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Phase diagram of self-attracting systems
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A phase diagram of microcanonical ensembles of self-attracting particles is studied for two types of short-
range potential regularizations: self-gravitating fermions and classical particles interacting via an attractive soft
—(r2+r(2,)’1’2 Coulomb potential. When the range of regularization is sufficiently short, the self-attracting
systems exhibit gravitational or collapselike transition. As the fermionic degeneracy or the softness radius
increases, the gravitational phase transition crosses over to a normal first-order phase transition, becomes
second-order at a critical point, and finally disappears. Applicability of a commonly used saddle-point or
mean-field approximation and importance of metastable states is discussed.
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[. INTRODUCTION the collapse aE,. This transition is sometimes called an
explosion[5], since it transforms the dense core into a rela-

Ensembles of particles interacting via a long-range nonintively uniform mass distribution.
tegrable attractive potential (r)=Ar" ¢, whereA<0 and In some sense, the way the gravitational phase transition
0<a<3, are known to exhibit gravitational phase transitionoccurs in a microcanonical ensemble resembles a hysteresis
between a relatively uniform high-energy state and a low{phenomenon that takes place during a first-order phase tran-
energy state with a core-halo structyfe-12). It has also  sition in a canonical ensemble. For this reason, it is some-
been establishe#—10] that if the interaction potential has times called agravitational first-order phase transition. Yet
some form of short-range cutoff, the density and all otherin a microcanonical ensemble @ormal first-order phase
physical quantities that characterize the core-halo state ateansition occurs without the hysteresis and metastable states.
finite, while for a barer ~“ attractive potential the collapse A distinct feature of a normal microcanonical first-order
results in a singular state with an infinite density, entropyphase transition in a small or long-range interacting system is
and free energy. The gravitational phase transitions ar@ convex dip in otherwise concave continuous entropy plot
known to exist in microcanonical, canonical, and grand ca{see, for example, Ref§13-15) sketched in the upper plot
nonical ensembles; yet the details of the phase transition ar{d) of Fig. 1. Differences between gravitational and normal
the structure of the core-halo state are ensemble dependefitst-order phase transitions are evident immediately: for a
In this paper we shall essentially consider microcanonical
ensembles; for long-range interacting systems they are
known to have richer phenomenology and allow for states
(such as ones with a negative specific hélaat are inacces-
sible in both canonical and grand canonical ensembles. In -
addition, the microcanonical ensemble is the most funda-
mental one since the notion of a thermostat is ambiguous for
long-range interacting systems.

A typical entropy vs energy plot, describing a gravita-
tional phase transition in a microcanonical ensemble, is
shown in the lower plot of Fig. [5-8,10. High-energy and
low-energy branches correspond to the uniform and to the
core-halo states, respectively; their intersectdnmarks the
point of the phase transition. Metastable uniform and core-
halo states, shown by dashed lines, exist in the energy inter- ' : ' '
vals[E;,E*] and[E*,E,], correspondingly. When the en-
ergy is larger thark,, the system can be only in the stable E
uniform state. The system still stays in this uniform state

after the energy is decreased p&stand the uniform sta_lte self-attracting system with a short-range cutoff that exhibits a gravi-
becomes metastable. When the energy reaéheshe uni-  (aional(G) phase transition. Stable states and metastable states are
form state becomes unstable and the system undergoes a cglywn by solid and dashed lines, respectively. PditsE* , and
lapse to a stable core-halo state. During such a collapse thg genote the collapse energy for the uniform state, the energy of
entropy is discontinuously increased, and the macroscopige phase transition, and the energy for which the metastable core-
rearrangement of the density profile occurs. Similarly, thenalo state becomes unstable, correspondingly. A typical entropy vs
core-halo state is stable beld#*, metastable betwee*  energy plot for a microcanonical long-range interacting system with
andE,, and undergoes a discontinuous transition reverse ta normal(N) first-order phase transition is also shown.

