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Ground-state entropies of the Potts antiferromagnet on diamond hierarchical lattices
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The ground-state degeneracies of thstate Potts antiferromagnet on general diamond hierarchical lattices
are computed, fog=3, by means of two distinct methods. The first method, denominated the recursive
approach, is based on exact recursion relations for the total number of ground states, leading to the exact
ground-state entropy in the thermodynamic limit. The second method, called the factorization approach, con-
sists in a simple approximation, where the total number of ground states is factorized as a product of the
number of ground states at each hierarchy level. The factorization approach appears to be a poor approximation
for small values ofy, but its accuracy improves substantiallygmcreases, and it becomes exact in the limit
g—oe. In spite of the fact that such a model presents no frustration, a residual entropy at zero temperature is
found for allg=3. Similarly to what happens on Bravais lattices, the residual entropy approaches its maxi-
mum allowed value, lg, asq increases.
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. INTRODUCTION O0<h<Ing, since the maximum number of states g8
=expNInq)]. In the thermodynamic limit, one gets thiat
The g-state Potts moddll] has attracted the attention of =s,/kg, wheres, denotes the residual entropy.
many workers since its original formulatig@]. Apart from The calculation of the GS entropy of the Potts antiferro-
representing a generalization of the most investigated systefMagnet on Bravais lattices is a long-standing probjléra7].
in statistical mechanics—the Ising mod#ie particular case = Although a lot of effort has been dedicated to this matter,
q=2 of the Potts modgHit has been identified, fog#2,  most of the known results are due to approximati¢see,
with many other theoretical models, and has also been core.g., Ref[7] and references thergjronly a few exact results
sidered as the appropriate model for describing many physiare known, e.g., for the square lattice with the special case
cal phenomeng1]. Curiously, for the nearest-neighbor- gq=3 one has,=(3/2)In(4/3)[4], whereas for the triangular
interaction antiferromagnetic Potts model with>2, one |attice,s, has been calculated for several values|$6,6].
may easily see that the minimization of energy associated The study of magnetic models on fractal lattices, as well
with any closed loop, at low temperatures, occurs with noas serving in practice to model natural materials such as po-
conflict of interactions, in such a way that all interactionsrous rocks, aerogels, sponges, etc., has provided useful re-
between nearest-neighbor spins remain satisfied. Thereforgults for the comprehension of the corresponding systems on
the concept of frustratiofi3], which plays a central role in  Bravais lattices. In particular, the hierarchical lattices
the ground-statéGS) degeneracy of somg=2 antiferro-  (HL's)—generated through recursive procedures—are much
magnetic models, e.g., the antiferromagnetic Ising model oeasier to handlgunder the real-space renormalization group
a triangular lattice, becomes irrelevant fge==3. Even (RG)], in such a way that exact results may be obtained for
though there is no frustration, the antiferromagnetic Pottshort-range systemg8—10. For pure systems defined on
model may present, for sufficiently large valuesgoh finite  Bravais lattices, the RG procedure works as an approxima-
GS entropy per particléusually denominated the residual tion that may be implemented by means of a spin-decimation
entropy; this occurs due to the fact that one may have morgrocess which leads to RG equations. In the corresponding
than one choice of spin states that minimize the energy, aiL, such a procedure is exact for discrete classical spin vari-
given sites of the lattice, leading to a multiplicity of ground ables, if within a few RG steps one gets nonproliferated RG
states. That makes the antiferromagnetic Potts model an exquations connecting two successive hierarchy levels. Some
ception to the third law of thermodynamics. particular HL’s have been very successful in mimicking Bra-
Usually, for systems that present a large multiplicity of vais lattices[10], e.g., providing exact critical temperatures
low-temperature states, the total number of G8lgg, in-  and exponents of magnetic models on the square lattice.

