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Linear response of the Lorenz system
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The present numerical study provides strong evidence that at standard parameters the response of the Lorenz
system to small perturbations of the control parametsiinear. This evidence is obtained not only directly by
determining the response in the observab{e) =z, but also indirectly by validating various implications of
the assumption of a linear response, like a quadratic response at twice the perturbation frequency, a vanishing
response irA(x) =X, the Kramers-Kronig relations, and relations between different response functions. Since
the Lorenz system is nonhyperbolic, the present results indicate that in contrast to a recent speculation the large
system limit(thermodynamic limit need not be invoked to obtain a linear response for chaotic systems of this

type.
DOI: 10.1103/PhysReVvE.66.036103 PACS nunt$er05.90+m, 05.45:-a, 05.40--a, 05.10-a

[. INTRODUCTION ized. As already mentioned, this class should be much wider
than the hyperbolic systems considered by Ruelle. But con-
Linear response theory is concerned with the reaction of aidering nonhyperbolic systems leads to the general problem
dynamical system to small external perturbations. For equithat such systems are typically infinitesimally close to bifur-
librium systems this reaction can be computed by the Kubaations that on parameter changes may destroy the differen-
theory[1], starting from the microscopic Hamiltonian of the tiability of the invariant density with respect to
considered system. This theory is extremely successful iparameters—an important ingredient of the Kubo theory—
predicting electric conductivities, magnetic susceptibilities,and may render observables to behave discontinuously.
dielectric functions, polarizabilty, and other “generalized” Guckenheimer and Holmes call this the failure of the
susceptibilitied2]. Its most famous result is the fluctuation- “dogma of structural stability” in dynamical systems theory
dissipation theorem that relates the response of a system p. 255f of Ref.[9]). Abraham and Marsden argue that a
its equilibrium fluctuations. physically more appropriate notion of stability may be
From the viewpoint of dynamical systems theory the dy-“downright statistical” (p. 595 of Ref.[10]), while Ruelle
namics underlying statistical mechanics is chaotic. For a subspeculates that this problem may only be solved by invoking
class of these systems, uniformly hyperbolic diffeomor-the thermodynamic limitp. 410 of Ref[11]).
phisms, Ruelle recently presented a rigorous derivation of As a preparation for future investigations on how a linear
the Kubo theory 3] and formally generalized this derivation response may arise in nonhyperbolic chaotic systems, the
to hyperbolic chaotic flow$4], which include beside equi- present study provides a specific example, where despite of
librium systems also dissipative systems, i.e., systems faronhyperbolicity a linear response appears to exist: the Lo-
from equilibrium. Although hyperbolic flows are too narrow renz system at standard parametdr®|. This example indi-
a class to be physically relevattompare Gallavotti’s dis- cates that there might be another solution to the stability
cussion of his “chaotic hypothesi$5]), Ruelle argues that if problem of dynamical systems theory, namely, that there ex-
a system shows a linear response, it is appropriately ddst bifurcations across which observables behave continu-
scribed by the Kubo theorjA]. ously differentiable so that the thermodynamic limit need not
But not all systems react linearly to small external pertur-be invoked. That the Lorenz system is nonhyperbolic is es-
bations. Examples where a linear response fails to exist afgecially known from the investigations of Sparrow, who
phase transitions with a diverging or discontinuégeneral- showed that at standard parameters perturbations of the con-
ized) susceptibility(the magnetic susceptibility at the Curie trol parametefusually calledr) induce homoclinic bifurca-
point; the specific heat at the transition to superconduciivity tions, whatever small the perturbation might [eS]. The
or systems with hysteretic behavior, such as ferromagnetgresent approach to the linear response of the Lorenz system
Also systems whose dynamics can essentially be representednumerical, i.e., nonrigorous. Hence the main task of the
by chaotic one-dimensiondllD)-maps will generically not present paper is to make the evidence for the existence of a
react linearly to external perturbations. This follows from alinear response as safe as possible. This is done not only by
study by Ershoy6] who showed that the invariant densities checking the linearity of the response directly, but also by
of chaotic 1D maps can typically not be expanded in a pertesting various implications of the assumption of a linear
turbation parameter. An example is chaotic systems in theesponse, as the prediction of a quadratic response at twice
inverse period-doubling cascade, whose “sensitive deperthe perturbation frequency, a vanishing linear response in an
dence on parameters” has been studied by FaffflefFor a  antisymmetric observable, the validity of a particular relation
two-dimensional nonintegrable Hamiltonian system this typebetween two different response functions, and the Kramers-
of problem has been discussed by Takahaslail. [8]. Kronig relations. The results of these investigations turn out
In view of these examples the question arises how théo be in full agreement with the existence of a linear response
class of systems showing a linear response can be charactef-the Lorenz system, despite its nonhyperbolicity.
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The present study differs from most other studies of thehe quadratic response at twice the perturbation frequency
linear response of chaotic systems by the nature of the peftSec. IV), the Kramers-Kronig relationéSec. V}, relations
turbation considered here: it drives the system through bifurbetween different response functioSec. V), and finally
cations so that in view of the considerations from above thdhe vanishing of the linear response in particular observables
existence of a linear response stands in question. For nonhglue to the symmetry of the Lorenz systé8ec. VII). Addi-
perbolic systemsas the Lorenz systenalmost every pertur- tional_, especially technical aspects are discussed in the ap-
bation would do so. Nevertheless, there are two types ofendices.
perturbations to which the response can be guaranteed to be
linear, even if the system is nonhyperbolic. One is a pertur-  Il. DEFINITIONS AND NUMERICAL PROCEDURE
bation that is equivalent to a coordinate transformation. The
examples Grossmann constructs for his linear respons - - ; ;
theory of 1D maps are of this tygé&4] (compare Ref{15]). fﬁ?seggstgtrﬁ ?Srt;ir\t/):rglobr;s of its control parametarstudied.
For 2D maps this type of perturbations was studied in Ref.
[16]. The situation for such perturbations parallels the case of
hyperbolic systems, for which it is guaranteed that upon suf-
ficiently small perturbations the system is still topologically
conjugate to the unperturbed systg#l1]. The other type of
perturbations for which a linear response can generally be .
expected, are perturbations that can be represented as z=xy—bz

