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Thermodynamics of self-gravitating systems
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We study the thermodynamics and the collapse of a self-gravitating gas of Brownian particles. We consider
a high-friction limit in order to simplify the problem. This results in the Smoluchowski-Poisson system. Below
a critical energy or below a critical temperature, there is no equilibrium state and the system develops a
self-similar collapse leading to a finite time singularity. In the microcanonical ensemble, this corresponds to a
“gravothermal catastrophe” and in the canonical ensemble to an “isothermal collapse.” Self-similar solutions
are investigated analytically and numerically.
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I. INTRODUCTION lem: the inequivalence of statistical ensembles, phase transi-
tions, gravitational collapse, finite time singularity, persis-

The thermodynamics of self-gravitating systems displaygence of metastable states, basin of attraction, etc. These
intriguing features due to the existence of negative specifitnodels are consistent with the first and second principles of
heats, inequivalence of statistical ensembles, and phase traiflermodynamics and give a dynamical picture of what hap-
sitions associated with gravitational collag4é. Thermody- pens when no equilibrium state exists. However, in view of
namical equilibrium of a self-gravitating system enclosedtheir considerable simplification, it is not clear whether these
within a box exists only above a critical enerdy.= models can have astrophysical applications although connec-
—0.3355M?/R or above a critical temperatureT, tions with the dynamics of dust particles in the solar nebula
=GMm/2.5X%R and is at most a metastable state, i.e., aand the process of “violent relaxation” in collisionless stellar
local maximum of a relevant thermodynamical potenttae ~ Systems are mentioned.
entropy in the microcanonical ensemble and the free energy The paper is organized as follows. In Sec. Il A, we intro-
in the canonical ensemblg2,3]. For T<T, or E<E., the duce the Smoluchowski-Poiss¢8P system for a gas of
system is expected to collapse. This is called the “gravotherself-gravitating Brownian particles and list its main proper-
mal catastrophe” or “Antonov instability” in the microca- ties. In particular, we make contact with thermodynamics
nonical ensembléMCE) and “isothermal collapse” in the and show that the SP system satisfies a foritd dfeorem. In
canonical ensembléCE). Dynamical models appropriate for Sec. I B, we discuss the existence of stationary solutions of
star formation[4] or globular cluster§5—8] show that the the SP system and the relation with maximum entropy states.
collapse is self-similar and leads to a finite time singularityln Sec. Il C, we perform a linear stability analysis of the SP
(i.e., the central density becomes infinite in a finite time sSystem. We show that a stationary solution is linearly stable
The value of the scaling exponent in the density profile if and only if it is a local entropy maximum and that the
~r~“ depends on whether the system evolves at fixed temgigenvalue problem for linear stability is connected to the
perature (in which casea=2 results from dimensional eigenvalue problem for the second-order variations of en-
analysi3 or if its temperature is free to divergén which  tropy studied in Refd9,10]. In Sec. lll, we consider the case
case the value of the exponent is nontrivial and often close t6f gravitational collapse and exhibit self-similar solutions of
2.2). It is found, in general, that the shrinking of the core isthe SP system. Since the particles are confined within a box,
so rapid that the core mass goes to zero at the collapse tinigere is a small deviation to the purely self-similar regime
although the central density is infinite. and we describe this correction in detail.

In this paper, we introduce a simple model of gravitational N Sec. IV, we perform various numerical simulations of
dynamics, which exhibits similar features and which can béhe SP system for different initial conditions. We check the
studied in great detail. Specifically, we consider a gas ofesults of thermodynamics, namely, the existence of equilib-
self-gravitating Brownian particles enclosed within a spheri-fium states foE>E. and T>T, and the gravitational col-
cal box. For simplicity, we take a high-friction limit and lapse otherwise. We find that the collapse proceeds self-
reduce the problem to the study of the Smoluchowski-similarly with an explosion, in a finite time.,, of the
Poisson system. In the simplest formulation, the temperaturgentral density while the core radius shrinks to zero. In MCE
is constantcanonical descriptionWe also consider the case this is accompanied by a divergence of temperature and en-
of an isolated medium with an infinitely large thermal con-tropy. In the limitt—t.,;, we find the scaling lawggr o
ductivity so that its temperature is uniform in space but var-~1 andp/po~(r/ro)~“. The scaling exponent ig=2 in
ies with time in order to conserve energyicrocanonical CE anda=2.21 in MCE. In CE, the invariant profilg/pg
description. The interest of these models is their relative =f(r/ry) can be determined analytically. The collapse time
simplicity that allows for a complete theoretical analysis,diverges liket.q~(E.—E)™ Y2 and teo~(T.—T) 2 as
while keeping all the richness of the thermodynamical prob-we approach the critical enerdy, and critical temperature
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T.. We also study the linear development of the instabilityalso proposed as affectivedynamics of collisionless stellar
(for unstable isothermal sphejesnd show that the density systemgon a coarse-grained scakduring the period of vio-
perturbationdp/p presents several oscillations depending onlent relaxation[13,14].

the value of the density contrast. In particular, at the points of In order to simplify the problem, we consider a high-
marginal stability in the series of equilibria, the perturbationfriction limit £&— +o. Then, it is possible to neglect the in-
Splp has a “core-halo” structure in the microcanonical en- ertial term in the Langevin equatidit). The Fokker-Planck
semble but not in the canonical ensemble, in agreement withquation describing this high-friction limit is the Smolu-

the theory[9,10]. chowski equation
- 1% 1
Il. SELF-GRAVITATING BROWNIAN PARTICLES a_,t):V[E(TVp—'—pVCD)] 6)

A. The Smoluchowski-Poisson system

We consider a system of small particles with massn-  with a diffusion coefficienD’=T/¢ and a drift term propor-
mersed in a fluid. We assume that the fluid imposes to th&ional to the gravitational force. The ordinary Smoluchowski
particles a friction force— é&v and a stochastic forcR(t).  equation describes the sedimentation of colloidal suspen-
This random force may mimic ordinary Brownian motion sions in an external gravitational field. Since it is a prototype
(i.e., the collisions of the fluid particles onto the solid par-of kinetic equations, it is clearly of great interest to consider
ticles) or fluid turbulence. We assume, in addition, that thethe extension of this model to the case where the potential is
particles interact gravitationally with each other. Therefore not fixed but is related to the density of the particles via a
the stochastic Langevin equation describing the motion of &oisson equation, as in the gravitational case.

particle reads The Smoluchowski equation can be interpreted equiva-
q lently as a continuity equation for the denspywith a ve-
v B
a=—§v+F(r,t)+R(t), ) locity field
T
whereF=—V® is the gravitational force acting on the par- u=-— E(;VIHV@), (7)
ticle. For simplicity, we shall assume that the stochastic force
is 6-function correlated in time and set where—TVp is the pressure force andpV® is the gravi-
(R(t)-R(t"))=6D&(t—t"), %) tational force. At equilibrium, the two terms balance each

other and the Boltzmann distributia3) establishes itself.
whereD measures the noise strength of the Langevin forceP’hysically, the high-friction limit supposes that there are two
In order to recover the Maxwell-Boltzmann distribution time scales in the problem. On a short time scale, of the order
of the friction time §*1<tdyn, the system thermalizes and
1 ) the distribution function becomes Maxwellian with tempera-
e V2T with p=Ae F?, (3)  tureT [this is obvious if we take the limiD=&éT— + in
the right-hand sidérhs) of Eq. (4)]. Then, on a longer time
scale, of the order of the dynamical ting,,, the particle
must be related according to the Einstein relatids £T. dihstriputlion P (Irbt) ter:jds tqbe\éoévehtowa:ds a stadtg O.L me-
Applying standard methodd.1], we can immediately write chanical equilibrium described by the Boltzmann distribution
down the Fokker-Planck equation associated with this stogs)' Note that the opposite gssumonns are mgde for glopular
chastic process clus_tf_ersf[5—7]: the system_ls z_assumed to be in mechanical
' equilibrium and the evolution is due to thermal transfers be-
of tween the core and the halo. Our model of self-gravitating
W‘f’ﬂfV) } (4) Brownian particles could find applications for the dynamics
of dust particles in the solar nebula and the formation of

This is the familiar Kramers equation but, when self-gravityPlanetesimals by gravitational instabilitteee, e.g., Ref.