creases exponentially with the number of sités In the present work we calculate the GS degeneracy of the
Potts antiferromagnet for the family of diamond HL's; we do
Ngs~exp(hN), (1.)  that through the application of two different methods, previ-

oulsy defined for Ising systeni$1-13. In the first method,
whereh is some positive finite numbé¢for the Potts model, denominated here the recursive approéei), one calcu-
lates the GS degeneracy recursively, through exact recursion
relations based on the particular properties of the lattice. The
*Corresponding author. Email address: nobre@dfte.ufrn.br main obstacle in the RA turns out to be in working out the
"Email address: evaldo@cbpf.br recursion relations, which is not always feasible. In the sec-
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FIG. 1. The basic unit cell of the diamond HL considered; there /
arem parallel one-dimensional paths, each of them composéd of -0.25 3
bonds in serie¢scaling factorb). The fractal dimension of such a -05 : : : :
lattice is d=In(bm)/Inb. The spins at the terminal sitdempty -05 -025 0 025 05 075 1
circles belong to previous hierarchy levels and are connected to . o

circles are to be decimated throughout the renormalization proces$riginal transmissivityt for the g-state Potts antiferromagnet on

This basic unit cell corresponds to the HL at its hierarchy ldvel diamond HL's:(a) Caseq=3, b=2, andm=2; (b) caseq=3, b
=1. =3, andm=3. The zero-temperature poirtt=f{ —1/2) is given by

a=|imTH0t’(T)=0.5 in case(a), whereasa=—0.306 45 in case

ond method, the factorization approa@#), the total num-  (b). In both situationsa is different from the extreme values for the
ber of GS’s at hierarchy level is expressed as a product of transmissivities, i.ea# —1/2,1.
properly defined partial number of GS’s at hierarchy levels

n,n—1,...,1[11]. In general, the FA is an approximation, of such a HL isd=[In(bm)/Inb], whereas the number of
leading to the exact result only for very simple systda®,  p 4o NGy, cells (N, sites generated at level(N(),

whereas in most cases it yields lower estimdte3 when .4 total number of sitesN(¥), at an arbitrary hierarchy
compared with those obtained through the RA; however, evel k are given, respectively ,by

appears to be very useful, since it leads to a great simplifi-
cation in the calculations and also due to the fact that it may (k) — K (k) _ k-1

. . Np”=(bm)*, Ng”=(bm , 2.2
provide accurate results in some cafgE|. The present pa- o = (bm) ¢ —(bm) 2.2
per is organized as follows. In the next section we discuss the ~ 0 "
RG transformation at zero temperature and the methods of NY¥=(b—1)mN",
calculation. In Sec. Il we apply both methods to estimate the

GS entropies of thg-state antiferromagnetic Potts model on ) (bm)k—1
general diamond HL's. Finally, in Sec. IV we present our N¥'=2+(b—=1)m bm—1 23
conclusions.
One may easily obtain exact recursion relatiohs f(t)
[l. THE MODEL AND FORMALISM for the thermal transmissivitig4.0]
Let us consider the-state antiferromagnetic Potts model, _ _
defined in terms of the Hamiltonian t 1-exp—qJkeT) (2.4

~1+(g—1)exp(—qJ/kgT)
H:_J% dloj,o)  (I<00i=12,...4), 2D 5 yo successive hierarchy level§, [hierarchy level k
—1)] andt (hierarchy levelk). It is important to mention
where the sunk ;, is restricted to nearest-neighbor pairs of that the thermal transmissivities, as defined above, are lim-
spins on a given diamond HL. At hierarchy level 0 one hasited to the rangée [ —1/(g—1),1]. Such recursion relations
N©=2 sites connected by a single bohl@o)= 1, whereas lead to plots oft’ versust like the ones exhibited in Fig. 2.

at hierarchy level 1 one has a single cell, such as the one Let us now consider, in such systems, the zero-
shown in Fig. 1; such a cell consists of parallel paths temperature limifT—0; in general, one may write
connecting the external sitésandj, each path containing

bonds in series. The cell shown in Fig. 1 will be considered t~=a[l—cexp —c,/T)], (2.5

as the basic unit cell for the lattice at an arbitrary hierarchy

level k, which is generated in such a way that at each step where the leading contributioa, which corresponds under
single bond is replaced by a unit cell. The fractal dimensiorthe RG procedure to the zero-temperature point of our recur-
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sion relation, i.e., fot=—1 one getazlimTHOt’(T), may Of states to the GS degeneracy. This is a crucial point for the
calculation of the GS degeneracy, as will be seen later.
Let us now introduce the two methods for calculating the
. GS dengeneracy; we shall briefly review these methods,
a= —y, (2.6)  since they have been extensively discussed in previous work
x+(q-1)y [12,13. First of all, let us fix the terminal spins of each unit
cell; for a Potts system, there agé ways of doing this for a
where single cell on a diamond HL. For each fixed configuration of
terminal spins in a unit cell, one may have a certain number
x=(q-1)"(q—1)° *+(-1)"™, of GS's associated with the internal spins of the cell. We
shall denote by{g,(qg,b,m)} the possible set of GS degen-
y=[(g—1)°—(—1)]™ (2.7 eracies associated with the unit cell shown in Fig. 1, where
the labela refers to configurations of terminal spins of the
Under renormalization, the effective interactions amongcell presenting different values of degeneracies. Due to the