changes in the initial conditions. This is the case, e.g., for th%\s Lorenz[12] we takeo = 10, b=8/3, andr = 28 [25]. The

response to gdownystep-function or delta-function type ; X o

perturbation. In such situations the response is simply a reQertu:bat'?hne(E) of r wil tbe spek0|f|ed ?elgw. 'ﬁt tf:_ese E)ja-l

laxation in the unperturbed system towards its invariant denf@MEters the Lorenz system IS Known 1o be chaolic and aiso
nonhyperbolic: any finite change ofresults in sequences of

sity (as long as it is unique, as in mixing systerae that the N . X X
be)(\avior ofqthe observgbles depends sgmglothly on the pertup-OmOCIInIC bifurcations by which the topology of the chaotic

bation. Such perturbations were considered in Rdfs, 18, attractor is changefdl3]. The response to the perturbation is

mainly in search for a fluctuation-response relation for non-'m’.es'“gé}teOI by studying the behavior of an observaifbe),
equilibrium systems which will be taken ax,z, or x2.

Apparently the first discussion of the relationship between In Kubo-type response theories, FO which Ruelle’s ap-
a nonlinear dynamics and linear response was van Kampen!%roaCh "’T'S.‘? b:alongs, response functigng7), also called
critique of the Kubo theoryi19] (which essentially applies Susceptibility,” are defined by
also to Ruelle’s approaghHis point is that a macroscopi- ¢
cally linear response is only possible because of microscopic {SA(1)))= f dsya(t—s)e(s)+0(€?), (2.2
randomness, i.e., because of the nonlinearity of the micro- -
scopic evolution equations. But in Kubo’s theory, according . .
to van Kampen, macroscopic linearity is derived from micro-VN€re<(8A(t))) is an ensemble average defined by
copic linearity, which should be physically wrong; Kubo’s
answer is found in Ref[20]. This objection has inspired ((5A(t)>>=f dx SA(t) po(X), 23
quite a number of studies of the linear response of chaotic

systems, aiming at a better understanding of the relationship. . -
between nonlinear dynamics and linear respdi24é. With I\(%Ig;)ﬁﬁ(':r)lebjrz?)gerttztibgzvgggr:mm the ensemble average

van Kampen’s objection the kinetic approach to statistical
mechanics stands against that of Gibb’s. Therefore Suhl SA(D) = A(D(1,t5;X)) — ((A)). (2.4
compared for a simple chaotic 2D map, response calculations
from a kind of kinetic approach with those from the Kubo Hereq)e(t,to;x) denotes the flow of the perturbed System,
approach and obtained different values for the static respons&., the flow of Eq.(2.1), with the initial condition
[22]—a result that should be further scrutinized. Saito an(il)e(to,to;x):)(_ The initial densitypo(x) is chosen here as
Matsunaga demonstrated how coarse graining can be ifhe invariant density, of the unperturbed system, i.e., for
voked to reconcile chaotic dynamics with linear response <t it is assumed(t)=0. Alternatively, one could take an
theory[23]. o o initial density different fromp,. Thereby one could study
The idea of the following investigation is to start from the rg|axation phenomena, but this is not intended here. The up-
definition of a response function and compare numerical exper limit t of the integral in Eq(2.2) expresses causality: the

quences. Therefore, first the considered response problemyse past. Accordingly, one can set

specified and a numerical method to compute dynamical re-

sponse functions is developg@ec. ). (Without further xa(7)=0 for 7<0 (2.5
proof a short account of this method has already been given

in Ref.[24].) In the following sections, the various aspects ofand extend the integral to infinity. It should be noted that by
a linear response are considered: the linearity i{Sst. 1), Eqg. (2.3 a linear relationship betwees() and {{5A())) is