S(E)

FIG. 1. Sketch of an entropy vs energy plot for a microcanonical

1063-651X/2002/663)/0361097)/$20.00 66 036109-1 ©2002 The American Physical Society



P. H. CHAVANIS AND I. ISPOLATOV PHYSICAL REVIEW E66, 036109 (2002

gravitational phase transition the microcanonical inverse Following the steps described in Rg6], i.e., expressing
temperaturgB=dS/dE is discontinuous aE* while for the  the density of state$V as a functional of the phase space
normal first-order phase transitiot& dE is always continu-  distribution function, applying the mean-field approximation
ous. In addition, in a gravitational phase transition, the uni{validity of which is discussed in Sec. )Vintroducing res-
form and the core-halo phases cannot coexist, while for thealed energy, entropys, and inverse temperatuyg

normal first-order phase transition the phases do coexist in a

range of energies corresponding to the convex dip. — ER o InwW g= GN _ds 0
It has been noticef—8,10 that the gravitational phase GN?’ N’ RT de’

transitions in self-attracting systems exist only when the
range of the cutoff is sufficiently small. When the effective and solving for the mean-field phase space distribution func-
cutoff radius is increased, the range of existence of metation, we obtain plots of vs e and 8 vs e for various values
stable state§E;,E,] shrinks and finally disappears along Of u. These plots are parametrized by an uniformizing vari-
with thed S'dE discontinuity atE* . The resulting entropy vs  ablek[6,9] that varies from 0 fog=0 to + for e=+. In
energy plot becomes continuous and qualitatively resemblei§e classical— + <o limit, the (e, 8) plot forms a spiral that
a corresponding plot for a system with a normal first-ordetwvinds up indefinitely around a limit point corresponding to
phase transitiofi8,10]. This was observed in self-gravitating the singular isothermal sphere with the eneegy— 1/4 and
systems with various short-range regularizations: central eXnverse temperatur@=2 [17]. For very high but finite val-
cluded volumg 7], hard sphere repulsion for individual par- ues of u, such asu=10° in Fig. 2, the system is almost
ticles [5], soft-core interaction potentidB], and exclusion nondegenerate and i3 vs e plot looks very similar to this
due to Fermi-Dirac statistids$,10]. infinite winding spiral. Yet ag is finite, the spiral is finite as

In this paper we study how the behavior of self-attractingwell and does unwind after a turning point. Each point with
systems depends on the effective short-range cutoff radius. vertical tangenfwheredp/de=2) on the 8 vs e spiral
We find that once the cutoff is increased above a certaigorresponds to a cusp in tlevs e plot. However, all the
value, the gravitational phase transition crosses over to exotic features of the higja- plots, such as multiply winding
normal first-order phase transition, characterized by a convesgpirals, corresponding multiple kinks, and multiple points of
dip in the entropy vs energy plot and associated with arfphase transitions” are related to unstable and therefore
energy interval with a negative specific heat. As the effectivephysically unrealizable stat¢48].
cutoff radius is increased even further, the system reaches a As the degeneracy parameijeris decreased, the number
critical point where the first-order phase transition is replace®f unstable states is decreased as well. As illustrated in Fig.
by a second-order one, and for even larger cutoff radii ther@, for = 10" there is only one unstable state, shown in the
is no phase transition at all. To reveal that such a phasplot by a dashed line. Yet fop=10* the system is still
diagram is a generic feature of all self-attracting systems, waighly nondegenerate and exhibits all signs of the gravita-
consider two different examples: an ensemble of selftional phase transition. The low-energy branch of the plot
gravitating particles with Fermi-Dirac exclusion statistics, corresponds to the core-halo state that exists fak&k,
and a particle system with classical statistics interacting via ande,;,< €< e,, whereeni,= — 6.42 10 24?2 is the dimen-
soft Coulomb potential—(r2+r§)*l’2. Since both of these sionless gravitational Fermi energy. Numerical evidence sug-
examples have been studied in the past, in the following twa@ests that at the, cusp, both energy(k) and entropys(k)
sections we present only numerical results and refer the reatbehave asO(k—k,)?, which explains the divergence of
ers to Refs[6,8—1( for a more detailed description. After dg/de, evident in the plot. Fok,<k<k; the entropys(k) is
analyzing these two examples, we discuss the validity of th@ot even a local maximui6,10], so the corresponding state,
saddle-point or mean-field approximation, which is com-marked by the dashed line in Fig. 3, is unstable. When the
monly used to study self-gravitating systems; a conclusiorturve approaches the second cusg;at e(k;), both energy
that summarizes the presented results completes the papek and entropys go through aD((k—k;)?) asymptotics again.
For k>k, the equilibrium states, now belonging to the uni-
form phase, are at least locally stable.

