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Phase diagram of self-attracting systems
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A phase diagram of microcanonical ensembles of self-attracting particles is studied for two types of short-
range potential regularizations: self-gravitating fermions and classical particles interacting via an attractive soft
2(r 21r 0

2)21/2 Coulomb potential. When the range of regularization is sufficiently short, the self-attracting
systems exhibit gravitational or collapselike transition. As the fermionic degeneracy or the softness radius
increases, the gravitational phase transition crosses over to a normal first-order phase transition, becomes
second-order at a critical point, and finally disappears. Applicability of a commonly used saddle-point or
mean-field approximation and importance of metastable states is discussed.
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I. INTRODUCTION

Ensembles of particles interacting via a long-range non
tegrable attractive potential,U(r )5Ar2a, whereA,0 and
0,a,3, are known to exhibit gravitational phase transiti
between a relatively uniform high-energy state and a lo
energy state with a core-halo structure@1–12#. It has also
been established@4–10# that if the interaction potential ha
some form of short-range cutoff, the density and all oth
physical quantities that characterize the core-halo state
finite, while for a barer 2a attractive potential the collaps
results in a singular state with an infinite density, entro
and free energy. The gravitational phase transitions
known to exist in microcanonical, canonical, and grand
nonical ensembles; yet the details of the phase transition
the structure of the core-halo state are ensemble depen
In this paper we shall essentially consider microcanon
ensembles; for long-range interacting systems they
known to have richer phenomenology and allow for sta
~such as ones with a negative specific heat! that are inacces
sible in both canonical and grand canonical ensembles
addition, the microcanonical ensemble is the most fun
mental one since the notion of a thermostat is ambiguous
long-range interacting systems.

A typical entropy vs energy plot, describing a gravit
tional phase transition in a microcanonical ensemble
shown in the lower plot of Fig. 1@5–8,10#. High-energy and
low-energy branches correspond to the uniform and to
core-halo states, respectively; their intersectionE* marks the
point of the phase transition. Metastable uniform and co
halo states, shown by dashed lines, exist in the energy in
vals @E1 ,E* # and @E* ,E2#, correspondingly. When the en
ergy is larger thanE2, the system can be only in the stab
uniform state. The system still stays in this uniform sta
after the energy is decreased pastE* and the uniform state
becomes metastable. When the energy reachesE1, the uni-
form state becomes unstable and the system undergoes
lapse to a stable core-halo state. During such a collapse
entropy is discontinuously increased, and the macrosc
rearrangement of the density profile occurs. Similarly,
core-halo state is stable belowE* , metastable betweenE*
andE2, and undergoes a discontinuous transition revers
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the collapse atE2. This transition is sometimes called a
explosion@5#, since it transforms the dense core into a re
tively uniform mass distribution.

In some sense, the way the gravitational phase transi
occurs in a microcanonical ensemble resembles a hyste
phenomenon that takes place during a first-order phase
sition in a canonical ensemble. For this reason, it is som
times called agravitational first-order phase transition. Ye
in a microcanonical ensemble anormal first-order phase
transition occurs without the hysteresis and metastable st
A distinct feature of a normal microcanonical first-ord
phase transition in a small or long-range interacting system
a convex dip in otherwise concave continuous entropy p
~see, for example, Refs.@13–15#! sketched in the upper plo
~N! of Fig. 1. Differences between gravitational and norm
first-order phase transitions are evident immediately: fo

FIG. 1. Sketch of an entropy vs energy plot for a microcanoni
self-attracting system with a short-range cutoff that exhibits a gra
tational~G! phase transition. Stable states and metastable state
shown by solid and dashed lines, respectively. PointsE1 ,E* , and
E2 denote the collapse energy for the uniform state, the energ
the phase transition, and the energy for which the metastable c
halo state becomes unstable, correspondingly. A typical entrop
energy plot for a microcanonical long-range interacting system w
a normal~N! first-order phase transition is also shown.
©2002 The American Physical Society09-1
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gravitational phase transition the microcanonical inve
temperatureb[dS/dE is discontinuous atE* while for the
normal first-order phase transitiondS/dE is always continu-
ous. In addition, in a gravitational phase transition, the u
form and the core-halo phases cannot coexist, while for
normal first-order phase transition the phases do coexist
range of energies corresponding to the convex dip.

