
PHYSICAL REVIEW E 66, 036102 ~2002!
Statistical thermodynamics of quantum Brownian motion:
Construction of perpetuum mobile of the second kind
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The Brownian motion of a quantum particle in a harmonic confining potential and coupled to harmonic
quantum thermal bath is exactly solvable. Though this system presents at high temperatures a pedagogic
example to explain the laws of thermodynamics, it is shown that at low enough temperatures the stationary
state is non-Gibbsian due to an entanglement with the bath. In physical terms, this happens when the cloud of
bath modes around the particle starts to play a nontrivial role, namely, when the bath temperatureT is smaller
than the coupling energy. Indeed, equilibrium thermodynamics of the total system, particle plus bath, does not
imply standard equilibrium thermodynamics for the particle itself at lowT. Various formulations of the second
law are found to be invalid at lowT. First, the Clausius inequality can be violated, because heat can be
extracted from the zero point energy of the cloud of bath modes. Second, when the width of the confining
potential is suddenly changed, there occurs a relaxation to equilibrium during which the entropy production is
partly negative. In this process the energy put on the particle does not relax monotonically, but oscillates
between particle and bath, even in the limit of strong damping. Third, for nonadiabatic changes of system
parameters the rate of energy dissipation can be negative, and, out of equilibrium, cyclic processes are possible
which extract work from the bath. Conditions are put forward under which perpetuum mobility of the second
kind, having one or several work extraction cycles, enter the realm of condensed matter physics. Fourth, it
follows that the equivalence between different formulations of the second law~e.g., those by Clausius and
Thomson! can be violated at low temperatures. These effects are the consequence of quantum entanglement in
the presence of the slightly off-equilibrium nature of the thermal bath, and become important when the
characteristic quantum time scale\/kBT is larger than or comparable to other time scales of the system. They
show that there is no general consensus between standard thermodynamics and quantum mechanics. The
known agreements occur only due to the weak coupling limit, which does not pertain to low temperatures.
Experimental setups for testing the effects are discussed.

DOI: 10.1103/PhysRevE.66.036102 PACS number~s!: 05.70.Ln, 05.10.Gg, 05.40.2a
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I. INTRODUCTION

Faith in the laws of thermodynamics has been streng
ened time and again because numerous counterargum
and perpetuum mobile setups failed. It was summarized
the classical statement of Eddington in 1948@1#: ‘‘The law
that entropy always increases—the second law
thermodynamics—holds, I think, the supreme posit
among the laws of Nature. If someone points out to you t
your pet theory of the universe is in disagreement with M
well’s equations—then so much the worse for Maxwe
equations. If it is found to be contradicted by observati
well, these experimentalists do bungle things sometimes.
if your theory is found to be against the second law of th
modynamics I can give you no hope; there is nothing fo
but collapse in deepest humiliation.’’ Nevertheless, we inte
to show in this paper that there areseveral formulations of
the second law that may not apply to systems coupled
bath in the quantum regime. This paves the way for a differ
ent, modest definition of the most despised objects of m
ern physics,perpetuum mobile of the second kind. We shall
propose realizations wherein they can make a few or e
many cycles, though not infinitely many. A short version
the material appeared already@2#, which was discussed in th
scientific literature@3,4#.
1063-651X/2002/66~3!/036102~52!/$20.00 66 0361
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The laws of equilibrium thermodynamics apply both
~quasi!closed quantum and classical systems, and to o
classical subsystems@5#. This can all be traced back to th
general character of the Gibbs distribution that describes
equilibrium state. The same laws arebelievedto apply as
well to open quantum subsystems. Our aim will be to sh
that, though this belief is proper for weak coupling, it is n
justified for nonweak coupling between system and ba
Nonweak coupling means, physically, that a cloud of b
modes has been formed around the particle, which we s
still consider as a part of the bath. Although one could d
fend the opinion that—as an example—for Kondo-type pro
lems there is no need or no sense to describe the impu
spin ~‘‘the subsystem’’! separately from the Kondo cloud o
conduction electrons~‘‘the bath’’!, such a viewpoint is not
obvious for an array of mesoscopic Josephson junctio
where the ‘‘bath’’ is the electromagnetic field, to which the
may be strongly coupled. Since that regime shows up
many systems at low enough temperature even for a s
but fixed coupling, there is an important case to make.

When deriving the Gibbs distribution for a~quasi!closed
system@5,6#, the underlying statistical assumptions do n
depend much on the quantum or classical nature. An o
subsystem is usually considered as being in contact with
initially equilibrium bath. Under some general statistic
©2002 The American Physical Society02-1
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conditions concerning the bath@6–10#, which are again the
same for the quantum and classical cases, one deriv
Langevin equation. The general behavior of the class
Langevin equation is well known@6#. The stationary distri-
bution is Gibbsian, and, at least for the white noise case,
equivalent Fokker-Planck equation is the main tool to
scribe the nonequilibrium statistical theory@11#.

Much less is known about the quantum Langevin equa
@6,7,9,10,12–14#, first proposed by Senitzky@15# in the
weakly damped~weakly coupled! case, and in a more gen
eral form by Ford, Kac, and Mazur@8#, see also Ref.@16#. Its
stationary distribution has been obtained for the harmo
potential, in which case it depends explicitly on the coupli
constant, becoming Gibbsian only in the limit of weak co
pling @10,14,17#.

Let us recall that the situation where a particle is intera
ing with an equilibrium bath is known as Brownian motio
and the particle as well is referred to as a Brownian parti
As one of the paradigms of nonequilibrium statistical m
chanics, the theory of Brownian motion has numerous ap
cations in condensed matter physics@6,9,11,13,18,19#,
atomic physics @6,20#, quantum optics, and chemistr
@10,21#. It is believed that some of those practical realiz
tions can be considered as being weakly coupled with t
thermal baths, and then standard methods of statistical p
ics can be applied@10,22#. However, there are nowaday
well-known experimental situations, which are essentially
from the weak-coupling regime. The main example of this
the case of weak links between superconductive regions
so-called Josephson junctions, in their overdamped reg
@18,19#, where the relevant ranges of parameters w
achieved already 20 years ago. Even in quantum op
which has often been satisfactorily described by we
coupling theories@10#, there are recent experiments showi
the necessity for moderate and strong coupling approa
~see, e.g., Ref.@23#!. In nuclear magnetic resonance expe
ments, on the other hand, very weak coupling occurs, bu
leads to aT2 relaxation time of transverse~nonclassical! cor-
relations, which can reach up to minutes. During that tim
related nonthermodynamic effects can occur.

The cause of the crucial differences between quantum
classical Brownian motion lies in quantum entanglement
complete description in terms of a wave function is possi
only for a closed system; subsystems are necessarily
mixed state. Since the quantum Gibbs distribution tends
the pure vacuum state forT→0, it is in that limit not an
adequate candidate for the description of the quantum
system nonweakly interacting with its thermal bath. Whe
typically, researchers have just guessed that thermodyna
would apply anyhow, we shall provide the opposite answ
by analyzing exactly solvable models.

Another important property is embodied in the structu
of the quantum Langevin equation@17#. As predicted by the
quantum fluctuation-dissipation theorem, but in contrast
the classical case, the time-scales of fluctuations and diss
tion are different, and even in the limit of instantaneous fr
tion, the noise does not become white, but has the chara
istic quantum time scale\/kBT. During this period the noise
has a memory and thus has the possibility to cause nons
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tical but ‘‘mechanical’’ or ‘‘quenched,’’ in any case nonthe
modynamic, behavior of the system on which it acts@5,7#.
The physical meaning of the classical fluctuation-dissipat
theorem thus is stronger, since it insists on equal time sc
of friction and noise, which induces the standard thermo
namic behavior.

The new properties become noneffective if the interact
with the thermal bath is weak or if temperature is high,
which case the subsystem relaxes to its own quantum
classical Gibbs distribution. Both these cases will be refer
to as the Gibbsian limit. We recall that its existence is ty
cally not connected with very low temperatures, since ev
for a small but generic coupling between the system and
thermal bath, one always goes out of the weak coupling li
by taking the temperature low enough.

It is a crucial fact that a non-Gibbsian stationary sta
implies the inadequacy of equilibrium thermodynamics.
the present paper we propose a generalized thermodynam
description of a quantum Brownian particle in a harmon
confining potential. This description is self-consistent, a
does not usea priori the concepts of the equilibrium~Gibb-
sian! statistical thermodynamics. Instead we employ t
methods of nonequilibrium statistical thermodynamics dev
oped recently for glasses and applied to black holes, whe
separation of time scales allows for a two-temperature
proach@24–27#.

The universal character of equilibrium thermodynam
led to the general expectation that in one way or the oth
thermodynamics will be applicable to the full quantum d
main. A somewhat stronger point was expressed by Lan
and Lifshitz@5#, namely, that the proper formulation of equ
librium thermodynamics must be based on quantum mech
ics. For the strongly coupling quantum situation one mig
however, not be convinced. Let us give three principal ar
ments that question common wisdom.

~1! The bath modes are correlated during the quant
time scale\/T, even when damping is instantaneous. Wh
this time scale is larger than the~largest! relaxation time of
the system, the bath acts more like a quenched disorder
as a white noise. Thus the standard condition for going fr
a Langevin equation to a Gibbs distribution is not fulfille
and new behavior should be expected.

~2! Assume that the overall system~the Brownian particle
plus the bath! is in equilibrium at a low temperature. One o
the many formulations of the second law states that no h
can be extracted from the bath. This just follows from t
Clausius inequality: diQ<TdS ~here diQ is the heat flowing
from the bath to the subsystem, the Brownian particle, wh
S is the entropy of the subsystem! for T→0. A naive argu-
ment in support of this statement will be that the bath is clo
to its ground state, and therefore its energy cannot be l
ered. However, this argument is invalidated by quantum
tanglement: Since the bath is not an isolated system itse
cannot be in a definite energy eigenstate. In particular
cannot be in the ground state, and its energy fluctuates e
for T→0.

~3! If a closed quantum system is its ground state, the o
change can be to do work on it. Now suppose that this s
tem consists of a subsystem coupled to a bath, and
2-2
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STATISTICAL THERMODYNAMICS OF QUANTUM . . . PHYSICAL REVIEW E66, 036102 ~2002!
the external coupling connects to the subsystem, and no
the bath. Then typically the action of doing work will re
shuffle also the separate energies of the subsystem an
bath. As the direction of the exchange depends on the q
tion whether externally work was added or subtracted, in
of the cases the subsystem receives energy from the b
Since this comes from the unobserved bath modes, it ca
be identified as work, and must be identified as heat
tracted from the bath, even atT50.

Because these arguments question common wisdom
only way to investigate the practical situation is to start fro
first principles, namely, from standard quantum mechan
This is the general strategy of the present paper.

Statements on violations of certain formulations of t
second law in the quantum microworld already appeared
literature. Capek and his co-workers@28# noticed such ef-
fects in certain biophysically inspired models; Novotny r
cently pointed out that in a related model the violations c
not pertain to the long time limit@29#. Nikulov @30# reported
on violations of the second law in mesoscopic supercond
tivity; the latter author bases his view on results for perm
nent currents in inhomogeneous superconducting rings@31#.
Older works on violations in plasmas are due to Shee
@32#.

Since the subject of violating the second law and int
ducing perpetuum mobile has such a notorious history, n
works in this field should be as convincing as possib
Therefore we present now a somewhat extensive, but s
contained exact analysis that leads to our conclusions, p
already presented in Ref.@2#. Our methods are exact sinc
the case of a quantum particle in a harmonic confining
tential and coupled to a bath of harmonic oscillators w
bilinear couplings is exactly solvable. Notice that in a pre
ous work@2# we also entered the discussion of the appro
mate solution for a weakly anharmonic force; this will not
touched here.

Our paper is organized as follows. In Sec. II we recall
derivation of the quantum Langevin equation. In Sec. III
solve the statics of the total system~subsystem plus bath! by
elementary techniques. In Sec. IV we show that the ther
dynamics of adiabatic changes can be described through
effective temperatures, and that analogies with the usual t
temperature thermodynamics can be stated much furt
The generalized relations will have the effective form of t
first and second law. Next we first present details on
violation of the Clausius inequality. In Sec. V we consid
the dynamics of the system for the case where the initial s
is Gibbsian, and for which the spring constant is sligh
modified at time zero. In Sec. VI we use those results
derive the energy relaxation and the entropy production
Sec. VII we consider work done on the system for that s
ation of an instantaneously changed spring constant, and
also consider work for smooth, cyclic changes. In Sec. V
we mention a number of experiments where our results h
applications. In Sec. IX we view those results from the fou
dations of thermodynamics and the definition of perpetu
mobile. Finally in Sec. X we close the paper with a discu
sion.
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II. THE QUANTUM LANGEVIN EQUATION

It is common wisdom that the analysis of Brownian m
tion of noninteracting particles may be restricted to a sin
Brownian particle. This insight goes back to Szilard in h
somewhat related work on Maxwell’s demon@33#, for a
translation see Ref.@34#. In our analysis we shall also mak
this simplification, but insist that the bath has many degr
of freedom. Therefore it is equally equipped to couple to
gas ofN noninteracting Brownian particles, and our resu
for energy, work, heat, entropy, etc., must just be multipl
by N. Because of this, our results yield, without any chan
the intrinsic variables of a large Brownian system in its th
modynamic limit.

A. The Hamiltonian

The quantum Langevin equation is derived from the ex
Hamiltonian description of a subsystem~Brownian particle!
and a thermal bath, by tracing out the degrees of freedom
the bath. The influence of the particle on the bath is assum
to be sufficiently small. Thus, only the linear modes of t
bath are excited, and the interaction of the particle with
bath is assumed to be linear. To be as pedagogic as pos
we first take a definite model for the bath, namely, a coll
tion of harmonic oscillators; later we will relax this assum
tion. For the total Hamiltonian we thus assume@9#

Htot5H1HB1HI ,

H5K~p!1V~x!, K~p!5
p2

2m
, V~x!5

1

2
ax2,

~2.1!

HB5(
i

F pi
2

2mi
1

miv i
2

2
xi

2G ,
HI5(

i
F2cixix1

ci
2

2miv i
2

x2G ,

whereH is the Hamiltonian of the particle, consisting of th
kinetic and potential energiesK and V, HB is the Hamil-
tonian of the bath, andHI is the interaction Hamiltonian
p,pi ,x,xi are the momenta and coordinate operators of
particle and the linear modes of the bath,V(x) is the confin-
ing potential of the particle andm andmi are the correspond
ing masses.

Notice that our total system is closed and its energy
conserved, except for the periods when work is done on it
externally changing a system parameter such asm or a.
When we later on take as initial density matrix the Gib
distribution exp(2bHtot)/Z, this still refers to our closed sys
tem; in particular, it is not part of a larger thermodynam
system, with which heat exchange would be possible@35,36#.

Thexi terms ofHB1HI form a complete square, sinceHI
includes a self-interaction term proportional tox2. This guar-
antees that the total HamiltonianHtot will be positive defi-
nite. In certain physical situations~e.g., electromagnetic in
2-3
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teraction!, such a term is generated automatically by t
coupling @13#. Indeed, under a canonical transformation.

xi→
pi

miv i
, pi→2ximiv i , ~2.2!

Htot becomes

Htot8 5
p2

2m
1

1

2
ax21(

i
F 1

2mi
S pi2

ci

v i
xD 2

1
miv i

2

2
xi

2G ,
~2.3!

which corresponds to the minimal coupling~or subtraction!
scheme.

