e., whags 0.
stable flowers exist is relatively smaller, since the adsorbed Atomic force microscopg€AFM) can be used to investi-
part at the coexistence line comprises only/2 segments.  gate the transitions discussed ab§8&—40. In such an ex-
periment it is necessary to graft a chain with one end at the
AFM tip in such a way that the chain does not adsorb onto
this tip. This chain is then brought near an adsorbing surface.
It is essential to reiterate that for the presented modelAlternatively, one can glue a particlprobe onto the AFM
exact analytical results are found. We showed that it is postip and attach the end of a chain subsequently onto the probe.
sible to obtain the partition function in a closed form, to In this case it is more easy to orchestrate that the chain does
evaluate the distribution of the complex zeros of the partitiomot stick to the probe’s surface. Then, if the chain does not
function, and to compute the Landau free energy that coninteract with the probe surface, it will be in a mushroom
trols the distribution of the order parameter. These results areonformation when the tip is still far from the adsorbing
available not only in the thermodynamic limit, but also for surface. The free energy of a chain in the mushroom confor-
finite systems. Why is this possible? What are the main difmation is approximately the same as an unperturbed Gauss-
ferences between this model and the classical models for lovan chain. This means that the grafting onto the tip or onto
molecular-mass systems? the repulsive surface is without any consequences. With the
First, the interaction between monomeric units is takePAFM apparatus it is possible to measure the force on the
into account only in terms of enforcing the chain connectiv-chain as soon as it is in the flower conformation. In effect,
ity. This interaction is treated separately from the very beginthe flower bridges the gap between the(tp probe and the
ning and accounted for by the basic differential equafbn  adsorbing surface. For this reason one can refer to the ad-
for the partition function that describes a Gaussian randonsorption coil-to-flower transitions as a bridging transition.
walk. The interaction energy is explicitly assigned to only The force which is easily picked up by the AFM apparatus is
those units that are in direct contact with the adsorbing surexpected to be independent of the separation and is only a
face. The excluded-volume interactions between nonfunction of the adsorption parameter that characterizes the
neighboring units is neglected even if they come close taffinity of the chain for the adsorbing surface. In AFM ex-
each other in space. periments it is possible to control the time of contamt the
Second, the order parameter is defined not as a locdime of close proximity of the chain to the adsorbing sur-
quantity, but for the system as a whole. This is equivalent tdace. Therefore, one should expect to observe the hysteresis
completely correlated order parameter fluctuations within theffects discussed above in full glory.
volume of the system. This corresponds to the Ginzburg There are a number of systems that feature conforma-
number being equal to zero. tional transitions of single chains that have received some
One of the most critical points in the discussion of theattention in recent literature. Probably the best known is the
Landau free energy is the identification of the order paramescape transition of a chain, which is again end grafted and
eter. The analysis was performed with the stretching ordecompressed by a finite-size piston. In this case the chain can
parameter. There is yet another candidate that can serve asjamp in a first-order way from a homogeneously confined
order parameter in the system. Recently a closely relatedhain, sitting between the piston and the surface, into an
system has been analyzed, which features a coil-to-flowegscaped state. The chain in the escaped state has a flowerlike
transition[20]. In this system an ideal chain was consideredconformation, where a stem is formed from the grafting
near a step in the external potential. In this paper the systemoint to the edge of the cylinder, and a crown collects the
was analyzed in terms of an order parameter, which essememaining segments in a coil-like conformation. Again, it is
tially was the fraction of segments in the favorable region ofspeculated that it is possible to measure the escape transition
the spacdi.e., on the low potential side of the systerfihe  in an AFM experiment. However, there are a number of
corresponding property for the present model is the fractiorsnags that may prevent to unravel details of the escape tran-
of segments in direct contact with the adsorbing surface sition. First of all, the transition is sensitive to the exact
the number of segments in the pancakedeed, it is pos- geometry[14]. Second, some finite interaction of the poly-
sible to analyze this quantity analytically. As expected, thismer chain with the surfaces may seriously frustrate the ob-
guantity is sensitive to the control parameters in the systerservation of the escape transitipdl]. Finally, the escape
and it jumps stepwise at the transition. In the coil-to-flowertransition may be complicated by excluded-volume effects
transition of a chain near the stepwise external potentiathat become more and more important when the chain is
there were some problems detected associated with the fragradually more compressed. Therefore, the bridging transi-
tion of contacts. More specifically this problem appeared intion that is described above may be less difficult to detect
the rolling transition3,7]. The rolling transition is the con- experimentally.
formational transition that occurs upon the change in sign of The coil-to-flower transition that is described for a chain
the external potential when the chain is grafted exactly at th@inned with one end in the unfavorable region of a stepwise
point where the potential step occurs. The rolling transition isexternal potential is probably an even more closely related
second order, but is still characterized by a jump in the consystem[3,7,20. In this problem the transition occurs from a
tact fraction. From this it was concluded that the stretchingecoil, which is forced to live in the unfavorable side of the
of the chain would be a more appropriate order parametespace, to an inhomogeneous conformation composed of a