is taken into account, it must be coupled to the Poisson equzg—l_‘r’])' In that context, the dust particles exp_er7|ence a friction
tion with the gas modeled by Stokes or Epstein’s laws and the

high friction limit may be relevant. On the other hand, the
AD=47Gp, (5) diffusion of the particles could result from a stochastic com-

ponent of the force or from fluid turbulence. This would be
where G is the gravitational constant. This makes its studyjust a small step because the physics of planetesimal forma-
much more complicated than usual. The Kramers-Poissotion is more involved than our simple model.
(KP) system was first introduced in astrophysics by Chan- Since the system described previously is in contact with a
drasekhar12] in his stochastic theory of stellar dynamics heat bath, the proper statistical treatment is ¢a@onical
(for, e.g., globular clusteysin that context, the diffusion and ensemblén which the temperatur€ is fixed. In order to test
the friction arise self-consistently as the result of the fluctuadynamically the inequivalence of statistical ensembles for
tions of the gravitational field and they model the effect ofself-gravitating systems, we would like to introduce a simple
encounters between states. An equation of the f@gilnwas  model corresponding to theicrocanonical ensembhla.e.,

fo -
(2nT)2"

at equilibrium, the diffusion coefficient and the friction term

af+ afH:af_a 5
at  Var TTov T av
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with strict conservation of enerdy. In fact, when a Brown- ized by the specification of mads and energyE. The ther-
ian particle moves with its terminal velocity in a gravita- modynamical potential is the entropy
tional field, the work of the force ought to be converted into
heat. If the medium acts as a thermostat with an infinite 3 3
volume and with rapid dissipation of heat, we can disregard
the variation of temgeraturepjand we get the isothermal rr?odel S= oM+ SMIn(27T) - f pInpd’r, (10
discussed previously. However, if we are to keep track of
local heating, the temperature will depend on space and time
and we need to set up a model in which energy is conservedavhich is the form of the classical Boltzmann entrofy
Such a generalization of the Brownian theory has recently- [ f In fd® d®v for a Maxwellian distribution function with
been developed by Streatgl6] in the case of an external temperaturel. Then, it is easy to show, using Eq$) and
gravitational potential. Thisstatistical dynamicsapproach (9), that[20]
[17] leads to coupled nonlinear equations for the density
p(r,t) and the temperaturg(r,t), which are consistent with
the first and second principles of thermodynamics. Such
equations can be derived from a microscopic model involv-
ing Brownian particles and heat particles modeled as quan-
tum oscillators. A generalization of these equations for self-
gravitating Brownian particles has been proposed by BileTherefore, the entropy plays the role of a Lyapunov function
et al.[18]. It consists of the Smoluchowski-Poisson systemgfor our microcanonical model. The canonical ensemble is
(6) and (5) coupled to a diffusion equation for the tempera- characterized by the specification of mdsnd temperature
ture T. It is straightforward to show that the SP systé satis-
fies a relation similar to Eq11) for the free energymore
precisely the Massieu functipd=S— BE. It can be noted
that the Kramers equatiof@) and the Smoluchowski equa-
tion (6) can also be derived from a variational formulation
where J is the diffusion current in Eq(6). However, this [20], called the maximum entropy production principle
model still remains complicated for a first step. Since oulMEPP). This makes a direct relation between the dynamics
main purpose is to illustrate in the simplest way the basicnd the thermodynamics. Since the SP system with the con-
features of the thermodynamics of self-gravitating systemstraint(9) obeys the same conservation laws &htheorem
(inequivalence of ensembles, gravothermal catastrophe, is@s more realistic models such as the Landau-Poisson system
thermal collapse, phase transitions, basin of attraction), etc.[8] and the coarse-grained Vlasov-Poisson sysfé#j, it
we shall consider an additional approximation and let theshould exhibit qualitatively similar properties even if the de-
thermal conductivitys in Eq. (8) go to +. In that case, the tails of the evolution are expected to differ in many respects.
temperature is uniform but still evolving with time according  In order to properly define our system of equations, we
to the law of energy conservatidgfirst principle), must specify the boundary conditions. We shall assume that
the system is nonrotating and restrict ourselves to spherically
3 1 5 symmetric solutions. In addition, we shall work in a spheri-
E=SMT(H)+ Ef p®dr. (9 cal box of radiusR to avoid the well-known infinite mass
problem associated with isothermal configurations. In that

The first term in the rhs is the kinetic energig  €@se, the boundary conditions are
= [fv?/2d3rd3v for a Maxwellian distribution function with
temperaturd and the second term is the gravitational energy

. 1
S= IT g(TVp-I—pV‘IJ) d3r=0. (11

(PT)=V-(\VT)=V-(T))~J-VO, (8)

N W
Q.:lg_,

of interaction. Equation&), (5), (9) lead to a simple micro- JP 2 (0)=0, BR)=— G_M TU"_P G_M -0
canonical model for self-gravitating systems with a lot of ar R’ R2 ’
attractive properties. The Cauchy problem for this system of (12)

equations was studied by Ros[d9]. These equations were

first proposed by Chavanit al. [20] as a simplified model

of “violent relaxation” by which a stellar system, initially far The first condition expresses the fact that the gravitational

from mechanical equilibrium, tries to reach an isothermalforce at the center of a spherically symmetric system is zero.

state on a few dynamical tim¢43,21]. In that context, the The second condition defines the gauge constant in the gravi-

engine of the evolution is the competition between pressurgational potential. Finally, the last condition ensures that the

and gravity, as in Eq(6). This particular equation corre- total mass is conserve@ve have used the Gauss theorem

sponds to an overdamped evolution but more general equa; ®=GM/r? to simplify its expression

tions taking into account inertial terms are also proposed in For spherically symmetric systems, it is possible to reduce

Ref.[20]. the SP system to a single partial differential equation for the
It is easy to show that the SP system admits a forrhiof mass profileM (r,t) =4 {pr'2dr’. Multiplying both sides

theorem for an appropriate thermodynamical poterisat-  of Eq. (6) by r? and integrating from 0 to, we obtain, after

ond principlg. The microcanonical ensemble is character-straightforward algebra,
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oM B M 2T oM
W(Lt)—g T?(r’t)_TW(r’t)
GM(r,t) oM
+r—27(r,t) . (13

The appropriate boundary conditions are nd0,t) =0 and

M(R,t)=M. The potential energy can be expressed in terms

of M(r,t) as[22]

W= — fRM ﬂ(r,t)dr.

or (14

0 r

It is possible to simplify Eq(13) a little more by introducing
the new coordinate=r?3 so that

M t)=9T M t)+3GM t&M t
§—(uy=9Tu P (u,t) (u,t) —-(u.0).

(15
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n=252 cg isothermal collapse
25 | R=32.1
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FIG. 1. Equilibrium phase diagram for classical isothermal
spheres. The spiral rolls up indefinitely towards the singular isother-
mal sphereps=1/27GBr?.

n=BGM/R as a function of the normalized energy=

2 . . . .
Finally, we note that the KP system satisfies a form of the” ER/GM?. The curve has a striking spiral behavior param-

virial theorem,

1d% 1 dl
— =2K+W-3p,V,

2ae 2%t (16

wherel = [pr2d3r is the moment of inertigwe have prop-
erly taken into account the pressupg on the box. The

difference with the usual virial theorem is the occurrence ofn

a damping tern%gi due to friction. In the high-friction limit,
we get

1dl 1
~(2K+W-3p,V).

24t ¢ (0

This expression can also be directly obtained from the S

system.

B. Stationary solutions and maximum entropy states

etrized by the density contra&= p(0)/p(R) going from 1
(homogeneous systeno -+« (singular spheneas we pro-
ceed along the spiral. There is no equilibrium state above
A:.=0.335 orn.,=2.52. In that case the system is expected
to collapse indefinitely. It is also important to recall that the
statistical ensembles are not interchangeable for systems
with long-range interaction, such as gravity. In the microca-
onical ensembléMCE), the series of equilibria becomes
unstable after the first turning point of ener@yCE) corre-
sponding to a density contrast of 709. At that point, the iso-
thermal spheres pass from local entropy maxima to saddle
points. In the canonical ensemble, the series of equilibria
becomes unstable after the first turning point of temperature
CE corresponding to a density contrast of 32.1. At that point,
|{,he isothermal spheres pass from maxima of free energy to
saddle points. It can be noticed that the region of negative
specific heats between CE and MCE is stable in the micro-
canonical ensemble but unstable in the canonical ensemble
as expected on general physical grouptds The thermody-

The stationary solutions of the SP system are given by theamical stability of isothermal spheres can be deduced from

Boltzmann distribution3) in which the gravitational poten- the topology of the3-E curve by using the method of Katz
tial appears explicitly. The Boltzmann distribution can also[24] who has extended Poincargheory of linear series of

be obtained by maximizing the entrofgyat fixed mass and equilibria. The stability problem can also be reduced to the
energy or by maximizing the free energwt fixed mass and study of an eigenvalue equation associated with the second-
temperature. The gravitational potential is determined selforder variations of entropy or free energy as studied by Pad-

consistently by solving the mean field equation
AD=47GAe A?,

obtained by substituting the densit$) in the Poisson equa-

tion (5). This Boltzmann-Poisson equation has been studie

in relation to the structure of isothermal stellar cdr23] and
globular cluster$22]. It is well known that the density of an
isothermal gas decreases at large distances asesulting
in the infinite mass problem if the system is not bounded.
The equilibrium phase diagrant(T) of isothermal con-

manabhan9] in MCE and Chavani$10] in CE. The same
stability limits as by Katz are obtained, but this method pro-
vides, in addition, the form of the density perturbation pro-
files that trigger the instability at the critical points. We also
recall that isothermal spheres are at most metastable: there
ﬂo global maximum of entropy or free energy for a classical
system of point masses in a gravitational interacfidh

