
, Russia

erlands

PHYSICAL REVIEW E 66, 036114 ~2002!
Exactly solvable model with stable and metastable states for a polymer chain
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We report on the conformational properties and transitions of an ideal polymer chain near a solid surface.
The chain is tethered with one of its ends at distancez0 from an adsorbing surface. The surface is characterized
by an adsorption parameterc. The exact expression for the partition function is available. We obtained the
distribution of complex zeros of this function. The comparison with the Yang-Lee theory allows the charac-
terization of the phase transitions. A first-order conformational transition from a coil to a~adsorbed! flower
conformation occurs atc* 56z0 /N. The flower is composed of a strongly stretched stem and a pancake that
collects the remaining adsorbed segments. The degree of stretching of the coil or of the stem serves as an order
parameter which parametrizes the analytical expressions of the Landau free energy. The phase diagram with
one binodal and two spinodal lines is presented. The height of the barriers between metastable and stable states
is obtained and the lifetime of metastable states is estimated. A two-state ansatz is used to develop scaling
arguments to account for the effects of excluded volume.
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I. INTRODUCTION

Polymer chains at an interface can undergo conform
tional phase transitions. One of the classical examples is
escape transition of a chain end grafted onto a subs
squeezed by a piston@1,2#. The conformations go jumplike
from a confined ‘‘mushroom’’ to an inhomogeneously pa
tially confined ‘‘flower.’’ The flower has a stretched cha
fragment, which is called the ‘‘stem,’’ and an undeform
coil-like chain fragment, the ‘‘crown,’’ and may be consid
ered as a different type of chain conformation. Other sin
chain conformational transitions were studied for polym
near a liquid-liquid interface@3#. In the limit of infinite chain
length a conformational transition from a confined coil to
partially escaped flower becomes first order. For a sys
with a first-order phase transition one can typically ident
stable and unstable states of the system. The focus in
paper is, however, on states in between these, which
called metastable.

The term ‘‘metastable’’ is a combination of the Gree
word meta, which means change of state, and the Latin w
stabilis, which means stable. This terminology was intr
duced by Ostwald@4# in 1897 for a state of matter whic
precedes a stable state. Ostwald considered metastable
as a fundamental property of matter. From a thermodyna
point of view metastable states correspond to local min
of the free energy where the system is stable with respec
small fluctuations. This minimum is not the lowest one an
metastable state decays with a finite lifetime albeit that
lifetime may be very long.

As told, the existence of metastable states is usually a
ciated with first-order phase transitions. The decay of a m
1063-651X/2002/66~3!/036114~16!/$20.00 66 0361
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stable phase proceeds by the formation of nuclei of the st
phase and their subsequent growth. For a supercooled
these are liquid droplets. The lifetime of a metastable stat
determined by the nucleation kinetics, which is mostly co
trolled by the nucleation barrier.

Metastable states are especially important for polym
systems. The relaxation of a metastable conformation
volves the reorganization of many segments of the chain,
this is intrinsically slow. A rigorous description of metastab
states in polymer systems is an outstanding problem of
tistical physics. The difficulty lies in finding the stable an
metastable domains in a multidimensional phase spac
well as the height of the barrier that separates them. A s
tegic direction in treating these problems involves introdu
ing an order parameter and the Landau free energy@5#. Typi-
cally, the order parameter has to be defined as a lo
fluctuating quantity. According to fluctuation theory of pha
transitions, the height of the barrier is associated with
Ginzburg number. The Ginzburg number characterizes
intensity of the interactions of correlated fluctuations of t
order parameter. When this number is small, self-consist
field theory works. In the general case, when the Ginzb
number is not small, the problem becomes mathematic
extremely involved. Typically, the functional form of th
Landau free energy has always been postulated on very
eral grounds, i.e., as a series expansion in the order pa
eter with phenomenological coefficients. An exact analyti
calculation for a given model is a route which is followed
extremely few cases in the literature. One of the problem
to identify the order parameter in the problem. There are
general guidelines available for doing this.

The aim of this paper is to present a simple model of
©2002 The American Physical Society14-1
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ideal chain near a surface. We will show that for this mo
the stretching of the chain is a useful order parameter. T
order parameter characterizes a polymer chain as a whole
a result the correlations of fluctuations of the order param
are coupled throughout the whole system and the Ginzb
number is strictly zero. In other words, the system featu
mean-field behavior. As a result it is possible to elaborate
the route specified above by using the Landau free ene
similarly as was done in a very limited number of cases
the literature for closely related problems@3,6,7#.

The remainder of this paper is the following. First we w
elaborate on various variants of the model that feature c
formational coil-to-flower transitions. From the analogy wi
systems with similar type of conformational transitions, it
possible to conjecture a scaling analysis and account
excluded-volume effects even before the exact results
analyzed. Then we will proceed with presenting results t
can be derived from the exact partition functions. Our goa
to collect a complete set of important results for the mod
These include the analysis of the distribution of comp
zeros. Apart from a rigorous classification of the phase tr
sitions, it gives an idea for the order parameter in the syst
Using this order parameter we can elaborate on the Lan
function. This will give the full phase diagram and allows
to analyze the barriers between the stable and metas
states, including finite chain length effects. From these b
riers it is possible to analyze the lifetime of the system in
metastable states. At the end of the paper we will men
the analogy of the present model with strongly related pr
lems and discuss the chances to measure conformat
transitions by AFM experiments.

II. IDEAL CHAIN NEAR ADSORBING SURFACE

Basically we will consider conformational properties
ideal, isolated polymer chains as schematically presente
Fig. 1. In the model, one chain end is fixed to a preset co
dinate. We refer to the coordinate for the tethered end az0
and choose typicallyz0.R, whereR is the radius of gyration
of the chain,R5A(N/6). Further we takezN,z0. All other

FIG. 1. Illustration of the systems of interest. An isolated Gau
ian chain is fixed with one of its ends at a positionz0 above an
impenetrable adsorbing surface. The tether points are indicate
the black dots. The~close to! unperturbed coil and the flower con
formation are indicated. The flower is composed of a stron
stretched stem and an adsorbed fragment, i.e., the pancake. At
critical coordinatez0* two conformations can be equally likely, i.e
the coil and the flower. Forz0,z0* the flower is the preferred state
The thin spheres are drawn to assist the scaling arguments.
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segments in the chain are not confined and therefore
chain of interest can assume many different conformatio
Not all possible conformations are equally likely, becau
there is, in the proximity of the chain, an impenetrable s
face with which the polymer chain can interact. We will co
sider the case in which the polymer segments are attracte
the surface, i.e., that the enthalpic interaction energy exce
a critical value. The solvent-mediated interaction betwe
the surface and the polymer segments is described by
adsorption parameterc. All the energy parameters are ex
pressed inkBT units and the segment lengthb serves as the
unit distance.

Let us consider an ideal Gaussian chain consisting oN
segments tethered by one end at a distancez0 from the solid-
liquid planar surface and with the other end inz. Only the
direction normal to the surface,z axis, is of interest here
since the walk in thex-y plane is unconstrained and therefo
described by the standard Gaussian function. The statis
weight G(N,z0 ,z) of a chain with the end segments at di
tancesz0 andz from the interface satisfies the diffusion equ
tion @8#

]G~N,z0 ,z!

]N
2

1

6

]2G~N,z0 ,z!

]z2 50 ~1!

with the initial conditionG(N,z0 ,z)5d(z2z0). The short-
ranged interaction with the surface is introduced through
de Gennes@9# boundary condition

1

G~N,z0 ,z!

]G~N,z0 ,z!

]z U
z50

52c. ~2!

The physical meaning ofc can easily be derived from Eq
~2!. When c,0 the functionG increases withz and this
means that the chain molecule avoids the surface. In
other limit c.0 the polymers stick to the surface and t
crossover valuec50 corresponds to the critical condition
We will consider the strong adsorption case only.