It has been noticed@5–8,10# that the gravitational phas
transitions in self-attracting systems exist only when
range of the cutoff is sufficiently small. When the effecti
cutoff radius is increased, the range of existence of m
stable states@E1 ,E2# shrinks and finally disappears alon
with thedS/dE discontinuity atE* . The resulting entropy vs
energy plot becomes continuous and qualitatively resem
a corresponding plot for a system with a normal first-ord
phase transition@8,10#. This was observed in self-gravitatin
systems with various short-range regularizations: central
cluded volume@7#, hard sphere repulsion for individual pa
ticles @5#, soft-core interaction potential@8#, and exclusion
due to Fermi-Dirac statistics@6,10#.

In this paper we study how the behavior of self-attract
systems depends on the effective short-range cutoff rad
We find that once the cutoff is increased above a cer
value, the gravitational phase transition crosses over t
normal first-order phase transition, characterized by a con
dip in the entropy vs energy plot and associated with
energy interval with a negative specific heat. As the effect
cutoff radius is increased even further, the system reach
critical point where the first-order phase transition is repla
by a second-order one, and for even larger cutoff radii th
is no phase transition at all. To reveal that such a ph
diagram is a generic feature of all self-attracting systems,
consider two different examples: an ensemble of s
gravitating particles with Fermi-Dirac exclusion statistic
and a particle system with classical statistics interacting v
soft Coulomb potential2(r 21r 0

2)21/2. Since both of these
examples have been studied in the past, in the following
sections we present only numerical results and refer the r
ers to Refs.@6,8–10# for a more detailed description. Afte
analyzing these two examples, we discuss the validity of
saddle-point or mean-field approximation, which is co
monly used to study self-gravitating systems; a conclus
that summarizes the presented results completes the pa

II. SELF-GRAVITATING FERMIONS

We consider a microcanonical ensemble ofN@1 identical
unit-mass fermions with internal degeneracyg confined to a
spherical container of radiusR and interacting via an attrac
tive gravitational potential2G/r . The system is characte
ized by its density of statesW that is a function of the tota
energyE. A degree of degeneracy of the system is para
etrized by a degeneracy parameterm[A8g2G3NR3/p2\6

@6#, which is proportional to the ratio of the gravitation
Fermi energy25.98 1022g2/3G2N7/3\22 ~the energy of a
completely degenerate gas of fermions atT50) @16# to the
average gravitational energyGN2/R to the power 3/2. In the
large-m limit the system becomes completely nondegene
or classical.
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Following the steps described in Ref.@6#, i.e., expressing
the density of statesW as a functional of the phase spa
distribution function, applying the mean-field approximatio
~validity of which is discussed in Sec. IV!, introducing res-
caled energye, entropys, and inverse temperatureb,

e[
ER

GN2 , s[
ln W

N
, b[

GN

RT
5

ds

de
, ~1!

and solving for the mean-field phase space distribution fu
tion, we obtain plots ofs vs e andb vs e for various values
of m. These plots are parametrized by an uniformizing va
ablek @6,9# that varies from 0 fore50 to 1` for e51`. In
the classicalm→1` limit, the (e,b) plot forms a spiral that
winds up indefinitely around a limit point corresponding
the singular isothermal sphere with the energye521/4 and
inverse temperatureb52 @17#. For very high but finite val-
ues of m, such asm5109 in Fig. 2, the system is almos
nondegenerate and itsb vs e plot looks very similar to this
infinite winding spiral. Yet asm is finite, the spiral is finite as
well and does unwind after a turning point. Each point w
a vertical tangent~wheredb/de5`) on theb vs e spiral
corresponds to a cusp in thes vs e plot. However, all the
exotic features of the high-m plots, such as multiply winding
spirals, corresponding multiple kinks, and multiple points
‘‘phase transitions’’ are related to unstable and theref
physically unrealizable states@18#.