In the following the response of the Lorenz system to time

x=0o(y—X),

y=[r+et)]x—y—xz (2.2
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claimed, but whether such a relationship exists giori not 1000 T - . - - - ' - T
clear and will depend on the considered system, the type o
perturbatione() and also the chosen observaBlg). 100
In order to verify numerically the validity of Eq2.2) for 10
a particular system one has to specify the perturbadia. ~
For example, one could takgt) = ed(t—ty), whered() is Sy
the Dirac delta function. This givega(7) =€ X(5A(t, §
+7))). S0 xa could be computed by studying the time de- g 0.1
velopment ofA after the pulse af, for an ensemble of start- © 001

ing points from the chaotic attractor. This was done in Ref.
[17] for the Lorenz system and other systems. 0.001

Such a singular perturbation is equivalent to a change in
the initial conditions. So using this procedure the suscepti- 0.0001
bility is computed by starting with a nonequilibrium en- °o 1 2 3 oy 8 90

. . quency

semble and following the subsequent relaxation ofuthger-
turbed system. But in view of the problem of FIG. 1. Autocorrelation spectrum of the observahléor the
nonhyperbolicity the present investigation is concerned withstrongly perturbed Lorenz systera<£5.0f=3).
the question, whether the reaction of a system to de&br-
mationscan be described in terms of a susceptibility. So here Actually, Eq.(2.8) will be computed for finite time and
persisting perturbations, which change the system and ndinite perturbation strengtle only. So it is important to see
only the initial conditions, will be considered. To this end the how the right-hand side without limits behaves as a function
perturbation is chosen as of Tande. Let

€(t)= ®(t)cog 1), (2.6 W)= = J T dte st 2.9
€T 0

where O (t) is the unit step function so that implicitely  denote the finite time approximation afa(2). Now it is
=0 has been chosen. assumed that the time seri@8A(t)}, consists of two parts: a
This perturbation allows, i exists, a very simple proce- periodic part resulting from the periodic perturbation, and a
dure to compute numerically the dynamic susceptibility  chaotic parta(t). Such a decomposition is suggested by a
glance at the spectra of the perturbed system. As an example
o ) in Fig. 1 the autocorrelation spectrum ofs shown for the
XA(w):f d7e'“"xa(7), (2.7 Lorenz system perturbed at frequenéy Q/27=3 [26].
w Clearly visible is a continuous part with superimposéd
peaks at harmoniceé=n{}. This decomposition in a chaotic
the Fourier transform of (7). Under mild assumptions one part and a periodic part gives for sufficiently largeand
can show(see Appendix A that for the perturbatiori2.6) sufficiently smalle,

xa(w) is given by

Trens al) irSINQT
XA~~~ + XA(Q)E T ==+ xa(Q)
xa(Q)= I|m—I|m J dte®'S5A(t)=2lim— (e'“‘&A(t)} (2.10
e—0 T—»OO e—»O
(2.8)  (see Appendix B So the condition to obtain accurate nu-
merical results foryA(Q) is
where the single angular brackéts - ) denote the temporal eOT>1 (2.1

mean(in contrast to the double angular brackets introduced

before, which denote the ensemble medrhis is the basic because then the first and second term are negligible.
formula used in the following numerical investigation. It

states that to compupes(w=(2) one has to perturb the con- IIl. LINEARITY OF RESPONSE IN A(x)=2
sidered system by Eq2.6) at the very frequencyw=(}, ) ) . ) .
compute a time seriefSA(t)}, from it, and evaluate the In this section the linearity of the response is demon-

right-hand side of Eq2.8). To gety, as a function ofv one strated for the observabl&(x)=z by direct evaluat@on _of
has to repeat this for different driving frequencies=Q.  Ed.(2.8). Results of such computations are plotted in Fig. 2.
The linearity of the response is reflected in E2,8) by the ~ The upper part shows the modulyg ()| of the finite time
fact that the limitT—o on the right-hand side should be approximationy, for driving frequencyf=Q/27=20 and
proportional toe in order for y,(w) to be independent of.  T=1000 as a function ok. For smalle the 1k decrease
[The factor 2 arises in Eq2.8) because a cosine has beenpredicted by Eq(2.10 is present; it stems from the chaotic
chosen for the perturbation instead of a complex exponerbackground in the time series @iz(t). The true value of
tial.] |x,(®)| is reached ak~10"3, where the value ofy. ()|
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FIG. 2. € dependence ofy(I=|XI|e’i“’I for f=20.0 andT