In other situations~such as certain cases in nuclear a
atomic physics, see Ref.@13# for more details! the self-
interaction term is absent, and one has@12#

H̃5
p2

2m
1Ṽ~x!, H̃I52x(

i
cixi , ~2.4!

while HB is unchanged. For a harmonic system one will ha
Ṽ(x)5 1

2 bx2. In general, the potential energy will have
minimum only if b[Ṽ 9(0) is large enough. This happen
when the combination

a5b2(
i

ci
2

miv i
2

~2.5!

is positive. In the case we shall consider below, with theci
given by Eq.~2.23!, this sum can be evaluated, leading
a5b2gG, whereg is the coupling strength~damping con-
stant! andG is a large cutoff frequency. So this system c
be mapped on the previous one provided we defineṼ(x)
5V(x)1 1

2 gGx2. In doing so we identify with Hamiltonian
of the subsystem the expressionH5K1V of Eq. ~2.1!,
rather than K1Ṽ, and with HI the combination H̃I
1 1

2 gGx2. To give some motivation for this, let us notice th
we shall takeG large andg finite. In that case the expecta
tion value^Ṽ& is large, proportional togG, but this is almost
fully compensated by an opposite term arising from^H̃I&.
These cancellations have been accounted for by the map
to H andHI , leaving at most a lnG divergence for largeG,
which actually arises at small temperatures from^K&. We
shall come back to the pros and cons of this identification
Sec. IV B 5, where we notice that it is already needed
obtain the standard thermodynamics at very largeT.

Some word of nomenclature is called for. The case o
harmonic potentialV(x)5 1

2 ax2 is often called ‘‘the linear
case’’ in literature, of course referring to its linear force. T
expressions ‘‘linear potential’’ and ‘‘nonlinear potential
that are sometimes found in the literature, are misnom
and will be avoided by us.
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B. Derivation of general quantum Langevin equation

The operator equations of motion for the bath modes r

ẋi5
1

mi
pi , ~2.6!

ṗi52ximiv i
21cix. ~2.7!

After introducing the creation and annihilation operators

xi5A \

2miv i
~ai1ai

†!, pi5 iA\miv i

2
~ai

†2ai !

~2.8!

we can write Eqs.~2.6!, and~2.7! in the form

ȧi~ t !52 iv iai~ t !1 iA ci
2

2\miv i
x~ t !. ~2.9!

This equation is solved readily,

ai~ t !5e2 iv i tai~0!1 iA ci
2

2\miv i
E

0

t

dse2 iv i (t2s)x~s!,

~2.10!

yielding

xi~ t !5xi~0!cosv i t1
pi~0!

miv i
sinv i t

1
ci

miv i
E

0

t

dssinv i~ t2s!x~s!, ~2.11!

pi~ t !52miv ixi~0!sinv i t1pi~0!cosv i t

1ciE
0

t

dscosv i~ t2s!x~s!. ~2.12!

The Heisenberg equations of motion for the Browni
particle read

ẋ5
1

m
p, ~2.13!

ṗ52ax1(
i

cixi2x(
i

ci
2

miv i
2

. ~2.14!

Combined with Eq.~2.11! the last equation becomes

mẍ~ t !52ax~ t !1h~ t !2E
0

t

dt8ġ~ t2t8!x~ t8!2g~0!x~ t !,

~2.15!

where
2-4
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h~ t !5(
i

ciFxi~0!cosv i t1
pi~0!

miv i
sinv i t G

5(
i
A \ci

2

2miv i
@ai

†~0!eiv i t1ai~0!e2 iv i t#,

~2.16!

g~ t !5(
i

ci
2

miv i
2
cos~v i t !, ~2.17!

are the noise related to theunperturbedbath, and the friction
kernel, respectively. A partial integration brings

mẍ~ t !52ax~ t !2x~0!g~ t !2E
0

t

dsg~ t2s!ẋ~s!1h~ t !,

~2.18!

Notice that in this derivation the back reaction of the bath
the particle has been taken into account in an exact man
It is described by the integrals in Eqs.~2.11! and~2.12!, and
brings the damping termsx(t)g(0)2x(0)g(t)2*0

t dsg(t

2s) ẋ(s) in going from Eq.~2.14! to Eq. ~2.18!.
t

to
as

e

03610
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C. Interaction energy and energy of the bath

The interaction Hamiltonian and the bath Hamiltonian c
be expressed inh(t) andx(t). Using Eqs.~2.11! and ~2.12!
and the definition~2.16! of h(t) and definition ~2.17! of
g(t), one gets, using trigeometric relations,

HI~ t !52h~ t !x~ t !1E
0

t

ds ġ~s!x~ t2s!x~ t !1
1

2
g~0!x2~ t !

~2.19!

52h~ t !x~ t !1g~ t !x~0!x~ t !2
1

2
g~0!x2~ t !

1E
0

t

dsg~s!ẋ~ t2s!x~ t !.

Since thexi(t) commute withx(t), there is an equivalen
expression by puttingx(t) to the left in all terms. Further-
more,
HB~ t !5HB~0!1
1

2E0

t

dsg~s!$ḣ~s!,x~s!%2
1

2E0

t

ds1E
0

t

ds2g̈~s12s2!x~s1!x~s2! ~2.20!

5HB~0!1
1

2E0

t

dsg~s!$ḣ~s!,x~s!%2
1

2E0

t

dsġ~s!$x~s!,x~0!%2
1

2E0

t

ds1E
0

s1
ds2ġ~s2!$x~s1!,ẋ~s12s2!%,

whereHB(0) is the unperturbed bath and$A,B%5AB1BA is an anticommutator. An equivalent expression is

HB~ t !5HB~0!1
1

2E0

t

dsg~s!$ḣ~s!,x~s!%2
1

2
g~ t !$x~ t !,x~0!%1

1

2
g~0!@x2~ t !1x2~0!#1

1

2E0

t

dsg~s!@$ẋ~s!,x~0!%

2$ẋ~ t2s!,x~ t !%#1
1

2E0

t

ds1E
0

t

ds2g~s12s2!ẋ~s1!ẋ~s2!. ~2.21!
he
di-

ng
he

’’
ere

s
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-

The last equalities ofHI and HB can be used in the limi
whereg(t)'gd1(t)1gd2(t).

D. Drude-Ullersma spectrum

For some, but not all, of our applications it is beneficial
consider a fully explicit case for the bath. The bath is
sumed to have uniformly spaced modes,

v i5 iD, i 51,2,3, . . . , ~2.22!

and for the couplings we choose the Drude-Ullersma sp
trum @9,12#

ci5A2gmiv i
2D

p

G2

v i
21G2

. ~2.23!
-

c-

Here G is the characteristic Debye cutoff frequency of t
bath, andg stands for the coupling constant; it has the
mension of kg/s. Our parameterg, related to another one
(g85g/m) that is sometimes employed, see, e.g., Ref.@9#,
allows us to consider changes in the effective massm at fixed
coupling to the bath.

The thermodynamic limit for the bath is taken by sendi
D→0, which induces relaxational behavior. As usual, t
‘‘Heisenberg’’ time scale 1/D will be extremely large, imply-
ing that in the remaining approach the limit of ‘‘large times
always means the quasistationary nonequilibrium state wh
time is still much less than 1/D. In the limit D→0 each
coupling ci;AD is very weak. The fact that the bath ha
many modes nevertheless induces its nontrivial influence
finite but smallD the system would have an initial relax
2-5
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ational behavior, which at times of order 1/D is changed in a
recurrent behavior.

It is customary to define the spectral density

J~v!5
p

2 (
i

ci
2

miv i
d~v2v i !5

gvG2

v21G2
. ~2.24!

It has the Ohmic behaviorJ'gv for v!G, andg is called
the interaction strength or damping constant. AsJ(v) is cut
off at the ‘‘Debye’’ frequencyG, it is called a quasi-Ohmic
spectrum.

For many applications only the spectral density needs
be defined. However, for our further calculations it is adva
tageous to stick to the fully specified linear bath, with
frequencies~2.22! and couplings~2.23!. It can then be shown
that the friction kernel~2.17! becomes

g~ t !5
2g

p E
0

`

dv
G2

v21G2
cosvt5gG e2Gutu. ~2.25!

It is nonlocal in time, but on time scales much larger th
1/G it may be replaced bygd1(t)1gd2(t).

Finally, we wish to mention that there are alternative wa
to derive the quantum Langevin equation@9#, since many of
its properties are rigidly determined by general stateme
such as the quantum fluctuation-dissipation theorem@5#.
Nevertheless, we choose to focus on concrete models,
cause they show in detail how the quantum Langevin eq
tion arises from first principles, and thus are better suited
pedagogical purposes.

III. GIBBSIAN STATE FOR A HARMONIC
CONFINING POTENTIAL

The case of an oscillator subject to a parabolic confin
potential is a celebrated exactly solvable problem in quan
mechanics,

H~p,x!5K~p!1V~x!5
p2

2m
1

1

2
ax2. ~3.1!

The eigenfrequency is already known from the class
treatment,

v05Aa

m
. ~3.2!

When this oscillator is coupled to an oscillator bath w
bilinear coupling, as was done in Eq.~2.1!, the problem re-
mains exactly solvable. It is in the true sense ‘‘the harmo
oscillator model’’ for quantum Brownian motion.

It is well known that, besides its direct physical meanin
the harmonic oscillator can be interpreted as anLC circuit
@17#. Thenx may correspond to the chargeQ on a capacitor,
1/a to its capacitanceC,m to an inductanceL,p to a flux
LQ̇, g to a resistanceR, andh(t) to a random electromo
toric force. Although we will not use this language explicitl
it is useful to keep it in mind, especially when consideri
03610
to
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c

,

variations of parameters. Indeed, in this setup there shoul
nothing very difficult in varyingL or C, in our notationm
anda.

The theory of the dissipative harmonic oscillator is co
sidered in many works~see Ref.@9# and references therein
as well as a recent work for the driven case@37#!. We will
now be primarily interested in thermodynamical aspects
this problem.

A. Shift of the bath frequencies due to coupling with the
central particle

In Fourier space the equation of motion of the partic
may be written as

S a2mv21(
i

ci
2

miv i
2D x5(

i
cixi , ~3.3!

and for the bath

~2miv
21miv i

2!xi5cix. ~3.4!

From these relations one derives a condition for the eig
frequenciesnk ,

a

m
2n25n2(

i>1

ci
2

m miv i
2~v i

22n2!

5
2g G2n2

p (
i>1

D

~v i
21G2!~v i

22n2!
~3.5!

52
2g G2n2

p~n21G2!
(
i>1

D

v i
21G2

1
g G2n

p~n21G2!

3(
i>1

F D

v i2n
2

D

v i1nG , ~3.6!

where we inserted the definition~2.23! of the ci . The first
sum may be replaced by an integral, while the second ca
carried out exactly,

(
i 51

` F D

v i2n
2

D

v i1nG5 lim
N→`

FcS N2
n

D D2cS 12
n

D D
2cS N1

n

D D1cS 11
n

D D G
5

D

n
2p cot

pn

D
, ~3.7!

wherec(z)5dlnG(z)/dz is the di-G function and we used

c~z11!5c~z!1
1

z
, c~12z!5c~z!1p cotpz.

~3.8!

The eigenfrequenciesnk of the coupled system thus follow
as the roots of
2-6
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cot
pn

D
2

D

pn
52

~a/m2n2!~n21G2!1g Gn2

g G2n
. ~3.9!

The transcendental equation has no solution for 0<n
<D. For n.D there is one solution in each period of th
cotangent, except for the period that contains the poinn
5v0[Aa/m, where there occur either three solutions
one. One can then check that in the limit of vanishing co
pling g→0, there occur the modesv i5 iD ( i 51,2, . . . ),
andv0. Notice, however, that this behavior only pertains
the regime of infinitesimal couplingg,gc with gc;mD.
For g>gc , however, the interval containingv0 has only one
solution, sov0 is lost as a separate mode, its influence be
taken by a shift of neighboring modes.

For finite g the solution of Eq.~3.9! shows that the bath
modesvk@D now get shifted to

nk5kD2
1

p
f~kD!D5vk2

1

p
f~vk!D, ~3.10!

where

f~n!5arctan
gG2n

~a2mn2!~n21G2!1gGn2
. ~3.11!

Here the definition of the arctan is such thatf goes monoto-
nously fromf(0)50 to f(`)5p. We shall need

sinf~n!5
gG2n

$@~a2mn2!~n21G2!1gGn2#21~gG2n!2%1/2

'
gn

$~a2mn2!21g2n2%1/2
, ~3.12!

where the approximation holds for largeG.

B. The Gibbsian state of the particle and its bath

The steps of the preceding subsection allow to calcu
the Gibbs free energy of the total system,

bF tot~T,g!5(
k

ln 2sinh
1

2
b\nk . ~3.13!

For smallD one may use the identity

(
k51

`

A~nk! 5
1

D E
0

`

dvk A~nk!

5
1

D E
0

`

dnk

dvk

dnk
A~nk!

5E
0

`

dn F 1

D
1

1

p

df~n!

dn G A~n!1O~D!

~3.14!

and one gets
03610
r
-

g

te

F tot~T,g!5FB~T,g50!1Fp~a,g,G,m,T!, ~3.15!

where the first term is the free energy of the bath in abse
of the particle. Neglecting its divergent zero point energy o
gets

FB~T,g50!5
T

DE0

`

dv ln~12e2b\v!52
p2T2

6\D
.

~3.16!

It is of order 1/D, showing the extensivity of the bath, an
implies the energy

UB~T,g50!5
p2

6\D
T2 ~3.17!

and the linear specific heat and entropy

CB~T,g50!5SB~T,g50!5
p2T

3\D
. ~3.18!

The free energy shift due to the central particle, its co
pling to the bath, and the resulting disturbance of the ba
follows from Eq.~3.14! as @16#

bFp5
1

pE0

`

dn lnF2 sinh
1

2
b\nG df

dn
~3.19!

5
gG2

p E
0

`

dn lnF2 sinh
1

2
b\nG

3
aG21~mG21gG2a!n213mn4

@~a2mn2!~n21G2!1gGn2#21g2G4n2
. ~3.20!

A useful identity is

bFp5 ln 2 sinhS 1

2
b\n1D1

1

2
b\E

0

`

dn Fu~n2n1!

2
1

p
f~n!G cotanhS 1

2
b\n D , ~3.21!

wheren1 is arbitrary andu is the Heaviside step function.

1. Intermezzo: the characteristic frequencies of the damped
oscillator

The present model for a damped harmonic oscillator
three characteristic frequencies that do not depend on t
perature. They just follow from the linear equations of m
tion, and thus have the same value at high and low temp
tures.

The denominator in Eq.~3.20! is a fourth-order polyno-
mial in n2. It decomposes as

m2~n21G2!P3~ in!P3~2 in!, ~3.22!

where
2-7
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P3~v!5v32Gv21
a1gG

m
v2

aG

m

5~v2G!S v21
a

mD1
gG

m
v. ~3.23!

The rootsv1,2,3 of P3 satisfy the relations

v11v21v35G, ~3.24!

v1v21v2v31v3v15
a1gG

m
, ~3.25!

v1v2v35
aG

m
. ~3.26!

Two different situations can arise. Either all three roots
real ~this is the case in the overdamped regime!, or, in the
underdamped regime, two of them are complex conjug
v1* 5v2, whereas v3 is real. In both cases one ha
Re v1,2,3.0, which indicates that with time the particle re
laxes toward a stationary state.