S

C. Linear stability analysis

We now perform a linear stability analysis of the SP sys-

figurations confined within a box is represented in Fig. 1tem. Letp, T and® refer to a stationary solution of E()
where we have plotted the normalized inverse temperaturand consider a small perturbati@ip, 6T, and §& around
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this solution that does not change energy and mass. Sincewehere we recall thaj(0)=q(R)=0. Equation(25) is simi-

stationary solution of the SP system is a critical point oflar to the eigenvalue equation associated with the second-

entropy, we must assume< A ; for a solution to exist. Writ-  order variations of entropy found by Padmanabh@h In

ing 8p~eM and expanding Eq6) to first order, we find that particular, they coincide for marginal stabilitx £0). More
generally, it is proven in Appendix C that a stationary solu-

1 d][r? dp dép do déd tion of Eq. (6) is linearly stable if and only if it is a local
\op= c2dr E( 5Ta + TW + 5”? + pT) entropy maximum. The zero eigenvalue equation was solved
(19 by Padmanabhal®]. It is found that marginal stability oc-
curs at the point of minimum energy=A., in agreement
It is convenient to introduce the notation with the Katz[24] approach, and that the perturbatiép/p
that induces instabilitytechnically the eigenfunction associ-
1 dq ated withA =0) has a core-halo structufee., two nodek It
op= Az dr (200 s also argued qualitatively that the number of oscillations in

the profile 5p/p increases as we proceed along the series of
equilibria, see Fig. 1, up to the singular sphéie., for
higher and higher density contrast®f course, on the upper
branch of Fig. 1 the eigenvaluasare all negativémeaning
stability), while more and more eigenvalues become positive
(meaning instability as we spiral inward fofk >709.

Physically, g represents the mass perturbatiom(r)
=6M(r)=[{Amr'?8p(r')dr’ within the sphere of radius
It satisfies, therefore, the boundary conditiaf(®)=q(R)
=0. Substituting Eq(20) in Eqg. (19) and integrating, we

obtain If we fix the temperaturd instead of the energi, the
NE dp d (1 dg 1 dq do dsd eigenvalue equation becomfgake 5T=0 in Eq. (23)]
[ ATATOT gt Ta(r—za) 2 dr ar TP ar i 1 dg oq e
(21 Bl +_q:— (27)
dridmpr2dr] Tr2 4zpTr?

where we have used(0)=0 to eliminate the constant of
integration. Using the condition of hydrostatic equilibrium
Tdp/dr+pd®/dr=0 and the Gauss theorerdéd/dr
=Gq/r?, we can rewrite Eq(21) as

This is similar to the equation obtained by Chavddig] by
analyzing the second-order variations of free energy. The
case of marginal stabilityN\=0) coincides with the point of

minimum temperaturey= 7. as in the Kat424] analysis. It
A q=— ﬂ dﬁ i i i d_q) is found that the perturbatiofip/p that induces instability at
47pTr? T2 dr  4mpdr| 2 dr n= 7. in the canonical ensemble hae core-halo structure

(it has only one node
-_———— —t — (22

47TP2 r2drdr T2 Ill. SELF-SIMILAR SOLUTIONS OF THE
. SMOLUCHOWSKI-POISSON SYSTEM
or, alternatively,
A. Formulation of the general problem
d 1 dq %_ AE q— ﬂ@: We now describe the collapse regime and look for self-
dr 47pr? dr] T2 47pTr? T2 dr ’ similar solutions of the SP system. Restricting ourselves to

(23 spherically symmetric solutions and using the Gauss theo-

rem, we obtain the integro-differential equation
From the energy constrai®) we find that

2 b 17 (T&p+1G fr(’)4 24 )
R - —- — Tt = r r r .
5T=——f 5pd>47rr2dr——f q—dr (24) azor| g\ a2l P

3M Jo (28

Hence, our linear stability analysis leads to the eigenvalu
equation y y 9 ?Ne look for self-similar solutions in the form

d{ 1 dg| Gg 2v db T\
il | P R A . p(r.)= Po(t)f< ) ro:(G_) . @
dr\gzpr2dr]  Tr2 3MT2 dr  47pTr? Fo(t) Po
(25)
where the densityy(t) is of the same order as the central
where densityp(0,t) and the radius is of the same order as the
R ddb King radiusr =[9T/4wGp(0)]¥? which gives a good esti-
q—dr (26) ~ Mate of the core radius of a stellar systg2d]. Substituting

ansatz(29) into Eq. (28), we find that

036105-5



CHAVANIS, ROSIER, AND SIRE PHYSICAL REVIEW E56, 036105 (2002

dpo podro _Gpg 1df The invariant profileV(x) has the asymptotic behaviors
d—f(x)——d—xf (X)___Zd_ x| f'(x) V(x)~x whenx—0 andV(x)~1/x whenx— +«. On the
t fo dt & x?dx other hand, the mass profile can be written as
1 X 5
+ —f(x f f(x")4dmx'<dx’ | ¢,
) S RICY M(r,t)= Mo(t)g<r (t)) (36)
B0 with

where we have set=r/ry. The variables of position and «
time separate, provided that there existssuch thatpor§ Mo(t)=pors and g(x)=47rf f(x")x'2dx’". (37)
~1. In that case, Eq:30) reduces to 0

Gp2 1 The invariant profileg(x) has the asymptotic behavior
[ (f (X) g(x)~x® whenx—0 andg(x) ~x>~* whenx— + .

B. Canonical ensemble

X
+ ;f(x) fo f(x")4mx'? dX') } : In the canonical ensemble in which the temperafii® a
constant, Eq(29) leads toa=2 (the particular cas& =0 is
(31 treated in Appendix B In that case, the scaling equation

(33) can be solved analyticallysee Appendix A and the
Assumlng that such a scaling exists implies thatinyariant profile is exactly given by

(§/Gp0)(dp0/dt) is a constant that we arbitrarily set to be

equal to 1. This leads to 1 6+x?
f)= - 722 (38)

g _ 1+ —

po(t)= a(tcoll_t) 11 (32 2

Th|s solution satisfie$(0)=3/27 and f(x)~ 1/7x? asx—
. From Eq.(32) we find that the central density and the
89re radius evolve with time as

so that the central density becomes infinite in a finite time
t.o; While the core shrinks to zero ag~ (t.o;—t)**. Since

the collapse time appears as an integration constant, its pr
cise value cannot be determined explicitly. The scaling equa-

. q 3¢ _
tion now reads P(OD)=po(f(0)= 5—=(ten—1)
1 1d
fOX)+ —xf'(x)= —= —1{ x?| f'(x T\ 12
O I0= dX[ ( ) ro(t):(g) (teon— )" (39)
+ if(x)fxf(x’)4fn-x’2 dx’) ] On the other hand, using E38), we find that the velocity
X2 0 profile and the mass profile are given by E}) and(36)

which determines the invariant profil&(x). Alternative _ 12 _1 2
forms of Eq.(33) are given in Appendix A. If one knows the vo(t)= € (teon—1) and V(x)= RE
value of, Eq.(33) leads to a “shooting problem” where the

40
value of f(0) is uniquely selected by the requirement of a (40
reasonable behavior fdi(x) at large distancegsee below. T3 |12 43
As f(x)—0 for largex, we can only keep the leading terms Mo(t)=<—) (teon—1)¥2 and g(x)= )
in Eq. (33), which leads tof (x) ~x~* whenx— + . G? 2+x°
The velocity profile defined by Ed7) can be written as (41)
At t=t.,, the scaling solution$29), (40), and (41) con-
u(r,t)= vo('E)V<r (t)) (34)  verge to the singular profiles
with o T il
p(r,t—tcon)— 7TGr2, U(r,t—tcou)— fr ’
T . f'x)  4m Xf N2 dy
vo(t)= éTo an (x)= 0 7], (x")x"=dx’. N B ﬂ w
(35) (r’ - COII)_ G r.
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It is interesting to note that the density profi#2) has the For the reasons indicated above, it probably does not repro-
samer dependence as that of the singular solution to theduce the density near the edge of the box, that isy feR
static isothermal gas sphepe= 1/277G 8r? [22], the two pro-  >r,. Therefore, we write another equation for the density,
files differing just by a factor of 2. Therefore, the relation- making the following ansatz:

ship between the density and the gravitational potential in the

tail of the scaling profile is given by a Boltzmann distribu- _ r T
tion p(r,t)=po(t)f ) traa b, (47)
A (12T)D whereF(r,t) is the profile that contains the excess or deficit
p~Ae , (43)
of mass. Fot=t.,,, we have

with a temperature P instead of . A r~2 decay of the 4

density at large distances was also found by Penjstpim p(rteon)= .G — +F() |, (48)

his investigation of the self-similar collapse of isothermal AT

gas spheres d_espnbed by the Eulgr equat|ons._ This is a 9€8hd it would be desirable to find an approximate expression
eral characteristic of the collapse in the canonical ensemblle r the functionF(r) = F(rt.y). A differential equation for
(Tzconst). It should be noticed that the free energy does n () can be obtained by7sclj)k|)|s.tituting ansé7) in the dy-
diverge atteo although the system un_dergoe_s a Completenamical equatiori28) and taking the limit=t.,;,. We need
cqllapse. Therefore, dt=t.q, _the density profile mo_t a first to discuss the termip/gt(r teoy). FOT t—tyg, We can
Dirac peak contrary to what might be expected from rlgoroususe the expansion of the functiéfx), given by Eq.(38), to
results of statistical mechani€25]. In fact, there is no con- ' e

tradiction because the Dirac peak is formed during the post§econd order in & to get

collapse evolutiorf26]. r2 2r2 T
We now show that the self-similar solutid@9) is not p(r,t)= M( 1+ 24 |+ ——F(r,t). (49
sufficient to quantitatively describe the full density profile arr? 2 4mG