B — 7I‘PZ . .
—1000.(3) Modulus|x1[; (b) phaseg. . FIG. 3. The response functiog,=|x,/e '¢= To indicate the

numerical accuracy the computations from three diffeeeatilues

] o ] are shown T=4000).(a) Modulus;(b) phase(a) is reprinted from
gets independent aof. Similar computations have been per- [24] with permission from Elsevier.

formed for other frequencies and always a platedl;(lmw”
could be identified27]. Computations of the phasge, of
Xz=|x-€ ¥z give also reliable resultgFig. 2(b)] [28].
These results indicate that the response is indeed linear ) 1T
and the response functign,(w) exists. TR T i20t
Putting together results from similar computations at \I,A(Q)_lmezTIInfoo dte™" A
other forcing frequencieg) gives the response function
x,(w), plotted in Fig. 3 for the range of frequencids
=0.004 tof =68.0. In the upper part of the figure once more
the modulus is shown, whereas the lower part depicts the

phase(pz(w). In order to indicate the rellablllty of the results, This relation defines in ana]ogy to E(QS) a response func-
computations for different values @&f have been superim- tion that describes in ordes the response at(2 to a per-
posed. turbation at frequency). The results for the observable
The behavior ofy,(w) at low and high frequency is very A(x)=z at driving frequencyf=20 and finite T are dis-
regular. It is found lim_ox(w)~1 and lim,_.[x.(w)|  played for differente in Fig. 4. For smalk the usual drop off
~ ™ %; the latter result can also be obtained from a Kubo-is seen. This is followed by a plateau wher,(Q)| is
type theory by a moment expansionypf{ w) (see Ref[24]).  jndependent ot. This shows that indeed the response at two
In the intermediate frequency range the response functiofimes the driving frequency is proportional 3. So once
shows typical resonance behavior. more agreement with the definitid@.2) is found.

monics should be at least of orde. This has been checked
numerically by computing

=2Iim;<e2im§A(t)>. 4.1

e—0

IV. QUADRATIC RESPONSE AT 2 © V. KRAMERS-KRONIG RELATIONS

Another important feature of linear response can be Anotherimplication of the definitio2.2) is the Kramers-
checked numerically. A Fourier transform of the defining re-Kronig relations. Lety, and x,y denote the real and imagi-
lation (2.2) gives {(( SA(w)))=xa(w)e(w)+O(€?). If one  nary part ofya. Then one can derive from E(R.2) together
now specializes to a periodic perturbation at frequency With the assumed causality af the Kramers-Kronig rela-
=(), one sees that the definitid2.2) assumes a response tlons [2]
only at that very driving frequenc§). But usually(compare
Fig. 1) a response is also observed at harmonic® 050 in
order for the relatior(2.2) to be valid, this response at har-

Xa(®)

1 o0
X+ 2P [ du 2 51
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1000 po— . - - - . Hence, the confirmed causality is a gross feature gtv)
100 | * 1 and not a consequence of the individual experiments. There-
10 £ * ] fore the good agreements in Fig. 5 also indicate the validity
.. and accuracy of the employed numerical method by which
1F . E xz(w) was computed.
04t * ;
- 001 L .. ] VI. RELATIONS BETWEEN RESPONSE FUNCTIONS
108 L .. ] From Eq.(2.8) one can derive a general relation between
104 . ] the response functionga(Q2) and xa({)), where A(t)
105 L Lt eees e eeee] =(d/dt)A[D (t,t5;X)],
10'6 1 1 1 1 1 1 2 1 T d
0.0001 0.001 0.01 0.1 1 10 . — lim e lim — ot
c xa(Q) llinoeTI[anJ'O dte dt(SA(t)
FIG. 4. Quadratic response at the first harmonic. Shovi/\ﬂst. Q) (T
The system is perturbed at frequenicy 10.0 but the response is _ Iimzlim (—i )f dteimﬁA(t)
observed at frequencyf220.0. (T=400). JY 0
, =—iQxa(Q), 6.1
” 1 e ) XA() (6.1
xa(Q)=——P do . (5.2 . .
T ) 00— Q where it has been assumed that for physically relevant states