For smallg these roots read

v1,256 iv01
g

m

G

2~G7 iv0!
1S g

mD 2 G2~G6 iv0!

8v0~G7 iv0!3
,

~3.27!

v35G2
gG2

m~G21v0
2!

2S g

mD 2G3~G22v0
2!

~G21v0
2!3

. ~3.28!

On the other hand, for a largeG one gets

v1,25
g

2m S 16A12
4am

g2 D 1
1

2G S g

mD 2

3F16
122am/g2

A124am/g2G , ~3.29!

v35G2
g

m
2

1

G S g

mD 2

. ~3.30!

We shall only need them to leading order in 1/G,

v15
g~12w!

2m
5

2a

g~11w!
, v25

g~11w!

2m
,

v35G2
g

m
, ~3.31!

where we denoted

«5
am

g2
, w5A124«. ~3.32!

Later on we shall need
03610
e

e:

a
dw

da
5m

dw

dm
52

12w2

2w
, a

dv1,2

da
57

g~12w2!

4mw
,

m
dv1,2

dm
56

g

4mw
~17w!2. ~3.33!

For overdamping («, 1
4 ) w is real positive. Our interes

is, in particular, the strong damping regimeg2@am, where

v15
a

g
, v25

g

m S 12
am

g2 D , v35G2
g

m
~3.34!

and the approximations hold to leading order in«.
Already in the classical regime, our system has three c

acteristic relaxation times: for the coordinate, for the m
mentum, and for the noise. For largeG andg they are well
separated,

tx5
1

v1
'

g

a
@ tp5

1

v2
'

m

g
@ th5

1

G
. ~3.35!

In the quantum regime the quantum time scale

t\5
\

T
~3.36!

can be comparable to or larger thantx , inducing quantum
coherence effects of the noise and thus new physics.

In case of underdamping, («. 1
4 ) one hasw5 iw̄, with

w̄5A4«21, v1,25
g~17 iw̄ !

2m
. ~3.37!

This leads to the renormalized oscillation timet0 and the
damping timetd ,

t05
1

Av0
22g2/4m2

, td5
2m

g
. ~3.38!

Since td differs from tp by a factor of order unity, we
may skip the latter and usetp and t0 as the relevant time
scales in the underdamped regime.

It is worth mentioning that the weak-coupling limit com
mutes with the quasi-Ohmic limit, in the sense that taki
largeG in Eqs.~3.27! and~3.28! we get the same main term
and at least the first correction as having taken smallg limit
in Eqs.~3.31! and ~3.30!.

2. Continuing the main argument for the Gibbsian state

In order to calculate the free energy~3.20!, we shall first
determine the following integral:

I ~a,A,B!5E
0

`
dn n cothS 1

2
an D

~A21n2!~B21n2!
. ~3.39!

We can write
2-8
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I ~a,A,B!5E
0

` dnn

~A21n2!~B21n2!
12E

0

` dnn

~ean21!~A21n2!~B21n2!

5
1

B22A2
ln

B

A
1

2

B22A2 F E0

` dnn

~ean21!~A21n2!
2E

0

` dnn

~ean21!~B21n2!
G

5
1

B22A2 FcS aB

2p D2cS aA

2p D G2
p

a

1

AB~A1B!
, ~3.40!
he

e
e
ar-
ed
ics
long
lax-

res.
where we used the known formula

2E
0

` tdt

@exp~2pt !21#~ t21z2!
5 ln z2c~z!2

1

2z
.

~3.41!

By integration we obtain

J~a,A,B!5E
0

`dn

p
lnS 2 sinh

1

2
an D S 1

A21n2
2

1

B21n2D
52

1

A
ln GS aA

2p D2
1

2A
ln

aA

4p2
1

1

B
ln GS aB

2p D
1

1

2B
ln

aB

4p2
. ~3.42!

In terms of the rootsv i , we may write Eq.~3.11! as

f~n!5arctan
n

v1
1arctan

n

v2
1arctan

n

v3
2arctan

n

G
.

~3.43!

The derivation follows immediately after using Eq.~3.22!
with P3(s)5(s2v1)(s2v2)(s2v3) and expressing the
arctan in logarithms. The integral in Eq.~3.20! can now be
done by adding to f(n) a term @(G2v12v2
2v3)/v4#arctan(n/v4), which vanishes for anyv4 on ac-
count of Eq.~3.24!, and then using Eq.~3.42! with a5\b.

This finally brings the shift of the free energy due to t
presence of the Brownian particle
03610
bFp5 ln GS b\G

2p D2 ln GS b\v1

2p D2 ln GS b\v2

2p D
2 ln GS b\v3

2p D2 ln
b\v0

~2p!2
. ~3.44!

This is just equal to2 lnZ8 with Z8 calculated in Eq.~4.20!
of Grabert et al. @38#. These authors did not point at th
physical role of theirZ8. Here we see that it is the part of th
partition sum of the total system related to the central p
ticle and its coupling to the bath with its linear unperturb
spectrumvk5k D. We nevertheless expect that the stat
and the dynamics hold for more general bath spectra, as
as the interaction is bilinear, and the spectra ensure re
ation.

The internal energy of the total system reads

Up5
\G

2p
cS b\G

2p D2
\v1

2p
cS b\v1

2p D2
\v2

2p
cS b\v2

2p D
2

\v3

2p
cS b\v3

2p D2T. ~3.45!

C. The effective temperatures

We shall now study two objects,Tx5a^x2& and Tp
5^p2&/m, that would in classical equilibrium be equal toT
and which we shall interpret below as effective temperatu
As in the classical situation, it holds that@38#

Tx5a^x2&52a
]Fp

]a
. ~3.46!

We find
Tx52T1
\a

pm
H ~v12G!cS b\v1

2p D
~v22v1!~v32v1!

1

~v22G! cS b\v2

2p D
~v12v2!~v32v2!

1

~v32G! cS b\v3

2p D
~v12v3!~v22v3!

J . ~3.47!

Likewise,

Tp5
^p2&
m

522m
]Fp

]m
5Tx1

\gG

pm
H v1 cS b\v1

2p D
~v22v1!~v32v1!

1

v2 cS b\v2

2p D
~v12v2!~v32v2!

1

v3 cS b\v3

2p D
~v12v3!~v22v3!

J . ~3.48!
2-9
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To find the Gibbsian values forg→0 one has to notice that

cS iv0

2pTD2cS 2
iv0

2pTD5
2p i

\v0
T1 ip coth

\v0

2T
~3.49!

and this yields the standard weak-coupling result known from all the books,

U5
1

2
Tx1

1

2
Tp5Tx5Tp5

\v0

2
coth

b\v0

2
5

1

2
\v01

\v0

eb\v021
~g→0!. ~3.50!
re

nd

in

e
ly

ch

s a
have

i-
1. Thermodynamics and effective temperatures at high T

Using that for smallz

lnG~z!52 ln z2gEz1
p2

12
z2, ~3.51!

wheregE50.577 215 6 is Euler’s constant, one gets the f
energy

Fp5Tlnb\v01
b\2

48
@G22v1

22v2
22v3

2#

'T ln b\v01
b\2~a1gG!

24m
, ~3.52!

wherev05Aa/m andG has been taken large in the seco
identity. The internal energy and entropy become

Up5T1
b\2~a1gG!

12m
, Sp5 ln

T

\v0
111

b\2~a1gG!

6m
.

~3.53!

From Eqs.~3.47! and ~3.48! we obtain at largeT

Tx5T1
b\2a

12m
2

b3\4a~a1gG!

720m2
~3.54!

and

Tp5T1
b\2~a1gG!

12m
2

b2\3gG2

4p3m
z~3!

1
b3\4@gG3m2~a1gG!2#

720m2
. ~3.55!

2. Thermodynamics and effective temperatures at low T

Further results can be obtained with the improved Stirl
formula,
03610
e

g

lnG~z!5S z2
1

2D ln z2z1
1

2
ln~2p!1

1

12z
2

1

360z3
.

~3.56!

One gets for arbitrary and for largeG,

Fp5
\

2p FG lnG2 (
k51

3

vklnvkG2
pg

6\a
T2

5
\g

2pm F ln
2mG

g
11G2

\g

4pm
@~11w!ln~11w!

1~12w!ln~12w!#2
pg

6\a
T2, ~3.57!

Up5
\

2p FG ln G2 (
k51

3

vklnvkG1
pg

6\a
T2

5
\g

2pm F ln
2mG

g
11G2

\g

4pm
@~11w!ln~11w!

1~12w!ln~12w!#1
pg

6\a
T2, ~3.58!

Sp5b~Up2Fp!5
pg

3\a
T. ~3.59!

Notice thatSp , the shift in total von Neumann entropy du
to the presence of the Brownian particle, differs strong
from the von Neumann entropy of the particle itself, whi
remains finite atT50, as we shall show in Eqs.~4.35! and
~4.36!. The non-additivity of entropies encountered here i
deep aspect of quantum physics, where a subsystem can
a larger von Neumann entropy than the full system.

Using Eq.~3.33! one finds at low temperatures and arb
trary am/g2, w5A124am/g2 @48#,

Tp5
\g

pm
ln

2Gm

g
1

\g

4pm w
@~12w!2ln~12w!

2~11w!2ln~11w!#1O~T4!, ~3.60!
2-10
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Tx5
\a

pg

1

w
ln

11w

12w
1

pg

3\a
T21O~T4!. ~3.61!

The above expressions simplify in the limit of stron
damping, see Eq.~3.31!,

Fp~T!5
\g

2pm S ln
Gm

g
11D1

\a

2pg
ln

g2

am
2

pg

6\a
T2,

Up~T!5
\g

2pm S ln
Gm

g
11D1

\a

2pg
ln

g2

am
1

pg

6\a
T2

~3.62!

and @48#

Tp5
\g

pm
ln

Gm

g
1

\a

pg
1O~T4!, ~3.63!

Tx5
\a

pg
ln

g2

am
1

pg

3\a
T21O~T4!. ~3.64!

D. Interaction energy and bath energy

Some results can be obtained by studying the depend
of Htot andF tot5F tot(g50)1Fp on g, G, andD. Let us first
write Eq. ~2.1! as

Htot5H1HB1HI ,
~3.65!

HB5(
i

\D i S ai
†ai1

1

2D , HI52h~0!x1
1

2
gG x2.

whereh(0)5( icixi . Now due to the expression Eq.~2.23!
for ci it holds thath(0);Ag. This implies

g
]Htot

]g
52

1

2
h~0!x1

1

2
gG x2. ~3.66!

The relation^]Htot /]g&5]F tot /]g yields the result

^h~0!x&5gG^x2&22g
]Fp

]g
5

gG

a
Tx22g

]Fp

]g
.

~3.67!

Putting things together we get

UI5^HI&52
gG

2a
Tx12g

]Fp

]g
. ~3.68!

In a similar manner we look at theD dependence. Using
v i5 i D and the decomposition in creation and annihilati
operators~2.8!, we get from Eq.~2.16! at t50,

D]Dh~0!5h̃~0![(
i

G2

v i
21G2

cixi , ~3.69!

implying D]DHtot5HB2h̃(0)x. Taking averages and usin
Eqs.~3.15!, ~3.16!, and~3.17! brings
03610
ce

UB2^h̃~0!x&5^D]DHtot&5D]DF tot5UB~g50!.
~3.70!

Finally we can change the Debye cutoffG. One has

G]GHtot52h~0!x1h̃~0!x1
1

2
gGx2. ~3.71!

This implies

^h̃~0!x&5^h~0!x&2
gG

2a
Tx1G]GFp , ~3.72!

and thus

UB5UB~g50!1
gG

2a
Tx1G]GFp22g]gFp . ~3.73!

These results yield for the total energy

U tot5U1UI1UB5
1

2
Tx1

1

2
Tp1UB~g50!1G]GFp .

~3.74!

On the other hand, we have from Eqs.~3.15!, ~3.16!, and
~3.17! U tot5UB(g50)1Up . Employing definition~3.46!,
Tx52a]aFp and definition~3.48!, Tp522m]mFp and Up
5]b(bFp), one reaches the consistency relation

~a]a2m]m1G]G!bFp5b]b~bFp!. ~3.75!

It holds because Eq.~3.23! taken at a rootv i implies

~a]a2m]m1G]G!v i5v i ~ i 51,2,3!. ~3.76!

Typically the Debye frequencyG will be large. Therefore,
wheng is not very small, the dimensionless parametergG/a
has no reason to be small; it can even be large wheng is
moderately small. This means that the term2^hx&, usually
taken as definition of the interaction energy, is not sm
rather, it is large negative. But it is compensated by the s
interaction energy1

2 gG^x2&5gGTx /(2a) and by a similar
term that is present in the bath energy~3.73!.

Recalling thatFp diverges most logarithmically inG, we
have thus seen that the interaction energyUI diverges lin-
early. It is thus rather large, but nevertheless compensate
a similar term from the bath. This behavior is not at
restricted to the quantum regime; it occurs in the same m
ner at arbitrary largeT whereTx'T.

IV. THERMODYNAMIC ASPECTS
OF ADIABATIC CHANGES

A. Generalized thermodynamic formulation

We now make it clear that the relation with standard th
modynamics can be continued much further by introduc
the twoeffective temperatures

Tp5
^p2&
m

, Tx5a^x2&. ~4.1!
2-11
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One reason to do this is that the stationary state for the
monic potential has a quasi-Gibbsian expression for
Wigner function

W~p,x!5Wp~p!Wx~x!5
e2K(p)/Tp

A2pmTp

e2V(x)/Tx

A2pTx /a
~4.2!

with K(p)5p2/2m the kinetic energy andV(x)5 1
2 ax2 the

potential energy. This expression is quasi-Gibbsian, si
there occur two different temperaturelike variables.~Notice
that the normalization is*dxdpW51). There occur the
Boltzmann entropies of momenta and coordinate,

Sp52E dpW~p!ln@W~p! A\ #5
1

2
ln

mTp

\
1

1

2
,

~4.3!

Sx52E dxW~x!ln@W~x! A\ #5
1

2
ln

Tx

\a
1

1

2
~4.4!

~in Sp and Sx we skipped terms ln 2p). The complete
‘‘Boltzmann’’ entropy is

SB5Sp1Sx52E dpdxW~p,x!ln@W~p,x!\#

5
1

2
ln

mTpTx

\2a
11. ~4.5!

1. Internal energy and interaction energy

The energy of the central particle reads

U5
^p2&
2m

1
1

2
a^x2&5

1

2
Tp1

1

2
Tx . ~4.6!

For a discussion of this identification in systems withou
self-interaction term, see Sec. II A.

The interaction energy, i.e., the energy of the cloud
bath modes that surround the particle, is defined as

U int5U tot2UB~g50!2U5Up2U5Up2
1

2
Tp2

1

2
Tx .

~4.7!

Comparing with Eq.~3.74! one gets the shorter result

U int5G
]Fp

]G
. ~4.8!

At high temperatures one gets from Eqs.~3.53! and~3.54!

U5T1
b\2

24m
~2a1gG!, U int5

b\2

24m
~6a17gG!.

~4.9!

Since the energy of the cloud involves\, the nontriviality of
the cloud is a quantum effect.

At low temperatures one gets the internal energy
03610
r-
e

e

f

U5
\g

2pm
ln

2mG

g
2

\g

2pm
@~11w!ln~11w!1~12w!