The solution of Eqs.~1! and~2! first found by Lepine and
Caille @10# and later by Eisenriegleret al. @11# is naturally
expressed in reduced variablesZ5z/2R, Z05z0/2R, andC
5cR. It can be presented to be composed of two contri
tions, i.e., one from the coil conformations,Gcoil , and one
from the flower conformations,Gf l ,

G~Z0 ,Z,C!5Gcoil~Z0 ,Z!1Gf l~Z0 ,Z,C!, ~3!

where the coil contribution contains all possible conform
tions of the chain starting at coordinateZ0 and ending atZ
without touching the surface even once,

Gcoil~Z,Z0!5
1

2RAp
$exp@2~Z2Z0!2#2exp@2~Z1Z0!2#%

~4!

and Gf l collects all conformations that touch the surface
least once,
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EXACTLY SOLVABLE MODEL WITH STABLE AND . . . PHYSICAL REVIEW E 66, 036114 ~2002!
Gf l~Z,Z0 ,C!5
exp@2~Z1Z0!2#

RAp
@11ApCY~Z1Z02C!#.

~5!

In these equations, the notation of the end-point distri
tion G has been modified to indicated the use of the redu
variables. For clarity we also introduced the variableC in the
arguments ofGf l in addition to the arguments used forG in
Eqs. ~1! and ~2!. In Eq. ~5! the function Y(x)
5exp(x2)erfc(x). When x@1 we can approximateY(x)
'1/(xAp), when x!21 the limiting behavior isY(x)
'2 exp(x2), and in between these cases, i.e., whenuxu!1,
Y(x)'122x/Ap.

After integration over all coordinates of theNth segment
the partition functionQ(Z0 ,C) for a chain tethered with one
end atZ0 is found:

Q~Z0 ,C!5Qcoil~Z0!1Qf l~Z0 ,C!

5erf~Z0!1exp~2Z0
2!Y~Z02C!. ~6!

The partition functionQcoil(Z0) describes the state of
weakly perturbed coil, having no contacts with the adsorb
surface, whileQf l(Z0 ,C) describes the sum over all inho
mogeneous conformations consisting of an adsorbed
with at least one contact and a stretched stem connecting
grafting point and the adsorbing surface.

The free energy corresponding to the coil and flower p
tition functions are obtained from Eq.~6!. For fixedZ0@1
and C@1 we find that the two branches of the free ener
cross at

C* 52Z0 ~7!

or in the original variables atc* 56z0 /N. This result is iden-
tical to the scaling result given above. As the two branche
the free energy cross each other, we expect that the coi
flower transition is of the first-order type.

Before moving on it is useful to illustrate graphically th
behavior of the free energy and how the transition com
about. In Fig. 2 it is shown that the free energy of the coi
independent of the reduced adsorption energyC. The flower

FIG. 2. Free energy of the system as a function of the redu
adsorption energyC. Two branches, coil and flower, of the fre
energy are drawn. The crossing point, i.e., the binodal, is indica
The dashed line correspond to the metastable extensions of the
energy. Here we have takenz0 /N50.2.
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conformation of course decreases withC. The continuous
lines in Fig. 2 correspond to the stable parts and the das
continuations of these lines are metastable branches of
system. The crossing point of the two lines correspond to
binodal condition as given by Eq.~7!. At a given adsorption
parameter, the lower branch describes the thermodyna
cally stable state. The analysis of the partition function do
not allow us to determine whether the other branch~with a
higher free energy! corresponds to a metastable or an u
stable state. We will address this question below.

It is well known that when the grafting pointZ0 is placed
near the surface andc@0, we find

Fads~0,C!52 ln@Q~0,C!#52c2N/6. ~8!

This equation suggests a simple scaling picture. The
sorbed layer can, in a 1kBT per blob ansatz, be presented b
Nc2/6 blobs. Each blob consists ofg56/c2 segments. From
this we find the physical meaning of thec parameter as the
inverse blob sizej51/c.

It is of interest to mention that Eq.~8! shows that the
effect of the adsorbing surface is similar to the effect of
external ~adsorption! field uads felt by all the segments:
Fads5uadsN, whereuads52c2/6. There is a strong analog
with other systems recently discussed in the literature wh
have similar characteristics, e.g., the chain confined und
disk featuring the escape transition@1,2,12–19#, and the coil-
to-flower transition for a chain pinned near a step in t
external potential@3,7,20#. From this analogy we know tha
the conformational transition in the model can be found fro
a two-state ansatz. It is of interest to briefly present the
guments to obtain the central result.

Within the two-state approach we conjecture that
chain should choose between either the coil or the flow
conformation. The coil has a free energyFcoil50 as it is the
reference state. Let us assume that the flower is compose
a stem withn5N2m segments and thus that there arem
5N2n segments in the crown. Then the free energy of
flower is given by a contribution of the stem and the dis
The first part is given by the stretching of the Gauss
chain. For the disk we use the result of Eq.~8!:

F f lower~m!5Fstem~N2m!1Fads~m!

53H2/2~N2m!2mc2/6. ~9!

Optimization of the free energy of the flower with respe
to m gives

N2m53H/c. ~10!

Inserting this result in Eq.~9! and equating this to zero
i.e., the free energy of the coil, we find that the transiti
takes place atH* 5Nc/6. Also, it is of interest that at the
transition the number of segments in the stem is exa
equal to the number of segments in the diskm* 5N/2. It is
easily shown that the blob size in the stemjstem51/c
5jads. In Fig. 1 the blobs are indicated by thin sphere
Below we will apply the scaling approach to includ
excluded-volume effects.
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III. COMPLEX ZEROS OF THE PARTITION FUNCTION

At a phase transition point, thermodynamic functio
have a singularity, meaning that they or their derivativ
have a finite or infinite discontinuity. On the other hand t
partition functionQ5( i exp(2Ei /kBT) is just a sum of ex-
ponentials and thus has no singularities as a function of
ternal parameters. Since the free energy is the logarithm
the partition function, and the logarithmic function has a s
gularity at zero argument, the only possibility left is that t
partition function should vanish~or at least, in some sens
tend to zero! when the system approaches the transit
point. It is obvious though, that the partition function is po
tive and cannot be zero at any real value of external par
eters. It was also realized very early that a true mathema
singularity of the free energy can develop only in the th
modynamic limit, when the number of particles tends to
finity.

The approach pioneered by Lee and Yang@21# related the
singularities to complex zeros of the partition function. Th
original papers dealt with the liquid-gas transition induc
by the change in fugacity, so these were the analytical pr
erties of the grand partition function in the complex plane
the fugacity~the fugacity was represented as a complex nu
ber with a real and an imaginary part! that were the object o
investigation. Similarly, temperature-induced transitio
should be described in terms of the zero distribution for
canonical partition function in the complex plane of the te
perature~or b51/kBT). These are commonly called Fish
zeros@22# in order to distinguish them from the Yang-Le
zeros in the fugacity plane. Obviously, the general appro
is applicable to phase transitions induced by changing
other external parameter as well.

Lee and Yang showed that for finiteN the partition func-
tion can have only complex conjugated zeros but no zero
the real positive axis. As the number of particles increas
the complex zeros come closer and closer to the real pos
axis, and eventually, in theN→` limit, they pinch upon the
real axis at the transition point. While the Yang-Lee theor
states that the zeros in the fugacity plane have to be loc
on a unit circle, there are no general results known for Fis
zeros. Empirical regularities show, however, that they ten
fall on smooth arcs that cross the real axis at a certain an

In the thermodynamic limit, the free energy and its d
rivatives can be represented as integrals over the contin
distribution of zeros characterized by some limiting dens
function. But the problem of finding the actual distribution
zeros for the partition function of even a simple mod
proves to be formidable. In practice, for a given model
zeros are calculated numerically for small samples and t
some extrapolation is employed@23,24#.

There exists a phenomenological approach relating cer
features of a phase transition~amplitudes and critical indices!
to the characteristics of the distribution of zeros@25#, as well
as scaling predictions for this distribution@26#.

Assuming that the zeros concentrate on two symme
support lines which cross the real axis at the pointb5bc
making an anglev with it, Grossmann and Rosenhauer@25#
were able to present an extensive classification of phase
03611
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sitions and to express the main characteristics of a trans
~jump magnitudes, critical indices, and amplitudes! by the
density of zerosg along the support lines. They assumed th
the density of zeros is a power-law function of the coordin
along the imaginaryy axis:g(y);y12a. Using this assump-
tion several cases can be distinguished, and among them
following two are relevant for our model.