be calculated for the cell shown in Fig. 1,

spins are given by Potts symmetry, the unit cell shown in Fig. 1 may present
only two types of degeneracies, i.e=1,2; here, we will
o kgT 1-t'(T) associate the degeneraciggq,b,m) and g,(q,b,m) with
J'=—lim——In ﬁ} (28 the cases of terminal spins in the same, and in different Potts
10 0 [1+(q=Dt'(T)

states, respectively.
The RA[12] is based on the recursive properties of the

wh|ch clegrly 'T“P"es that, when(_ever th? argument of theHL; the central idea is to express GS degeneracies at a given
logarithm is a finite constant, the interactions between Sp'nﬁierarchy level in terms of those of the previous hierarchy.

are driven to zero, at the first renormalization step. The onI;By fixing the spins of the hierarchy level 0, one has two

exceptions to this rule may occur at the extreme values of thﬁossible degeneracies, at an arbitrary hiérarchy ldyel

interval for the transmissivities, i.e., wheh=1 (argument G®(q,b,m) and G(k)(c’] b,m), associated with terminal
1 1My 2 1My 1]

. ) A o
of the 'Ogaf'thm IS zerband_t - 1/(q_ 1) (argument of spins in the same or in different Potts states, respectively.
the logarithm divergesA similar behavior has already been Such degeneracies follow the recursion relations

found in some fully frustrated Ising models, defined on spe-
qial HL's [12].. Curiously, this effect occurs also for the an- G(lk)(q,b,m)zqfl(G(lk’l)(q,b,m),G(zk’l)(q,b,m)),
tiferromagnetic Potts model—which does not present (2.93
frustration—on diamond HL's.

Let us investigate in which cases the zero-temperature G (g,b,m)=¥,(G* V(q,b,m),G¥ Y(q,b,m)).
limit of the renormalized transmissivityqlzIimTﬂot’(T), (2.9b

assumes the extreme values mentioned above. From E
(2.6) and(2.7) one gets thaa=1 if y=0; the possible real
solutions in this case ag=0 (b,m positive integersand
g=2 (b positive even integenmn positive integer. On the
other handa= —1/(q—1) occurs ifx=0; in this case, the
only possible real solution witg>1 appears to be the Ising

Bince one may compute easily the set of degeneracies at
hierarchy level 1,{G"}={g,}, the recursion relations
above may be followed up to any desired hierarchy level.
The total number of GS’s of the HL at itgh hierarchy level

is expressed as

case,q=2 (b positive odd integerm positive integer. Ng‘%(q,b,m)zalG(ln)(q,b,m)+azG(2”)(q,b,m),
Therefore, for theg-state Potts antiferromagnet on general (2.103
diamond HLs, one always haa# —1/(q—1),1, if g=3

(typical examples are shown in Fig). Dther examples ex- G{"(qg,b,m)=¥;(g:(q,b,m),g,(q,b,m)), (2.10b
hibiting a zero-temperature limit of the renormalized trans-

missivity, lying in between the two extremum values, were G (q,b,m)=¥,(g.(q,b,m),g,(q,b,m)), (2.100

found for antiferromagnetic Potts models on different fractal

lattices[14], as well as on a particular case of the diamondwhere the coefficienta, count how many different configu-
HL considered her¢l5]. Since the casg=2 has already rations of the spins at level 0O contribute to the sa@ﬁé).
been discussed for fully frustrated HL[42], as well as for For Potts models on diamond HL's, one has=q and a,

diamond HL's with random interactiondsing spin glass =q(q—1).
[11], we shall concentrate our analysis here in the cases  If one succeeds in obtaining the recursion relations above
=3, exactly, the RA yields the exact number of GS’s of the HL at

Therefore, at zero temperature, the interactions betweeits nth hierarchy level. Sometimes, working out such recur-
spins in our model are antiferromagnetic at the last hierarchgion relations turns out to be a difficult task; in such cases,
level n, and zero for all lower hierarchiesn—1,n one may use an approximation, the FA, which is a much