3 ln~12w!#1
pg

6\a
T2. ~4.10!

For large damping this reduces to

U5
\g

2pm
ln

mG

g
1

\a

2pg F ln
g2

am
11G1

pg

6\a
T2. ~4.11!

The interaction energy of the cloud is now independent ofw,

U int5
\g

2pm
1O~T4!, ~4.12!

provided thatG is large.

2. Generalized free energy and the first and second law

The definition of the effective temperatures admits a cl
thermodynamical interpretation. For studying the role of
adiabatically slow variation of an arbitrary parameter, su
asa or m, that we shortly denote bya, the free energyF is
defined as

F52Tpln Zp2Txln Zx . ~4.13!

The definitions Zp5*dp exp@2K(p)/Tp#, Zx5*dx exp
@2V(x)/Tx# bring

F52
1

2
Tpln mTp2

1

2
Txln

Tx

a
. ~4.14!

For considering changes in system parameters one need

d@2TplnZp#52 lnZpdTp2
Tp

Zp
dZp

5
1

Zp
E dpe2bpK(p)dK~p!2SpdTp ,

d@2TxlnZx#52 lnZxdTx2
Tx

Zx
dZx

5
1

Zx
E dxe2bxV(x)dV~x!2SxdTx. ~4.15!

Equation~4.13! then yields

dF52SxdTx2SpdTp1diWrev ~4.16!

with, in agreement with the derivations~4.22! and ~4.25!
below, the work added to the system

diWrev52Tp

dm

2m
1Tx

da

2a
. ~4.17!

These relations are valid in spite of the fact thatTx andTp
are functions ofa andm.
2-12
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Because of Eqs.~4.6!, ~4.3!, and ~4.4!, the definition
~4.13! is compatible with the standard identification@24,25#

F5U2TpSp2TxSx ~4.18!

that one would write immediately for a two-temperature s
tem. From this relation one will indeed reproduce the st
dard formulation for the first law for situations with tw
temperatures,

dU5diQrev1diWrev, ~4.19!

diQrev5TpdSp1TxdSx , ~4.20!

where diQrev is the heat reversible added to the particle.
detailed discussion concerning the general definitions of
work and heat is given below, in Sec. VII A.

The generalized thermodynamical relations~4.16!–~4.20!
are in close analogy with those proposed recently for n
equilibrium glassy systems@24–26#. Analogously to that
situation,F pertains to the particle alone and, except at h
T, it differs from theFp of Eq. ~3.44! in the preceding sec
tion, which relates to the whole system—to be more prec
to the particle and the cloud of bath modes around it.

Let us recall thatFp satisfies Gibbsian thermodynamic
while F does not. There are many physical systems, suc
a Josephson junction strongly coupled to the electromagn
field, where the natural object to study is neverthelessF,
since it relates for that case to properties of the junction o

It is common wisdom that energy is dispersed if the var
tions are nonadiabatic changes. This is confirmed by
~7.43!, which holds provided the whole time domain whe
m anda vary is accounted for. This leads to the general res

diQ<TpdSp1TxdSx ~4.21!

that is also known from the study of glasses and, more g
erally, from two-temperature systems.

B. Violation of the Clausius inequality

1. The Clausius inequality at small T

Let us now consider two concrete examples, and study
Clausius inequality diQ<TdSvN , which is one of the pos-
sible formulations of the second law.

For a very slow variation of the spring constanta one gets

diWrev5E dxdpW~p,x!
]H

]a
da5E dxW~x!

1

2
x2da

5Tx

da

2a
, ~4.22!

in agreement with Eq.~4.17!. The first law implies for the
heat added adiabatically to the particle at lowT,
03610
-
-

e

-

h

e,

as
tic

y.
-
q.

lt

n-

e

diQrev5dU2di Wrev5S ]Tp

]a
1

]Tx

]a
2

Tx

a D da

2

52
pg

3\a2
T2 da 1O~T4 da!. ~4.23!

It is seen that diQrev50 atT50 for all g. Using Eqs.~4.1!
and ~4.5! we derive for largeg and very largeG

dSB52
da

2a F 1

ln~g2/am!
2

ma

g2ln~Gm/g!

1
p2g2T2

3\2a2ln~g2/am!
S 22

1

ln~g2/am!
D 1O~T4!G .

~4.24!

At T50 the Clausius inequality says that no heat can
taken from the bath; at best, heat can go from the cen
system~here, the Brownian particle! to the bath. In our situ-
ation diQ is of orderT2, while TdSvN is of orderT. Since we
only do powercounting inT and both expressions are no
trivial, we may replace hereSvN by SB . Thus for the case
da.0, where an amount of work di Wrev.0 is done on the
system, the Clausius relation is violated at low but nonz
T.

In the same way one can consider the variation of
~effective! massm. Here one has

diWrev5E dxdpW~p,x!
]H

]m
dm52E dpW~p!

p2

2m2
dm

52Tp

dm

2m
, ~4.25!

again in concordance with Eq.~4.17!. This implies

diQrev5S Tp

]Sp

]m
1Tx

]Sx

]mDdm5S ]Tp

]m
1

]Tx

]m
1

Tp

m D dm

2

5
\g

2pm2
dm1O~T2!. ~4.26!

In contrast to the previous case there is a transfer of h
even if the bath temperature is zero. Thus, violation of
Clausius inequality is even stronger in this case, since
dm.0 one has diQ.0, even thoughTdSvN50 ~for T→0).
This situation with di Wrev,0 corresponds to the work per
formed by the system on the environment. To emphasize
the heat comes from the cloud of bath modes, we note
the general relations

diWrev5dFp , dU5dUp2dUint5diQrev1diWrev
~4.27!

imply

diQrev5TdSp2dUint . ~4.28!
2-13
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For changingm in the T50 situation it indeed holds that

diQrev52dUint ~4.29!

for all values ofw, even whenG is not very large. For a
change ina it holds thatdUint5O(T4), but Eq.~4.28! nev-
ertheless reproduces Eq.~4.23!, because of relation~3.59!.

Let us briefly discuss consequences drawn from the
lation of the Clausius inequality in the quantum regime. F
of all, it appears that it occurs in the overall Gibbsian sta
so that globally~i.e., when applied to the overall closed sy
tem! thermodynamics is valid by definition. In particula
since the overall system does not absorb heat during
variation of a parameter, and diQ50 is consistent with the
T→0 case of the Clausius inequality~later we will see that
this is also the case at finite temperatures, where diQ is still
zero!. Nevertheless, the local state of the particle is not Gi
sian and does allow violations as we have seen. We st
that this violation arises due to quantum entanglement, wh
leads to non-Gibbsian effective temperatures for the stat
ary state of the Brownian particle. If the effective tempe
tures forT→0 would equal their Gibbsian values\v0/2, the
state of the particle would be pure, which is impossible sin
it does interact with the bath.

When later discussing the Thomson’s formulation of t
second law, we will see that it is perfectly valid for the ove
all Gibbsian state, so that the above violation of the Claus
inequality provides us with an explicit example showing th
at low temperatures the very equivalence between diffe
formulations of the second law is lost.

A further aspect of this matter is the squeezing of ph
space and entropy, relevant for computing in the quan
regime. In a separate paper we have shown that the so-c
Landauer bound for the erasure of one bit of informatio
that arises from the Clausius inequality, is violated in a sim
lar manner@39#.

Notice again that the effective temperatures remain fin
in the limit T→0 @see Eqs.~3.63!, ~3.64! and Fig. 1#, and
both are larger than the bath temperatureT. The fact that they
are nonequal is due to a mixed state of the particle. Indee
quantum system nonweakly interacting with its environme
will be in a mixed state even if the whole closed system~the
particle and environment together! is in a pure state~e.g., the
vacuum state!.

The existence of different temperaturesTx , Tp , andT for
the subsystem and bath should be compared with the ze
law, which states that systems interacting for a long time
in equilibrium, and share common temperature. Notice es
cially that the above difference between temperatures is n
consequence of any metastability and/or incomplete eq
bration, so that our effective temperatures do not depend
the dynamics of the particle and have somewhat more d
nite status compared with those defined, e.g., for glassy
tems @24,25,27#. Typical derivations of the zeroth law~see,
e.g., Ref.@5# for one of the most clear examples! essentially
use the assumptions that the interaction with the bath is v
weak, and that the total entropy can be considered as the
of entropies of the subsystem and the bath. Evidently,
last condition is not satisfied in our case, except for the li
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g→0, whereTx andTp tend to their Gibbsian value@see Eq.
~3.50!# of the harmonic oscillator coupled very weakly to i
bath, the situation treated in all textbooks.

Let us notice that in literature some other ways were p
posed to establish effective characteristics for nonund
damped Brownian oscillator. In Ref.@9# it is shown that there
is a mapping to the Gibbsian~underdamped! oscillator
through the definition of an effective mass and frequen
For the description of He3, Prokof’ev studies a related mode
with a gap inJ(v) at small v @40#. In this approach he
makes a different identification for the effective temperatu
Surely, choosing a quantity as ‘‘effective temperature’’ is
some extent a matter of taste, that can only be justified by
induced simplification of the physical results. For our th
modynamic approach other definitions of effective tempe
tures will not be very helpful. OurTp and Tx , however,
allow us to formulate the generalized Clausius inequality a
they also occur in the Maxwell-Boltzmann-like form~4.2! of
the Wigner function. Last but not the least, these effect
temperatures enter in the same way as in glasses and
two-temperature systems, such as black holes.

2. Von Neumann entropy

In the next section we shall discuss the von Neuma
entropy of the central particle. To investigate it one needs
density matrix corresponding to the Wigner function~4.2!.
For the harmonic oscillator this can be worked out explicit
One approach is to introduce an effective mass and an e
tive frequency@9#, and insert these results in the express
for the entropy of the effective harmonic oscillator. We fou
it more insightful to redo the derivation. The standard re
tion

K x1
u

2UrUx2
u

2L 5E dpe2 ipu/\W~p,x! ~4.30!

connects the density matrix in coordinate representation w
the Wigner function. From this relation one gets the follo
ing formula @38#:

^xurux8&5
1

A2p^x2&
expF2

~x1x8!2

8^x2&
2

~x2x8!2

2\2/^p2&
G .

~4.31!

The physical meaning of Eq.~4.31! is clear The diagona
elements (x5x8) are distributed at the scaleA^x2&, while the
maximally off-diagonal elements (x52x8), which charac-
terize coherence, are distributed with the characteristic s
\/A^p2&.

We have to find eigenfunctions and eigenvectors of t
density matrix,

E dx8^xurux8& f n~x8!5pnf n~x!. ~4.32!

The solution of this problem uses some tabulated formu
for Hermite polynomials, and results in
2-14
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FIG. 1. The effective temperaturesTp , Tx vs the bath temperatureT for two values of the dimensionless damping. For the parame
involved we take the following values:\g/(4pm)51, \G/(2p)5100. Left part,am/g2580 ~underdamping!, from top to bottom,Tp , Tx ,
T. Right part, the same but witham/g250.2 ~moderate overdamping!.
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pn5
1

v1
1

2

F v2
1

2

v1
1

2

G n

, ~4.33!

f n~x!5c Hn~c x!e2c2x2/2, ~4.34!

c5S ^p2&

\2^x2&
D 1/4

, v5
Dp Dx

\
5A^p2&^x2&

\2
5AmTpTx

\2a
,

~4.35!

whereHn are Hermite polynomials, and it holds thatv> 1
2

due to the Heisenberg uncertainty relation. The result for
von Neumann entropy now reads@9#

SvN52(
n

pnlnpn

5S v1
1

2D lnS v1
1

2D2S v2
1

2D lnS v2
1

2D . ~4.36!

The first terms in its largev expansion are

SvN5 ln v112
1

24v2
2

1

320v4
2

1

2688v6
. ~4.37!

From Eqs.~4.3!, ~4.4!, and ~4.5! we notice that the sam
quantityv governs behavior of the Boltzmann entropy,

SB5
1

2
ln

^x2&^p2&

\2
115 lnv11. ~4.38!

This appears to coincide with the leading terms of Eq.~4.37!.
It is known to be larger than the von Neumann entropy,
this is obvious from the sign of the correction terms.

If some parameter (a or m) is varied, then the derivativ
of SvN with respect to it reads
03610
e

d

dSvN5 ln

v1
1

2

v2
1

2

dv. ~4.39!

In other words, the sign of the change inSvN is determined
by the sign of the change inv. This holds as well for the
change inSB , so qualitatively they carry the same informa
tion, and this already was used above to simplify one po
of the discussion, namely, the Clausius inequality at lowT.

Let us stress that von Neumann entropySvN is the unique
quantum measure of localization, whereas the entropiesSp
and Sx characterize localizations of momentum and coor
nate separately. The differences betweenSB andSvN are due
to the fact that in quantum theory momentum and coordin
cannot be measured simultaneously; in this senseSp andSx
characterize two different measurement setups. Neverthe
for the harmonic particle ifSvN increases~decreases!, then
Sp1Sx increases~decreases! as well. Notice that the rea
importance ofSp andSx becomes clear when they have to b
used to generalize the Clausius inequality. The von Neum
entropy cannot be used for this purpose wheneverTxÞTp .

3. Clausius inequality at large T

At low T only power counting inT was needed for show-
ing the violation of the Clausius inequality. The precise de
nition of entropy, and the quantitative difference between
Boltzmann entropy and the von Neumann entropy were
essential, since thenTdS→0 anyhow. Here we wish to show
that the same violation already happens at arbitrarily la
temperature. To do this we have to use the von Neum
entropy of the subsystem.

In this section we consider very large temperaturesT
@\G. Using Eq.~3.54! we find from Eq.~4.26! for a change
in m that

d–Q5F12
b2\2a

12m G T

2m
dm,
2-15
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dSvN5F12
b2\2~a1gG!

12m G 1

2m
dm. ~4.40!

So, for a changedm.0 it is seen that at arbitrarily larg
temperature the Clausius inequality is violated. The rela

violation (d–Q2TdSvN)/d–Q is of order\2gG/(mT2).
For a change ina we find

d–Q5H 2
1

2a
1

\2b2

24m
2

b4\4@a1~2/3!gG#

480m2 J T da,

~4.41!

TdSvN5H 2
1

2a
1

\2b2

24m
2

b4\4@a1gG#

480m2 J T da.

~4.42!

These expressions differ at relative orderb4\4gG/m2, and
the Clausius inequality is violated forda.0.

The important conclusion of this Sec. is that the violati
of the Clausius inequality already occurs at arbitrarily hi
temperatures. Later we point out that a similar conclus
can be drawn about the violation of the zeroth law at la
temperatures.

We stress that the Clausius inequality is violated for a
finite coupling, and the violating terms only disappear in t
weak coupling limitg→0, or in the classical limit\→0,
equivalent to the high-temperature limit.

4. Clausius inequality for comparing two systems

For nonequilibrium systems the question has not b
settled as to whether the von Neumann entropy is the
physical entropy. As we are inclined to believe that it is,
have discussed that entropy above.

Let us, however, now consider cases where there is
doubt. For systems in true Gibbsian equilibrium the pro
entropy of the subsystem is surely its von Neumann entro
We can now compare two such equilibrium systems, hav
slightly different system parameters. In standard thermo
namics such a comparison does not yield a new insight
the equilibrium state of the system is independent of its h
tory. We should point out that in the thermodynamics
glasses it is customary to compare cooling experiment
different but fixed pressures. A related comparison was a
made for black holes: it could be shown that comparing
situation of a single black hole before and after a sm
amount of matter was added, is analogous to comparing
different black holes with slightly different masses@41#. This
universality pointed at a thermodynamic behavior of bla
holes, and the physical framework could indeed be provi
by one of us, by drawing an analogy with the thermodyna
ics of glasses@27#.