(especially whem ~R). In order to understand the problem, i ) ] .
let us calculate the mass contained in the scaling profile athen, using Eqs(29) and (32), we obtain to first order in

t=teo . Using Eq.(42), we have teon—t,
R 4R (r,t)=p(r,teon) + |8 gaF(t ) |(t t)
p(r,U)=p(Nleon) ™ 5 —=2| 7~ 7 = (Nilcon coll ™
Mcaii :f Amrldr= —. (44) AnGelrt T
scaling o 7TGF2 G,B
+.-- (50
The masMg,jing is finite but, in general, is not equal to the leading to
total massM imposed by the initial condition. This means
that there must be a nonscaling contribution to the density ap 2 8 ¢oF

which should contain the remaining mag®ssibly negative
when M <Mgcajing, 1-€., 7<4). That the scaling solution
(29) is not an exact solution of our problem is also visible
from the boundary conditions. Indeed, according to @&)
we should have

ot (Nleon) = InGE| r_4+ T E(rvtcoll)l- (53)

The problem is that we do not know the function

dFIat(r,teq). It is possible, however, to derive an exact

integral equation that it must satisfy. Since the exact profile
p(r,t) conserves mass, we have just befoyg,

dlnp BGM

or R?

for r=R. (45) Rip
fo E(r,tc’ou)rzdrzo. (52

This relation is clearly not satisfied by Ed2) except for the The scaling profilepscaing(r ) is an exact solution of Eg.

particular valuen=2. These problems originate because we 28) but it does not conserve mass. Multiplvin 9 b
work in a finite container. The scaling soluti¢29) would be 52 ;’nd integrating from =0 to R we. get plying &28) by
exact in an infinite domain, but, in that case, the total mass of '

the system is infinite. In addition, if we remove the box, the jRapscaling

o (1, too)r2dr

isothermal spheres are always unstable and the interesting
bifurcations between equilibrium and collapsing states are

lost.

2 X .
Strictly speaking, we expect that the self-similar solution :R_ Tapsca""g(R)ersca,mgM
(29) will describe the density behavior in the scaling limit & or R? -
defined by coll
_2r? 53
t—teon Or ro—0 and x=r/ry fixed. (46) - 7G¢R’ (53
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where we have used Eq&l2) and (44) to obtain the last R 8
equality. Now, subtracting Eq$52) and(53), using Eq.(47) (a—b)j F(r)dr+bRHR)=— . (60)
and passing to the limit—t.,,, we find that 0

ROF 8T In order to determine the valuc_es an’and_b, we _shaII require
f (Nt r2dr=— —. (54) that the value of the total density fat R is maximum, as the
at éR system would certainly tend to expel some mass if it were
not bound to a sphereecall that the profilé- arises because
This relation implies, in particular, that we cannot take of boundary effects In addition, Eq.(60) implies thatF is
(aF/at)(r,teon)=0 in Eq. (51). In fact, it is likely that integrable, so that the optimization process should be per-
F(r,t) involves combinations of the type formed including this constrairjtf F is integrable, then Eq.
(60) is automatically satisfied as it is equivalent to the con-

) 1, 5 servation of magsIn the section devoted to numerical simu-
F(r,t)~pof(r/ro)roF(r), r—z(r +ergF(r), lations, we studyF numerically and compare it with the nu-
merical profiles obtained by solving the SP system.
[2 2
F(yrot+crg), ..., (59) C. Microcanonical ensemble
which reduce toF(r) in the limit t—t.,,. Considering the If the temperature is not fixed but is instead determined by

time derivative of these expressionstatt.,;, we find that ~the energy constrair®), then the exponent is not knowna
they take only one of the two formB(r)/r? andF'(r)/r.  priori. However, we have solved E¢33) numerically for

We are therefore led to obtain the following ansatz: different values ofa and found that there is a maximum
value fora above which Eq(33) does not have any physical

& oF F(r) F'(r) solution. This valuex,,,=2.209733@ ... isclose to that

T E(r,tw”) =ar—2 +b — (56)  found by Lynden-Bell and Eggletdi7] (and, to some extent,

by Cohn[6] and Larson[5]) in their investigation of the
gravitational collapse of globular clusters. The common fea-
ture between these models is that the temperature is free to
diverge, so the scaling exponeat cannot be determined
from simple dimensional analysis. However, the agreement
on the value ofa is probably coincidental since our model
differs from the others in many respects.
; In the present casey,a iS just an upper bound os not
rZF”+(6—b)rF’+r2F2+(8—a)F+F’f F(x)x2dx a unique eigenvalue determined by the scaling equations as
0 in Ref.[7], for example. However, this maximum value leads
to the fastest divergence of the entropy and the temperature,
(57) so it is expected to be selected by the dynangiesall that
the SP system is consistent with a maximum entropy produc-
tion principle[20]). Indeed, the temperature and the entropy,

Interestingly, the final profile equatidh7) is notobtained by ~ respectively, diverge as
settingdp/dt=0 in the dynamical equation as, even in the

where a and b are some unknown constants that will be
determined by an optimization proceduysze below. If we
substitute ansat@?7) in Eq. (28), take the limitt=t.,,, and
use Egs.(51) and (56), we find after some simplifications
that F(r) satisfies the differential equation

8 (r
- —:J F(x)x?dx=0.
r3Jo

stationary looking tailgp/dt is, in fact, of order 1 due to the  T(t)~(t.,,—t) (@~ 2/a  gt)~— Mln(tw”—t).
fast collapse dynamics. 2a
Equation(57) leads to another shooting problem, starting (61)

this time fromr =R. The valueF(R) is selected by imposing

the condition that the total mass . This yields Note that these divergences are quite weak as the exponent

involved is small @mayx—2)/@max=0.0949133 ... Fora
= amax, the value off (0) selected by the shooting problem
), (58  defined by Eq(33) is f(0)=5.18 . .. . Therefore, the cen-

R 4R
f F(rr2dr=8G| M- —
0 tral density evolves with time as

BG

where R/ G =Mgcaiing is the mass included in the scaling
part. MoreoverF'(R) is fully determined by the boundary
condition(12) atr =R which implies, together with Eq48),

p(0t)=(5.178 . . .)é(tcou—t)‘l. (62

The coefficient in front of {,o,—t) " is approximately 10
BGM 8 4BGM times larger than fotr=2 [see Eq(39)]. The density profile

F'(R)+ ?F(R)Z PCh—-— (59  att=t,, is equal to

Finally, the exact relatiori54) combined with Eq(56) im- p(rt=teo) = 5 (63)
poses the condition @
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whereK is a constant that is not determined by the scaling S
theory. Using Eq(63) and the Gauss theorem, we find that J L_r2dr~1, e, r,~r{* MG (gg
the relation betweep and ® in the tail of the self-similar rnor?

profile is that of apolytrope ) . _—
which shows that,>r; sincea«<3. Now, the contribution

~(®—cons)¥/(@=2), (64) to Fhe_potential energy of the dgnsity betv\_/era_nand ro,
which is assumed to be the dominant part, is

with indexn=a/(a—2)=10.53 fora= ana- Y 2
We now address the divergence of the potential energy, W — frz i( fr M r’zdr’) dr

which should match that of the temperatioe kinetic en- rp r2\ Je

ergy) in order to ensure energy conservation. After integra-

tion by parts, the potential energy can be written as

~ r%('yia)rgiz'y

GM?2 1 ~_rl—(a—7)/(3—7)’ (70)
W=-—2 —%f (VD)2 der. (65) _ _
where we have used E(9) to get the last equivalent. Since
. ] the divergence of the potential energy must compensate that
Then, using the Gauss theorem, we obtain of the kinetic term we must have W~ 3MT~r2 *, where
we have used Eq$29) to get the last equivalent. This rela-
_ GM? G R1 ' 2 tion implies thatr, andr, are related to each other by
__W_i 0r2 Jp(l’ )47TI' dr’ | dr.
Fy~r{e 2@ a=), (71)

(66)

ow, imposingr {>r, leads toy<2. Therefore, any value of
v<2 leads to the correct divergence \of within this sce-
nario. Note that Eq(68) may arise from the next correction

If we assume that all the potential energy is in the scalmd\‘
profile, we get a contradiction, since