—2,...,0.Such curious zero-temperature behavior impliessimpler method, to be defined below.
that the spins belonging to hierarchy levels—1,n One may partially count the number of GS'’s of the HL by
—2,...,0, arecompletely uncorrelatedas in the high- fixing the terminal spins of each unit cell. We shall denote

temperature phagecontributing with the maximum number the number representing this partial countingIBfp. In a
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HL all unit cells present terminal spins belonging to lowest-where L®(q,b) denotes the degeneracy of a single one-
level hierarchies; under the RG procedure, each terminal spigimensional path connecting the external sites of the unit
will become an internal one at its respective hierarchy levelcell. The expressions far(q,b) may be calculated easily,
Therefore, one may write the number of GS’s, calculatedor small values ob; for b=2 one gets

within the FA[11], as

LYq,2=q-1, L®(qg,2=qg-2, 3.2
N1, b,m) = (T (g, b,m) )T D(q, b, m)) 19279 2(a2)=d (3.2

X(F(”‘Z)(q,b,m))- . ~(F(1)(q,b,m)>A, whereas fob=3
(217 LY@, =(a-1)(a-2),

where the factoA=q? corresponds to the number of states
associated with hierarchy level 0, agd- -) stands for an

average to be defined below. It is important to mention thatTh d iated with di ional path
the total number of GS’s may be factorized exactly in the € degeneracy assoclated with a one-dimensional patn,

above form only for very particular casgk?]; in most situ- with a general value db, may be calculated by decomposing

ations, Eq/(2.11) expresses a lower bound for the number Ofsuch a path into smaller .pieces. Obviously, there are several
GS's | e..Nosea=Ngs [13] equivalent ways of carrying out such a procedure; here, we
» e INGSFAT INGS .

For an arbitrary hierarchy levéd of a diamond HL, the consider the decomposition of a one-dimensional path kwith
partial counting may be written as ' bonds into two pieces, one containibg and the otheb”
(b’,b"<b andb’+b"=Db). One gets

L& (a,3)=g—1+(q—2)2. 3.3

T®(g,b,m)=[gy(q,b,m N[ g,(q,b,m) N2, , ,
(a,b,m)=[g(q,b,m)] 1 g,(q,b,m)] (.12 LB(q,b) =L (q,b" )L (q,b")

— (1) L@ "
WhereNQ’(L denotes the number of unit cells with degeneracy A= DL 7(a,b")L57(a,b"), (349
g, in the HL at itskth hierarchy level. In simple systems,

(1) — (1) ryy (1) "
N%) may be calculated exactly, whereas in more compli- L37(q,b)=L5"(q,b")L;"(q,b")
cated problems one may replaié?, by the average value +LB(q,b"LE(q,b")
[11] L L
+(q=2)L5(q,b")LEY(q,b").  (3.4D
(k) — N (K (k) (k) — N (K)
$a”=NeFa’, ; Pa”=Ne", 213 Applying the decomposition procedure for the cabes4

andb=5 one obtains, respectively,
WhereFEyk) represents the probability of finding a unit cell of
type « at hierarchy levek. Such a procedure leads to the L(ll)(q,4)=(q—1)2+(q—1)(q—2)2, (3.53
average estimate
© B 0 0 La4)=2(q-1)(a-2)+(a-2)°, (35D
(I'“(a,b,m])=[g1(a,b,m)]"1[g>(q,b,m)]*2

219 LM(@.5=(a-1)2(q-2)+(q-1)(q-2)
used in Eq(2.1]). In the next section, we apply both meth- X[(q—1)+(q—2)2] (3.69
ods to calculate the GS entropies of tipgtate Potts antifer- '
romagnet on general diamond HL's. L&(q,5=(q-1)[(q—1)+(q—2)2]
Ill. CALCULATION OF GS ENTROPIES +(9-1)(9—2)*+(q-2)’[(q—1)
As discussed in the previous section, all cages3 lead +(q—2)2]. (3.6b