~1! If a51, i.e., the density of zerosg(y) tends to a
constant at smally, then the zeros necessarily approach
real axis at a straight anglev5p/2 and the energy has
finite jump DE52pg(0) upon touching theb5bc point.
This obviously corresponds to a first order transition with
d-peak singularity in the specific heat.

~2! If a50, the density of zeros grows linearly withy,
and the support lines cross the real axis atv5p/4, the en-
ergy is continuous but the specific heat has a finite ju
discontinuity, as in a classical mean-field second-order tr
sition.

These predictions were supported by the exact sol
model of an ideal Gaussian chain attached by one end
planar adsorbing surface in the presence of a constant no
force applied to the free end of the chain@6#. Results of the
present paper are strongly related to this paper.

From the above, it is clear that the adsorption parametc
is analogous to the inverse temperatureb. And therefore it is
natural to introduce the complex representation for the
sorption parameterc5r exp(ix) ~wherer is the amplitude,x
the polar coordinate, andi 5A21) in the partition functions.
Here we will review the important results and refer to A
pendix A for some more details.

The zeros close to the real axis~i.e., with smallx) can be
numbered by an indexk50, 1, 2, . . . :

xk5
p~2k11!N

6z0
2 , ~11!

and thus the closest zero is characterized by the polar a

x05
pN

6z0
2 . ~12!

For a fixed value of the ratioz0 /N and increasingN, x0
approaches the real axis asN21. At distances of orderz0
'N1/2 the deviation of the polar angle from zero is on t
order of unity and one certainly cannot speak of a first-or
transition.

At the point of touching the real axis (x→0, r
→6z0 /N), i.e., for largeN, the density of zeros tends to
constant valueg05z0 /(2pN). According to Grossman and
Rosenhauer, this falls into the category of first-order tran
tions with a finite jump in the energy. The magnitude of t
jump must be

DE52pg~0!5z0 /N ~13!

and is a function of the grafting coordinate and the ch
length only. This is an interesting result. Let us introduce
shorthand notation for the right hand side of Eq.~13!:

s[z0 /N. ~14!
4-4
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EXACTLY SOLVABLE MODEL WITH STABLE AND . . . PHYSICAL REVIEW E 66, 036114 ~2002!
Indeed,s can be identified as the level of stretching of t
coil when it starts atz0 and reaches the surface afterN steps.
In terms of an order parameter, it is known that at a fir
order transition the order parameter should jump. Equa
~13! indicates thats may be identified by the order paramet
in the system. According to Eq.~13! the jump in the energy
in the system is accompanied by a jump in the order par
eter: it is close to zero when the chain is in the coil state
jumps toz0 /N after the transition. Below we will elaborat
on this idea.

On the asymptotic wings of the hyperbola,x→p/4 and
the density of zeros increases linearly with the distance fr
the transition point along the curve:g>r/(6p).

When the distance from the adsorbing plane to the gr
ing point,z0, decreases, so does, accordingly, the densityg0
and the magnitude of the jump in the order parameter. Ev
tually, atz050, the curve degenerates into two straight lin
at an anglev56p/4 with the crossing of the real axis at th
origin. The density of zeros is then a linear function of t
distance from the critical valuec50. Hence, the transition
becomes second order, which is a well-known result.

An example of the distribution of zeros is given in Fig.
for a first-order and second-order transitions. In this fig
the grafting distanceZ0 is varied. The complex zeros ar
with increasingz0, distributed along the support line accor
ing to the characteristics of a first-order transition. For e
ample, the supporting line, which is drawn to guide the e
approaches the real axis at an angle ofp/2 and the density of
zeros along the line go to a constantg(0).

IV. AVERAGE ORDER PARAMETER

It is essential to elaborate on the selection of the or
parameter. In the preceding section it was conjectured
the stretching of the chain can be used as such.

In order to choose the appropriate order parameter
instructive to visualize a continuous transformation from
initial random coil to the inhomogeneous flower state. Fi
the coil is stretched so that it can reach the favorable surf
Then, a~nucleation! seed is formed at the surface. This se
grows and forms the pancake~crown! at the expense of the
stem until an equilibrium state is reached. In this proces

FIG. 3. The distribution of zeros in the complex plane of t
adsorption parameterc5Re(c)1 i Im(c). The lines are drawn to
guide the eye. The chain lengthN5400 and three values of th
tether pointz0 /N50, 0.1, 0.2 are indicated. The lines are calc
lated using Eq.~A3!.
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is the chain stretching parameter that grows continuou
For the deformed coil, the parameter refers to the chain
whole, while for the flower it refers only to the stem. Hen
the order parameters is defined as follows. For the coil stat
where the coordinates of the first and last segments arz0
and zN , respectively, we haves5(z02zN)/N, and for the
flower state,s5z0 /n, wheren is the number of segments i
the stem, i.e., the number of segments between the gra
point and the first contact with thez50 boundary.

It should be realized that the number of segments in
stem is fluctuating. The average order parameter has
contributions, one from the coil state with no contacts, a
the other from the flower state:

^s&5^scoil&
Qcoil

Q~Z,C!
1^sf l&

Qf l

Q~Z,C!
. ~15!

For the coil state, the stretching parameter (z2z0)/N is
averaged withG(Z,Z0) of Eq. ~4!. The result is

^scoil&52
z0

N

erfc~Z0!

erf~Z0!
. ~16!

To obtain the corresponding property for the flower, it
convenient to usen5N2m for the number of segments i
the stem. For the flower state, the averaging is perform
with the weightGstem(z0 ,n)Qads(c,N2n). Now, Gstem is
found again from Eq.~4!. For sufficient largez0 and a very
small distancezn5d or the second end position, we ca
rewrite Eq.~4! as

Gstem~z0 ,d,n!5
3A6

Ap

z0d

n3/2expS 2
3z0

2

2n
D , ~17!

whered51/6 is an internally consistent choice. The avera
order parameter in the flower can thus be written as

^sf l&5Qf l
21S 3

2p D 1/2

z0E
0

N

dnS z0

n Dn23/2

3expS 2
3z0

2

2n DY~2cAN2n!, ~18!

whereQf l may be presented as

Qf l5S 3

2p D 1/2

z0E
0

N

dn n23/2expS 2
3z0

2

2n DY~2cAN2n!.

~19!

Combining the integral representation of the partiti
function Qf l with the closed analytical form of Eq.~6!, and
using Eq.~40!, one can find an exact expression in reduc
variables relating the average stretchingS5sR to the force:

^S&5
Z0

3
1

1

3S 1

Ap
2Z0Y~Z0!1

Qf l

2Z0Q~Z0 ,C!D . ~20!
4-5
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FIG. 4. ~a! The average
stretching ^s& ~order parameter!
and the average~absolute value of
the! force ^ f &/3 as a function of
the reduced distanceZ05z0/2R of
the grafting point. The second en
is unrestricted.~b! The fluctua-
tions of the stretchinĝds2& and
the fluctuations of the force
^d f 2/3& as a function of the sepa
ration. Parameters areN5600, c
50.6.
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For a well-developed flower state (C@1 and Z0,Z0* ),
expression~20! simplifies to

^s&>
c

3 S 11
1

cz0
D . ~21!

The main term corresponds to the most probable s
length while the second term represents the correction du
fluctuations. The fluctuation correction damps out with
creasingz0 and the factor 1/c5jads, the adsorption correla
tion length, gives the amplitude of the fluctuation contrib
tion.

In Fig. 4~a! the average order parameter~average stretch
ing! is shown as a function of the separationZ05z0/2R.
Near the transition point the two quantities behave, as
plained above, nearly the same. Only for very small graft
coordinates, there is a small noticeable difference@cf. Eq.
~20!#.

The squared fluctuations of the stretching functions, s2

5^s2&2^s&2, can also be found in a closed analytical for
although the expression is quite lengthy. Therefore
choose to present the results in a graphical form only. T
fluctuations in the stretching display two maxima: one
z0/2R→0, which corresponds to a very short stem, and
other at the transition pointz0* /2R5c/6 ~for the parameters
used in Fig. 4 this meansZ053). Here, the chain fluctuate
between the coil state with effectively zero stretching and
ordered flower state. In the first region, the fluctuations
be approximated as

s25S c

3D 2F j

z0
12S j

z0
D 2G . ~22!

The height of the second peak is given by

speak
2 >S z0

N D 2

. ~23!