2 to the scaling of the form
W, t=t.o) GJRI r14 2dr’
ing(t= ~—=| = —Aar'<dr r
scalingt="coll 2Jor2\ Jora™ ™ p(r 1) =pof(r/ro)+pdfa(r/re)+ - - (72)
— er4—2adr (67) with f1(x)~x"7 for largex and;<1 for the first term to be
0 dominant in the scaling regime. Matching the lasgeehav-

ior of Egs.(68) and(72), we obtain

converges fore<<5/2. Since the temperature diverges with -
time for a=ap,y, the total energy cannot be conserved. porg~ri <, (73
This would suggest that=2 as in the canonical ensemble.
We cannot rigorously exclude this possibility, but a value ofwhich is equivalent to
a close toam,,=2.21 is more consistent with the numerical
simulations(see Sec. IY and leads to a larger increase of
entropy (in agreement with the MEBPIf this value is cor-
rect, the divergence of the gravitational energy should or|g|3|0097<1 this implies that ;>r,, as expected. More pre-
nate from the nonscaling part of the profile, which also ac<cisely, comparing with Eq(71), we have
commodates for the mass conservation. In the following, a
possible scenario allowing for the gravitational energy to di- _ y+(a=2)(3—y) (75)
verge is presented. a ’

Let us assume that there exist two length scejesndr , _
satisfyingry<r,;<r,<Rwith rq,r,,r,—0 fort—t.,; such and we check that the conditiop<2 is equivalent toy
that the mass between andr, is of order one. The physical <1.
picture that we have in mind is that this mass will progress
towards the center of the domain and form a dense nucleus D. Analogy with critical phenomena
with larger and larger potential energy. We assume that for
r,<r<r, the density behaves as

Fy~rier ey, (74)

In this section, we determine the domain of validity of the
scaling regime by using an analogy with the theory of critical
phenomena. For simplicity, we work in the canonical en-

p(r )~ ri (69) semble but we expect to get similar results in the microca-
’ nonical ensemble. Fop=6"1=BGMI/R close to7,, we
define
so that this functional form matches the scaling profile for
r~r,. If we impose that the total mass betwagrandr, is e= |7~ el _ |6~ 6] <1. (76)
of order one, we get e Oc
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For = 7. the central density(0,t) goes to a finite con-
stantp,, whent— +oo. Writing Sp(t) =p..—p(0;t) and us-
ing Eq. (6), which is quadratic inp, we argue that, forp
<., Oop(t) satisfies an equation of the form

(77

where 7 plays the role of a correlation time that is expected

to diverge forn= 7. leading to a slow(algebrai¢ conver-
gence ofép towards zero at the critical temperature. Actu-
ally, for = 7., Eq. (77) yields

Sp~t~L. (78
Now, if we stand slightly above the critical poingt 7.),
we expect this behavior to hold up to a time of ortigy;, for
which the perturbation term proportional to €T
—TJ)Ap(0t)~—€ is of the same order agp/dt~ — 142
This yields

teon~ E_llzw( n- 77c)_1/2- (79

PHYSICAL REVIEW BE56, 036105 (2002

ing Eq. (84) with the density in the scaling regime(0,t)

~ raz, we find that the scaling regime is reached at a tigne
such thatrazet* ~1 (for the argument in the exponential to
be of order ong Sincer,~(t.o—t)Y? in the scaling re-
gime, we gett.,;—t, ~€t.o . Therefore, the width of the
scaling regimegt=t.,,—t, , behaves as

1/2
coll€E™ €,

ot~t (85
establishingv=1/2. Close to the critical point, the collapse
occurs at a very late time and the width of the scaling regime
is very small. Therefore, if we are close to the critical point,
it will be difficult to reach numerically the regime in which
the results of Secs. llIAto Il C are valid.

Regrouping all these results, and using again an analogy
with critical phenomena, we expect that the central density
obeys the following equation:

p(01)=(teon—1t) " *Glteon(teon—1)), (86)

-1/2

wheret.,~ € and the scaling functio® satisfies

By analogy with critical phenomena, it is natural to expect

that 7 has the same behavior far<< 7.,

(7= 7). (80)
Therefore, forp< 7. and according to Eq.77), dp(t) tends
exponentially rapidly to the equilibrium value

7Y (81

& _
pe=p(Ot=Fo)== 7 1~ (7c—

G(O)z%, G(X)~p.\X, for x—+ow. (87)

IV. NUMERICAL SIMULATIONS

In this section, we perform direct numerical simulations
of the SP system and compare the results of the simulations
with the theoretical results of Secs. Il and Ill. In most of the
numerical experiments, we start from a homogeneous sphere

This relation is consistent with the results obtained in thewith radiusR and densityp, = 3M/47R3. This configuration

equilibrium study[10], where the exact result
0

1 PO - 1)

7c

poc
is derived close to the critical point.

8 1/2

7c—2

(82

has a potential energW,=—3GM?/5R. In the canonical
ensemble the temperature is equalTt@t any time. In the
microcanonical ensemble, the initial temperattirgis ad-
justed in order to have the desired value a&f=3/5
—3RTy/2GM. By changing the temperature or the energy,
we can explore the whole bifurcation diagram in parameter

Another interesting question concerns the extent of thgpace and check the theoretical predictions of Secs. Il and

scaling regime, which we expect to be valid for,, —t
< St~ €”. To computer, we integrate the dynamical equa-
tion in the regime where the perturbatieneAp dominates,

Jd
—pz—eAp,

at (83)

leading to

p(O,t)~f _ KPexp(k?et)dk~r g %exp(ry %et), (84)
k<r0

I1l. In the numerical work, we use dimensionless variables so
thatM=R=G=¢&=1.

A. Microcanonical ensemble

We first solve the SP system with the constraftensur-
ing the conservation of energy. We confirm the predictions of
the thermodynamical approach in the microcanonical en-
semble. ForA=0.334<A., the quantitiesp(0t), T(t),
rg(t), and S(t) converge to finite values and the system
settles down to a stable thermodynamical equilibrium state
with a density contraskR=596 less than the critical value

where we have introduced an upper momentum cutoff of~709 found by Antonoy2]. At large distances, the density

orderrg1 to prevent the integral from diverging. Indeed, the
Laplacian of p should become positive for>r, as
A(r~?)=2r"%>0. Thus, fore<1, we expect that the den-
sity will first saturate tg., for a long time of ordet., [see
Eq. (78], before rapidly increasinfsee Eq.(84)], and ulti-
mately reaching the scaling regimgee Eq.(29)]. Compar-

decays approximately as 2 like the singular isothermal
sphereg[23]. For A=0.359> A, the behavior of the system
is completely differentp(0,t) andT(t) diverge to+«~ and
rg(t) goes to zero in a finite timé.,,. We were able to
follow this “gravothermal catastrophe” up to a density con-
trast R~ 10%. The entropyS(t) also diverges tot o, but its
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In[1/p(0)]

-5

-10

-6 -4 -2 0 2
In(t)

FIG. 2. Time evolution of the central density for different values ) . ) B
of A. The central density(0t) becomes infinite in a finite time _F!G- 4. Evolution of the density profile foA =0.359>A at
t.on(A) depending on the value of energy (labeling the curves different times. Starting from a uniform distribution &t 0, the

The figure shows that the collapse time diverges as we approach tﬁé{_Ste_m develops a core-halo structure WiFh a shrinki_ng_ core. From
critical value A .= 0.3345 for which a local entropy maximum ex- this figure, we may suspect that the evolution is self-similar, i.e., the
ists. ¢ density profiles at different times can be superimposed by an appro-

priate rescaling.

evolution is slower(logarithmig. For A=0.335=A_ , the
system first tends to converge towards an equilibrium stat%ig 2, we see that the collapse ti depends on the
] |n&ll

but eventually collapses. | FA and | h th ical val
In Fig. 2, we plot the inverse of the central density as a\//\a u?rob and increases as we a||3pr9a<'::_ 9? (;]” |ca”va ue
function of time for different values ol\. For short times, i ¢ to € mor;a q“t"?‘”“talf"t’ﬁ’ V:;(.e tp ot mt I?h ! .,? C? ap_s;e
the density is approximately uniform, as it is initially. In that IME teoi @S a funclion of the distance to the critical poin
case, the diffusion term in E@6) is negligible and the sys- A=Ac. A scaling law is observed with an exponent

tem evolves under the influence of the gravitational termN_O".1 close to the predicted valuel/2 (see Sec. .”I D. .
alone. Using the Poisson equatid®), the Smoluchowski Durlng_th_e late st_age of th(_a collapsg, the de".‘s'tY profiles
equation(6) reduces to ' are self-similar, that is, they differ only in normalization and

scale(Fig. 4). Indeed, if we rescale the density by the central
dp 47G ) density and the radius by the King radius, the density profiles
at £ P (88)  at various times fall on to the same cur(fig. 5. The in-
variant profile is compared with the scaling profilg<) cor-
responding toa= ama, and the agreement is excellent, ex-
cept in the tail. This small discrepancy can be ascribed to the
477G next correction to scalingsee Sec. Il ¢ which generates a
p(Ot)=py| 1+ TP*H <+ (t=0), (89  power law profile between, andr, with an indexy<2. We
have checked that the logarithmic slope of the profile at

where p, is the initial density. Over longer time scales, a =R IS équal to— 7, in agreement with the boundary condi-
pressure gradient develops and the two terms in the rightion (45). However, this relation only holds in a tiny portion
hand side of Eq(6) must be taken into account. The system©f the curve(invisible in Fig. 3 so that the “effective slope”
first reaches a plateau with densityp.. (corresponding to an IS more consistent with a value=2.2. In Fig. 6, we plot the