A(t) is bounded so that the border terms of the partial inte-

. o . gration vanish. This relationship is also obtained by a Kubo-
HereP indicates that the principle value of the integral has totype theory(see Appendix D. Considering for the Lorenz
be taken. Figure ® [Fig. 5(b)] compares the direct rgsult system the observablel(x) =z and A(x) =x2, one obtains
for xz [xz] on the left-hand side of Ed5.D) [Eq- (5.2] With  from Eq.(6.1) by invoking the first and third equation of Eq.
its computation throughy; [x,] on the right-hand side, (2.1
where the integrals have been evaluated by the trapezoidal
rule. The curves are in good agreement. This verifies another ~ _ . — _ _
important signature of response functions, namely, their cau- 1) = x5e(0) = 20T () = xe(D)],

sality. It should be noted that numerically the response func- _ (6.2
tion y,(w) considered here is obtained from a large number —1Qx7(Q) = x7(Q) = xxy(Q) = bx,(Q),

of independent numerical experiments at different frequen- o i

cies. so that after the elimination ¢f,, one finds that the response

in x? is completely determined by the response,in

f Ia I ; K Kdirept — b—iQ
] rom Kramers-Kronig ------ — _
== mamscscnmpzons XXZ(Q) ZUZU_IQXZ(Q) (63)

0 L
h //v’ Numerically this relation is confirmed in Fig. 6 by compar-

5 r ] ing x,2, computed directly from the perturbed Lorenz sys-
tem, with y,2, computed by Eq(6.3) from x,. A host of
.10 Lo . . other relations between response functions can be derived
0.1 1 10 from Eg. (6.1), as shown in Appendix C.
frequency
.| b ' " direct — | VII. VANISHING RESPONSE IN A(x)=x

from Kramers-Kronig ------ . . .
For the Lorenz system another implication of E®.2) is

w3 10r ] the vanishing of the linear response in the observalgld
=X. This can be seen as follows.
Sr ] The Lorenz system is invariant under the transformation
N S(x,y,2)=(—X,—VY,z). Accordingly, a mappingh(x) will
0= C i be called symmetric ihoS=h and antisymmetric ihoS=
0.1 1 frequency 10 —h. At standard parameters the attractor of the Lorenz sys-

tem has the same symmetry as the system ifd4é€lf so that

FIG. 5. Check of the Kramers-Kronig relations for the responsetime and ensemble averages of antisymmetric observables
function y,= x.+ix’ (e=0.5T=4000).(a) Comparison of direct Vvanish. The perturbatioe(t) in the perturbed Lorenz system
numerical data fory, with a computation ofy, throughy’ by the  (2.1) conserves the symmetry so that one can expect that also
first Kramers-Kronig relation(b) Analogous computations foy,, . for small but finitee time averages of antisymmetric observ-
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180 - T - FIG. 7. e dependence dfy,| for f=20.0 (T=1000).
direct — b
135 | indirect - 1
X 90 | 1 Such a fluctuating plateau is in accordance with a vanishing
pa susceptibility: it can be explained by an additional contribu-
tion to Eqg. (2.10, which arises from fluctuations in the
0 s height of the periodic component of the system, always
present for finite lengtfT of the time seriegsee Appendix
45 0.1 1 10 B). Moreover, this plateau seems not to stabilize, even for
frequency very long time series. All these findings indicate thatw)

is indeed zero. The same conclusion can be drawn from Fig.
8, where the autocorrelation spectrum of the observalie

the presence of strong perturbations is shown. Although the
spectrum is deformed as compared to the unperturbed case
(not shown, no § peaks af or its harmonics are present, but
such peaks would be expected for a linear response. A nu-
ables vanish. With this observation a time average of thénerical analysis for the observatAéx) =y, whose response
second equation in Eq2.1) gives ShOL:![d also vanishuse the first of Eqs(2.1)], gives similar
results.

FIG. 6. The susceptibilityy,2=| xx2|€"#, computed directly
from Eq.(2.8) and indirectly fromy, via Eq.(6.3). Differences are
so small that they are invisible in the plog=0.5,T=4000). (a)
Modulus; (b) phase.

(cogQ1t)x),.=0, (7.
. VIIl. DISCUSSION
where an index has been attached to the angular bracket to
stress that it denotes a time average over the perturbed dy- The foregoing considerations have shown that for the Lo-
namics. Now, sincéx),=0, the response function related to renz system at standard parameters the various implications

A(x)=x is according to Eq(2.8) given by of the definition(2.2) of a response function are consistent
with numerical results. Accordingly, there is strong evidence
2
Xx(Q)=lim—(e'%x) ., (7.2 1000
e—0
100
so that with Eq.(7.1) the real part ofy,({) vanishes. But
according to the second of the Kramers-Kronig relations
(5.1 this implies that also the imaginary part is zero so thatx 1
0)=0 7.3 e o
— b=
xx(£2)=0. (7.3 £ 001
This result can also be derived from a Kubo-type theory; sec? 103
Appendix D. -4
A numerical analysis confirms this expectation: Figure 7 )
shows the dependence gf at frequencyf=20 one. The 10
curve shows the typical & behavior always present for finite 10°®
T. For large values ot the data seem to saturate at a very 6 1+ 2 3 4 S5 6 7 8 9 10