As the degeneracy parameterm is decreased, the numbe
of unstable states is decreased as well. As illustrated in
3, for m5104 there is only one unstable state, shown in t
plot by a dashed line. Yet form5104 the system is still
highly nondegenerate and exhibits all signs of the grav
tional phase transition. The low-energy branch of the p
corresponds to the core-halo state that exists for 0,k,k2
andemin,e,e2, whereemin526.42 1022m2/3 is the dimen-
sionless gravitational Fermi energy. Numerical evidence s
gests that at thee2 cusp, both energye(k) and entropys(k)
behave asO(k2k2)2, which explains the divergence o
db/de, evident in the plot. Fork2,k,k1 the entropys(k) is
not even a local maximum@6,10#, so the corresponding state
marked by the dashed line in Fig. 3, is unstable. When
curve approaches the second cusp ate15e(k1), both energy
e and entropys go through aO„(k2k1)2

… asymptotics again.
For k.k1 the equilibrium states, now belonging to the un
form phase, are at least locally stable.

When m gets smaller and the degeneracy becomes m
important, the interval betweene1 and e2 decreases and fi
nally disappears. In Fig. 4 we plotb vs e and seekm such
that theb(e) curve loses its characteristic for largem back-
bend. This can be viewed as a complete straightening of
classical spiral and happens whenm5mgr'2.673103. For
m,mgr the system exhibits a normal first-order phase tr
sition. To illustrate this, in Figs. 5 and 6 we present entro
and inverse temperature plots form5103; signs of microca-
nonical first-order phase transition such as convex entr
dip and region of negative specific heat whered2s/de2.0
are clearly visible.

As we decrease the degeneracy parameterm even further,
the convex dip in the entropy vs energy plot and correspo
9-2
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PHASE DIAGRAM OF SELF-ATTRACTING SYSTEMS PHYSICAL REVIEW E66, 036109 ~2002!
FIG. 2. Plots of entropy per particles(e) ~left! and dimensionless inverse temperatureb(e)5ds/de ~right! for m5109. A change of
stability of the corresponding state occurs each time the (e,b) spiral has a vertical tangent and the (e,s) plot has a cusp. A mode of stability
is lost at the vertical tangent if the curve rotates counterclockwise and gained if the curve rotates clockwise@18#. Therefore, the branches~1!
and~7! are stable,~2! and~6! are unstable against one mode,~3! and~5! against two modes, and~4! against three modes@branch~7! is not
represented in the figure but is the continuation of branch~6! after the turning point of energy ate.147#. There exist values of energy a
which the branches with the same degree of instability have the same entropy. It occurs at the crossing points of thes vs e plot and
corresponding vertical lines in theb vs e plot. As m→1`, there are more and more crossing points at energiesen converging to the value
e51/4 of the singular isothermal sphere. These points (en ,sn) can be associated with points of gravitational phase transitions; how
these ‘‘phase transitions’’ occur between unstable states and are therefore unphysical.
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ingly the interval whered2s/de2.0 get narrower, and for
m5mcr'83 they disappear~Fig. 7!. At m5mcr the equation
d2s/de250 has only one real root,e5ecr'20.5, a critical
point where the two phases become indistinguishable and
heat capacity diverges. This corresponds to the line of fi
order phase transitions in (e,m) space, terminated by th
critical point at (ecr ,mcr) where the phase transition is se
ond order~see Fig. 11!.

For m,mcr , the inverse temperatureb(e) is a monotoni-
cally decreasing function of energye and the system doe
not exhibit any phase transition. Therefore, as the degene
parameter decreases, the microcanonical ensemble of
gravitating fermions consecutively exhibits gravitation
first-order, second-order, and no phase transition at all.
ditional discussion of phase transitions in the self-gravitat
Fermi gas can be found in Ref.@10#.