XIll. DISCUSSION
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strongly stretched stem and a relatively unperturbed coil. Therossing the real axis a=0 at an anglew= /4 with the
main difference is clearly with respect to entropic restrictionsreal axis, and that the density of zeros grows with the dis-
felt by the crown. In the step-in-external-potential systemtance from the origin. In this limit, i.ezo= 0 the system thus
the crown is a 3D coil, whereas in the adsorption problenfeatures a second-order transition.
the crown is more like a flat disk. Nevertheless there is a Let us now consider the case in which the grafting point is
very transparent mapping of all the features discussed abowat a positive valuezy>0. Hence, we will need to analyze
and comparable results in the external potential problem. Th@(z,,c)=0 with Q=erf(Z,)+exp(—Z3)Y(Z,—C) in the
analogy may be used to transfer even more results from onéomplexc plane. For a finite fixed,/N and largeN this
problem to the other. equation is equivalent toQ=1+2 exp(zc+c®N/6)=0.
Taking c=p exp(x), we obtain two coupled equations:
XIV. CONCLUSIONS

Inhomogeneous flowerlike conformations are a rather fas- _ N,
cinating stgte of polymer chains. The flowers typically occur In(1/2)=~zp cosy) + 6° cos2x),
when the chain is tethered by at least one end near an inter- (A1)
face. A flower features a stretched chain fragnstén) and

) . . . N .

an escaped chain pa([t'rown) that resides in the more favor-. (2k+1)7=—2zp sin(x) + = p2sin(2y),
able region. A Gaussian chain attached near an adsorbing 6
surface exemplifies a class of coil-to-flower transition. In this
paper, a number of exact results for this model is obtainedyhere k=0,1,2 ... . From the first equation the limiting
The partition function, the phase diagrdone binodal and |ine of zeros is found by lettingl— :
two spinodal lineg the analysis of the order of the transi-
tions. the finite-size effects, and the complex zero distribu-
tions are among the key results. p=

One of the central results presented above is the evalua- COs 2¢
tion of the Landau free energy. We argued that the stretching
of the coil and the stretching of the stem may serve as thevheres=z,/N as before.
order parameter that parametrizes the exact analytical Lan- In Cartesian coordinates,=p cosy, X=p siny, we can
dau function. The analysis of the Landau function gives in-see that this curve is a hyperbola,
formation on the height of the barriers between stable and
metastable stateg. The barriers are responsible for pro- (x—3s)2—y?=9s?, (A3)
nounced hysteresis effects. These effects may be found in
experiments, when the time scale of the experiment is short ) _ ) ) _
with respect to the time needed for the system to cross th@0ssing the real axis af* = 6s with a straight line.
barriers from metastable states to stable states. We have es-An equation for the positions of zeros on the hyperbola
timated these characteristic times: these may be very largf@llows from inserting Eq(A2) into the second line of Eq.
indeed. Experimental verification of the coil-to-flower tran- (A1),
sitions is anticipated.

6 cosy

S, (A2)

(2k+1)m sin 2y
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N cos 2y
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(A5)

The closest zero is characterized by the polar angle
APPENDIX A: COMPLEX ZERO DISTRIBUTION

v

Let us start from the case when the grafting point is on the Xo=gN g (AB)

surface, i.e.zo=0. In our model the partition function can
be expressed a@=Y(—C)=expc®N/6)erfd —c\/(N/6)].
We considerc to be the complex variable. The exponential and for fixeds, x, goes to zero in the thermodynamic limit.
function has no zeros in the entire complex plane. So we will | et us calculate the limiting density of zeros

be interested in the distribution of the zeros of the compli-

mentary error function and particularly its asymptotical form

in the limit N—. From a numerical analysis one will find g=lim = —, (A7)
that the zeros condense on two symmetric support lines NN
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whered|=/(dp?+ p%dx?) is the line element in the com- tion a=1.As from Eq.(A2), y,~6sy, and using EqA5)
plex plane. It follows from the coupled equatio@sl) that we find y,~ (k/N)2#/s. Indeed this is consistent with the
scaling[cf. Eq. (A12)].