approximate balance between pressure and gjakiyore

ravitational collapse takes place eventuallytatt.,,. In

Solving for p(t), we get

0
2
-2
1.5 —
g -4
1 3
- £ 5
2 05 Scaling profile
£ -8 (0=0t.,)
0 ] Oty \
-10
-05 1 -6 -4 -2 0 2 4
In(r/r,)
-1 .
-8 -6 -4 -2 FIG. 5. This figure represents tkguasjinvariant density profile
In(A-AJ) obtained forA =0.359 by rescaling the density by the central den-

sity and the radius by the King radius. It is compared with the

FIG. 3. Evolution of the collapse time,y with A. The figure theoretical profilef(x) calculated by solving Eq(33) with «

displays a scaling lavi,o;~ (A —A.) % with §=0.4 close to the

. = .
theoretical value 1/2. max
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0.004 1
0.003
05t
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< 0.002 3
= o I
0.001 Nee—=""__
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0.99 0.995 1 0 0.5 1
t r
FIG. 6. Time evolution of the inverse central density for FIG. 8. First mode of instability in the microcanonical en-
=0.359. This curve displays a scaling regimep(Qt) = A(tcon semble. The clean line is obtained by solving the eigenvalue equa-
—1t). The slope of the curv&=—0.313 is of the same order as the tion (25) with A=0 and the broken line is obtained from the nu-
theoretical value—1/5.178=—0.193 corresponding te= @ ay- merical simulation of the SP system. The profile of density
The small deviation is attributed to nonscaling corrections. perturbation presents a core-halo structure.

. . . ] ) density  perturbation  profile Sp(r,t)/peq(r)=[p(r,t)
inverse central density as a function of time. It is seen that,- peq(r)1/peq(r) that develops for short times. This density
for t—tco, the central density diverges with time dsy;  profile presents a core-halo structdie., it has two nodes
—t) "%, in good agreement with the theoretical expectationin excellent agreement with the stability analysis of Pad-
The slope of the curve in Fig. 6 is —0.313 but is consis- manabharn9] (we have computed the exact theoretical pro-
tently getting closer to the theoretical valuel/5.18 . .. file to compare quantitatively with the simulatjon
~ —0.193 corresponding ta= a,,,x 8S A increases, or as
approaches., (the small difference is attributed to nonscal-
ing corrections, as discussed in Sec. lll Qote that a value We now solve the SP system with a fixed temperafure
of «=2 would yield a much larger slope 27/3~—2.094  We confirm the results of the thermodynamic approach in the
(see Sec. Il B, which is clearly not observed here. There- canonical ensemble. When< 5. the system converges to
fore, the simulations are consistent with a value ®f an equilibrium state while it collapses fgr> 7. (isothermal
=amax, asS expected on physical grounds. This value collapsé. The collapse time,,, scales withp— 7. (see Fig.
= amay IS also consistent with the slow but existing diver- 9) with an exponent~—0.6 close to the theoretical value
gence of the temperature. Indeed, the slope of the curve ir 1/2.
Fig. 7 is=~—0.1, in agreement with the theoretical expecta- In Fig. 10, we plot the scaled densip(r,t)/p(0t) as a
tion. function of the scaled distancér «(t) at different times. The

To study the development of the instability for short curves tend to superimpose but the thickness of the line in-
times, we start from a point on the spiral of Fig. 1 close todicates that we do not have a strict self-similar regiime
A but with a density contrask=709 (we have takem\ agreement with our theoretical analysisxdeed, the invari-
=0.3344 andR=779). This isothermal sphere, with density ant profilef(x) computed in Sec. Ill B matches the numerics
profile peq(r), is linearly unstable as it is a saddle point of very well in the core but does not adequately describe the
entropy (see Sec. I In Fig. 8, we have represented the halo. The difference is due to the nonscaling F&t,t) that

accounts for the mass conservation. In Figs. 11 and 12, the

B. Canonical ensemble

~0.4 result of the numerical simulatiotNS) is compared more
3
-0.5 2
e k
£ 3
-0.6 =
0
-0.7
-6 556 -5 -45 -4 »
IN(topy—t) -8 -6 -4 -2 0 2
In(m-n,)

FIG. 7. Time evolution of the temperature far=0.359. The
curve displays a scaling regime~(t.,;—t)~?. The value ofy FIG. 9. Evolution of the collapse timg,; with ». The figure
=0.1 is in agreement with the theoretical val@él) for « displays a scaling lavt.q,~(7— n;) " with »~0.6 close to the
= Umax- theoretical value 1/2.
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0 3T
\‘ e NS,
-2 Y Theory
= TN - p)=(anry"
e 4 =
% [=%
E -6 i
-8 Scaling profile / 0
(0=2) 0.2 0.4 0.6 0.8 1.0
-10 r
-6 -4 -2 0 2 4
In(r/r,) FIG. 12. We plot the same numerical d&S) as in Fig. 11, but

in the range $y<r=<1. This is compared with the theoretical den-
FIG. 10. Self-similar profile forp=2.75> 7. This (quas)in- sity profile att=t,,, obtained from Eqs(48) and(57). The param-
variant profile is compared with the analytical scaling prof{&)  etersa~5.0 andb~5.1 are determined by maximizing(1) (see
with @=2. Deviation from the pure scaling law is due to nonscal- text), although the full profile barely depends amndb, as soon as
ing corrections that compensate for the excess of mass contained jiyemains slightly greater tham andb~4.8~5.4. In this range, the

the scaling profile. theoretical profile is in excellent agreement with the numerical one.

For instance,p(1)nyg~0.058 andp(1)meory~0.057. In order to
precisely with the full theoretical prediction involving the stress the quantitative agreement, we also plot the naive farge
nonscaling term. The agreement is excellent throughout thasymptotics of the scaling profilg,=(m5r?)~*, for which
whole domain. In the core, the profile is dominated by thep(1)as~0.116.
scaling part which implies a2 behavior at moderately

large distances. As explained previously and in Sec. Il Bthe first mode of instability calculated by Chavapld) in

. ; ) : the canonical ensemble. This profile doed present a core-
this scaling behavior ceases to be valid near the wall and th P P

o . | o ® Mffalo structure, in contrast with the first mode of instability in
contribution of the “‘.’”SC&"WQ part is clearly visible. Its in- the microcanonical situation. We have also plotted the per-
fluen_ce on the_ o_IenS|ty2pro_f|Ie remains Weal_< but when th urbation profile for an isothermal sphere located near the
density is multiplied by <, this nonscaling profile has a non- second extremum of temperaturg= 1.8 ) atwhich a
negligible contribution_ to t_he total mass. In Fig. 13, \ivle S€€hew mode of instability appeaf40]. This second mode of
that the central density diverges with time dg,(—t) . jnstability has a core-halo structuteig. 15. Of course, the

The slope of _the curve is a_pproxima}te_ly equal to 2, in goc’(Jperturbation profile that develops is a superposition of the
agreement with the theoretical predictiomr/3=2.1 of Sec.

first two modes of instability, but we see that its structure is
8. . , dominated by the contribution of the second mode.

_In Fig. 14, we study the early development of the insta- | qrger to check the inequivalence of microcanonical and
bility for %~ 7. More specifically, we start the simulations ¢45nical ensembles in the region of negative specific heats,
from a point on the spiral of Fig. 1 witly=2.510 andR \\g started the simulation from an isothermal sphere with a
=42=32.1. This isothermal sphere is linearly unstable in thedensity contrast between 32.1 and 709. In the first experi-

canonical ensemble as it is a saddle point of free en®§  ent the energy is kept fixed using the constré@ntin that
Sec. 11 Q, and the perturbation profile that develops for Shortcase, it is found that the sphere is linearly stable as it is a

times is shown in Fig. 14. It is in excellent agreement with c4| entropy maximum. However, if the temperature is fixed
instead of the energy, the sphere is now unstable as it is a

1251 ! saddle point of free energy. This clearly demonstrates in the
@ NS framework of our simple dynamical model that the microca-
100 \‘ Theory
75 Voo e p(r)=(enr*)" N
= 0.09
< 501
251 € 006
Q.
0 ; ; ~
0.00 005 |, 010 0.15
0.03
FIG. 11. We plot the numerical finite-time density profile
for »=2.75 (NS), at a time for which the central density is 0
p(0t)~124.9+28.%,.. This is compared to the exact scaling 061 062 0.63 064 065 0.66
profile pof(r/rg) (theory, with f given by Eqg. (38), t

and  po=(2m/3)p(0t)~261.6 and ro=(7p,) ?~0.0373 _ ) _ _
[p(ro,t)/p(0t)=14/27~0.519. We also plot the asymptotic den- FIG. 1.3. Time e_volutlon of th_e inverse central density fpr
sity profile, p.= (7 7r2) ", valid for ro<r<1. In this region, the = 3-5- This curve displays a scaling regime @t) =B(tcon—t).
correction to scaling is negligible. The slopeB=2 is close to the theoretical predictiomr23=2.1.
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1 3
05 25 1
% collapse
S -
0 c
%\ww‘ % 2 |
T
=
_05 relaxation towards a
~o 0.5 1 metastable equilibrium state
r 15
FIG. 14. First mode of instability in the canonical ensemble. The
smooth line is obtained by solving the eigenvalue equat®p
with A =0 and the broken line is obtained from the numerical simu- 1 : : :
0 0.1 0.2 03 0.4

lation of the SP system. The density profile does not present &

2
core-halo structure. A=—ER/GM

FIG. 16. Basin of attraction in the canonical ensemble. The iso-
nonical and canonical ensembles are not interchangeable f@fermal spheres located after the first turning point of the spiral are
self-gravitating systems. This particular circumstance can b@nstable in the canonical ensemble. Depending on their position on
traced back to the nonextensivity of the system due to théne spiral(and the initial perturbationthey can either relax towards
long-range nature of the gravitational potential. This interestthe local maximum of free energy with same temperat®¢ or
ing problem is discussed in the review of Padmanalfidn undergo a gravitational collapsé\].
and illustrated by Chavan|R7] for specific models of self-

gravitating systems with a short-range cus#lf-gravitating evolves towards the local maximum of free energy or under-

fermions and hard-sphere modgels goes gravitational collapse. Since we start from a saddle