fi
small level, but two orders below the plateau found for the requency

response iM\(x) =z (compare Fig. 2 In contrast to the case FIG. 8. Autocorrelation spectrum of the observakléor the
of the response ig, the plateau here is strongly fluctuating. strongly perturbed Lorenz systera<£5.0f=23.0).
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that for the Lorenz system a linear response exists. This i®tt. But unfortunately the locations of the other poles could
insofar interesting, as Ruelle’s rigorous foundation of lineamot be trusted, since they turned out to vary erratically with
response theory applies only to hyperbolic systems. So, athe order of the approximants. Hence it could not be decided
cording to the numerical results presented here, the Lorenwhether x,(») shows poles outside the spectrum of reso-
system provides an example where despite nonhyperbolicitjances. This “noisy” behavior of the poles is probably a
a linear response exists. result of the extremely peaked naturexg{w) (in Fig. 3 this

But why this linear response exists is currently not underis obscured by the logarithmic plottinghat arises mainly
stood. Nevertheless, it is clear that its existence is related tiom the first few resonances so that the contribution of other
the nature of the bifurcations that arise from the perturbationpoles cannot be resolved.
because one can easily think of bifurcations that prevent a Finally it should be noted that the Lorenz equations de-
linear response. In the present case changes of the contr@tribe in a certain approximation the dynamics of Nasers
parameter induce homoclinic bifurcations that newly intro-[30,31]. Hence, similar computations ofy2 as those pre-
duce or destroy unstable periodic orb[ts3]. One could sented here, but for somewhat different system parameters,
speculate thaffor some unknown reasothe effect of these could predict the intensity response to pump-parameter per-
bifurcations on the differentiability of the invariant measureturbations.
with respect to the perturbation parameter is exactly zero.
But it could also be that the differentiability is only approxi-
mate. This might happen if the newly created or just de- APPENDIX A
stroyed orbits are much longer than the decorrelation time of
the chaotic dynamics. In that case the contribution of thes%al
orbits to the invariant measure would be negligible, so that i

any practical sense these topological changes would not _eromorphic in the lower complex plane without poles at
Y pract ; poiog 'ange . nfinity. This assumption is reasonable because then the usual
fect the invariant measure and it remains differentiable. It

. i L . physical interpretation of(w) is possible: Poles of(w)
would be interesting to check this idea numerically. represent resonances. Second, it is assumed that the response

Previous studies of the linear response of chaotic SYSteMB h ctions decay with finite memory so that all poles lie off

considered the response in the time domam. Instead, in ﬂ}%e real axis. And finally it is assumed that the time series
present study the response was analyzed in the frequenggimaA(t)} is ergodic, so that
t ]

domain. This was made possible by showing that dynami
response functionga(w), originally defined by ensemble

In this appendix the basic relatid.8) is derived on the
sis of three assumptions: First, it is assumed itat) is

averages, can as well be obtained from particular time aver- 17T 17T
ages of the system periodically perturbed at that very fre- lim Tf dt &24(5A(1)))= lim Tf dt €USA(L)
quencyQ = w [see Egs(2.2) and(2.8)]. This relationship is T J0 Toe! J0

of quite general nature. Its derivation was based mainly on
the physically plausible assumption that response functions
have a finite decay time. Moreover, in Appendix D it has

been shown that under this assumption several implications gqyation(2.8) can now be derived as follows. With Eq.

of this time series approach to linear response can as well R 1) one gets from the definitiori2.2) with the periodic
obtained by a Kubo-type theory so that it is in various asperturbation(2.6)

pects equivalent to a Kubo formalism.
In principle, from the computed response functigp,

=(e'MSA(L)). (A1)

shown in Fig. 3, Ruelle’s prediction, that for dissipative sys- (ot LT o

tems no fluctuation-dissipation relationship exigt4], (e™8A(1)) = lim ff dte

could be checked: If a fluctuation-dissipation relationship Lt

holds, then response functiogg(7) could be represented as o

x(7)=0(7)C(7), whereC(r) is a correlation function. In Xf dsxa(t—s)e®(s)cogQs).

that case the dynamic susceptibiljpfw) would have in the

lower complex plane the same poles as the spectral function (A2)
C(w). But since the poles of the latter are identical to the

resonances of the considered system, the poleg(af) ) . . ) .
would then also represent resonances. Hence, to disprove tHdS convenient to _mtroduce the following representation for
existence of a fluctuation-dissipation relationship, it wouldthe unit-step functior® (t):

be sufficient to show tha¢(w) contains poles outside the set

of resonances. Since the first few resonances of the Lorenz . .

system are known from a pgriodic orbit a.naly'sis'by Eckhardt O(t)=lim J d_“’e_iwt ! ) (A3)
and Ott[29], such a comparison should in principle be pos- s0d =27 wtlk

sible here by locating the poles of the numerically known

susceptibilityy,(w). | tried this by computing Padapproxi-

mants tox,(w). Some of the poles obtained in this way This, together with the Fourier representatiops(r)
approximately reproduced the resonances from Eckhardt and [ (dw/27)e "'“"y(w), gives
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(e"MSA(t))= lim I|m2—)2— de a))f do'—