When u gets smaller and the degeneracy becomes more

We consider a microcanonical ensembldNef 1 identical ~ important, the interval betwee#y and e, decreases and fi-
unit-mass fermions with internal degeneraggonfined to a nally disappears. In Fig. 4 we plg vs € and seeku such
spherical container of radilR and interacting via an attrac- that theB(e) curve loses its characteristic for largeback-
tive gravitational potential-G/r. The system is character- bend. This can be viewed as a complete straightening of the
ized by its density of stated/ that is a function of the total classical spiral and happens wher= g, ~2.67X 10°%. For
energyE. A degree of degeneracy of the system is paramu < ug, the system exhibits a normal first-order phase tran-
etrized by a degeneracy paramejes 8g°G3NR®/#4°  sition. To illustrate this, in Figs. 5 and 6 we present entropy
[6], which is proportional to the ratio of the gravitational and inverse temperature plots far=10%; signs of microca-
Fermi energy—5.98 10 2g%3G2N"% 2 (the energy of a nonical first-order phase transition such as convex entropy
completely degenerate gas of fermionsTat0) [16] to the  dip and region of negative specific heat whefs/de?>0
average gravitational ener@yN?/R to the power 3/2. In the are clearly visible.
largeq limit the system becomes completely nondegenerate As we decrease the degeneracy parameteven further,
or classical. the convex dip in the entropy vs energy plot and correspond-

Il. SELF-GRAVITATING FERMIONS

036109-2



PHASE DIAGRAM OF SELF-ATTRACTING SYSTEMS PHYSICAL REVIEW B6, 036109 (2002

- 26
()]
20.19 0al
P
g 207} 22
Q - =%
3 21 ®) @)
% 2045 }
9 a
u=10 1.8 (2) [l«=109
3)
20.13 ' . ' . 16 . .
2035 -032 -029 -026 -023 -0.2 20.37 -0.27 -0.17 -0.07
£ £

FIG. 2. Plots of entropy per partick(e) (left) and dimensionless inverse temperat@(e) =ds/de (right) for x=10°. A change of
stability of the corresponding state occurs each time &g)(spiral has a vertical tangent and theg) plot has a cusp. A mode of stability
is lost at the vertical tangent if the curve rotates counterclockwise and gained if the curve rotates clptBlwiEleerefore, the branchés)
and(7) are stable(2) and(6) are unstable against one mo@®), and(5) against two modes, and) against three modd&ranch(7) is not
represented in the figure but is the continuation of brai@ghafter the turning point of energy &t=147|]. There exist values of energy at
which the branches with the same degree of instability have the same entropy. It occurs at the crossing poirgsvefetipdot and
corresponding vertical lines in the vs e plot. As u— +«, there are more and more crossing points at enekgjiesnverging to the value
e=1/4 of the singular isothermal sphere. These poirtsg,) can be associated with points of gravitational phase transitions; however,
these “phase transitions” occur between unstable states and are therefore unphysical.

ingly the interval whered®s/de?>>0 get narrower, and for lll. SELF-ATTRACTING PARTICLES WITH SOFT
n=uc~83 they disappediFig. 7). At u= u., the equation COULOMB POTENTIAL

d?s/de?=0 has only one real roog= e.,~—0.5, a critical . . . L
point where the two phases become indistinguishable and the In this sfecnon, we consider phase transitions n another
heat capacity diverges. This corresponds to the line of firstS€l-attracting system where the short-range cutoff is explic-

order phase transitions ine{u) space, terminated by the itly present ir_1 the inte_raction potential. A§ in _Sec. II_, we
critical point at (e, , 1c;) Where the phase transition is sec- consider a microcanonical ensembleNsf1 identical unit-

ond order(see Fig. 11 mass particles c_onfined to a spherical gontainer c_)f raijus _
For u< ., , the inverse temperatugg(e) is a monotoni- but now the particles obey classical statistics and interact via
cally decreasing function of energyand the system does the attracting soft Coulomb potentialG/(r2+rg) ~*2 This
not exhibit any phase transition. Therefore, as the degenerag@ptential has been used in various numerical simulations of
parameter decreases, the microcanonical ensemble of seffelf-gravitating systems and is also called the Plummer po-
gravitating fermions consecutively exhibits gravitational,tential. In addition to the rescaled quantities defined in Eq.
first-order, second-order, and no phase transition at all. Ad¢1) we introduce a dimensionless soft core radiys:r/R.
ditional discussion of phase transitions in the self-gravitating=ollowing the steps described in Reff8,9], we integrate the