Apart from the average order parameter, Fig. 4~a! shows
the average force acting on the fixed end of the chain.
force can be easily calculated from the partition functi
from taking the derivative with respect to the distance of
grafting point:
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f 52
] ln Q~N,z0 ,c!

]z0
. ~24!

Indeed the force is negative, which means that the
chain is pulled towards the surface. Here and below we w
omit the minus sign of the force and present the abso
value of it. Since the average order parameter was introdu
as the stretching degree, it is obvious that these two qua
ties are closely related. However, the properly averaged
der parameter is not strictly proportional to the average for
The difference is clearly seen in Fig. 4~a!. This is primarily
due to the fluctuations in the number of segments that fo
the stem. These fluctuations are essential when the gra
point is relatively close to the surface, and the stem inclu
only a small fraction of all the segments. A comparison
the mean-squared fluctuations for the order parameter
the force in Fig. 4~b! demonstrates the same effect: the for
fluctuations do not exhibit a maximum at smallZ0 as op-
posed to the fluctuations ins. The forces are discussed i
much more detail below.

V. LANDAU FUNCTION

In the following we will mainly concentrate on the stab
and metastable states of the first-order coil-to-flower tran
tions of a chain near an impenetrable surface.

The first step is to define the Landau free energy@5# in
terms of the order parameters. For the coil we uses5(z
2z0)/N and Eq.~4! can be written as

Gcoil~s!5A 3

2pN
expS 2

3

2
Ns2D . ~25!

For long enough chains the Landau functionFcoil(s) re-
duces to a simple parabolic dependence:

Fcoil~s!52
1

N
ln Gcoil~s!>

3

2
s2. ~26!
4-6
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FIG. 5. The Landau free energy as a function of the order parameters for the coil and flower conformations.~a! For fixedz0 /N50.2 and
several values of the adsorption parameterc as indicated.~b! For fixed adsorption parameterc51.2 and for various values of the tether poi
z0 /N as indicated.N51000 in both cases.
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The maximum value of the order parameter in the c
states0 is achieved when the free end is just touching
surface,s05z0 /N.

The flower is an inhomogeneous conformation, and o
one part of the chain is stretched. Now the order paramet
associated with the number of segments,n, in the stem,s
5z0 /n. The Landau function is calculated asF f l(z0 ,n,c)
521/N ln@Gstem(z0 ,n)Qcrown(N2n1c)#, which can be re-
written to give

F f l~s,c!5
3

2
ss02

1

N
lnFYS CAS 12

s0

s D D G
2

1

2N
lnS 3Ns0

2ps D . ~27!

In the thermodynamic limit, the flower branch simplifie
to

F f l~s,c!5
3

2
ss02

c2

6 S 12
s0

s D . ~28!

The discussion of the Landau function is facilitated
illustrations in graphical form. In Fig. 5~a! results are pre-
sented for the Landau free energy as a function of the o
parameter for various values of the adsorption parameter
for a fixed grafting coordinate. From this graph it is eas
seen that the two branches of the Landau function matc
s5s0. Neither the coil state branch nor the points0 where
two branches meet depend on the adsorption parametc,
while the flower state branch is of course affected by it. W
increasing affinity for the surface, the minimum in the flow
branch becomes more pronounced.

In Fig. 5~b! the other control parameterz0 is varied andc
is fixed. Again, the Landau function of the coil remains t
same, i.e., it does not depend on the control parameter
now the point where the two branches of the Landau fu
tion cross is a function ofz0.

The minimum of the Landau function determines the a
erage value of the order parameter in the~local! minimum of
the system. The binodal condition is found when the t
minima of the Landau function are equally deep. Of cou
this condition can be found by either varyingz0 or c.
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VI. BARRIER HEIGHTS SEPARATING STABLE AND
METASTABLE STATES

The analytical expressions for the Landau function all
us to compute the height of the barrier separating the
minima. The barrier height counted from the coil state mi
mum is simply given by

Dcoil5
3

2
Ns0

2 , ~29!

and barrier height with respect to the flower state minim
is given by

D f l5
3

2
NS s02

c

3D 2

, ~30!

provided of course thatc.3s0.
It is of interest to note thatDcoil53z0

2/2N is the free
energy of stretching the chainFstr , while that of the flower
contains the combination of the free energy of stretching
that of adsorption

D f l5SA3z0
2

2N
2cAN

6
D 2

5~AFst2AFads!
2. ~31!

The importance of the barrier height as counted from
metastable~upper! minimum is related to the kinetic aspe
of the problem which we discuss below.

The first spinodal line corresponds of course toD f l50
and thusc** 53s0. Formally, the second spinodal branc
should be found fromDcoil50. This givess0** 50. This is
indeed correct in the thermodynamic limit. Physically, it
obvious that at small grafting distancesz0;R the coil can
easily touch the adsorbing surface, and the metastabilit
lost. Therefore, the spinodal conditions0** 51/AN is more
accurate.

The evaluation of the height of the barriers is a cent
result of this paper. Therefore it is natural to present
predictions of Eqs.~29! and~30! also in graphical form. This
is realized in Fig. 6. Some comments on these figures ar
order. In Fig. 6~a! the height of the barriers is given as
function of the positional control parameter. At small sep
4-7
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KLUSHIN, SKVORTSOV, AND LEERMAKERS PHYSICAL REVIEW E66, 036114 ~2002!
rations the coil is metastable and the barrier height to
other minimum increases with increasing separation. At
same time, the flower state is stable and the height of
barrier decreases with increasing distance. At the transi
point ~binodal! the height of the barrier is equal as count
from the coil and the flower state. At a distance further o
z0 /N.c/3, the barrier for the flower vanishes, and there
just one minimum.

Alternatively, in Fig. 6~b! the adsorption parameterc is
the control parameter. From the above we know that
height of the barrier from the coil side does not depend oc.
The height of the flower branch increases with increasingc.
Again the crossing of the lines correspond to the bino

FIG. 6. ~a! The reduced height of the barrierD/N as a function
of the reduced distancez0 /N. The barrier height for the flowerD f l

is drawn by a solid line and that for the coilDcoil is a dashed line.
The thick parts represent the cases where the coil or the flow
stable, the thin lines correspond to the metastable states.~b! The
reduced barrier height as a function of the adsorption parametc.
Line choices are similar to graph~a!. ~c! The barrier heightD as a
function of the degree of polymerizationN for a particular choice of
z0520 andc51.
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line. When c,3s0, there is no barrier for the flower an
more. Between 3s0,c,6s0 the flowers are metastable an
whenc.6s0 the coils are metastable.

There is yet one more variable in the problem. For a fix
value of the adsorption parameterc and grafting distancez0
it is possible to study the effect of the molecular weight
the barrier height. An example of this is given in Fig. 6~c!.
The barrier height for the coil is a decreasing function ofN,
whereas the barrier height increases from the flower side

The implication of the fact that there exists metasta
states is the possibility to have hysteresis effects. Depen
on the history of the system, the chain may be tempora
trapped in a metastable state, i.e., it can be in the metas
flower state when the free energy of the coil state is low
The opposite can also occur, i.e., the system may be trap
in the coil state whereas the flower may be more favorab

VII. STABLE AND METASTABLE STATES

Let us discuss in some more detail the model from a L
dau free energy perspective. Within a certain range of
two governing parameterss05z0 /N and c, there are two
minima of the Landau function. The minimum close tos
50 corresponds to a weakly perturbed coil andF(scoil)
'0. The second minimum corresponding to the flower st
is found at

sf l5c/3. ~32!

The depth of the minimum is found by inserting Eq.~32! into
Eq. ~27!:

F~sf l !5cs02c2/6. ~33!

At the binodal condition the two minima are equally dee
This leads to

c* 56s0 . ~34!

In the thermodynamic limitN→`, this defines the line of
the first-order phase transitions. In terms of the original va
ablesc and z0, the coexistence line equation reads, as
discussed above,c* 56z0 /N, or in reduced variables,C*
52Z0. In the case ofz050 ~the chain is attached to th
surface!, the transition atc50 becomes second order. It wa
shown in@6# that in the presence of a constant external e
force,c50 is a bicritical point.