T—ok—0

J dtel (@~ ‘”)tj dsé@=*)5cos0s

o € o % i el oT—q
:i[nm’lclinomfmdwx(w)fxdw o ik 1(O—w) [(w—w'+Q)+(w—w'—Q)]

i
— + -
w—OQ+ik o+tQ+ik

. - sin((w—Q);)
= lim |Immf wdw)((w)ex;( —i(w—Q)§>

T—o0ok—0

(A4)

T
(=) 35

Becausey(w) is assumed to be meromorphic without poles at infiifyw) is finite on the infinite demicircle in the lower
complex plane,

lim [x(RE®)|<M, ¢e[m2m7]. (A5)

R—

This allows one to show by some simple estimates that the last integral iAEg.evaluated over the infinite demicircle in
the negative complex plane, vanishes so that the integral ifiA42qg.can be extended by the infinite demicircle to the closed
loop I" around the negative complex plane. Once more, usingy\tf@} is meromorphic in the lower complex plane, i.e., the
only singularities in that part of the plane are poles, one is now able to evaluaté4Edyy the method of residues. Lef,
denote the locations of the poles pfw) andr their respective residues. Then one has

oo
T)sm (w_Q)E

<e'm5A(t)>—T||anl|Ln02(2 ) olw)((w)exp(—i(w—Q)E T
(w_Q)E

i i
— + -
w—Q+ik w+Q+ik

B | v iQTanTJri o sifo= Dz !
- § a(@ x-S e o015 —— | 5+ o
(0= 5

€
= 5x(Q), (A6)

where in the last line the assumption that all palgslie off In order to specifya(t) as chaotic, assume that its Fourier
the real axis was used. Besides a missing lignitO, which  transform is continous. Then

should be inserted into EGA6) to stress the fact that math-

ematically y 5 is only defined in this limit, this is the desired

: ; 1(T ot _ 1 (= ) T
relationship(2.8). Tfo dté a(t)_ﬁf,wdw a(w)exp(|(Q—w)§>
APPENDIX B , T
sm(Q—w)E a(Q)
In this appendix the effe.ct of a finite integration timen X T o7 (B2)
the accuracy of the numerical computatiomygf(2) by Eq. (Q—w)=

(2.9) is discussed; especially E(2.10 will be derived. 2
As discussed in Sec. Il it is assumed that the time series

SA(t) consists of two parts, a chaotic patt) and a peri- where in the last step use has been made of the fact that

odic part oscillating at driving frequendy and its harmon-  sin(Q—w)T/2]/[ () — ) T/2] is heavily peaked ab= () for

ics nQ}, sufficiently largeT, and thus the continous functi@{w) is
mainly evaluated around= () and can be drawn before the
integral.

SA(t) =a(t) + z b, cognQt— g,,). (B1) Together wi_th similar computations for the periodic part
n=1 one obtains with Eq(2.9),
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) T
T sin(n+ 1)95

a0 sinQT 1o - T
XA(Q) =~ + XA T == +XA(Q)+6n§2 by| e 'nexpi(n+1)Q 5 -
(n+1)Q =
2
. T
sm(n—l)QE
i¢n —i — —
+e ex;{ i(n 1)(22> 1QT , (B3)
(n-1)Q5
|
where the identityb,e'?1=exA(Q2) has been used, which APPENDIX C

can be verified from the limiT—«. To obtainy, numeri-
cally for finite T all other terms in Eq(B3) have to be small.
This is the case for the first term &T is sufficiently large
and the second term is negligible(¥T>1. The terms in the
infinite sum are small iEQT>1. (Actually numerical com- AX)=xy'z™  k,I,meN. (C1D)
putations show thalb,~ > for n>1 (as expected in linear

response theojyso that the sum is negligible if the much Related response functions will be denotedy ({2) and
weaker condition()T/e>1 is fulfilled.) Since one is inter- for shortness the dependence @nis omitted. From EQs.
ested here only in the case<1, these conditions can be (6.1), (2.8), and(2.1) one obtains

condensed te()T>1, as claimed in Eq(2.11).