Fermi gas can be found in RgfL0]. density of states on momenta, express the remaining configu
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FIG. 3. Plots of entropy per particl ) —5 (top) and dimen- FIG. 4. Plots of inverse temperatug{e)=ds/de for (left to

sionless inverse temperatu@(e)=ds/de (bottom for w=10".  right) x=2.65x1C%, 2.67x10%, 2.7x10°, and 2.7%10°. The
The unstable state is shown by dashed lines. The minimum energyravitational phase transition disappears for ug,=2.67X 10°
€min=—29.8 at vhich 8— +« is outside the frame. and is replaced by a normal first-order phase transition.
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FIG. 5. Plot of entropys vs energye for u=10°. The entropy FIG. 6. Plot of inverse temperatugg(e)=ds/de vs energye

presents a convex intruder betweehand €”. For an extensive for ,=108. The existence of negative specific hea®
system, this convex intruder is forbidden because the system with- — 524¢/dg<0 and the convex intruder for the entropy are the
energye (e’ <e<e") would gain entropy by splitting into two signals of a normal first-order phase transition and ofitleguiva-
phases with energies’ and €”. Indeed,s[?=ae’+(1fa) €"] lenceof statistical ensembles. Indeed, for nonextensive systems, the
<as(e')+(1—a)s(e”), where O<a<1 parametrizes the energy region of negative specific heat is allowed in the microcanonical
e of the systems in the phase coexistence rdrgge”]. However, ~€nsemble while it is forbidden in the canonical ensemble and re-
for a nonextensive system, such as a gravitational system, this ap/aced by a sharp phase transitidrorizontal plateau The tem-
gument does not hold and a convex intruder for the entropy ierature of the transitio; * is determined by the crossing point in
allowed in the microcanonical ensemBles). the free energyl=s— Be vs inverse temperaturg plot (dashed
line). Alternatively, it can be obtained by performing a Maxwell
rational integral through a functional integral over possibleconstruction in theg vs e diagram, noting thatf_, (8—B,)de
density profiles, apply the mean-field approximation, and=(8"—8')—Bi(e”—¢€’)=J"—J"=0 (the areas of the shaded re-
solve the integral equation for the mean-field density profilegions are—AJ=J"—J" andAJ=J"—J"). Itis also given by the
The results in the form cé(e) vs e andB=ds/de vs e plots ~ S10P€ OF the straight liny;(€) in Fig. 5 (Spun=ae+b with a
for various soft potential radi, are presented in Figs. 8—10. = andb=J :j?, ) [,1.3]' During the canonical phase transition, a
In Fig. 8 we show the entropy and inverse temperature plotitent heatie=e"—¢" is released.
for a relatively small soft potential radivg=10"2. For this o o )
value ofx, the system clearly exhibits all signs of gravita- that similar to the fermionic system, as the soft potential
tional phase transition. For comparison, in the same figur&2dius is increased, the self-attracting system with soft Cou-
we present theB(e) plot for a low-degeneracy fermionic lomb interaction exhibits consecutively _g_rawtatlonal, first-
system with u=10" from Fig. 3. Despite the completely order, second-order, and no phase transition at all.
different nature of the short-range cutoffs for these systems,
their uniform state entropies exhibit a strikingly similar be-
havior. This once again illustrates that properties of a uni-
form state are determined mostly by the long-range proper-
ties of the interaction. Naturally, the core-halo state structure 4t
and its properties depend on the nature of the cutoff, so the
corresponding branches in the entropy vs energy plot are
visually different. Nevertheless, the difference is weak so the g
physical properties of phase transitions in long-range self-
attracting systems are relatively insensitive to the precise 2
form of the small-scale regularization.
Similar to the fermionic system, as the range of the cutoff
is increased, the range of existence of metastable states
shrinks and finally disappears. At this point the gravitational
phase transition crosses over to the first-order one. From the 0
data presented in Fig. 9 we estimate that this crossover hap-
pens axo=Xq,~0.021. Forxy,<Xo<X the system exhib-
its a normal first-order phase transition until the critical point  FiG. 7. Plots of inverse temperatugf ) =ds/de vs energye
(€ecr.Xcr) is reached. The plots presented in Fig. 10 indicat&or (left to right) =100, 90, 85, 80, and 50. The normal first-order
thate,,~— 0.7 andx.,~0.22. Wherx,> X, no phase tran- phase transition disappears far<u.~83. At the critical value
sitions are present in the system. This allows us to concludg = u., the system passes by a second-order phase transition.