Going away from the binodal condition by increasing t
reduced grafting distances0 or by decreasing the adsorptio
parameterc, the flower state becomes metastable; the de
of the minimum for the flower is not as deep as the minimu
of the coil @F(sf l).0#. Once the position of the flower stat
minimumsf l coincides with the barrier positions0, the mini-
mum disappears completely. This gives the equation of
of the spinodal lines:

c** 53s0 , ~35!

or in reduced variables,C* 5Z0.
To visualize metastable flower states more clearly, it

instructive to find the number of segments belonging to

is
4-8
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EXACTLY SOLVABLE MODEL WITH STABLE AND . . . PHYSICAL REVIEW E 66, 036114 ~2002!
stem in the region between the binodal and the spino
lines. As follows from Eq.~32! and the definition of the orde
parameter for the flower,s5s0 /n, nstem5z/sf l53z0 /c.
Along the binodal line this givesnstem* 5N/2. Along the spin-
odal line, nstem** 5N, which means that the adsorbed crow
just did not develop. We conclude that metastable flow
have more than half of the segments in the stem; the sm
the adsorbed part is, the closer we are to the spinodal.

We are now in a position to present the phase diagram
the system including the binodal and spinodal lines. T
graphical presentation of this is given in Fig. 7. The bino
line separates the parameter space in regions where
flower is stable~bottom! from that where the coil is stabl
~top!. The top spinodal line is the border line to have me
stable flowers, and the bottom spinodal line indicates the
of metastable coils. In Fig. 7 there is also a gray scal
around the binodal and spinodal lines. These correspon
the finite-size effects discussed below.

VIII. FINITE-SIZE EFFECTS

It is of interest to pay some more attention to the case
finite chain lengths because this is the experimentally ac
sible case.

All the above is based on the ansatz that a single ma
molecule may be treated as a thermodynamic system
certain subsets of conformations are associated with pha
Clearly, one expects some deviations from this thermo
namic picture if the polymerization index is not large. W
can expect, e.g., that the transition occurs more gradu
The phase behavior becomes also blurred near the trans
line if the interaction parameters are small.

We have an exact analytical expression~6! for the parti-
tion function as a function of the two control variablesZ0
andC. It is obvious that the larger the values of the scali
variables are,Z0@1 andC@1, the more pronounced is th
phase behavior. In theZ-C phase diagram, we expect th

FIG. 7. Phase diagram in the reduced variablesC and Z. The
binodal line as well as both spinodal lines are indicated. In
region of the gray scaling the finite-size effects are important. Th
are a number of regions:~1! the coil is stable and the flower i
unstable,~2! the coil is stable and the flower is metastable,~3! the
coil is metastable and the flower is stable,~4! the coils are unstable
and the flowers are stable. These regions are found going from
to right and from top to bottom. The region of small systems is n
the origin (C<1,R<1).
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finite-size effects to be quite pronounced in the region n
the origin (Z0<1, C<1).

The binodal line~with the finite-size corrections! is found
from the condition thatQcoil5Qf l , to give

Z0* >
C*

2
1

ln 2

2C*
~36!

for C* @1. In the natural coordinates this readsz0* /N
>c* /61 ln 2/(Nc* ). In the limit of C* →0, the binodal line
~which has only a formal meaning here! intersects theZ0
axis atZ* 50.48.

The width of the binodal line itself is estimated from th
slope of the force distance curvef (z0 /N) at the binodal. The
width of the binodal region is given by the ratio of the slo
of the force and the magnitude of it. The drop is

DZ05
D f

N~] f /]Z0!
;

1

Nc*
, ~37!

or in scaling variablesDZ0;1/C* @cf. Eq.~43! below#. Thus
the binodal region narrows as one moves away from
origin. In Fig. 7 this is schematically drawn by the thinnin
of the gray region around the binodal for increasing values
C. Near the origin there is a region where both the width
the binodal as well as the value ofZ0* is of order unity. This
may be called the ‘‘small system’’ region.

The spinodal lines are also characterized by a finite eff
tive width. This width may be estimated from the argume
that when the barrier height is of orderkBT it is easily over-
come by thermal fluctuations. TakingD f l51 in Eq. ~30! we
find the width for the first branch of the spinodal:

Z0** 5C** 11, ~38!

or in natural coordinates,s0** 5c** /31A2/(3N).
As explained above, the finite-size effects are essentia

the second spinodal line. It is found by takingDcoil51, and
from Eq. ~29! we find

s05A 2

3N
~39!

or Z0** 51. Again, the coil becomes unstable once it c
easily touch the adsorbing surface. Note that the width of
spinodal regions remain constant everywhere in theC-Z0
phase diagram, in contrast to the narrowing binodal reg
~cf. Fig. 7!.

IX. CHAIN STRETCHING AND LOCALIZATION FORCE

In the preceding part it was found that when the grafti
point z0.R the coil-to-flower transition is first order. Thi
transition has also consequences for the force neede
maintain the end point at the specified coordinatez0.

As told above, the force can be easily calculated from
partition function@cf. Eq. ~24!#. The result can best be pre
sented in the scaling variables,

e
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KLUSHIN, SKVORTSOV, AND LEERMAKERS PHYSICAL REVIEW E66, 036114 ~2002!
F5exp~2Z0
2!

CY~Z02C!

Q~Z0 ,C!
, ~40!

whereF5 f R. Again, the negative sign was omitted since w
are only interested in the magnitude of the force. T
asymptotic behavior of the force as a function ofc andz0 in
the limit of largeN is quite simple:

F5H C, Z0,Z0*

F* 2~F* !2~Z02Z0* !, Z0'Z0*

p21/2~C/Z0!exp~2Z0
2!, Z0.Z0* ,

~41!

whereZ0* 5C/2 as before andF* 52C/3 is the force at the
transition point. In the thermodynamic limitN→` the force
f exhibits a very simple behavior as a function of thec pa-
rameter:

f 5H 0, c,c*

c, c>c* .
~42!

In Fig. 8~a! we give an example of the force needed
keep the chain grafted at the coordinatez0 for several values
of the adsorption parameterc. As the chain end is moved
away from the adsorbing surface, the force remains cons
until we approach the binodal distancez0* . In the vicinity of
the transition pointz0 /N5c/6 the force decreases linear
with z0:

f ' f * 2
~ f * !2

2
~z02z0* !. ~43!

At larger distances, the chain is effectively unable to rea
the adsorbing surface and the force is practically zero.
slope of the force distance relation near the transition
given by (] f /]z0)z5zo

5N( f * )2'Nc2. The transition thus
becomes more abrupt with increasingc. The graphs pre-
sented in Fig. 8~b! show the force at a fixed~normalized!
separation as a function of the adsorption strength. In
flower state, i.e., at high values ofc, the force is proportiona
to c. The drop to virtually zero force takes place wh
c,c* .

The description in terms of the Landau function allows
to introduce the force associated with metastable states.
force due to a metastable flower conformation is determi
by the stem stretching, which is given by the position at
corresponding minimum of the Landau functionsf l5c/3.
Neglecting the fluctuations in the number of segments co
prising the stem, we use the simple expression relating
average force to the stretching parameter,f 53sf l .

It follows immediately that the force associated with t
metastable flower state is the same,f 5c, as in the case when
the flower state corresponds to the true equilibrium. Up
crossing one of the branches of the spinodal line, metasta
ity is lost and the force is determined by the only stable s
left. As a result, hysteresis effects can be very pronounced
illustrated by the dashed arrows in Figs. 8~b! and 8~c!.

The change in the force with the adsorption parameterc at
fixed grafting distancez0 is given in Fig. 8~b!. The force is
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small for very small values ofc, then jumps at the transition
point c** 5c* /2, and finally grows linearly withc. If the
grafting distance is fixed at large enough values,z0@R, one
of the spinodal branches is never crossed, namely, the
state never becomes absolutely unstable. Hence the hy
esis loop for the force in Fig. 8~b! is not closed. Both the
position of the transition point and the magnitude of t
jump in the force are proportional to the reduced grafti
distance.

The hysteresis loop in Fig. 8~c! is completely closed. In
this graph,c is fixed and the force is plotted as a function
the position of the fixed end. The force in the metasta
branches eventually jump either when the coil becomes
stable, i.e., whenz0,R, or when the separation is just twic
the value corresponding to the binodal.