FIG. 3. Plots of entropy per particles(e)25 ~top! and dimen-
sionless inverse temperatureb(e)5ds/de ~bottom! for m5104.
The unstable state is shown by dashed lines. The minimum en
emin5229.8 at which b→1` is outside the frame.
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III. SELF-ATTRACTING PARTICLES WITH SOFT
COULOMB POTENTIAL

In this section, we consider phase transitions in anot
self-attracting system where the short-range cutoff is exp
itly present in the interaction potential. As in Sec. II, w
consider a microcanonical ensemble ofN@1 identical unit-
mass particles confined to a spherical container of radiuR,
but now the particles obey classical statistics and interact
the attracting soft Coulomb potential2G/(r 21r 0

2)21/2. This
potential has been used in various numerical simulations
self-gravitating systems and is also called the Plummer
tential. In addition to the rescaled quantities defined in E
~1! we introduce a dimensionless soft core radiusx0[r 0/R.
Following the steps described in Refs.@8,9#, we integrate the
density of states on momenta, express the remaining con

gy

FIG. 4. Plots of inverse temperatureb(e)5ds/de for ~left to
right! m52.653103, 2.673103, 2.73103, and 2.753103. The
gravitational phase transition disappears form,mgr52.673103

and is replaced by a normal first-order phase transition.
9-3
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P. H. CHAVANIS AND I. ISPOLATOV PHYSICAL REVIEW E66, 036109 ~2002!
rational integral through a functional integral over possi
density profiles, apply the mean-field approximation, a
solve the integral equation for the mean-field density profi
The results in the form ofs(e) vs e andb5ds/de vs e plots
for various soft potential radiix0 are presented in Figs. 8–10
In Fig. 8 we show the entropy and inverse temperature p
for a relatively small soft potential radiusx051022. For this
value of x0 the system clearly exhibits all signs of gravit
tional phase transition. For comparison, in the same fig
we present theb(e) plot for a low-degeneracy fermioni
system withm5104 from Fig. 3. Despite the completel
different nature of the short-range cutoffs for these syste
their uniform state entropies exhibit a strikingly similar b
havior. This once again illustrates that properties of a u
form state are determined mostly by the long-range prop
ties of the interaction. Naturally, the core-halo state struct
and its properties depend on the nature of the cutoff, so
corresponding branches in the entropy vs energy plot
visually different. Nevertheless, the difference is weak so
physical properties of phase transitions in long-range s
attracting systems are relatively insensitive to the prec
form of the small-scale regularization.

Similar to the fermionic system, as the range of the cu
is increased, the range of existence of metastable s
shrinks and finally disappears. At this point the gravitatio
phase transition crosses over to the first-order one. From
data presented in Fig. 9 we estimate that this crossover
pens atx05xgr'0.021. Forxgr,x0,xcr the system exhib-
its a normal first-order phase transition until the critical po
(ecr ,xcr) is reached. The plots presented in Fig. 10 indic
thatecr'20.7 andxcr'0.22. Whenx0.xcr , no phase tran-
sitions are present in the system. This allows us to concl

FIG. 5. Plot of entropys vs energye for m5103. The entropy
presents a convex intruder betweene8 and e-. For an extensive
system, this convex intruder is forbidden because the system

energy ē (e8, ē,e-) would gain entropy by splitting into two

phases with energiese8 and e-. Indeed,s@ ē5ae81(12a)e-#
<as(e8)1(12a)s(e-), where 0<a<1 parametrizes the energ

ē of the systems in the phase coexistence range@e8,e-#. However,
for a nonextensive system, such as a gravitational system, thi
gument does not hold and a convex intruder for the entropy
allowed in the microcanonical ensemble@13#.
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that similar to the fermionic system, as the soft poten
radius is increased, the self-attracting system with soft C
lomb interaction exhibits consecutively gravitational, firs
order, second-order, and no phase transition at all.
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FIG. 6. Plot of inverse temperatureb(e)5ds/de vs energye
for m5103. The existence of negative specific heatsC
52b2de/db,0 and the convex intruder for the entropy are t
signals of a normal first-order phase transition and of theinequiva-
lenceof statistical ensembles. Indeed, for nonextensive systems
region of negative specific heat is allowed in the microcanon
ensemble while it is forbidden in the canonical ensemble and
placed by a sharp phase transition~horizontal plateau!. The tem-
perature of the transitionb t

21 is determined by the crossing point i
the free energyJ5s2be vs inverse temperatureb plot ~dashed
line!. Alternatively, it can be obtained by performing a Maxwe

construction in theb vs e diagram, noting that*e8
e-(b2b t)de

5(s-2s8)2b t(e-2e8)5J-2J850 ~the areas of the shaded re
gions are2DJ5J92J8 andDJ5J-2J9). It is also given by the
slope of the straight lineshull(e) in Fig. 5 (shull5ae1b with a
5b t andb5J85J-) @13#. During the canonical phase transition,
latent heatDe5e-2e8 is released.