For our present case we can compare two equilibri
systems at slightly different temperatures. This has the b
efit that the work term is absent, thus needing no interpr

tion, and it implies d–Q5dU. Using the fully exact expres
sions for the energy and the von Neumann entropy, it is t
straightforward to show that at largeT,
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d–Q2TdSvN5
b2\2gG

24m
dT. ~4.43!

The standardexpectationthat this should vanish is agai
seen to be invalid, and the Clausius inequality is violated
dT.0. As before, the terms in the right hand side van
only in the weak coupling limitg→0, the classical limit
\→0, or the infinite temperature limitb→0.

5. On our identification of the energy of the subsystem

In Sec. II A we have considered two physical situation
In the first case the Hamiltonian contains a self-interact
term ;x2. For that case the above results on the Claus
inequality apply unambiguously. In the second case ther
no such self-interaction, but the potential energy1

2 bx2 is split
as 1

2 ax21 1
2 gGx2, and the first part is counted in the energ

of the subsystem, while the last part is counted with
interaction energy. Let us now shortly look at what happe
when this is not done, andŨ5^H̃& is considered as energ
of the subsystem. At largeT one will have Ũ5U
1 1

2 (gG/a)T5T1 1
2 (gG/a)T. Since the work is not modi-

fied by this identification, one will have a shift in the chan
of heat,dQ̃5dQ1 1

2 gG@dT/a2Tda/a2#. From Eqs.~4.42!
and~4.43! it is seen that then even at very large temperatu
dQ̃2TdSvN will not vanish wheneverg is nonzero. Thus,
when there is no self-interaction our identification ofH as
the Hamiltonian of the subsystem is already mandatory
having a proper classical limit. The underlying reason is t
the Wigner function has the Maxwell-Boltzmann form

expS 2F 1

2m
p21 1

2 ax2G /TD ,

involving a and notb5a1gG. This fixes the entropy, and
by the Clausius inequality also the change in heat, thus le
ing one consistent choice for the energy.

V. EXACT DYNAMICAL SOLUTION

We now consider the situation where our closed syst
starts at timet502 from a Gibbsian initial distribution. It
could arise if long before the total system was coupled t
‘‘superbath,’’ that allowed relaxation to equilibrium, afte
which the connection was cut@36#. A more realistic situation
occurs when the bath has small nonlinearities, that drive
whole system to its global Gibbsian state.

A. The case when the initial state is a modified Gibbsian

We assume that fort,0 the system is in a Gibbsian sta
at temperatureT with certain parametersa5a0 , m5m0 , g
5g0. At t50 these parameters are instantaneously chan
to a, m and g, and the system will relax to a steady sta
This setup generalizes previous studies in which for timet
<0 particle and bath are uncoupled, described byg050. An
important benefit is that in the strong damping limit th
present initial state can be close to the final state, which is
course, impossible ifg050 butg is large. When making the
2-16
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change g0→g at t50, an amount of work 1
2 (g

2g0)G^x2&0 has to be supplied to the system. This was tr
large in our paper@2#, where we tookg050, but G and g
large. In the present setup we can chooseg05g, but a0Þa,
implying that the work need not be large, even when
Debye frequencyG is large.

1. The eigenmodes of the initial state

In the most general case the Hamiltonian has fort,0 the
parametersa0 , g0, andm0. It reads

H5(
i>0

pi
2

2mi
1

1

2 (
i , j >0

Amimj xiAi j xj ~5.1!

with

A005
a01g0G

m0
, A0i5Ai 052

ci
(0)

Am0mi

, Ai j 5v i
2d i j ,

~5.2!

whereci
(0) is given by Eq.~2.23! with g0 replacingg,

ci
(0)5A2g0miv i

2D

p

G2

v i
21G2

. ~5.3!

Let us denote the eigenvalues ofA by nk
2 . From a previous

section, Eqs.~3.10! and ~3.12!, we infer that the eigenfre
quencies are shifted,

nk5vk2
1

p
f0~vk! D, ~5.4!

wheref0, satisfying 0<f0<p, is given by

f0~n!5arctan
g0G2n

~a02m0n2!~n21G2!1g0Gn2
. ~5.5!

In later sections we only need that for largeG,

sinf0~n!5
g0n

$~a02m0n2!21g0
2n2%1/2

. ~5.6!

The eigenvectors are

e0
k5ak , ei

k5
ci

(0) ak

Am0mi~v i
22nk

2!
~5.7!

with normalization factor

1

ak
2

511(
i>1

@ci
(0)# 2

m0mi~v i
22nk

2!2
. ~5.8!

The following normalization conditions hold:

(
k

ei
kej

k5d i j , (
i>0

ei
kei

l5dkl . ~5.9!
03610
y

e

For smallD one may use

(
i 52`

`
1

@~ i 2k!p1f0~vk!#
2

5
1

sin2f0~vk!
~5.10!

to find

ak5A2Dm0~G21vk
2!

pg0G2
sinf0

k ,

ei
k5AG21vk

2

G21v i
2

2Dv isinf0
k

p~v i
22nk

2!
, ~5.11!

where f0
k5f0(vk). In the zero coupling limitg0→0 one

hasf0
k→0, so thatnk→vk and indeedei

k→d ik . The latter
setup occurs in the standard treatments where bath and
system are initially uncoupled.

2. The noise

We assume Gibbsian equilibrium fort<0. Let us now
introduce for the creation and annihilation operatorsbk

† , bk ,
satisfying@bk ,bl

†#5dkl by

xi5(
k
A \

2mink
ei

k~bk
†einkt1bke

2 inkt!,

pj5 i(
k
A\mjnk

2
ej

k~bk
†einkt2ble

2 inkt!, ~5.12!

x5(
k
A\D~G21nk

2!

pg0G2nk

sinf0
k ~bk

†einkt1bke
2 inkt!,

p5(
k
A\D~G21nk

2!

pg0G2nk

sinf0
k m0nk~ i bl

†einkt2 i ble
2 inkt!.

~5.13!

They indeed satisfy@xi ,pj #5 i\d i j due to the normalization
condition, as well as@x,p#5 i\, @x,pi #5@xi ,p#50. For
t,0 the Hamiltonian then reads

H5
1

2 (
k

\nk~bk
†bk1bkbk

†!5(
k

\nkS bk
†bk1

1

2D .

~5.14!

In the Gibbsian state that describes our closed system
t,0, the density matrix is

r5
1

Z
e2bH. ~5.15!

It has the Bose occupation numbers
2-17
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^bk
†bk1bkbk

†&511
2

eb\nk21
5cothS 1

2
b\nkD .

~5.16!

Combining Eqs.~2.16! and ~5.12! we now have for the
noise

h~ t !5(
i>1

(
k
A \

2mink
ci ei

kF ~bk
†1bk!cosv i t

1 i
nk

v i
~bk

†2bk!sinv i t G . ~5.17!

To carry our thei sum, we have to evaluate
f
e

th
d

q.
c

03610
(
i>1

ciei
kcosv i t

Ami

5A 2gG2D

p~G21nk
2!

2D sinf0
k

p (
i>1

S nk
2

v i
22nk

2

1
G2

v i
21G2D cosv i t. ~5.18!

Gradstein and Rhyzhik@42# present on p. 40, Eq.~1.445.2!
the equality

(
k51

`
coskx

k21a2
52

1

2a2
1

p

2a

cosh~pa2ax!

sinhpa
. ~5.19!

According to them it holds for 0<x<2p, but it actually
only holds for 0<x<p, while further it is symmetric and
periodic. We have to apply this withx5tD, which is surely
between 0 andp, for the casesa5 in/D anda5G/D,
(
i>1

ciei
kcosv i t

Ami

5A 2gG2D

p~G21nk
2!

sinf0
kFG cosh~pG/D2Gt !

sinh~pG/D!
2

nkcos~pnk /D2nkt !

sin~pnk /D! G ~5.20!

5A 2gG2D

p~G21nk
2!

@G sinf0
k e2Gt1nkcos~f0

k1nkt !#. ~5.21!
a-

he
tion
tion
In the last step we have used Eq.~5.4! and neglected terms o
order exp(22G/D), which are extremely small. The primitiv
of this relation yields

(
i>1

ciei
ksinv i t

Ami v i

5A 2gG2D

p~G21nk
2!

@2sinf0
k e2Gt

1sin~f0
k1nkt !#. ~5.22!

When we insert this in expression~5.18! for the noise we
have the explicit result

h~ t !5(
k
A g\nkG

2D

p~G21nk
2!

F S G2 ink

nk
bk

†1
G1 ink

nk
bkD

3sinf0
ke2Gt1eif0

k
1 inktbk

†1e2 if0
k
2 inktbkG .

~5.23!

The memory of the initial state~i.e., the dependence ona0 ,
m0, and g0, coded inf0

k) is washed out after a timeth

51/G, apart from a harmless phase factor. Notice that
time dependencies are exp(inkt), as one would have expecte
from Eq.~5.12!. Also note that the exp(2Gt) terms underline
the special role oft50, just as it does elsewhere in E
~2.18!. We shall later verify that this passes a consisten
check.
e

y

3. The noise correlator

The noise correlator now decomposes in two parts:

K~s,t !5
1

2
^ h~ t !h~s!1h~s!h~ t ! &5K0~s2t !1K1~s,t !.

~5.24!

The first term is the stationary noise known from the situ
tion where system and bath were initially uncoupled:

K0~s2t !5
1

pE0

`

dv K̄0~v!cosv~ t2s! ~5.25!

5
1

2p E
2`

`

dvK̄~v!eiv~s2t !,

with spectrum

K̄0~v!5
g\v

tanh
1

2
b\v

G2

G21v2
. ~5.26!

It indeed does not involve parameters of the initial state. T
connection between properties of the noise and the fric
kernel is the consequence of quantum fluctuation-dissipa
theorem@5,9,17#.
2-18
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As shown in Ref.@43#, the quantum noise has correlatio
K0(t)52 ln(Gt).0 at small times,t!1/G. At T50 there
occurs for large times the celebrated power-law, antico
lated decay

K0~ t !52
\g

pt2
. ~5.27!

This is cut off at times larger than the universal quant
coherence timet\5\/T, where

K0~ t !52
pgT2

\ FsinhS pt

b\ D G22

. ~5.28!

The divergence of this expression att50 shows that a regu
lator like G is needed.

Let us briefly explain the qualitative reasons for the abo
structure of the quantum noise. As seen from Eq.~2.16!, the
quantum noise is just a weighted sum of the unpertur
coordinates of the baths oscillators. ForT→0 the unper-
turbed bath appears in its lowest energy level, and since
ergy and coordinate do not commute~just because coordinat
and momentum do not commute!, the quantum noise fluctu
ates even forT→0, and brings a nontrivial structure toK(t)
in contrast to the classical case, where the noise is just ab
for zero temperatures. On the other hand, the total inten
of the quantum noise is zero forT→0: as seen from Eq
~5.26!, *dtK(t)52gT. For the total integral to be zero, th
correlatorK(t) should change its sign at some intermedi
time t. For longer times the quantum noise is anticorrelat
The correlator displays a power-law behavior, since the c
relation timescale\/T is now infinite. A colored noise gen
erated by the low-temperature quantum thermal bath will
the main cause of our effects. The classical white noise s
ation K0(t)52gTd(t) is recovered by taking the high
temperature limit (T@\G).

The second term of Eq.~5.24! is due to the initial corre-
lation of particle and bath,

K1~s,t !5K11e
2G(s1t)1K12~s!e2Gt1K12~ t !e2Gs,

~5.29!

K115
1

pE0

`

dv K̄0~v!
G21v2

v2
sin2f0~v!, ~5.30!

K12~ t !5
1

pE0

`

dv K̄0~v!FG

v
cos@f0~v!1vt#

2sin@f0~v!1vt#Gsinf0~v!, ~5.31!

wheref0 is defined by Eq.~5.5!.
The standard case of initially uncoupled Brownian p

ticle and bath is recovered forg0→0, wheref0→0. Then
K12 and K11 vanish, making the noise correlator tim
translation invariant. In the general case, the initial corre
tion only affects the very short time regimet<th51/G ~re-
03610
-

e

d

n-

ent
ty

e
.

r-

e
u-

-

-

member that we assume thatG is larger than other
characteristic frequencies of the damped Brownian partic!.

4. Variances and covariance arising from the initial state

The Gibbsian initial state leads to three coupled Gauss
random variables: the random initial conditions,z15p0 and
z25x0, and the noisez3(t)5h(t) for t>0. More precisely,
when we discretize the time axis in pointst i , the function
z3(t) becomes a set of variablesz3,i . Their correlations and
cross correlations are

^p0
2&5m0Tp~a0 ,m0 ,g0!, ^x0

2&5
Tx~a0 ,m0 ,g0!

a0
,

K~s,t !5
1

2
^h~s!h~ t !1h~ t !h~s!&, ~5.32!

^p0x0&50, S1~ t !5
1

2
^h~ t !p01p0h~ t !&,

S2~ t !5
1

2
^h~ t !x01x0h~ t !&. ~5.33!

For t8<0 we also define the more general quantities

S1~ t,t8!5
1

2
^h~ t !p~ t8!1p~ t8!h~ t !&,

S2~ t,t8!5
1

2
^h~ t !x~ t8!1x~ t8!h~ t !&. ~5.34!

It holds that

S1~ t,t8!5m0

]

]t8
S2~ t,t8!. ~5.35!

The most interesting term reads

S2~ t,t8!5
\Ag

pAg0
E

0

`

dn sinf0~n! coth
1

2
b\n

3F S G

n
cosnt82sinnt8D sinf0~n! e2Gt

1cos@f0~n!1nt2nt8#G . ~5.36!

It yields

S1~ t !5
\m0Ag

pAg0
E

0

`

dn n sinf0~n! coth
1

2
b\n

3$2sinf0~n! e2Gt1sin@f0~n!1nt#%

~5.37!

andS2(t)5S2(t,0).
For the sake of completeness we also mention that

t<0, t8<0
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1

2
^x~ t !x~ t8!1x~ t8!x~ t !&5

\

pg0
E

0

`

dn
G21n2

n G2
sin2f0~n!

3coth
1

2
b\n cosn~ t2t8!,

~5.38!

which allows us to determinêx(t)x(0)1x(0)x(t)& and
^x2(t)&. The results pertain fort.0, t8>0 if the system is
not modified att50, viz. a05a, m05m, g05g. Therefore
they allow a consistency check on the average ofHI of Eq.
~2.19! in the stationary state. For largeG there occurs an
apparent time dependence;Gexp(2Gt), arising from its first
two terms2^h(t)x(t)&1gGexp(2Gt)^x(0)x(t)&. It can now
be verified that, in the stationary state, these large, fast te
cancel, and so do the other time dependencies.

The general case where the system is modified att50
will be considered now.

B. Exact solution of the Langevin equation

Now we consider the exact solution of the quantu
Langevin equation,

ẋ5
p

m
, ṗ52ax2g~ t !x~0!2E

0

t

dt8g~ t2t8!ẋ~ t8!1h~ t !,

~5.39!