Since the stable isothermal configurations are onéfa- point of free energy, the two evolutions are possible depend-
stable (i.e., local maxima of a thermodynamical potenial ing on the form of the perturbation. In addition, depending

the value of energy or temperature is not sufficient to com-

pletely determine the evolution of the system: depending oﬁc)gnt:; lloz?]t'eogf(ﬁ]ghi Sea%?lf.gr?'n;]gn g;e SZ}EL“;rSSn_IS_Eé o
the shapeof the density profile, an initial configuration with Sh s€ evolutions may be pr j re-

A<A, or n<n, can either reach a quiescent equilibrium sults of our study are displayed in Fig. 16. Thg isothermal_
state or collapse. The actual evolution of the system depenascg r:;ese:ﬁ;ri);p;rrleermcaiie% (i,f,)ir:;,p;etri;&l\l,?ﬁifs tlgozzrtﬂgine”_
on whether the initial configuration lies in the “basin of at- P With Sy .

traction” of the local entropy maximum or not. Of course, converged towards an equilibrium state are marked with

the complete characterization of this basin of attraction is ar?ymbOI . A kind of structure Seems to emerge. It appears
extremely complicated task because we would have to teépat the |soth_ermal spheres undergoing gravitational collapse
all possible initial configurations. We have limited our studyIn the canonical ensemble are concentrated near the vertical

in the canonical ensemble to the case of unstable isotherm%ﬁng.em' We have fqund a similar s_tructure In the microca-
nonical ensemble with a concentration of points undergoing

spheres located after the first turning point of temperature. ~ "~~ . -
P gp P ravitational collapse concentrated this time near the lower

These solutions correspond to saddle points of free energﬂ'orizontal tangent. However, as indicated previously, this ap-

Therefore, a small perturbatiofdue here to numerical . . !
round-off erroj can destabilize the system and induce a dypahrem str ulcture |sbre_levantfa:]best in zglaver_age sen;se, dsmce
namical evolution. The question is whether the systenft er '!’"“a pertur ayons of theamesaddile point may ead
o a different evolution. In any case, these results confirm
that the maxima of entropy or free energy are gtibal
1 1 maxima since they do not attract all initial conditions. While
homogeneous spheres with< A, and < 5. always seem
to converge towards equilibrium, centrally concentrated sys-
0.5 1 tems with the same control parameters can develop a self-
similar collapse leading to a finite time singularity. In fact,
considering Fig. 16 again, we see that the central concentra-
0 tion is not the only condition for collapse since there exists
M highly concentrated states that also converge towards the
smooth equilibrium profile with low density contrab that
-0.5 0 05 ] case, the evolution corresponds to an “explosiprirhere-
I'_ fore, the basin of attraction of the metastable equilibrium
states seems to have a highly nontrivial structure. The non-
FIG. 15. Second mode of instability in the canonical ensemblelinear stability of a linearly stable isothermal sphéaated
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this time before the first turning point of energy or tempera-rial particles it involves the positions and the velocities of the
ture) is also of interest. Since it is not a global entropy maxi-particles.

mum it can be, in principle, destabilized by a finite amplitude The Smoluchowski-Poisson system also appears in the
perturbation. However, this perturbation is expected to belescription of biological systems such as bacterial popula-
huge so that, in practice, the stability of the isothermaltions[39]. The diffusion is due to ordinary Brownian motion
spheres with low density contrast is extremely robust. Thi®nd the drift models a chemically directed movement
suggests that these metastable states can be very long livégeémotactic flux along a concentration gradiefdf smell,

[28—30 and physically relevant in an astrophysical context.nfection, food, etd. When the attractant concentration is
itself proportional to the bacterial density, this results in a

coupled system morphologically similar to that studied in the
present paper. The question that naturally emerges is whether
In this paper, we have discussed the thermodynamics arifiis coupling can lead to an instability for bacterial popula-
the Co||apse of a System of Se|f-gravitating Brownian par.tions similar to the gravitational collapse of self—gravitating
ticles in a high-friction limit. This approximation consider- Systems. This possibility will be considered in a forthcoming
ably simplifies the problem, since the evolution of the full Paper in which we consider self-similar solutions of the
distribution functionf(r,v,t) is simply replaced by the evo- Smoluchowski-Poisson equation for different systems in
lution of its lowest moments. We showed that theVarious space dimensiof26].
Smoluchowski-Poisson system presents a rich variety of be-
haviors and displays interesting phase transitions between
equilibrium states and collapsing states, depending on the One of us(P.H.C) is grateful to W. Jaeger for mentioning
value of energy and temperature. When the two evolutionshe connection of this work with biological systems. This
are possible, the choice depends on a complicated notion eésearch was supported, in part, by the National Science
the basin of attraction. This simple model also illustratesFoundation under Grant No. PHY94-07194.
dynamically the inequivalence of statistical ensembles for
systems with long-range interactions. APPENDIX A: ANALYTICAL STUDY OF THE SCALING
An extension of our study is to consider rotating systems EQUATION

with the conseryation (.)f angular m(_)mentum._ T_he SP s_ystem In this appendix we study analytically the scaling equa-
can be generalized to include rotati@0] and is interesting tion (33). To that purpose, we rewrite it in an equivalent

to study isothermal configurations that are not spherically,heit more convenient form. Let us introduce the function
symmetric. When spherical symmetry is broken, it is pos-

sible that the system will fragment in several clumps and that
these clumps will themselves fragment in substructures. This
may yield a hierarchy of structures fitting one into each other
in a self-similar way as suggested by theoretical considerin terms of which Eq(33) becomes

ations[31,10. It would be of interest to investigate whether

the _S_P system can di§play a process of frggmentation and f(x) + if’(x)= ii{xzf’(x)+f(x)g(x)}. (A2)
exhibit a fractal behavior. Numerical simulations are under @ 2d

way.
¥here exists a close analogy between the statistical md¥ultiplying both sides of Eq(A2) by x? and integrating the
chanics of self-gravitating systems and two-dimensional vorfesulting expression between 0 andwve obtain
tices [32—34. Following the pioneering work of Onsager xF(x)— af’(X)

[35], there have been some attempts to describe vortices as g(X)=4mx°c—— .
maximum entropy structures, with possible applications to 3—at4mat(x)
oceanic and atmpspheric.situatig(rqsg., Jupiter’s great_red From Egs.(Al) and (A3), we can derive a nonlinear recur-
spod. The relaxation of point vortices towards the maximuMgion relation satisfied by the coefficients, of the series

entropy state is sometimes described, in a statistical sense, @(pansion of (x) in powers ofx? (asf is an even function
a Smoluchowski-Poisson system that analyzes the evoluti

V. CONCLUSION

ACKNOWLEDGMENTS

g(x)=4wfoxf(x’)x’2dx’, (A1)

(A3)

"

of the vorticity in terms of diffusion and drift. The diffusion riting

is due to the fluctuations of the velocity field and the drift is 1 I~

due to the inhomogeneity of the vorticity fie[86]. The SP f)=7— ZO (—1)"ax®", (A4)
f

system can be deduced directly from the Liouville equation

by using projection operator technig7] or from a phenom- e find

enological maximum entropy production princip@8]. It is

interesting to note that, for point vortices, the Fokker-Planck 2n+ 1 " apan_p
equation directly has the fprm of a S.moluchowskll equa.tlon, an+1 2a(n+1)(2n+3) an+ 2(n+1) & 2p+3°
whereas for material particles this is true only in a high- (A5)
friction limit. This is because, for point vortices, the phase
space coincides with the configuration space while for mateThis recursion relation leads to the lamgdehavior ofa,,,
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that f(0)=1/4w. Combining with Eg. (32), this yields
r+o(r"), (A6)  p(0t)=&/4mG(teo—1t) 2. Then, insertingg(x) — x3/3~x>

in Eq. (B6), we find thatx®~x51~¢3) |eading toa=6/5.
wherer is an unknown constant related to the inverse radiudVote finally that the scaling profile defined by the implicit
of convergence of the series. Far=2, the asymptotics €duation(B6) can be written in the parametric form
given by Eq.(A6) with r=1/2 is anexactsolution of the

a,~8r{n+

recursion relatior{A5), as can be checked by direct substi- f(x)= i 1 g(x)= Ess/z x=s2 1+ Es e

tution. Using the identities 4 1+s’ 5 '
(B7)