The complex zero distribution gives also the possibility to
analyze the region where finite-size effects are important and
where this is not the case. Above we found that the closest
zero is characterized by the polar anglg= 7/(6Ns?).

dp

( —ssiny+ gsin 2x

p 2
—Scosy+ 5 cos 2y |dy=—dk,

tp 3 N Finite-size effects smooth out the difference between first-
order and second-order transitions. For this to be true, even
dp=p(2tan2y—tany)dy. (A8)  the closest zero should lie not far from the asymptotic wings

] . of the hyperbolay,=1. This means thans3~1 and thus
After some straightforward algebra expressitigdy and 5 _N~12 Thjs is in accordance with the finite-size effects

dl/dy in polar coordinates, the final result appears: analysis given above.
1 dk d)(_ p 1
9= N dy di 127 ST (2tan2y—tany) 7 APPENDIX B: LIFETIME OF METASTABLE
(A9) FLOWER STATE

We start with a rigorous expression for the mean first

At the point where the real axis is toucheg-¢0, X .
P 860, p passage time from the flower state to the barrier top:

—65s), the density of zeros tends to a constant valige
=s/27. According to Grossman and Rosenhauer, this falls

into the category of first-order transitions with a finite jump (s, exdNPg(s)] (=
On the asymptotic wings of the hyperbola— 7/4, the (B1)

density of zeros increases linearly with the distance from the
transition point along the curvg= p/67. Along these wings

wheres=s;, is the location of the minimum of the flower
the position of thekth zero follows from Eq(A2): !

branch of the Landau function, arsés; is the location of
the top of the barrier. Following the standard procedure, we
Ni n 8 2+2_T’k AL0 approximate the internal integral over by a constant,
P \/ES 2S N (AL0) namely, by the value of this integral at the barrier tgp,
=5y. The vicinity of this point provides the most important

~(2mkIN)2 integral changes very slowly within this region:
Fromgy=s/27 we conclude thatj, goes down when the

distancez; is decreased, i.e., the jump in the order parameter si - eXdN®(s)]

decreases. Eventually, a3=0, the curve degenerates into 7= Q1 5% Dy(s) ' (B2)

two straight lines at an angle=w/4 with the real axis

crossing the axis at the origin. The density of zeros turns out " )

to be a linear function of the distance from the critical valueWhereQs =/ dgexg —Ndg(g)]=exp(-2)Y(Z-C).

c=0. Here the transition becomes second order, as men- Using Eq.(27) for ®;(s) and making the simplest as-

tioned above. sumption about the diffusion coefficienfDy(s)] !
We now turn our attention to the finite-size scaling behav-=[D4;i(s)] 1= ¢N3=Nrgouse We Obtain

ior of the position of zeros of the partition function. Accord-

ing to ltzyksonet al.[26], in the vicinity of the critical point, P
the distance from thkth zero to the real axis should scale as TH= TrousdN \ /Eexq —7Z%)Y(Z-C)
Vi~ Lfl/vklldvy (All) .
X ds\/gex —N®;(s)]. (B3)
or in terms of the total number of units, Lo H n(s)]
1/dv 1/(2—a)
yKN(E) ~(E (A12) The next approximation is based on representings)
N N by its Taylor expansion around the barrier top:
Here we have employed the equalily=2— « to pass 3 s 3
from parametersl and v, which do not have a well-defined ¢ (g)= Z g s— c +C S0 __ Zs2—a(s—sg) +b(s—sy)?
meaning in our case, to the heat capacity indexFor a 2 6 6s 27°
second-order transition=0. Taking this value, we arrive at (B4)

the scaling predictiory,~ (k/N)*?, in accordance with the
exact analytical result of EQA10). For a first-order transi- with
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_c2 3 1 c? "
a_6_so_§S°_§ o* ¢

and

b <
==
6sg

PHYSICAL REVIEW E66, 036114 (2002

a/2b
f dgexp(—Nag+Nbg?)

0
[ o a?
= ——exp —N— erfi
4ANb 4b

aJﬁ)
2\b

The upper limit of integration is now taken as the location ofwhere Dw(y) =exp(-y?) [¥{dgexp@?) is Dawson’s integral.

the minimum of the approximated Landau functisp,,
=al2b.

According to the standard procedure of asymptotic inte-

gration, the nonexponential terifs in Eq. (B3) is taken as a
constant/s,. Changing the integration variablg=s—s,
we arrive at an integral of the form

Loftf) e
=——Dw| —|, B5
VNb | 2vb
Substituting
aJyN 1 N( (c**)z)
o0 2 Vet e

in Eq. (B3) we finally arrive at Eq(49) used above.
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