FIG. 7. Plots of inverse temperatureb(e)5ds/de vs energye
for ~left to right! m5100, 90, 85, 80, and 50. The normal first-ord
phase transition disappears form<mcr'83. At the critical value
m5mcr the system passes by a second-order phase transition.
9-4



th
a

th
c
ox

en

-
m

io

ity

or

ively.

for
is

ics:
arp
ec-

xist
s-
ce

a-

en

om
an

at
nts
n
s

he

e

PHASE DIAGRAM OF SELF-ATTRACTING SYSTEMS PHYSICAL REVIEW E66, 036109 ~2002!
IV. VALIDITY OF MEAN-FIELD APPROXIMATION

To obtain the plots shown in Figs. 2–10 we used
saddle-point or the mean-field approximation. It raises
important question of whether the distinct features of
gravitational phase transition described above are intrinsi
appear as artifacts of this approximation. Before the appr
mation is applied, the microcanonical entropyS(E,N) is ex-
pressed through the logarithm of a sum of microscopic d
sities of statesWi of all macroscopic states with the energyE
and number of particlesN(kB51). The mean-field approxi
mation is equivalent to replacing a sum of contributions fro
these macroscopic states, usually represented by a funct
integral over corresponding density~or phase space density!
profilesr, by a contribution from the single state or dens
profile r0 @4,9,19#:

S5 ln(
i

Wi; lnE DrW@r#' ln W@r0#. ~2!

FIG. 8. Plots of entropys(e) ~top! and inverse temperatur
b(e)5ds/de ~bottom! vs energye for the soft potential radiusx0

51022. Plot of b(e) for the fermionic system withm5104 is
shown in dashed line.

FIG. 9. Plots of inverse temperatureb(e)5ds/de vs energye
for different soft potential radii.
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This stater0 extremizes the density of statesW and, conse-
quently, the entropyS. The condition

dW

dr U
r5r0

50 ~3!

definesr0 that gives a global maximum, a local maximum
a minimum ~or saddle point! to the entropy, which corre-
sponds to stable, metastable or unstable states, respect
Let us first consider the range of energies (E,E1 and E
.E2) in Figs. 3 and 8, or all energies in Figs. 7 and 10,
which there exists only one global entropy maximum. Th
case is described in traditional textbooks of thermodynam
the single equilibrium state corresponds to a very sh
maximum in the density of states and the first-order corr
tions to the entropy per particle,s, scales as 1/N, i.e., s
5s@r0#1O(1/N). When stable and metastable states coe
(E1,E,E2), the mean-field approximation is also an a
ymptotically exact approximation for the stable states, sin
the relative contributions from the metastable statesrm to
W@r# scales as exp$N(s@rm#2s@r0#)%. However, the sharp
kink in the mean-field entropy plot atE* ~as in Fig. 1! ap-
pears in the true, non-mean-field entropy plot only in theN
→` limit; as for any finite number of particles the met
stable states contribute significantly toW@r# in the vicinity
of E* , where s@rm#2s@r0#→0. Similarly, the mean-field
approximation works well for the metastable states wh
they are sharp local maxima ofW@r#. But this approxima-
tion breaks down when the contributions to the entropy fr
the metastable staterm becomes comparable to or less th
the contributions from other statesr8 in a vicinity of rm ,
whereirm2r8i!irmi . This happens whenrm ceases to be
at least a local maximum of entropy, which is exactly wh
takes place at the metastability-instability transition poi
E1 andE2. This breakdown of the mean-field approximatio
near the E1 and E2 energies can also be viewed a
fluctuation-induced uncertainty in the exact location of t
metastability-instability transition. It is shown in Ref.@20#

FIG. 10. Plots of inverse temperatureb(e)5ds/de vs energye
for the soft potential radii~bottom to top! x050.12, 0.2, 0.22, and
0.25.
9-5
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P. H. CHAVANIS AND I. ISPOLATOV PHYSICAL REVIEW E66, 036109 ~2002!
that the relative uncertaintyDE/E1 in the position of the
collapse pointE1 scales with the number of particles a
N22/3. Hence, given thatN is large, the mean-field results a
asymptotically exact for all energies except for those near
ends of metastable branchesE1 andE2.