To explain the fluctuating plateau observed in the re- . — 0 E ot Y okolomy i ke, lom
sponse inx (see Fig. 7 one has to go a step further. In 12Xkt m “me € dt(x yzh dt(x yzh 0

From Eq.(6.1) a host of relations between response func-
tions can be derived. Consider for the Lorenz system observ-
ables of type

e—0
computations of spectra of time series of periodically per- €
turbed chaotic systems one observes that the height of the =koxk—1)+1m— (Ko+1+bm) x| m
periodic peaks depends on the particular interval of the infi-
nite time series used to compute the spectrum. So the ampli- I X1 -1m = DX - 1me 1 MYk 1)+ 1m-1
tude of the periodic contribution in E¢B1) is not a constant +211im (&' cog Qt)x<+ 1yl ~1zmy (€2

but may depend on time. For simplicity we neglect harmon-
ics and concentrate on the fundamental frequeficynly.
Accordingly, assume that in addition tm there is a time  pecausdA),=0 for boundedA(x). Moreover,
dependent chaotic contribution;(t) (with zero meah

modulating the periodic part aroumq. So Eq.(B1) assumes 21lim(e' cog Qt)xkT 1yl ~1zm) =(xk+1yl=1zm)
the form €0

e—0

(C3

SA(D=a(t) +[by+Cy(D) Jeost 2= by). (B4 because, in analogy to the considerations of Sec. IV,

The same procedure as above gives (ezim_xk“y"lzr_“>~ez. Entering these results into E(C2)
one finally obtains

17 1 _ .
ffo dt e, (t)cog Qt— ¢py) ~ JrCilo= —-2Q0)e % (ko+1+bm—=iQ) x| m
(B5) =Koxk-1)+1mt 1M Xks 1= 1mT MYkt 1)+ 1m-1
_ k+1,,/—1-m
[wherec;(w=0)=0 was usell So one gets another contri- Xk 11— 1me 1 1KY 7720 (C4

bution to Eq.(B3), Relations(6.2) are special cases of this result fdx,I,m)

1 =(0,0,1) and k,I,m)=(2,0,0).
—Tcl(zme*“f’l. (B6)
€ APPENDIX D

Assumingc,(t) to be proportional ta, because it is a result Equation(6.1), from which the relation$6.2) and (6.3

of the external perturbation, this contribution is independenbetween the response functions were derived, and also the
of e but vanishes foif —. So if the response functiog,  vanishing of the linear response A(x)=x (see Sec. VIl
vanishes, this contribution produces in a plofgfagainste  have so far been derived from the time series representation
(like in Fig. 7) a plateau around which the fluctuations of (2.8) of response functions. In this appendix it is shown that
different runs can be seen. a more standard approach by a Kubo-type theory as pre-
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sented in4,24] leads to the same results.
Consider a perturbed dynamical system

x=Fo(X)+ e(t)F1(x) (D1)

with €(t)=0 for t<0. Then the related Liouville equation
for the nonequilibrium densitp(x,t) reads

.dp

i—r=Lopte() Lop, (D2)
where the Liouville operatof, and the perturbation opera-
tor £, are given by

Lp=—iV-[F(X)p], k=0,1. (D3)

PHYSICAL REVIEW E66, 036103 (2002

(8A)))= f dxSA(X) p(x,1) (D5)
and entering Eq(D4) one finds by a comparison with Eq.
(2.2

XA(T):_iG)(T)f dxA(x)e™ 0Ly pg(x).  (D6)

From this equation the vanishing response in the observ-
ableA(x) =x follows immediately by noting that for the per-
turbed Lorenz systert®.1) £, and£, are invariant under the
symmetry operatior§ introduced in Sec. VIl so that also
e Yo po(X) is symmetric, because, is symmetric[13].

But the observablé\(x)=Xx is antisymmetric. Accordingly,
the integral in Eq(D6) vanishes so that indegg(7) =0 and

Let po(x) denote the stationary density of the unperturbecthus y,(w)=0.

system Lopo=0). Then Eq.(D2) has to first order ire the
solution

p(x,)=po(x)—i ft dse()eiE V%L, po(x) + O &),
i (D4)
Rewriting Eq.(2.3) as

To derive Eq.(6.1) consider the observable

. d :

A(X)= aA(x(t)) =X-VA(X)=Fy-VA+€(t)F;- VA.
(D7)

Because in the unperturbed systéfA))=0 one getgfrom
Egs.(D4) and(D7)]

<<5A(t)>>:<<A(t)>>=f dx poFo- VA+ e(t)f proF1VA—ifdsé(s)f dx(e' V%L, po)(Fog- VA)+O(€?)
0

+o +o0 )
=—if dxA(x)copo—iﬁw dSG(s)zS(t—s)f dx A(X) L1po— Lc dSe(s)(i)(t—s)f dx A(X) L ge' V%L p,

+0(€?).

Using Lopp=0, a comparison with Eq2.2) finally gives

XA(T)=

—id( T)j dX A(X)L1pg—

(DY)

@(T)J dx A(X) L oe 0L pg

. ) d )
= —|5(7)f dXA(X)ﬁlpO—I(@(T)E_f dx A(x)e"'™50Lpg

d
:E_XA(T),

(D9)

where in the last line EqD6) and @d/d7)®(7)= &(7) have been used. A Fourier transform gives the desired relédidh
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