The general solution of Eq.~5.39! is obtained with the help
of Laplace transformation. The reader may recall the follo
ing standard relations between functionsA(t), B(t) and their
Laplace-transformsL$A%5Â(s)5*0

`dt e2stA(t):

LH E
0

t

dt8A~ t2t8!B~ t8!J 5Â~s!B̂~s!,

L$Ȧ%52A~0!1sÂ~s!. ~5.40!

One gets

msx̂~s!2mx~0!5 p̂~s!,

sp̂~s!2p~0!52ax̂~s!2ĝ~s!sx̂~s!

1ĥ~s!. ~5.41!

Together this yields

x̂~s!5
1

m
@mx~0!s1p~0!1ĥ~s!# f̂ ~s!, ~5.42!

where

f̂ ~s!5
m

ms21a1sĝ~s!
. ~5.43!

Thus, the solution of Eq.~5.39! reads

x~ t !5x~0! ḟ ~ t !1
1

m
p~0! f ~ t !1

1

mE
0

t

dt8 f ~ t2t8!h~ t8!,

~5.44!
03610
s

-

p~ t !5p~0! ḟ ~ t !1mx~0! f̈ ~ t !1E
0

t

dt8 ḟ ~ t2t8!h~ t8!,

~5.45!

where f̂ (s) and ĝ(s) are the Laplace transforms off (t),
g(t). Expanding f̂ (s) for small s, one finds that f (0)
5 f̈ (0)50, ḟ (0)51. Now we turn to our standard case
the Drude-Ullersma spectrum,

g~ t !5gGe2Gutu, ĝ~s!5
gG

G1s
. ~5.46!

For f̂ (s) one has

f̂ ~s!5
m~G1s!

~s1G!~ms21a!1sgG
5

G1s

~s1v1!~s1v2!~s1v3!

5
G1s

P3~2s!
, ~5.47!

whereP3(s) was defined in Eq.~3.23!, where also its roots
v1,2,3 are discussed.

Likewise, one has for the initial Gibbsian states

f̂ 0~s!5
m0~G1s!

~s1G!~m0s21a0!1sg0G
. ~5.48!

One may write

f̂ ~s!5(
i 51

3
f i

s1v i
, f ~ t !5(

i 51

3

f ie
2v i t,

f i5
G2v i

~v i 112v i !~v i 212v i !
, ~5.49!

where, in this connection,v05v3, not to be confused with
the definitionv05Aa/m elsewhere in the work.

For largeG one has

f 152 f 25
m

gw
, f 35

1

G
~5.50!

with w defined in Eq.~3.32!.
Let us now set, in analogy with Eq.~5.13!,

x~ t !5(
k
A\D~G21nk

2!

pgG2nk

@bk~ t !bk
†1bk* ~ t !bk#.

~5.51!

This implies

p~ t !5m(
k
A\D~G21nk

2!

pgG2nk

@ḃk~ t !bk
†1ḃk* ~ t !bk#.

~5.52!

One has from Eqs.~5.44!, ~5.47!, and ~5.49! bk5b(nk),
with
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b~n!5A g

g0
sinf0~n!(

i 51

3

f i~2v i1 in!e2v i t1
gG2n

m~G21n2!
(
i 51

3

f iFsinf0~n!
G2 in

n

e2v i t2e2Gt

G2v i
1eif0(n)

eint2e2v i t

v i1 in G .
~5.53!
The e2Gt terms cancel since, due to Eq.~5.47!,

(
i

f i

v i2G
5 f̂ ~2G!50. ~5.54!

Next one can check that

eif(n) 5
m~G21n2!sinf~n!

gG2n f̂ ~ in!
,

eif0(n)5
m0~G21n2!sinf0~n!

g0G2n f̂ 0~ in!
, ~5.55!
ia

tr
it

,

e

e

03610
which brings

gG2n

m~G21n2!
eif0(n) (

i 51

3
f i

v i1 in
5

gm0 f̂ ~ in!

g0m f̂0~ in!
sinf0~n!.

~5.56!

This leads to the exact result

b~n,t !5b0eint1(
i 51

3

b i~n!e2v i t,

b0~n!5sinf~n! eif0(n)2 if(n),
b i~n!5 sinf0~n! f i FA g

g0
~2v i1 in!1

gG2

m~G1 in!~G2v i !
2

gm0

g0m f̂0~ in!~v i1 in!
G . ~5.57!
in

lly

e

ady
For large times only the first term remains, and the init
condition only enters through its phase factor exp(if02if),
which has no physical effect, thus showing that the cen
particle relaxes to its equilibrium state independent of
initial condition. In the caseg05g, the expression forb i can
be simplified by writing it as the ratio of two polynomials
and using the fact thatv i is a zero of 1/f̂ (2v), allowing to
eliminate thev i

3 term of the numerator. This brings

b i~n!5sinf0~n!
a2a01~m02m!n2

m

f i

v i1 in
,

~5.58!

which is still exact. Using Eq.~5.55! we can also express th
result as

b~n,t !5
gG2n eif0(n)

m~G21n2!
H f̂ ~ in!eint1@a2a02~m2m0!n2 #

3 f̂ 0~ in!(
i 51

3
f i

v i1 in
e2v i tJ . ~5.59!

It is trivial to check that, when no change is made att50
(g05g, m05m, and a05a), the result b(n)
5sinf exp(int) shows that Eq.~5.51! extends the negative
time behavior~5.13! to all positive times, even though th
noise and the damping had a special~but in that case un-
physical! role in t50.
l

al
s

In the rest of this work we shall be mainly interested
the situationg05g, m05m while a0 is different from but
close toa. One gets in the regime of largeG and t@1/G to
linear order ina2a0,

b~n!5sinf~n! eif0(n)2 if(n)1 int F11
a2a0

gw S e2v1t2 int

v11 in

2
e2v2t2 int

v21 in D G , ~5.60!

where w is defined in Eq.~3.32! and v1,2 in Eqs. ~3.24!–
~3.38!.

VI. ENERGY OSCILLATION AND NEGATIVE
ENTROPY PRODUCTION

We consider the dynamical evolution of a system initia
in equilibrium characterized by a spring constanta0, which
at t50 is instantaneously changed toa15a. These param-
eters are connected as

a05~12a0!a. ~6.1!

We shall assume thatua0u!1. We also assume a large Deby
frequencyG, but this does not lead to principal changes.

A. Nonmonotonous relaxation of the energy at lowT

Let us now consider how the system relaxes to its ste
state. From Eqs.~5.51! and ~5.16! one has
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^x2&5E
0

`

dn
\~G21n2!

pgG2n
b* b coth

1

2
b\n,

^p2&5m2E
0

`

dn
\~G21n2!

pgG2n
ḃ* ḃ coth

1

2
b\n. ~6.2!

The infinite time values, discussed already in Eqs.~3.47! and
~3.48!, can be checked from these expressions. For the
lution from the initial state to these values, we shall consi
times t@1/G, and we can just take the limitG→` since no
divergences occur, except for the lnG term of the static part
^p2& at T50. Inserting Eq.~5.60! we get to linear order in
a0,

V~ t !5
1

2
a^x2&5

1

2
Tx1a0

\a

2pg
CxS gt

2mD , ~6.3!

K~ t !5
^p2&
2m

5
1

2
Tp1a0

\a

2pg
CpS gt

2mD , ~6.4!

U~ t !5
1

2
Tp1

1

2
Tx1a0

\a

2pg
CES gt

2mD , ~6.5!

with the relaxation functions of coordinate, momentum, a
energy,

Cx~t!5
2~12w2!

w E
2`

` dy ycoth~b\gy/4m!

@~11w!21y2#@~12w!21y2#

3Fe2(12w1 iy)t

12w1 iy
2

e2(11w1 iy)t

11w1 iy G , ~6.6!

Cp~t!5
2

wE2`

` dy ycoth~b\gy/4m!

@~11w!21y2#@~12w!21y2#

3F iy~12w!e2(12w1 iy)t

12w1 iy
2

iy~11w!e2(11w1 iy)t

11w1 iy G ,
~6.7!

CE~t!5
2

wE2`

` dy ycoth~b\gy/4m!

@~12 iy !22w2#

3F ~12w!e2(12w1 iy)t

~12w1 iy !2
2

~11w!e2(11w1 iy)t

~11w1 iy !2 G .

~6.8!

Of course, one just hasCE5Cp1Cx . The integration vari-
able isy52mn/g. The appearance of the dimensionless ti
scalet5gt/2m is natural, since in the underdamped regim
wherew is imaginary, the damping time is justtd52m/g,
see Eq.~3.38!. In the overdamped regime the time scalestx
andtp from Eq.~3.35! are coded in the terms (17w)t in the
exponentials, respectively. In particular, for strong ov
damping one hast/tx5(12w)gt/2m→at/g.
03610
o-
r

d

e
,

-

1. Classical regime

At large T the tanh linearizes. One can do contour in
gration to find for overdamping, i.e., for«5am/g2, 1

4 and
w5A124«.0, the exact results

Cx~t!5
pgT

\a
e22tFcosh~wt!1

sinh~wt!

w G2

, ~6.9!

Cp~t!5
pgT

\a
e22t~12w2!Fsinh~wt!

w G2

, ~6.10!

CE~t!5
pgT

\a
e22tH Fcosh~wt!1

sinh~wt!

w G2

1~12w2!

3Fsinh~wt!

w G2J . ~6.11!

For overdamping (0,w,1) these functions are strictly
positive. For underdamping one has to replacew→ iw̄, im-
plying coshwt→cosw̄t and sinh(wt)/w→sin(w̄t)/w̄. Then
Cx and Cp get zeroes, but remain non-negative, whileCE
remains strictly positive~Figs. 2 and 3!.

For the relaxation of the energy this implies

U5T1
1

2
a0T H Fcosh~wt!1

sinh~wt!

w G2

1~12w2!Fsinh~wt!

w G2J e22t. ~6.12!

For strong overdamping («→0, w'122«) this becomes a
simple exponential decay,

U5T1
1

2
a0T e24«t. ~6.13!

In case of underdamping,«. 1
4 , one hasw5 iw̄ with w̄

5A4«21. This yields by analytic continuation

U5T1
1

2
a0T H Fcos~w̄t!1

sin~w̄t!

w̄
G 2

1
11w̄2

w̄2
sin2~w̄t!J e22t. ~6.14!

The term multiplyinga0 is an oscillating function, and is
strictly positive. Its derivative

U̇52
ga0T

m

11w̄2

w̄2
sin2~w̄t! e22t ~6.15!

has zeros but does not change sign. Physically this me
depending on the sign ofa0, both the kinetic and the poten
tial energy oscillate either above or below their final valu
and the total energy flow is unidirected; it goes towards
bath whena.a0, i.e., a0.0 and from the bath to the par
ticle in the opposite case.
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In the limit of weak damping (w̄@1) one gets

U5T1
1

2
a0T H 11

sin~2v0t !

w̄
J e2gt/m,

U̇52
ga0T

m
sin2~v0t ! e2gt/m. ~6.16!

Notice that the small but oscillating term inU has become of
leading order forU̇.

2. Weak damping regime

In the weak damping limit it holds that

w̄52 iw'
2Aam

g
@1. ~6.17!

For performing the integrals, we writeCx(t) first as an in-
tegral from 0 to infinity, and make the shifty→w̄1u, yield-
ing up to order 1/w̄2,

FIG. 2. The underdamped situation.Cx as a function of the
rescaled dimensionless timez5td5t/uwu, normalized to unity at
z50, for largeT andd50.5.

FIG. 3. The underdamped situation.Cx as a function of the
rescaled dimensionless timez5td5t/uwu, normalized to unity at
z50, for largeT andd50.1.
03610
Cx~t!5e2t E
2w̄

`

du
coth~b1bu/w̄!

u211
S 2

u cosut1sinut

11u2

1
cos~2v0t1ut!

2w̄
D , ~6.18!

where a correction factor 11u/w̄ in numerator and denomi
nator have canceled, and we denoted

b5
1

2
b\v0 . ~6.19!

Evaluating this to leading order in 1/w̄ we get

Cx~t!5
pg

4Aam
S 1

2 b\v0

sinh2 1
2 b\v0

1coth1
2 b\v0cos 2v0t D e22t. ~6.20!

For largeT this agrees with Eq.~6.9!, of which the last factor
now becomes cos2v0t. For T50 andt50 it agrees with Eq.
~6.27! below. Likewise,

Cp~t!5
pg

4Aam
S 1

2 b\v0

sinh2 1
2 b\v0

2coth1
2 b\v0cos 2v0t D e22t. ~6.21!

As in the classical limit,CE85Cx81Cp8 picks up a contribu-
tion of CE that is subleading but oscillating; it is most eas
obtained by evaluatingCE8 in a manner similar to Eq.~6.18!,

CE8 ~t!52
pg

Aam
S 1

2 b\v0

sinh2 1
2 b\v0

2coth 1
2 b\v0cos 2v0t D e22t. ~6.22!

When insertingCp1Cx in Eq. ~6.5! we have for the leading
decay of the energy

U5
1

2
\v0coth

1

2
b\v01

1

2
a0T

~ 1
2 b\v0!2

sinh2 1
2 b\v0

e2gt/m,

~6.23!

showing that to leading order ing in the weak damping limit
the energy does not oscillate, but monotonically leaks i
the bath~whena0.0) or is taken from the bath~whena0
,0). At low temperature this happens with an exponentia
small rate. But the rate of energy transfer, determined by
~6.22!,
2-23
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U̇52
ga0T

2m S ~ 1
2 b\v0!2

sinh2 1
2 b\v0

2

1
2 b\v0

tanh1
2 b\v0

cos 2v0t D e2gt/m, ~6.24!

is an oscillating function that changes sign in each per
wheneverT is not infinite. Thus the rate of energy transfer
not unidirected except for the classical limit. When averag
over one period, the cosine is subleading and a unidire
flow emerges.

3. Quantum regime for nonweak damping

At T50 one hasycoth(b\gy/4m)5uyu. For time t50
one finds by direct integration

Cx~0!5
1

w2
2

12w2

2w3
ln

11w

12w
, ~6.25!

and we define the shorthand

l~w!5
1

2w
ln

11w

12w
. ~6.26!

It further holds that

Cp~0!52Cx~0!, CE~0!50. ~6.27!

These results can be verified using the relations

a^x2~ t501!&2Tx~a!5
a

a0
Tx~a0!2Tx~a!

52a0a2
d~Tx /a!

da
5a0

\a

pg
Cx~0!,

1

m
^p2~ t501!&2Tp~a!52a0a

dTp

da
5a0

\a

pg
Cp~0!.

~6.28!

So after the instantaneous change of the spring constat
@1/G), the deviation of the potential energy from its fin
03610
d

d
ed

(

value is, to leading order ina0, just opposite to the one o
the kinetic energy. Consequently, the particle already has
proper energy, but this will not remain so; fora0.0 first a
flow from the bath will occur and then a reversed flow, af
which the equilibrium will be reached by a second ener
flow from the bath to the particle.

At large times (t@1) and stillT50 one gets in case o
overdamping (w.0)

Cx~t!52
1

2«2t2
e2tFcoshwt1

sinhwt

w G ,
Cp~t!52

1

«2t3
e2t

sinhwt

w
,

CE~t!52
1

2«2t2
e2tFcoshwt1

sinhwt

w G , ~6.29!

and for underdamping (w̄.0)

Cx~t!52
1

2«2t2
e2tFcosw̄t1

sinw̄t

w̄
G ,

Cp~t!52
1

«2t3
e2t

sinw̄t

w̄
,

CE~t!52
1

2«2t2
e2tFcosw̄t1

sinw̄t

w̄
G . ~6.30!