to zero effective interactions after the first RG iteration.
Therefore, for the present model on a HL at tik hierarchy ~ Using the results above in Eq&.1) and (2.103, one gets
level, the interactions will be considered as antiferromagnecthe total number of GS’s at hierarchy leve+ 1.
tic atk=n and zero for all other hierarchy levels. Let us now consider the hierarchy leve+2, at which
Let us now implement the RA, starting, as usual, with theeach bond of the cell in Fig. 1 will become a unit cell. One
casen=1, which consists in a single unit cell. Since the cell has
of Fig. 1 is composed bgn independent parallel paths, all of
them connecting the same external sites, the degeneracies GP(q,b,m)=[L{(q,b,m)]™,
associated with such a cell may be written as
(2) =11 @ m
G{P(q,b,m=gy(a,b,m=[L{"(q,b)]", G3(a,b,m=[L3"(q,b,m]", 3.7
where the degeneraci¢s?(q,b,m) now present a depen-
G{V(a,b,m=gp(a,b,m=[L5)(q,b)]", (3D  dence on the number of parallel pathsof the previous
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hierarchy level. Such degeneracies may be easily calculated_(ZZ)(qlgym):3[gl(q,3,m)]292(q,3ym)

for small values ob, e.g., forb=2,

L¥(a,2m)=[g1(q,2m)]*+(q—1)[gz(q,2m)]?,
(3.83
L§(q,2m) = 294(q,2m)g2(q,2/m)
+(0-2)[g2(a,2m)1%  (3.8D
and forb=3,
L¥(a,3m)=[91(q,3m)1*+3(q—1)gs(q,3m)
X[92(a,3m)]?

+(a-1)(a-2)[g2(a,3m1°  (3.9a

+3(9—2)g1(q,3m)[g2(q,3m)1*+[(g—1)
+(9-2)2][g,(q,3m) . (3.9

For higher values ob, one may apply a similar decomposi-
tion recipe as the one employed for hierarchy lavell [see
Egs.(3.4)], by replacing each of thie bonds by a unit cell. It
should be pointed out that the expressionsifer3 in Eqs.
(3.9 may also be calculated using such a procedure, with a
decomposition into two smaller pieces;=1 andb”"=2.

The caseb=4 may be calculated through several different
decompositions, e.g., the choick$=1 andb”"=3, or b’
=b”=2, are equivalent, and lead to

L (q,4m)=[g1(a,4m)]*+4(q—1)(d—2)g1(q,4m)[g2(q,4m) 13+6(q—1)[91(q,4m) 13 g2(a,4m) ]>+[(a—1)(q

—2)%+(q—1)%1[g2(g,4m)]*,

(3.10a

L$(q,4m)=4[91(a,4m) 139,(q,4m) +4[(q—2)2+ (q— 1) 191 (a,4m)[ 92(q,4m) 1>+ 6(q—2)[ 91(q,4m) ][ g2(q,4m) ]

+[2(g—1)(q—2)+(q—2)][gx(a,4m)]*.

One can now generalize the RA for a diamond HL omits

hierarchy level; the total number of GS’s is given by

N&L(q,b,m)=a,G{"(q,b,m)+a,G4"(q,b,m),

(3.11
where
G{"(g,b,m=[L{"(q,b,m]",
G§(a,b,m)=[LE"(q,b,m)]™ (312
Using the fact that L{"(q,b,m) are related to

ng—l)(q’b’m) and Gg‘l—l)(q'b’m) :[L(an_l)(q,b,m)]ml

(3.10b

one may obtain a recursion relation for the degeneracies
L&k)(q,b,m). Forb=2 andb=3 one has generalizations of
Egs. (3.8 and(3.9), which are given, respectively, by

L (g,2m)=[L{" Y(g,2m)]?™+(q—1)

X[LY(g,2m) 2™, (3.133

LI (g,2m)=2[L D(g,2m)Ld V(g,2m)]™

+(q-2)[LY (g, 2m)]?™,  (3.13b

and

L&“’(q,sm=[L&“‘1’(q.3,m>]3m+3<q—1>[L&“‘1><q,3,m>]m[Lg“‘1>(q,3.m>]2m+<q—1>(q—2)[L<2“‘”<q,3,m>%3m, )
3.14

L (q,3m)=3[L{" V(q,3m) 12 LY D(q,3m)]m+3(q—2)[LI" P(q,3m) 1ML V(q,3m) 12 +[(q— 1)+ (q—2)?]