=2 -1 0 1
€
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FIG. 8. Plots of entropys(e) (top) and inverse temperature )
B(€)=ds/de (bottom) vs energye for the soft potential radiug, FIG. 10. Plots Qf inverse temperatyBée) =ds/de vs energye
=10"2. Plot of B(e) for the fermionic system withu=10" is for the soft potential radi{bottom to top x,=0.12, 0.2, 0.22, and
shown in dashed line. 0.25.
IV. VALIDITY OF MEAN-FIELD APPROXIMATION This statepy extremizes the density of statééand, conse-

quently, the entropys. The condition

To obtain the plots shown in Figs. 2—10 we used the
saddle-point or the mean-field approximation. It raises an SW
important question of whether the distinct features of the 5_p =0 ©)
gravitational phase transition described above are intrinsic or P=Po
appear as artifacts of this approximation. Before the approxi- ) ) )
mation is applied, the microcanonical entrof§g,N) is ex- deflr)e_Spo that gives a glopal maximum, a local maximum or
pressed through the logarithm of a sum of microscopic den@ Minimum (or saddle pointto the entropy, which corre-
sities of statedV; of all macroscopic states with the eneigy sponds 'go stable,_ metastable or unstable_ states, respectively.
and number of particleN(kg=1). The mean-field approxi- Let us first consider the range of energigs<(E, and E
mation is equivalent to replacing a sum of contributions from> E2) in Figs. 3 and 8, or all energies in Figs. 7 and 10, for
these macroscopic states, usually represented by a function#hich there exists only one global entropy maximum. This
integral over corresponding densityr phase space density Case is described in traditional textbooks of thermodynamics:

profiles p, by a contribution from the single state or density the single equilibrium state corresponds to a very sharp
profile po [4,9,19: maximum in the density of states and the first-order correc-

tions to the entropy per particles, scales as N, i.e., s
=9[po]+ O(1/N). When stable and metastable states coexist
_ _ (E1<E<E,), the mean-field approximation is also an as-
S_I”Ei Wi~lnf DpWLp]~InWLpo]. 2 ymptotically exact approximation for the stable states, since
the relative contributions from the metastable staigsto
W[p] scales as eXpl(dpml—dpol)}- However, the sharp

8 kink in the mean-field entropy plot &* (as in Fig. 2 ap-
231 o x,=0.015 o B & pears in the true, non-mean-field entropy plot only in khe
e x,=0.017 og?°°0% —oo limit; as for any finite number of particles the meta-
a x,=0.020 Ooo;jZAD stable states contribute significantly g p] in the vicinity
18 %,=0.022 Ooof ] of E*, wheres[p,]—S[po]—0. Similarly, the mean-field
@ S approximation works well for the metastable states when
& 000° they are sharp local maxima ®¥[ p]. But this approxima-
M° N £ tion breaks down when the contributions to the entropy from
1.3 L oo : the metastable stajg,, becomes comparable to or less than
s oo ® 5 o8 %2 the contributions from other statgs in a vicinity of p,,
5 o 5 o o0 o0 ©°? where||pm—p’|<€|lpmll. This happens whep,, ceases to be
at least a local maximum of entropy, which is exactly what
0-§0 56 _0‘ 46 —0|36 takes place at the metastability-instability transition points
e E, andE,. This breakdown of the mean-field approximation

near the E; and E, energies can also be viewed as
FIG. 9. Plots of inverse temperatugfe)=ds/de vs energye  fluctuation-induced uncertainty in the exact location of the
for different soft potential radii. metastability-instability transition. It is shown in Rg20]
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V. CONCLUSION