FIG. 8. ~a! The forcef needed to keep the tethered chain w
the end atz0 versus the reduced distancez0 /N. The sign of the
force is in reality negative because the chain is attracted to
surface. Parameters areN51000 and thec parameter is varied as
indicated.~b! The force versus the adsorption parameterc for vari-
ous values of the chain length as indicated and forz0 /N50.2. The
dashed lines with the arrows represent the hysteresis effects~c!
Example of a reduced force as a function of the reduced distan
presented forc50.6 andN51000, with special attention to the
hysteresis effect indicated by the dashed lines with the arrows.
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EXACTLY SOLVABLE MODEL WITH STABLE AND . . . PHYSICAL REVIEW E 66, 036114 ~2002!
X. LIFETIME ANALYSIS

As we showed above, there exist metastable states in
vicinity of the binodal line. The spinodal condition and co
responding hysteresis effects are of course of a kinetic na
and depend on the ratio of a typical experimental meas
ment time and the internal relaxation time.

It is well known that the relaxation time for a proce
involving a barrier crossing is exponential in the barr
height. The barriers separating metastable states from
stable ones were calculated above. We expect the chara
istic lifetime of a metastable coil to be of the order
exp(Dcoil)5exp@(3/2N)z0

2#, independent of the adsorption p
rameterc. For a metastable flower, the lifetime is expected
be of the order of exp(Dfl)5exp@(N/6)(c2c** )2#. In this
case, the barrier height is controlled by the proximity to t
spinodal value of the adsorption parameterc** .

From the point of view of potential applications, the sit
ation when the lifetime of the metastable state is not v
large may be of particular interest. In this case the estim
based only on the barrier height become too crude. A gen
approach for diffusion-controlled processes for polyme
systems has been put forward by de Gennes@27# and later
elaborated on by Fredrickson and Leibler@28#. This machin-
ery may be applied to coil-to-flower transitions, however
have chosen to apply the Fokker-Plank equation formal
to find a more accurate estimate for the characteristic de
time of the metastable states. A complete description of
coil-flower transition kinetics would require solving an equ
tion in a 3N-dimensional configuration space. Howeve
since we are interested in the slowest process only, the p
lem is simplified drastically. Assuming that the slowest mo
is associated with the relaxation of the order parameter
all the other degrees of freedom equilibrate quickly, we c
write a one-dimensional Fokker-Plank equation for the pr
ability density P(s,t), with the Landau functionNF(s)
playing the role of the effective potential:

]

]t
P~s,t !5

]

]s
D~s!F]P~s,t !

]s
1P~s,t !N

]F~s!

]s G . ~44!

HereD(s) is the diffusion coefficient along the configu
ration space path described by the order parameters. The
Landau functionF(s) in the two branches is given by Eq
~26! and ~28!.

Standard analysis@29,30# provides an expression for th
mean first passage timetcoil , i.e., the time required by the
chain initially in the coil state to go to the top of the barrie

tcoil5E
0

s0
ds

exp@NFcoil~s!#

D~s!
E

2`

s

dq exp@2NFcoil~q!#,

~45!

where agains05z0 /N. The usual way of dealing with this
expression is to approximate the internal integral overq by
extending the upper limit of integration tos0. Then, by defi-
nition of the Landau function, it has the meaning of the p
tition function of the coil state,Qcoil5erf@s0A(3N/2)#,
which can be taken out of the integral overs. D(s) is the
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diffusion coefficient along the configuration space path
scribed by the order parameters.

To understand the meaning ofD(s), we start with the
conventional translational diffusion coefficientD for the
center-of-mass coordinate of a free-draining chain, which
simply given byD5(Nz)21, wherez is the friction coeffi-
cient per segment. In this problem, we are dealing with
case that one end of the chain is fixed. For this case a si
dynamic variable is associated with the end-to-end distan
The diffusion coefficient to be ascribed to the free end diff
from that associated with the center-of-mass motion only
a numerical coefficient of the order of unity, which will b
omitted.

Since the time required for a certain displacement is
variant with respect to the choice of the dynamic variab
dt5(ds)2/D(s)5(dz)2/D. For the coil state, s5(z
2z0)/N, and henceD(s)5N23z21. Further analysis shows
that in the simplest approximation, the same expression
be used for the diffusion coefficientD(s) of a metastable
flower.

The exponential term exp@NFcoil(s)# is simply the inverse
of the Green’s function@Eq. ~25!#. The final result of the
integration is conveniently expressed in terms of the sca
variableZ0:

tcoil5
p

3
tRouseerf~Z0!erfi~Z0!, ~46!

where tRouse5N2z is the Rouse fundamental relaxatio
time, erfi(Z0) is the error function on the imaginary axis. Fo
large values of the argument Z0.0, erfi(Z0)
;(1/ApZ0)exp(Z0

2). For Z0@1 one obtains

tcoil>
Ap

3Z0
tRouseexp~Dcoil!. ~47!

The situation withZ0!1 means that the coil state is un
stable. The spinodal region corresponds toZ0;1, with tcoil
on the order of the Rouse fundamental relaxation time.

In the same approximation of replacing the internal in
gral by the partition function, the mean first passage time
the chain initially in the flower state,t f l , has the form

t f l5tRouseQf lNE
s0

sf l
dsexp@NF f l~s!#. ~48!

Using the asymptotic expansion of the integral~see Ap-
pendix B! one arrives at the following expression in the sc
ing variables:

t f l>
2Ap

3
tRouse

C**

C
Y~C** 2C!Dw~«C/2!, ~49!

whereDw(y)5exp(2y2)*0
yexp(t2)dt is the Dawson integral,

C** 5Z0 is the spinodal condition~excluding finite-N cor-
rections!, and «512(C** /C)2 characterizes the relativ
deviation from the spinodal. Away from the spinodal,C
2C** @1, the lifetime contains the expected exponent
factor,
4-11
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t f l>
4Ap

3
tRouse

C**

C22~C** !2 exp~D f l !. ~50!

For C2C** <1, the lifetime is linear in the deviation
from the spinodal:

t f l>
2Ap

3
tRouse~C2C** !. ~51!

The fact thatt f l vanishes whenC→C** simply reflects
the situation where the stem comprises nearly all the s
ments and the adsorbed chain fragment disappears.

XI. ESTIMATION OF THE LIFETIME OF A METASTABLE
STATE

It is useful to try to put some numbers to the above p
dictions. The elementary relaxation time of a segment (z, or
zb2/kBT in standard units! is, for typical segment length
and typical solvent viscosities, on the order of several na
seconds, 1028 s. This is what is seen, e.g., in polarized l
minescence.

A crude estimate of the lifetime of a metastable state
the following:

tRouse<t<tRouseexp~Dmax!, ~52!

whereDmax5(3/2)N(c/6)2 is the maximum barrier height~at
the binodal line!. This applies to both the metastable coil a
the metastable flower.

The lower bound gives an idea of the characteristic ti
near a spinodal~though the lifetime may be even smaller!;
the upper bound provides an estimate for the lifetime o
very metastable state~almost stable!.

Let us takec51 as a parameter for reasonably stro
adsorption, thenDmax5N/24. Consequently, we arrive at th
following bounds:

N231028 s<t<N231028 exp~N/24!s. ~53!

For N5100, we arrive at 1024 s<t<1022 s, depending
on how far we are from the spinodal. Similarly, forN
5500, 1023 s<t<106 s.

For a much weaker adsorption,c50.2, Dmax'(1.7
31023)N, so that for chains withN,103 we cannot even
start to speak about metastability.

XII. EXCLUDED-VOLUME SCALING

Above, it was shown how to construct a scaling picture
the coil-to-flower transition. Again, the flower consists of
stem ofn segments and the adsorbed part ofN2n segments.
In the absence of excluded-volume effects, the free energ
the flower state has the stretching term 3z0

2/2n and the ad-
sorption term2c2(N2n)/6. Minimization with respect ton
givesn53z0 /c. The free energy of the flower state is ther
fore F f l52Nc2/61z0c. It follows immediately that the de
gree of stretching of the stem isz/n5c/3, while the elastic
force is f 5c. The condition of stability~or metastability! of
the flower means that the size of the stretching blob is eq
03611
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to that of the adsorption blob:j51/f 51/c. As the end point
is moved further away from the surface, the number of blo
in the stem,z0 /j, grows linearly withz0, while the blob size
remains the same. The scaling picture gives the correct v
for the equilibrium transition point. Equating the free ener
of the flower state to that of the coil,Fc50, one obtains
againz0* /N5c/6. It also follows that at the binodal line, th
stem comprises exactly half of the chain:n/N51/2.