X[LSY(q,3m) 1™ (3.14h
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For higher values ob, one may use a general form for the  TABLE I. Residual entropies of the-state antiferromagnetic

decomposition procedure of Eq&.4), Potts model on diamond HL's with scaling facto 2, for typical
values ofg. In each case, the upper value corresponds to the RA
L(ln)(q,b,m)= L(l")(q,b’,m)L(ln)(q,b”,m) estimatesy(q,b,m), whereas th(EA)vaIue below is the lower bound
calculated by means of the F&;"”(q,b,m). The values oim (m
+(g-1)LY(q,b’,mL(q,b",m), =h?"1) chosen are associated with HL's with fractal dimensions

d=2, 3, 4, and». The RA estimates were obtained by looking at
(3.159 the convergence of, through the iteration of Eqg3.11)—(3.13);
the convergence becomes fastemasicreases, in such a way that

L (g,b,m)=L{"(q,b’,m)L{(q,b",m) the iteration process was carried uprte12 (m=2), n=10 (m
") , ") . =4), n=7 (m=8), andn=3 (m large, e.g.,m=300). The FA
+L37(q,b",m)L;"(q,b",m)+(q estimates were obtained through E8.20 (finite values ofm) and

Eq. (3.26 (limit m—); above, we present the FA results up to six
decimal digits. The maximum allowed value for each residual en-

(3.15hH tropy is Inqg, i.e., 1.09862 ... (q=3), 1.38629 ... (Q=4), and
2.3025% ... (g=10).

Iterating the equations above, one may obtain the GS entrOpy

—-2)LY(q,b’,mLE(q,b”,m).

per spin in the thermodynmic limit, B=2 q=3 q=4 q=10
m=2 0.5493061) 0.9693221) 2.1450580)
1 ") 0.44793 . .. 0.94248 . .. 2.14404 . ..
So(Q,b,m)= "m m S MNes(abm. (318 m_y 0.6073540)  0.97343§0)  2.1201381)
0.339449 . .. 0.8684% . .. 2.117640 . ..
. = 64982 1.03021 2.1120671
Let us now turn to the FA; one gets for hierarchy lemel m=8 0.6498270) 0302160) 0671)
[see Eqs(2.12 and (3.1)] 0285271 ...  0.83149...  2.1044® ...
' ' m— oo 0.69251) 1.0981) 2.1951)
0.23109... 0.7945B...  2.0912D...

(n) (n)
T™(q,b,m)=[L{"(q,b)I™eIL(q,b) ™z,
(3.17)

whereas for all previous hierarchies, a zero effective interac-  s(f)(q,b,m)= bm—{m[L(l)(q b)]
tion leads to b(b—1)gm

- 1
r®g,b,m=g" (k=1,2,...n-1), (3.183 +(a-DIn[LE (@ b) ]+ o —In.
with (3.20
— <0 (bm)"1-1 In Tables | and Il we present the residual entropies calculated
Z N®=(b-1)m—p———. (3.18D  through both methods, for typical values gf and scaling

factorsb=2 (Table |) andb=3 (Table Il). A few points are
worth stressing, as we discuss below.

(i) The residual entropies increase with as expected,
“1y q | N(”) q N(”) b m and one may observe that the ratisg(q,b,m)/Ing and

)/a, (?)n so(n;/ve replace 4 an y ¢i si™(q,b,m)/In g increase witty, indicating that the residual
=(1/a)N¢" and ¢3"=[(q— 1)/q]N . Using these results entropies approach their maximum allowed values, lsimi-
in Eq. (2.11), one gets that larly to what happens on Bravais latticE.

(i) The RA yields the exact estimates for the diamond
HL's discussed here. However, the iteration process may lead
to numerical difficulties at large hierarchies; in spite of that,
we succeeded in computing the residual entropies with a

The probabilities of finding cells of type 1 and[8ee Eq.
(2.13], are given, respectively, b{"=1/q and F{V=(q

In[N(G'%FA(q,b,mn=gmm)"—l{ln[L‘l”(q,b)]

+(q—1)|n[L(21)(q,b)]}+ 2+ (b g%r;;frgence up to fivéin some cases, up to gixlecimal
no1 (i) As discussed elsewhefd 3], the FA vyields lower