In Sec. Il and lll we considered two examples of self-
uniform phase attracting systems, the ensemble of self-gravitating fermions
and the ensemble of classical particles interacting via attrac-
tive soft Coulomb potential. These systems have a similar
~1/r interaction at large distances but very different forms
of short-range cutoffs. While in the second example the
short-range cutoff is evidently,, in the first example the
role of the short-range cutoff is indirectly played by the Pauli

energy

core—halo phase exclusion principle, which depends on the particle density.
Despite this different smah-behavior, both of the consid-
cutoff range ered ensembles exhibit the same sequence of phase transi-

tions: gravitational, first-order, second-order, and none, as
FIG. 11. Sketch of the phase diagram of a self-attracting systenthe range of their respective cutoffs is increased. The sketch
The crossover point between the gravitational and first-order phasef their phase diagram in cutoff-energy coordinates is repre-
transition and the critical point are marked “gr” and “cr,” respec- sented in Fig. 11 and completes the one given in Rt} in
tively. cutoff-temperature coordinates. The examples considered in
this paper were chosen mainly because of the physical im-
portance of the 1/potential(see, for example, Ref21] for
that the relative uncertaintpE/E, in the position of the astrophysical applications of the self-gravitating Fermi sys-
collapse pointE; scales with the number of particles as tem), but similar phase diagrams exist for all nonintegrable
N~23 Hence, given thal is large, the mean-field results are 1/r* (0<a<3) attractive potentials. The main physical rea-

asymptotically exact for all energies except for those near th&0n Pehind this phase diagram is that the short-range cutoff
ends of metastable branchgs and E.. controls the maximum density a self-attracting system can

Another distinct feature of gravitational phase transitionsaCh'eve‘ As the range of the cutoff is mcreasgd, the collapsed
is the anomalous stability of the metastable branchegemral core becomes less dense and occupies more volume,

and at some point the system has simply no space to col-

* * H H
[Elt'Et]bland [E ,Ez]t(tFlg- 1&' CO?Sl;?er’ for ﬁxlamrzlet, ‘1 } pse. It happens when the central density of the noncol-
metastable uniiorm state and a stable core-halo staté bof,seq yniform state becomes similar to the core density of

having the same energy somewhere in the middie of the inge cqllapsed core-halo state. Likewise, the critical point is
terval[E,,E™ ]. The entropy minimum that separates the en-eached when the maximum allowed density becomes so

tropy maxima corresponding to the stable and metastablgma)| that the system remains virtually uniform for any en-
states, has the depftiS that is proportional to the number of ergy. The purely geometrical nature of these arguments indi-
particles, i.e. AS=NAs [for example, in Fig. 3 wherdsis  cates that the phase diagram, obtained in the previous two
equal to the difference in coordinates between the metastabigctions, should be robust and insensitive to the simplifying
(solid line and unstable(dashed ling states,As~0.1].  assumptions such as spherical symmetry. The validity of the
Physically, this is so because the transition from a metastabl®main approximation used in this paper, the mean-field ap-
uniform state to a stable core-halo state requires a macrgroach, was discussed in Sec. IV. It is revealed that the
scopic fluctuation equivalent to the rearrangement of thénean-field approximation correctly describes the behavior of
density distribution in thavhole system. Hence, the prob- the self-attracting systems for all accessible energies and cut-
ability of the metastable-stable transition is proportional toff radii, excluding the immediate vicinities of the collapse
exp(—NAs) and becomes prohibitively small even for a mod- Points. We leave the study of the collapse points in the finite-
erate number of particled). Only near the ends of metasta- particle systems as well as the dynamics of the collapse for a
bility branchesE, and E,, the probability of metastability- Uturé paper.
stability transition is significant; it is of order ad®(N°) in

the interval[E, ,E;+AE], whereAE~E;N~23[20].

Given the arguments presented above we conclude that The authors are grateful to the organizers of the Les
the mean-field approximation adequately represents the phétouches Ecole de Physique meetiffgebruary 2009 for
nomenology of self-attracting systems and correctly dejproviding an opportunity to discuss the results of this work.
scribes the gravitational, first-order, and second-order phadd. gratefully acknowledges the support of FONDECYT un-
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