The scaling picture is quite useful for estimating the effe
of excluded-volume interactions on the coil-to-flower tran
tion. The flower free energy is modified to

F f l52B~N2n!c1/(12n)1AS z

nnD 1/(12n)

, ~54!

where A and B are numerical coefficients@A53/2 andB
51/6 for an ideal three-dimensional~3D! coil#, andn is the
Flory exponent equal to 3/5 for chains with excluded volum
and 1/2 for ideal coils. Minimization with respect ton yields

n5zc21S An

B~12n! D
12n

. ~55!

The free energy is given by

F f l52BNc1/(12n)1Kzcn/(12n), ~56!

where

K5A12nBnXS n

12n D 12n

1S 12n

n D nC.
It follows that the adsorbed part still exerts a consta
stretching force, which now scales asf ;cn/(12n). The equi-
librium transition point~the equation of the coexistence line!
reads

z0*

N
5

B

K
c. ~57!

One can see that the excluded-volume effects do not
fect the scaling form of the coexistence line. The fraction
segments in the stem at the binodal line is found to
n* /N5n and thus the fraction of segments in the adsorb
part equals (N2n* )/N512n; both still independent ofz0
andc. The value of 1/2 is of course recovered in the Gau
ian case. The spinodal conditions are modified correspo
ingly. One spinodal line associated with the instability of t
coil state is obviously given by

z0** ;R;Nn. ~58!

The other spinodal line, associated with the disappeara
of the flower, is found from the condition that the number
segments in the stem is equal toN. Since the number of
segments in the stem is linear inz0, one can immediately
obtain from the combination of Eqs.~55! and ~57!,

z0**

z0*
5

1

n
. ~59!
4-12
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The binodal and spinodal lines come closer to each o
than in the case of Gaussian chains. The region where m
stable flowers exist is relatively smaller, since the adsor
part at the coexistence line comprises only 2N/5 segments.

XIII. DISCUSSION

It is essential to reiterate that for the presented mo
exact analytical results are found. We showed that it is p
sible to obtain the partition function in a closed form,
evaluate the distribution of the complex zeros of the partit
function, and to compute the Landau free energy that c
trols the distribution of the order parameter. These results
available not only in the thermodynamic limit, but also f
finite systems. Why is this possible? What are the main
ferences between this model and the classical models for
molecular-mass systems?

First, the interaction between monomeric units is tak
into account only in terms of enforcing the chain connect
ity. This interaction is treated separately from the very beg
ning and accounted for by the basic differential equation~1!
for the partition function that describes a Gaussian rand
walk. The interaction energy is explicitly assigned to on
those units that are in direct contact with the adsorbing s
face. The excluded-volume interactions between n
neighboring units is neglected even if they come close
each other in space.

Second, the order parameter is defined not as a l
quantity, but for the system as a whole. This is equivalen
completely correlated order parameter fluctuations within
volume of the system. This corresponds to the Ginzb
number being equal to zero.

One of the most critical points in the discussion of t
Landau free energy is the identification of the order para
eter. The analysis was performed with the stretching or
parameter. There is yet another candidate that can serve
order parameter in the system. Recently a closely rela
system has been analyzed, which features a coil-to-flo
transition@20#. In this system an ideal chain was consider
near a step in the external potential. In this paper the sys
was analyzed in terms of an order parameter, which es
tially was the fraction of segments in the favorable region
the space~i.e., on the low potential side of the system!. The
corresponding property for the present model is the frac
of segments in direct contact with the adsorbing surface~or
the number of segments in the pancake!. Indeed, it is pos-
sible to analyze this quantity analytically. As expected, t
quantity is sensitive to the control parameters in the sys
and it jumps stepwise at the transition. In the coil-to-flow
transition of a chain near the stepwise external poten
there were some problems detected associated with the
tion of contacts. More specifically this problem appeared
the rolling transition@3,7#. The rolling transition is the con
formational transition that occurs upon the change in sign
the external potential when the chain is grafted exactly at
point where the potential step occurs. The rolling transition
second order, but is still characterized by a jump in the c
tact fraction. From this it was concluded that the stretch
of the chain would be a more appropriate order parame
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Indeed, the jump ins vanishes in the limit where the mode
features a second-order transition, i.e., whenz050.

Atomic force microscope~AFM! can be used to investi
gate the transitions discussed above@31–40#. In such an ex-
periment it is necessary to graft a chain with one end at
AFM tip in such a way that the chain does not adsorb o
this tip. This chain is then brought near an adsorbing surfa
Alternatively, one can glue a particle~probe! onto the AFM
tip and attach the end of a chain subsequently onto the pr
In this case it is more easy to orchestrate that the chain d
not stick to the probe’s surface. Then, if the chain does
interact with the probe surface, it will be in a mushroo
conformation when the tip is still far from the adsorbin
surface. The free energy of a chain in the mushroom con
mation is approximately the same as an unperturbed Ga
ian chain. This means that the grafting onto the tip or o
the repulsive surface is without any consequences. With
AFM apparatus it is possible to measure the force on
chain as soon as it is in the flower conformation. In effe
the flower bridges the gap between the tip~or probe! and the
adsorbing surface. For this reason one can refer to the
sorption coil-to-flower transitions as a bridging transitio
The force which is easily picked up by the AFM apparatus
expected to be independent of the separation and is on
function of the adsorption parameter that characterizes
affinity of the chain for the adsorbing surface. In AFM e
periments it is possible to control the time of contact~or the
time of close proximity of the chain to the adsorbing su
face!. Therefore, one should expect to observe the hyster
effects discussed above in full glory.

There are a number of systems that feature confor
tional transitions of single chains that have received so
attention in recent literature. Probably the best known is
escape transition of a chain, which is again end grafted
compressed by a finite-size piston. In this case the chain
jump in a first-order way from a homogeneously confin
chain, sitting between the piston and the surface, into
escaped state. The chain in the escaped state has a flow
conformation, where a stem is formed from the grafti
point to the edge of the cylinder, and a crown collects
remaining segments in a coil-like conformation. Again, it
speculated that it is possible to measure the escape trans
in an AFM experiment. However, there are a number
snags that may prevent to unravel details of the escape
sition. First of all, the transition is sensitive to the exa
geometry@14#. Second, some finite interaction of the pol
mer chain with the surfaces may seriously frustrate the
servation of the escape transition@41#. Finally, the escape
transition may be complicated by excluded-volume effe
that become more and more important when the chain
gradually more compressed. Therefore, the bridging tra
tion that is described above may be less difficult to det
experimentally.

The coil-to-flower transition that is described for a cha
pinned with one end in the unfavorable region of a stepw
external potential is probably an even more closely rela
system@3,7,20#. In this problem the transition occurs from
coil, which is forced to live in the unfavorable side of th
space, to an inhomogeneous conformation composed
4-13
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strongly stretched stem and a relatively unperturbed coil.
main difference is clearly with respect to entropic restrictio
felt by the crown. In the step-in-external-potential syste
the crown is a 3D coil, whereas in the adsorption probl
the crown is more like a flat disk. Nevertheless there i
very transparent mapping of all the features discussed ab
and comparable results in the external potential problem.
analogy may be used to transfer even more results from
problem to the other.

XIV. CONCLUSIONS

Inhomogeneous flowerlike conformations are a rather
cinating state of polymer chains. The flowers typically occ
when the chain is tethered by at least one end near an i
face. A flower features a stretched chain fragment~stem! and
an escaped chain part~crown! that resides in the more favor
able region. A Gaussian chain attached near an adsor
surface exemplifies a class of coil-to-flower transition. In t
paper, a number of exact results for this model is obtain
The partition function, the phase diagram~one binodal and
two spinodal lines!, the analysis of the order of the trans
tions. the finite-size effects, and the complex zero distri
tions are among the key results.