Another distinct feature of gravitational phase transitio
is the anomalous stability of the metastable branc
@E1 ,E* # and @E* ,E2# ~Fig. 1!. Consider, for example, a
metastable uniform state and a stable core-halo state
having the same energy somewhere in the middle of the
terval @E1 ,E* #. The entropy minimum that separates the e
tropy maxima corresponding to the stable and metast
states, has the depthDS that is proportional to the number o
particles, i.e.,DS5NDs @for example, in Fig. 3 whereDs is
equal to the difference in coordinates between the metast
~solid line! and unstable~dashed line! states, Ds'0.1#.
Physically, this is so because the transition from a metast
uniform state to a stable core-halo state requires a ma
scopic fluctuation equivalent to the rearrangement of
density distribution in thewhole system. Hence, the prob
ability of the metastable-stable transition is proportional
exp(2NDs) and becomes prohibitively small even for a mo
erate number of particles,N. Only near the ends of metasta
bility branchesE1 and E2, the probability of metastability-
stability transition is significant; it is of order ofO(N0) in
the interval@E1 ,E11DE#, whereDE;E1N22/3 @20#.

Given the arguments presented above we conclude
the mean-field approximation adequately represents the
nomenology of self-attracting systems and correctly
scribes the gravitational, first-order, and second-order ph
transitions.

FIG. 11. Sketch of the phase diagram of a self-attracting syst
The crossover point between the gravitational and first-order ph
transition and the critical point are marked ‘‘gr’’ and ‘‘cr,’’ respec
tively.
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V. CONCLUSION

In Sec. II and III we considered two examples of se
attracting systems, the ensemble of self-gravitating fermi
and the ensemble of classical particles interacting via att
tive soft Coulomb potential. These systems have a sim
;1/r interaction at large distances but very different form
of short-range cutoffs. While in the second example
short-range cutoff is evidentlyr 0, in the first example the
role of the short-range cutoff is indirectly played by the Pa
exclusion principle, which depends on the particle dens
Despite this different small-r behavior, both of the consid
ered ensembles exhibit the same sequence of phase tr
tions: gravitational, first-order, second-order, and none,
the range of their respective cutoffs is increased. The ske
of their phase diagram in cutoff-energy coordinates is rep
sented in Fig. 11 and completes the one given in Ref.@10# in
cutoff-temperature coordinates. The examples considere
this paper were chosen mainly because of the physical
portance of the 1/r potential~see, for example, Ref.@21# for
astrophysical applications of the self-gravitating Fermi s
tem!, but similar phase diagrams exist for all nonintegrab
1/r a (0,a,3) attractive potentials. The main physical re
son behind this phase diagram is that the short-range cu
controls the maximum density a self-attracting system
achieve. As the range of the cutoff is increased, the collap
central core becomes less dense and occupies more vol
and at some point the system has simply no space to
lapse. It happens when the central density of the non
lapsed uniform state becomes similar to the core density
the collapsed core-halo state. Likewise, the critical poin
reached when the maximum allowed density becomes
small that the system remains virtually uniform for any e
ergy. The purely geometrical nature of these arguments i
cates that the phase diagram, obtained in the previous
sections, should be robust and insensitive to the simplify
assumptions such as spherical symmetry. The validity of
main approximation used in this paper, the mean-field
proach, was discussed in Sec. IV. It is revealed that
mean-field approximation correctly describes the behavio
the self-attracting systems for all accessible energies and
off radii, excluding the immediate vicinities of the collaps
points. We leave the study of the collapse points in the fin
particle systems as well as the dynamics of the collapse f
future paper.
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