+ 00
P(x)= v n§=:o (—1)"r"x2", where the constant has been incorporated in the expression
of the core radiusg .
orx g In fact, forT=0, Eq.(6) can be solved analytically. Since

P'(X)=— ————=— > (—=1)"nr"x?", (A7) the diffusion term vanishes, this equation describeter-
(1+rx2)2 = ministic motion where the particles have a velocity=

) ) ) —(1/£)VO directly proportional to the gravitational force
the serieSA4) can easily be resummed leading to £88).  (see Sec. 11 A This deterministic problem can be solved
exactly by adapting the procedure followed by Pen$tgrin
APPENDIX B: THE CASE OF COLD SYSTEMS (T=0) his investigation of the collapse of cold self-gravitating gas-

For T=0, the core radius is not given by the King radius eous spheres. Let us consider a particle locatedt=a at

(29), which is zero by definition. We still assume, however, time t=0. We denote by(a) the average density inside the
thatpor 1, wherea is unknowna priori. The equation for sphere of radius. The total mass inside radiascan there-

the invariant profile is then given by fore b_e expressed_ am‘?—(477/3)p(a)a . A_t time t, this
mass is now contained in the sphere of radigg (t), where

d r(t) is the position of the particle initially at=a. Using the
d—[f(x)g(x)], (B1) Gauss theorem, the motion of the particle is described by the
first-order differential equation

NIH

X !
f(x)+ ;f (x)=

whereg(x) is defined by Eq(A1). Multiplying Eq. (B1) by

47rx? and integrating from 0 ta, we obtain ﬂ: _ E GMa,
dt & 2 (B8)
47x3f(x)
9X)=g—FF7 - (B2) . . . - .
3—at+dmaf(x) This equation can be integrated explicitly to give
Using the relatiorf (x) =g’ (x)/4mx?, the foregoing equation A7G_ 13
can be rewritten as =all— Tp(a)t (B9)
(a—3)g(x)+xg’(x):aizg’(x)g(x). (B3) Let us first discuss the case where the system is initially
X

homogeneous with densny(a) po- In that case, all the
particles(whatever their initial positionarrive atr=0 at a

time tgo = §/47er0 defined as the collapse time for=0.
dg (3—a)g This expression represents a lower boyrehched foryp—
du_ U—ag (B4)  +x) on the value of the collapse timg,;(#) studied in
Sec. IlID. During the evolution, the sphere remains homo-
A separation of the variables can be effected by the transfogeneous with the radius, density, and free energy evolving as
mationg=uh, yielding

Introducing the change of variables=x3, we get

R(t)=R(1—t/tee)™,  p(t)=po(1—t/teon) 4,

1—ah dh_adu BE
h(3h—1) " 3 u’ B9 3BGM?
J(t)= R

(1= t/teon) (B10)
This equation is readily integrated leading to the implicit

equation
a Note that the free energy divergestatt.,;, unlike in Sec.
x3 1-al3 Il B. These results can also be obtained directly from &g.
g(x)= ?\( —g(x) : (B6)  that reduces, for a uniform density, to
i i - i - d 1 1 47G
where)\ is an integration constant. Ax(x) is an ogid ana _P:V “pVd | = pAd= e (B11)
lytical function, Eq.(B6) first implies thatg(x)~x>/3, so dt 3 3 3
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equality.
We now suppose that, initiallyy(a) has a smooth maxi-
mum at the center, so that

5

where we have used the Poisson equatB)rto get the last 5at., _ [3A2\Y ;|56
S ()T gy

3A?r teoll
we can express the density profile in the parametric form

1/3

=512 , (B2

2
P(a):Po(l_%) (B12) ) 1
p(Ot) 1+s’ r—o(t)

1+3
ES

for sufficiently smalla, whereA is a constant. In that case,
Eqg. (BY) giving the position at time of the particle located ~which is equivalent to E¢B7). According to Eqs(B19) and

atr=a att=0 becomes (B20), we have the scaling lawsy~ (to—1)%, p(0)r&®
) 13 ~1 just before the singularity occurs. Settirg=p/p(0)

r=al1-|1- a’) .t (B13) andx=r/ry, we easily check thaF(x)=1—x?+--- for x
AZ) teon| —0 and F(x)~(3/5)*°~®5 for x— +%. This solves the

problem forT=0. Now, if the temperaturd is very small,
At t=t.,, the time at which the central density becomesbut nonzero, we expect the present scaling to hold provided

infinite, it reduces ta =a>¥A%3. It is now straightforward  thatr,>r(t), wherer, is defined in Sec. lil. This leads to a

to obtain the full density profile at=tc, . Since the mass crossover core densitys above which theT+0 scaling of
contained betweea anda+da at t=0 arrives betweem  gec_ ||IB will prevail. The density? can be estimated by

andr +dr at timet, we have in full generality equatingro=(T/Gpo)1/2 to r_0~p55/6. The T#0 scaling

then prevails when the density becomes high enowgh,

Y, 2 _ 2
p(a)dmasda=p(r,t)4dzrdr, (B14) ~(TIG) 22

or, for sufficiently smalla,

APPENDIX C: CONNECTION BETWEEN DYNAMICAL
— a’da —a’da AND THERMODYNAMICAL STABILITY
/O(r,'E)ZP(a)—ZWZPO—2 ar (B15) _ _
r r Let p be a stationary solution of E@6) and dp a small
perturbation around this solution. The first and second varia-
At t=1cq), We get tions of temperature respecting the energy const(@intan
be expressed as

3
p(rteon)= gPoA%r_G/s- (B16) 3
SM 5T+J’ Sp®d3r=0, (C1
We have therefore recovered that, o= 0, the density pro-
file decreases algebraically with an exponent 6/5. We
now extend this analysis to a time=t_,,,—t just before the 3 o1 .
singularity arises. Considering the lingit-0 andr—0, Eq. EM o T+ 2 9p5® d*r=0. (C2)
(B13) can be expanded to the lowest order as
o\ 13 The critical pointp is a local entropynmaximunprovided that
T a iati
f—a : n E (B17) the second variations of entropy
coll

3M (8T)2 3M 8T 1 (6

p)?
Then, Eq.(B15) leads, after some reductions, to the density 5°8=- 72 T2 T 2) T, dr (€3
profile

— are negative for any variations that conserve mass to first

p(r,t)= Po ) (B18) order. Let us now linearize Eq6) around equilibrium and
N 5_a2 write the time dependence of the perturbation in the form
teonl | 3A2 Sp~eM. We get

The central density correspondsrte 0, i.e.a=0. Accord-

1
ing to Eq.(B19) it evolves with time as Nop=V g(tﬂ'vpﬂLTV Sp+ SpVd+pV 5(1))}.

_ (CH
_ Polconn & 1
p(O)=""""=77G (Tean= (B19) Multiplying both sides of Eq(C4) by 8p/p, integrating by
parts, and using the equilibrium conditid@¥V p+ pV® =0,
Therefore, if we define we obtain
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(8p)? 1
xde%— jT f(TV5p+5,0Vc1>)(5TVp+TV5p

+8pVd+pV 5D)d°r. (C5)

PHYSICAL REVIEW E56, 036105 (2002

f —(6TVp+TVp+8pVD+pVsd)VD d¥r

We now remark that the second-order variations of the rate

of entropy productior{11) are given by

. 1
525:f T§(5TVp+TV5p+ SpV D+ pV 6d)2ddr.
(Co)

We can therefore rewrite EGC5) in the form
S 2
AJ’( p) &
p
(C7)

Using the equilibrium condition, the last term in HEG7) is
clearly the same as

—5ZS+JT g(ﬁTVp+pV5(I))(5TVp

+TVép+ 6pVD+pVéd)d3r.

1
- f £(5TVp+TV 3p+ 5pV @ +pV 50)

X (C9

5TV<D 1V5<I) d®
F —T r.

Taking the time derivative of Eq9) and using Eq(6) we
have at each time

=—MT f —(TVp+pV®)VPd3r=0. (C9

Considering this relation to first and second order, we get

et
T2
3
= 5 MAST, (C10
f —(8TVp+TVép+ 8pVd+pV D)V b d’r
= —|v| 5?T=3M\ 8T, (C1)

2

where we have used Eq&C1) and (C2) to obtain the last
equalities. Substituting these relations in EQ7), we get

(5p)2 3M (5T)2 5T 5
{ f > M T = - 5 S
(C12
Comparing with Eq(C3), we finally obtain
825=2\6°S. (C13

Since8°S=0, see Eq(C6), the sign of\ is the same as that
of 6%S. If p is a local entropy maximum, the#’S and con-
sequently\ are negative for any perturbation: the solution is
linearly stable. Otherwise, we can find a perturbation for
which §2S, and consequently, are positive: the solution is
linearly unstable. We can easily extend the relaticd3) to

the canonical ensemble withinstead ofS. We have found
the same relation for other types of kinetic equatipt®, so

its validity seems to be of a very wide scope.
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