One of the central results presented above is the eva
tion of the Landau free energy. We argued that the stretch
of the coil and the stretching of the stem may serve as
order parameter that parametrizes the exact analytical L
dau function. The analysis of the Landau function gives
formation on the height of the barriers between stable
metastable states. The barriers are responsible for
nounced hysteresis effects. These effects may be foun
experiments, when the time scale of the experiment is s
with respect to the time needed for the system to cross
barriers from metastable states to stable states. We hav
timated these characteristic times: these may be very l
indeed. Experimental verification of the coil-to-flower tra
sitions is anticipated.
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APPENDIX A: COMPLEX ZERO DISTRIBUTION

Let us start from the case when the grafting point is on
surface, i.e.,z050. In our model the partition function ca
be expressed asQ5Y(2C)5exp(c2N/6)erfc@2cA(N/6)#.
We considerc to be the complex variable. The exponent
function has no zeros in the entire complex plane. So we
be interested in the distribution of the zeros of the com
mentary error function and particularly its asymptotical fo
in the limit N→`. From a numerical analysis one will fin
that the zeros condense on two symmetric support li
03611
e
s
,

a
ve
e

ne

s-
r
er-

ng
s
d.

-

a-
g
e
n-
-
d
o-
in
rt
e

es-
ge

s
m

.
l

e

l
ill
-

s

crossing the real axis atc50 at an anglev5p/4 with the
real axis, and that the density of zeros grows with the d
tance from the origin. In this limit, i.e.,z050 the system thus
features a second-order transition.

Let us now consider the case in which the grafting poin
at a positive valuez0.0. Hence, we will need to analyz
Q(z0 ,c)50 with Q5erf(Z0)1exp(2Z0

2)Y(Z02C) in the
complex c plane. For a finite fixedz0 /N and largeN this
equation is equivalent toQ5112 exp(2zc1c2N/6)50.
Taking c5r exp(ix), we obtain two coupled equations:

ln~1/2!52zr cos~x!1
N

6
r2 cos~2x!,

~A1!

~2k11!p52zr sin~x!1
N

6
r2 sin~2x!,

where k50,1,2, . . . . From the first equation the limiting
line of zeros is found by lettingN→`:

r5
6 cosx

cos 2x
s, ~A2!

wheres5z0 /N as before.
In Cartesian coordinates,x5r cosx, x5r sinx, we can

see that this curve is a hyperbola,

~x23s!22y259s2, ~A3!

crossing the real axis atx* 56s with a straight line.
An equation for the positions of zeros on the hyperb

follows from inserting Eq.~A2! into the second line of Eq
~A1!,

~2k11!p

N
53s2

sin 2x

cos2 2x
. ~A4!

For zeros close to the real axis~i.e., with smallx) this gives

xk5
~2k11!p

6Ns2 . ~A5!

The closest zero is characterized by the polar angle

x05
p

6Ns2 , ~A6!

and for fixeds, x0 goes to zero in the thermodynamic limi
Let us calculate the limiting density of zeros

g5 lim
N→`

1

N

]k

] l
, ~A7!
4-14
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wheredl5A(dr21r2dx2) is the line element in the com
plex plane. It follows from the coupled equations~A1! that

S 2s sinx1
r

3
sin 2x Ddr

1rS 2s cosx1
r

3
cos 2x Ddx5

2p

N
dk,

dr5r~2 tan 2x2tanx!dx. ~A8!

After some straightforward algebra expressingdk/dx and
dl/dx in polar coordinates, the final result appears:

g5
1

N

dk

dx

dx

dl
5

r

12p
cos 2x@11~2 tan 2x2tanx!#1/2.

~A9!

At the point where the real axis is touched (x→0, r
→6s), the density of zeros tends to a constant valueg0
5s/2p. According to Grossman and Rosenhauer, this f
into the category of first-order transitions with a finite jum
in the energy.

On the asymptotic wings of the hyperbolax→p/4, the
density of zeros increases linearly with the distance from
transition point along the curve:g>r/6p. Along these wings
the position of thekth zero follows from Eq.~A2!:

rk'
3

A2
s1A9

2
s21

2pk

N
. ~A10!

This formula simplifies for largek, i.e., k/N@s2, to rk
'(2pk/N)1/2.

Fromg05s/2p we conclude thatg0 goes down when the
distancez0 is decreased, i.e., the jump in the order parame
decreases. Eventually, atz050, the curve degenerates in
two straight lines at an anglev5p/4 with the real axis
crossing the axis at the origin. The density of zeros turns
to be a linear function of the distance from the critical val
c50. Here the transition becomes second order, as m
tioned above.

We now turn our attention to the finite-size scaling beh
ior of the position of zeros of the partition function. Accor
ing to Itzyksonet al. @26#, in the vicinity of the critical point,
the distance from thekth zero to the real axis should scale

yk;L21/nk1/dn, ~A11!

or in terms of the total number of unitsN,

yk;S k

ND 1/dn

;S k

ND 1/(22a)

. ~A12!

Here we have employed the equalitydn522a to pass
from parametersd andn, which do not have a well-define
meaning in our case, to the heat capacity indexa. For a
second-order transitiona50. Taking this value, we arrive a
the scaling predictionyk;(k/N)1/2, in accordance with the
exact analytical result of Eq.~A10!. For a first-order transi-
03611
s

e
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tion a51. As from Eq.~A2!, yk'6sxk , and using Eqs.~A5!
we find yk;(k/N)2p/s. Indeed this is consistent with th
scaling@cf. Eq. ~A12!#.

The complex zero distribution gives also the possibility
analyze the region where finite-size effects are important
where this is not the case. Above we found that the clos
zero is characterized by the polar anglex05p/(6Ns2).
Finite-size effects smooth out the difference between fi
order and second-order transitions. For this to be true, e
the closest zero should lie not far from the asymptotic win
of the hyperbola:x051. This means thatNs0

2;1 and thus
s0;N21/2. This is in accordance with the finite-size effec
analysis given above.

APPENDIX B: LIFETIME OF METASTABLE
FLOWER STATE

We start with a rigorous expression for the mean fi
passage time from the flower state to the barrier top:

t f l5E
s0

sf l
ds

exp@NF f l~s!#

D f l~s!
E

s

`

dq exp@2NF f l~q!#,

~B1!

wheres5sf l is the location of the minimum of the flowe
branch of the Landau function, ands5s0 is the location of
the top of the barrier. Following the standard procedure,
approximate the internal integral overq by a constant,
namely, by the value of this integral at the barrier top,s
5s0. The vicinity of this point provides the most importan
contribution for the second integration, while the intern
integral changes very slowly withs in this region:

t f l5Qf lE
s0

sf l
ds

exp@NF f l~s!#

D f l~s!
, ~B2!

whereQf l5*s0

` dq exp@2NFfl(q)#5exp(2Z2)Y(Z2C).

Using Eq. ~27! for F f l(s) and making the simplest as
sumption about the diffusion coefficient@D f l(s)#21

5@Dcoil(s)#215zN35NtRouse, we obtain

t f l5tRouseNA2p

3z
exp~2Z2!Y~Z2C!

3E
s0

sf l
dsAs exp@2NF f l~s!#. ~B3!

The next approximation is based on representingF f l(s)
by its Taylor expansion around the barrier top:

F f l~s!5
3

2
s0s2

c2

6
1

c2s0

6s
'

3

2
s0

22a~s2s0!1b~s2s0!2

~B4!

with
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a5
c2

6s0
2

3

2
s05

1

2S c2

c**
2c** D

and

b5
c2

6s0
2 5

3

2 S c

c** D 2

.

The upper limit of integration is now taken as the location
the minimum of the approximated Landau functionsmin
5a/2b.

According to the standard procedure of asymptotic in
gration, the nonexponential termAs in Eq. ~B3! is taken as a
constantAs0. Changing the integration variableq5s2s0,
we arrive at an integral of the form
ys

r-

.

ica

ir

.

ro

ro

r-

03611
f

-

E
0

a/2b

dq exp~2Naq1Nbq2!

5A p

4Nb
expS 2N

a2

4b
D erfiS aAN

2Ab
D

[
1

ANb
DwS aAN

2Ab
D , ~B5!

whereDw(y)5exp(2y2)*0
ydqexp(q2) is Dawson’s integral.

Substituting

aAN

2Ab
5

1

2
AN

6
cS 12

~c** !2

c2 D
in Eq. ~B3! we finally arrive at Eq.~49! used above.
g-
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