_1)m(bm) ~ }Inq (3.19 bounds for the residual entropies. It appears to be a poor
bm-1 ’ ' approximation for small values af, but it improves its ac-

curacy for increasing values af. Indeed, in the limitq
leading to the GS entropy per spin in the thermodynamic—o the FA becomes exact, as we show below. Considering
limit, only the dominant terms in the limg—o, one gets
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TABLE II. Residual entropies of the-state antiferromagnetic  which leads tosy(q,b,m)~Ingq.
Potts model on diamond HL's with scaling factor 3, for typical (iv) For fixed values ofg and b, the residual entropies
values ofg. In each case, the upper value corresponds to the RAypproach well-defined limits, a® increases. This may be
estimatesy(q,b,m), whereas the value below is the lower bound easily seen within the FA, for which E¢3.20 leads to
caI%uIated by means of the FA{™(q,b,m). The values ofn (m L
=b9"1) chosen are associated with HL’s with fractal dimensions . (FA) _ (1)
d=2, 3, 4, ande. The RA estimates were obtained by looking at J][nmso (q’b’m)_(b—l)q{m[l_1 (a.0)]
the convergence o, through the iteration of Eqg3.11), (3.12),
and(3.14); the convergence becomes fastemamcreases, in such +(g— 1)In[L(21)(q,b)]}. (3.2
a way that the iteration process was carried umte8 (m=3),
n=6 (m=9), n=4 (m=27), andn=3 (m large, e.g.m=100).  Within the FA, the convergence toward the limit—c oc-
The FA estimates were obtained through E520 (finite values of ~ CUrS in such a way that the residual entropy always decreases
m) and Eq.(3.26) (limit m—); above, we present the FA results for increasing values afn. In contrast to that, the way that
up to six decimal digits. The maximum allowed value for eachSuch a convergence occurs within the RA may vary with both

residual entropy is Iq, i.e., 1.09862 ... (q=3), 1.38629 ... g and b. Whenever this convergence in the RA occurs by
(q=4), and 2.30258. .. (q=10). increasing the residual entropy, a large discrepancy of the FA
estimate is obtaine@ee, e.g., the casg=3, b=2, of Table
b=3 q=3 q=4 q=10 I); however, one may get rather accurate estimates through
the FA, when the convergence toward the limit- oo of the
m=3 0.5708180) 1.0044911) 2.1621110) RA occurs by decreasing the value of the residual entropy
0.55022 . .. 1.0017%3. .. 2.16210@. .. (see, e.g., the case=10, b=23 of Table I)).
m=9 0.5498040) 0.9771810) 2.15042%90)
0.50456 . .. 0.9697@ . . . 2.15033. .. IV. CONCLUSION
m=27 0.549301) 0.9730371) 2.1465941)

We have computed the ground-state entropies of an anti-

0.48934. .. 0.95907 . .. 2.14644 . .. ferromagnetiag-state Potts model on general diamond hier-

M= 0042‘113;@) 0%2;2;51) ) ij:’:‘gl) archical lattices. Essentially, two methods were used for this
) e ) e ) T calculation: the recursive approach, based on exact recursion

relations for the number of ground states, and the factoriza-

- tion approach, which consists in factorizing the total number

(1) (1) —_(b-1)

Li7(a.b),L57(a.b)~q ' (3.2 of ground states as a product of the number of ground states

Substituting into Eq(3.20), in eeach hierarchy Ievel.l Whereas the former is an exact
g a(3.20 procedure, the latter provides a lower bound for the ground-

bm— 1 state entropy, with the advantage of a great simplification in

s (q,b,m)~ mq(b_l)ln q+ an q, the calculations. Apart from the fact that such a model pre-

sents no frustration, we have shown that forgg 3 there is
(3.22 a residual entropy at zero temperature; in particular, the re-
which leads tos(()FA)(q’b,m),vln q. A similar result may be sidua_ll entropy approaches the max_imu_m allowed value, In
obtained also through the RA; using E8.21 and iterating asq increases. Although the factorization approach appears

Egs.(3.13—(3.15, one concludes that to be a poor approximation for low values gfits accuracy
o o is substantially improved agincreases, in such a way that it
L(ln)(q b,m) L(zn)(q b m)Nq(b—l)[L(zn—l)(q b,m)]Pm becomes exact in the limig—oc. The application of the

(3.23 present methods for the investigation of other models is en-
' couraging and may produce insights into statistical systems

and therefore defined on fractal lattices.
NE&(q,b,m)~a,G5"(q,b,m)~ [ LE"(q,b,m)]™. ACKNOWLEDGMENTS
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Iterating Eq.(3.23, one gets
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