The latter expressions all exhibit an infinity of oscillation
aroundC50. For overdamping one hasCx(0).0, while it
has a negative tail; consequently there remains one osc
tion even in the limit of strong damping. In that lim
(g large!, one may sets5(12w)t5at/g. For large, but
fixed s one gets Cx5CE522exp(2s)/s2, Cp
528«exp(2s)/s3.

4. Strong damping at low T

Let us now writeCx(t) as

Cx~ t !5 f x~t,w!1 f x~t,2w!, ~6.31!
f x~t,w!5
2~12w2!

w
e2(12w)t E

2`

`

dy
y coth~b y/A12w2 !@ ~12w!cosyt2ysinyt #

@~11w!21y2#@~12w!21y2#2
, ~6.32!
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whereb was defined in Eq.~6.19!.
We investigate in some greater detail two particular cas

w→1 ~strong overdamping! and w50 ~the border between
overdamping and underdamping!. For the first case one
changes the integrating variabley→y/(12w) and arrives at

f x~t,w!5 f 1~2«t!,

f 1~s!5e2s E
2`

`

dy
y coth~ b yA«!@cosys2y sinys#

@ 11y2 #2
,

~6.33!

f x~t,2w!52«e22t E
2`

`

dy
y coth~b yA«!cos 2«yt

@11y2#2
.

~6.34!

Recall thatw5A124«, and in the limit«→0 one hasw
5122«→1. It is seen that in this limitf x(t,2w) is small
compared tof x(t,w) due to an extra factor« and, above all,
a quickly decaying exponentiale22t5e2s/«. Thus, we will
omit f x(t,2w). Then one has a scaling form

CE~t,«!5Cx~t,«!5 f 1~2«t!5 f 1S at

g D5 f 1S t

tx
D .

~6.35!

Notice also that for this function small and large tempe
tures are determined by the dimensionless ratio:bA«
5 1

2 b\a/g5 1
2 \/(txT). If this parameter is small~which is

always achieved for large temperature and also for fixed t
perature and large damping!, then we go back to the situatio
of Eq. ~6.13! because

f1~2«t!5
pT

\v0A«
e24«t ~6.36!

combined with Eqs.~6.5! and ~6.35! yield ~6.13!.
03610
s:

-

-

In the zero-temperature limit one takesy coth(b yA«)5uyu
and gets

f 1~s!52e2s E
0

`

dy
y @cosys2y sinys #

@11y2#2
. ~6.37!

This function can be exactly expressed through Meijer fu
tions, but we will not write this representation explicitl
since it is useful only for numerical computations. Noti
that Eq.~6.47! can be once more checked with help of E
~6.37!. The behavior off 1(s) for different temperatures is
presented in Fig. 4.

It starts with f (0)51, becomes negative att0
50.407 211 889 989, goes through a minimum, and fina
bends up to 02 for t→`. The minimum is characterized b

smin50.879 087 308 04,

f 1~smin!520.091 898 049 6, c2[ f 19~smin!50.404 842.
~6.38!

In this limit Cp has an interesting behavior. We discuss
already thatCp(0)52Cx(0). For small s, Cp quickly
grows, goes through zero, and then becomes of order«, start-
ing as« ln1/s for small, but not too smalls. For finites one
thus hasCE'Cx , implying that now the total energy make
one oscillation, despite the strong damping.

For a0.0 it says that, after initially energy has been p
on the particle by the change ofa0→a.a0, this energy
leaks away into the bath. However, at intermediate tim
more energy leaks away than in the final state, so a part
to come back at moderately late times. This nonmonoto
behavior ~‘‘bouncing’’ ! is familiar of the noise correlator
which is anticorrelated at large times in the quantum regim

Let us now turn to the behavior ofCx for w50,
Cx~t!58t e2t E
0

`

dy
y coth~b y! @cosyt2ysinyt #

@11y2#3
18 e2t E

0

`

dy
y coth~b y! @ ~12y2!cosyt22ysinyt #

@11y2#4
.

~6.39!

The behavior of this function is depicted in Fig. 5. It is seen that the casesw50 andw51 are qualitatively similar. As
expected, the negative tail ofCx(t) is more pronounced forw50. ForCp(t) one has

Cp~ t !5 f p~t,w!1 f p~t,2w!, ~6.40!

f p~t,w!5
2~12w!

w
e2(12w)t E

2`

`

dy
y coth~ b y/A12w2 !@ y2cosyt1y~12w!sinyt#

@~11w!21y2# @~12w!21y2#2
. ~6.41!

The behavior ofCp(t) in the overdamped situation can be studied along exactly the same lines as forCx(t),

Cp~ t !52e e22et E
0

`

dy
y coth~b yA«!@y2 cos~2 e ty!1y sin~2 e ty! #

@11y2#2 ~11e2y2!

22 e22t E
0

`

dy
coth~ b y/A« !@y cos~2 ty!1sin~2 ty!#

@11y2#2
. ~6.42!
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Due to the additional factore, this is smaller thanCx(t) for t.1, and this justifies Eq.~6.35!. Nevertheless, on the qualitativ
level Cp(t) displays nearly the same behavior asCx(t). This is demonstrated by Figs. 6 and 7.

Let us now investigate properties ofCx(t) in the underdamped limit, wherew5 iw̄5 iA4«21, and w̄ is real. In the
additional weak damping limit one hasw̄;1/g→`. Using Eqs.~6.32! and ~6.33! one gets

Cx~ t !5
8~w̄211!

w̄4
e2t ImF ei tw̄E

0

`

dy

y cothS byw̄

Aw̄211
D @~1/w̄2 i !cos~ytw̄!2y sin~ytw̄!#

@~1/w̄1 i !21y2# @~1/w̄2 i !21y2#2

G , ~6.43!

Cp~ t !5
8

w̄2
e2t ImF ~1/w̄2 i ! ei tw̄E

0

`

dy

y cothS byw̄

Aw̄211
D @y2 cos~ytw̄!1~1/w̄2 i !y sin~ytw̄! #

@~1/w̄1 i !21y2# @~1/w̄2 i !21y2#2
G . ~6.44!
or-
t is

en

s
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-

The behavior of these functions, as well asCE(t)5Cx(t)
1Cp(t), is depicted in Figs. 8 and 9 forT50. It is seen that
for the initial time of order 1/w̄, Cx andCp oscillate with the
amplitude higher for largerw̄.

5. Moments of the relaxation functions at low temperature

We can also determine the integral

E
0

`

dtCx~t!

58~12w2!E
2`

` dy ycoth~b\gy/4m!

@~11w!21y2#3@~12w!21y2#3

3@~12w2!222y2~11w2!23y4#. ~6.45!

At T50 it can be simply checked that it vanishes atw50
and nearw51,

FIG. 4. The case of strong damping.f 1(t) as a function of
dimensionless timet, normalized to unity att50, for different val-
ues of the dimensionless temperatureu51/(bA«)52Tg/(\a). Up-
per curve,u→` @taking into the normalization the expression giv
by Eq. ~6.36!#. Middle curve,u51 @see Eq.~6.33!#. Lower curve,
T5u50 @the expression given by~6.37!#. In the latter case there i
still an oscillation, despite the strong damping.
03610
E
0

`

dtCx~t!58@B~1,5!22B~2,4!23B~3,3!#50,

E
0

`

dtCx~t!5~12w!E
2`

`

dy uyu
~12w!22y2

@~12w!21y2#3

5
1

12w
@B~1,2!2B~2,1!#50, ~6.46!

whereB(w,z)5G(w)G(z)/G(w1z) is theb function. It ac-
tually holds for allw that

Cx
~0!~T50![E

0

`

dtCx~t,T50!50. ~6.47!

This surprising zero-temperature outcome will have imp
tant consequences when it comes to work extraction. I

FIG. 5. The case withw50 ~the border between overdampin
and underdamping!. Cx(t) as a function of dimensionless timet,
normalized to unity att50, for different values of the dimension
less temperatureu51/b5TA2m/(\Aa). Upper curve, u51,
middle curve,u50.2, lower curve,T5u50. In the two latter cases
there is an oscillation.
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similar to *2`
` dt K(t)52gT→0 for T→0, whereK(t) is

the autocorrelation function of the quantum noise. For sm
T one gets

Cx
(0)~T!5E

0

`

dtCx~t!5
64p2

3~12w2!
S mT

\g~12w2!
D 2

5
1

12« S 2pgT

\a D 2

. ~6.48!

FIG. 6. The overdamped situation,e50.1 (w50.7745).Cp(t)
as a function of time, for different values of the dimensionless te
perature u51/(bA«)52Tg/(\a). Upper curve, u533; lower
curve,u50.
03610
ll

It can also be verified that at zeroT and arbitrary«,

Cx
(1)52E

0

`

dt tCx~t,T50!5
1

24«2
C̃x

(1) ,

C̃x
(1)5

~31w2!~3w221!13~12w2!3l~w!

8w4
, ~6.49!

wherel is defined in Eq.~6.26!, and

Cx
(2)52E

0

`

dt t2Cx~t,T50!5
8

3~12w2!3
5

1

24«3
.

~6.50!

These coefficients are exact and positive for allw. The minus
signs in the integrals arise because the negative tai
Cx(t,T50) gets a larger weight than its positive cent
These results follow from the Laplace transform

-

Ĉx~2u,T50!5E
0

`

dt Cx~t,T50! e22ut

5
1

2uw2
1

12w2

8u2~11u!
F ~112u2w!ln~112u2w!

~u2w!w~11u2w!
2

~112u1w!ln~112u1w!

~u1w!w~11u1w!

3
2u2~11u!212u~11u!w1w22w3

~u1w!w3~11u2w!
ln~12w!2

2u2~11u!222u~11u!w1w21w3

~u2w!w3~11u1w!
ln~11w!G .

~6.51!

FIG. 7. The zero-temperature behavior of theC functions vs the dimensionless time. Left part,w50.9 ~strong overdamping!, 1, Cx , 2,
CE5Cp1Cx , 3, Cp . Right part, the same but withw50.1 ~weak overdamping!.
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At T50 all even moments ofCp vanish. This implies in
particular that the integral ofCE5Cp1Cx vanishes. The
Laplace transform ofCE reads in that case

ĈE~2u,T50!5E
0

`

dt CE~t,T50! e22ut

5
~11w!~112u1w!

4u2w~11u!~11u1w!
ln

112u1w

11w

2
~12w!~112u2w!

4u2w~11u!~11u2w!
ln

112u2w

12w
.

~6.52!

The Laplace transformĈp(2u,T50) follows as ĈE(2u,T
50)2Ĉx(2u,T50).

For later use we evaluate the related coefficients

CE
(0)5E

0

`

dtCE~t!5
1

12« S 2pgT

\a D 2

1O~T4!,

CE
(1)52E

0

`

dttCE~t!5
1

24«2
1O~T2!, ~6.53!

CE
(2)52E

0

`

dt2tCE~t!5
1

24«3
1O~T2!.

They differ from theCx
(0,1,2) only by the factorC̃x

(1) , which
goes to unity for large damping.

B. Entropy production versus energy dispersion

To derive the rate of entropy production we first need
Wigner function and its temporal evolution.

1. Fokker-Planck equation for the Wigner function

To derive the evolution equation for the Wigner functio
we shall write the Langevin Equation~2.18! in the form

ṗ52ax2
g

m
p1h1d ṗ, ~6.54!
03610
e

,

whered ṗ is small as 1/G. Indeed, from this definition and
the exact dynamical solution~5.44!, ~5.45! one may derive

d ṗ~ t !5mx0ġ~ t !1p0g~ t !1E
0

t

dt8 g~ t2t8!h~ t8!,

~6.55!

where

g~ t !5
g

m (
i 51

3 v i
2

G2v i
f i e2v i t ~6.56!

is of order 1/G for largeG. Now recall that for the harmonic
situation the Wigner function is given as

W~p,x,t !5E dp0 dx0W~p0 ,x0,0!^d„p~ t !2p…

3d„x~ t !2x…&, ~6.57!

where the average is taken with respect to the no
W(p,x,t) andW(p0 ,x0,0) are final and initial Wigner func-
tions, whilep(t), x(t) are the solutions of Eq.~2.18! for the
corresponding initial conditions, and for a particular realiz
tion of the Gaussian noise. Equation~6.57! is not the most
general definition of the Wigner function, but it is exact f
harmonic systems.

We now seek a closed equation for the Wigner funct
~6.57!. DifferentiatingW(y1 ,y2 ,t) we get

]W~y1 ,y2 ,t !

]t
52 (

k51

2
]~vkW!

]yk
2

]

]y1
^d„p~ t !2y1…

3d„x~ t !2y2…@h~ t !1d ṗ~ t !#&, ~6.58!

where

v152ax2
g

m
p, v25

p

m
~6.59!

are the damped Newtonian acceleration and the velocity
spectively. The termd ṗ is a linear combination ofp0 , x0,
andh(t8). Due to the Gibbsian initial state, these are Gau
ian random variables and their cross correlations were gi
FIG. 8. The underdamped situation. 1,Cx as a function of the rescaled dimensionless timet5t/uw̄u, for T50 andw̄52, 2, Cp as a
function of t, 3, CE as a function oft both for the same values of the parameters.
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in Eqs. ~5.32!–~5.37!. Let us denote these variables by t
vectorz5$p0 ,x0 ,h(t)%, and their correlations by the matri
Mi j 5^zizj&. One then has for its joint distribution

P0~z!5
1

Adet~2pM !
expS 2

1

2
ziM i j

21zj D . ~6.60!

Using the relation

zi P0~z!52(
j

M i j

d

dzj
P0~z! ~6.61!

one can perform a partial integrations, which brings a clo
equation forW. The final result is that we obtain a diffusion
type equation~Fokker-Planck-Kramers-Klein equation! for
W itself,

]W~p,x,t !

]t
5LW52

p

m

]W

]x
1

]

]p F S g

m
p1axDWG

1@Dx~ t !2Dp~ t !#
]2

]p]x
W1gDp~ t !

]2W

]p2
,

~6.62!

where the diffusion coefficientsDx andDp are instantaneou
functions t. ~Notice that in Ref.@2# we used the notation
Dpp5Dp ,D5Dx ,Dxp5Dx2Dp .) The derivation along this
road is somewhat lengthy. A quicker way to derive the res
is to use the solution of the Fokker-Planck equation, de
mined by the moments

^p2&52mK~ t !, ^px&5
m

a
V̇~ t !, ^x2&5

2

a
V~ t !,

~6.63!

whereK(t)5^K(p)& and V(t)5^V(x)& are the expectation
values of kinetic and potential energy, respectively. T
time-dependent Wigner function thus reads

FIG. 9. The underdamped situation. 1,Cx , 2, Cp , 3, CE , as

functions of the rescaled dimensionless timet5t/uw̄u, for T50 and

w̄510. As compared with Fig.~8!, the amplitude of oscillations is
much larger. It is seen also thatCx andCp are quite close to each
other.
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d

lt
r-

e

W~p,x,t !5
a

2pA4amKV2m2V̇2

3expS 2
aKx22V̇px1Vp2/m

4KV2mV̇2/a
D .

~6.64!

Inserting this in Eq.~6.62!, one finally gets

Dp~ t !52K~ t !1
m

g
@K̇~ t !1V̇~ t !#, ~6.65!

Dx~ t !52V~ t !1
m

g
@K̇~ t !1V̇~ t !#1

g

a
V̇~ t !1

m

a
V̈~ t !.

~6.66!

Let us also define the time-dependent but currentless s

Wst~p,x,t !5
Aa

2pAmDp~ t !Dx~ t !
expS 2

p2

2mDp~ t !

2
ax2

2Dx~ t ! D ~6.67!

for which indeed the right hand side of the Fokker-Plan
equation~6.62! vanishes, though the left hand side does n
This is the locally stationary distribution. For sufficient
long times, that is whenDx(t) andDp(t) are changing with
time slowly enough,Wst becomes a solution of the Fokke
Planck equation.

2. H function and entropy production

The H function is defined as the information theoretic
distance between the actual Wigner functionW(x,p,t) and
the locally stationary Wigner functionWst(x,p,t),

H5E dx dp W~x,p,t !ln
W~x,p,t !

Wst~x,p,t !
>0. ~6.68!

The H function is non-negative due to the inequality

W

Wst
ln

W

Wst
>

W

Wst
21, ~6.69!

H>E dxdp@W~x,p,t !2Wst~x,p,t !#50. ~6.70!

Thus,H is equal to zero only forW(x,p,t)5Wst(x,p,t), i.e.,
in the stationary state. Since values ofH at intermediate
times are higher than its final value, it is reasonable to loo
its rate of change. In particular,H changes with time due to
the time dependence of the reference Wigner distribut
Wst , whereas the remaining part ofdH/dt appears to be
induced solely by the bath~see below!. We define theen-
tropy production diS/dt by
2-29
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2
dH
dt

5E dx dp Ẇst~x,p,t !
W~x,p,t !

Wst~x,p,t !
1

diS

dt
.

~6.71!

This leads to

diS

dt
52E dx dp Ẇ~x,p,t ! ln

W~x,p,t !

Wst~x,p,t !
. ~6.72!

This definition has the following properties.
~1! It is equal to zero in the stationary state.
~2! It is equal to zero if the Brownian particle does n

couple with the bath.
~3! It is non-negative in the classical case, whereDx

5Dp5T.
The last two properties are proved below.
Using Eq.~6.67! and denoting

R~x,p,t !5
W~x,p,t !

Wst~x,p,t !
, ~6.73!

one gets

dH
dt

5E dx dp@ L W~x,p,t ! # ln R~x,p,t !

2E dx dp R~x,p,t ! Ẇst~x,p,t !

5E dx dp W~x,p,t ! L †ln R~x,p,t !

2E dx dp R~x,p,t ! Ẇst~x,p,t !. ~6.74!

whereL is the Fokker-Planck operator of the right hand s
of Eq. ~6.62!. Noting that

L †ln R5
1

R
L † R2

1

R2 S gDp~ t !F]R

]pG2

1@Dx~ t !

2Dp~ t !#
]R

]x

]R

]p D , ~6.75!

and making once more integration by parts one ends up

diS

dt
5E dx dp

W~x,p,t !

R2~x,p,t !
S gDp~ t !F]R~x,p,t !

]p G2

1@Dx~ t !2Dp~ t !#
]R~x,p,t !

]x

]R~x,p,t !

]p D .

~6.76!

Now it is clear that in the classical white-noise limit, whe
Dx5Dp , the entropy production is non-negative. The po
tivity of diS/dt just means that from the global viewpoint th
approach to the stationary state is monotonous. In contras
the quantum case the positivity of the entropy production
03610
th

-

in
s

endangered. It is also clear that for a free Brownian part
(g50) the entropy production is zero.

Finally, we mention that the difference betweendSB /dt
and the entropy production is just the entropy flux,

deS

dt
[

dSB

dt
2

diS

dt
52E dx dp Ẇ~x,p,t !lnWst~x,p,t !.

~6.77!

It takes the value

deS

dt
5

K̇~ t !

Dp~ t !
1

V̇~ t !

Dx~ t !
. ~6.78!

Let us recall that in the relaxation process no work
performed, so a change in energy can only be due t
change of heat exchanged with the bath. Therefore, the
relation can be written as

deS

dt
5

Q̇p

Dp
1

Q̇x

Dx
, ~6.79!

where Q̇p5K̇ and Q̇x5V̇ are the changes of heat in th
momentum and coordinate sector, respectively, whileDp,x
are the corresponding diffusion coefficients in the Fokk
Planck operatorL of Eq. ~6.62!. Notice that this entropy flow
deviates from the standard expressiondeS/dt5Q̇/T
5Q̇p /T1Q̇x /T, which does not make sense sinceQ̇ does
not scale withT at low T.

The Boltzmann entropy reads

SB52E dpdxW~p,x,t !ln
1

\
W~p,x,t !

511
1

2
lnF m

\2a
S 4KV2

m

a
V̇2D G . ~6.80!

Its rate of change is

dSB

dt
5

2aK̇V12aKV̇2mV̇V̈

4aKV2mV̇2
. ~6.81!

The entropy production is the difference between th
and appears to be quadratic in the deviation from the e
librium state. To second order in the small parametera0,
defined in Eq.~6.1!, it becomes

diS

dt
5

\2gaa0
2

16p2m2 H Cx8
2

Tx
2

1«~Cx81Cp8!S Cp8

Tp
2

1
Cx8

Tx
2 D

1
Tp2Tx

2TpTx
2

Cx8Cx9J , ~6.82!

where Cp,x8 denote the dimensionless derivativ
dCp,x(t)/dt.
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3. Classical limit

In the classical limit, whereTx5Tp5T, the rate of en-
tropy production thus becomes the sum of two squares, m
like the energy relaxation functionCE of Eq. ~6.11!,

diS

dt
54

aa0
2

g
e24at/g

sinh2wt

w2 H S coshwt1
sinhwt

w D 2

1~12w2!
sinh2wt

w2 J . ~6.83!

The total entropy production is thus

D iS5E
0

`

dt
diS

dt
5

a0
2

4
. ~6.84!

This result holds for allw.
In Eq. ~7.42! we derive the general result for the ener

dispersion. In the present setup we havea(t)5a0u(t),
yielding

DP5
\aa0

2

4pg
Cx~0!. ~6.85!

With the help of Eq.~6.9! we find

DP

T
5

a0
2

4
. ~6.86!

This just coincides withD iS, explaining that both describ
the same physics.

In the strong damping limitw→1 one has a simple expo
nential decay,

diS

dt
5

aa0
2

g
e24at/g. ~6.87!

In the weak damping limit, but still at high temperatures, t
result oscillates, but is non-negative,

diS

dt
5

ga0
2

m
sin2v0t e22gt/m. ~6.88!

Notice the similarity with the rate of energy decay~6.16!.

4. Weak damping limit at moderate temperature

In the weak-damping limit g→0, where Tp5Tx

5 1
2 \v0coth(12b\v0), the entropy production follows from

Eqs.~6.82!, ~6.20!, and~6.22! to leading order as

diS

dt
5

ga0
2

4m S sin22v0t1Fcos 2v0t2
b\v0

sinhb\v0
G2

1
2

p
Dc tanh

1

2
b\v0sin 4v0t De22gt/m. ~6.89!

The termDc comes from the differenceTp2Tx , given in
Eq. ~3.48!. It reads
03610
ch

Dc5cS b\G

2p D2RecS i
b\v0

2p D . ~6.90!

At high T the last contribution of Eq.~6.89! vanishes~at
least, it is of order 1/G, which we discard everywhere in thi
work!, so Eq.~6.88! is recovered.

The term withDc is responsible for the occurrence o
both positive and negative values of the rate of entropy p
duction. At low T one hasDc→ ln(G/v0), which is moder-
ately large. Therefore, below some specific temperatureT*
;\v0 /ln(G/v0) the rate of entropy production can be neg
tive, a surprising result. This finding goes against the form
lation of the second law in the form of positivity of th
entropy production. In our system the negative rates are
totally unexpected since oscillatory behavior is also exh
ited already in the rate of energy decay Eq.~6.24!.

The integrated entropy production is, to leading order
g, insensitive to the oscillations. When averaged over o
period, the cosine and sine are subleading and a positive
emerges. The full integral reads

D iS5
a0

2

8 S 11
~b\v0!2

sinh2b\v0
D ~6.91!

while the energy dispersion is

DP

Tx
5

a0
2

8 S 11
b\v0

sinhb\v0
D . ~6.92!

Both expressions have the same order of magnitude,
coincide at large and smallT.

Consequently, in the Gibbsian limit the rate of entro
production oscillates in the case of underdamping, as d
the rate of internal energy. After averaging over one per
the oscillations are washed out. This justifies our identifi
tions of entropy flux and production.

5. Entropy production at zero temperature

Also at zero temperature the entropy production can
negative. Let us consider the case of strong damping, wh
«!1 andTx;«Tp , implying

diSx

dt
'

\2ga0
2

16p2m2Tx
2 H ~11«!Cx8

21
1

2
Cx8Cx9J

5
a~11«!

4gl2
f 8~s!@ f 18~s!1« f 19~s!#

1O~«2!. ~6.93!

Now we know thatf 1 has a negative minimum atsmin . Let
us expand, using the numerical constants from Eq.~6.38!,

f 1~s!5 f 1~smin!1
1

2
c2~s2smin!

2, ~6.94!

wheres5at/g. Then we get
2-31
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diSx

dt
5

a~11«!a0
2

4gl2
c2

2~s2smin!~s2smin1«!.

~6.95!

This is negative forsmin2«,s,smin . The minimum is of
order2«2, and the area of the negative part is of order«3.
Notice that negative value holds over a time windowds
5«, corresponding toDt5tp5m/g. This is much less than
the free oscillation periodt05Am/a, so after averaging ove
one period it disappears. However, in the~strongly! over-
damped regime there are no oscillations, so there is no c
pelling reason to average over one period.

For a numerical investigation of the entropy production
T50 we will first of all introduce a parametrization for th
effective temperatures

Tp5
\g

pm
up ,

up5
1

4w F ~11w!2lnS L

11wD2~12w!2lnS L

12wD G .
~6.96!
ig
ve

is
m

m
o
u
t

03610
m-

t

Tx5
\g

pm
« ux , ux5

1

w
ln

11w

12w
, ~6.97!

u5
ux

up
, ~6.98!

whereL52mG/g is a large dimensionless parameter. Th
Eq. ~6.82! can be presented in a more convenient form,

diS

dt
5

aa0
2

16g

1

«2ux
2 S ~Cx8!21«~Cx81Cp8!~Cx81u2«2Cp8!

1
12u

2
Cx8Cx9D . ~6.99!

As for the functions involved in this expression, we rec
that Cp,x(t)5 f p,x(t,w)1 f p,x(t,2w) and notice that
d fx~t,w!

dt
52

4~12w2!

w
e2(12w)t E

0

`

dy

y cothS b yA12w

11w D cos@y~12w!t#

@~11w!21~12w!2y2#@11y2#
, ~6.100!

d2f x~t,w!

dt2
5

4~12w2!~12w!

w
e2(12w)t E

0

`

dy

y cothS b yA12w

11w D $cos@y~12w!t #1y sin@ y~12w!t#%

@ ~11w!21~12w!2y2 # @11y2#
, ~6.101!

d fp~t,w!

dt
52

4~12w!2

w
e2(12w)t E

0

`

dy

y2cothS b yA12w

11w D sin@y~12w!t#

@~11w!21~12w!2y2#@11y2#
. ~6.102!
par-
he
of

al
ork

ith
lica-
in
tem
The behavior of the entropy production is depicted in F
10. It is seen that there is a small region, where the cur
are negative. Forw50.1 ~weak overdamping! the negative
region is yet noticeable, but already forw50.7 ~moderate
overdamping! this region is almost indistinguishable. This
in agreement with the above analytical analysis in the li
«→0.

VII. WORK AND HEAT

So far we have discussed the system’s relaxation fro
nonequilibrium initial state. Since the total system is is
lated, in this process energy is transferred from the s
system to the bath, or vice versa. This energy is related to
.
s

it

a
-
b-
he

unobservable bath modes, so it is identified as heat. In
ticular, in no way work was added to or extracted from t
system, except for the initial moment, where the strength
the central spring was modified.

We shall now consider the possibility of addition
changes in the spring constant and its implications for w
extracted from the system.

A. General definition of work and heat

The behavior of a statistical system under interaction w
external macroscopic sources is the standard area of app
tions for any thermodynamical theory. As is well known,
this setup one neglects the influence of the statistical sys
2-32



STATISTICAL THERMODYNAMICS OF QUANTUM . . . PHYSICAL REVIEW E66, 036102 ~2002!
FIG. 10. Rate of entropy production@up to a factoraa0
2/(16g«2ux

2)# vs dimensionless timet. Left part, T50, w50.1. Right part,
magnification of the region aroundt51.75.
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to the dynamics of the source. Therefore, one can keep
parameters of the system as given functions of time,
solve the corresponding equations for the system’s dynam
We start with general remarks about the energy budge
any variation.

Let us consider the change of a system parametera. It is
assumed to be intrinsic, that is to say, to characterize
Brownian particle but not the bath or the interaction betwe
the particle and bath. In the situation discussed in the bod
this work, a can stand for the spring constanta of the har-
monic potential, the effective width of the anharmonic p
tential, or the massm ~for electrical circuits and junctions
mass is connected with inductivity and can be subjected
variations; this also makes sense in systems wherem is an
effective mass, that can be modified by changing other s
tem parameters, such as pressure!.

First one has to identify the Hamiltonian of the su
system. In Eq.~2.1! we have chosenH5 1

2 p2/m1 1
2 ax2, as in

absence of the bath. It should be stressed that we did
include the self-coupling1

2 gGx2 or ~part of! the interaction
energy inH. Our choice is the natural one in the sense t
the limits of large Debye frequencyG and subsequent larg
dampingg lead to moderately large values of the energy
system and bath, and not to large terms of opposite sign
cancel in the total energy, as would occur, e.g., if1

2 gGx2

were counted for the subsystem. See also the discussio
Sec. IV B 5.

A change with time of the mean energy is considered
to a variation of a parametera according to the prescribe
trajectorya(t)

dU5dE dxdp W~p,x,t ! H~p,x!

5E dxdpH~p,x! dW~p,x,t !

1E dxdp W~p,x,t ! dH~p,x!, ~7.1!

whereW(p,x) is the Wigner function of the Brownian par
ticle. The last term results from the change in the Ham
tonian, so it is a mechanical, nonstatistical object. Follow
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other authors@5,6,44–46#, we shall associate it with the

work d–W produced by external sources, in close relati
with the definition of work in classical mechanics and sta
dard thermodynamics. The first term in the right hand s
represents the variation due to the statistical redistribution
the phase space. We shall identify it with the change in h

d–Q. Equation~7.1! can then be written as the usual first la

dU5d–Q1d–W ~7.2!

The work, as defined in Eq.~7.1! can be shown to be the
change of the total closed system’s~the particle plus bath!
energy due to the variation of the parametera. First one
notices that for closed systems with a unitary evolution a
change of energy is determined solely by work. This fac
due to the conservation of energy, and can be easily il
trated using the von Neumann equation of motion for
density matrixr tot of the total system. Indeed, since

dr tot

dt
52

i

\
@r tot ,Htot#,

one has

dUtot5d tr~r totHtot!5tr~r tot dHtot!1tr~Htot dr tot!

5tr~r tot dHtot!2
i

\
dt tr~Htot @r tot ,Htot# !

5tr~r tot dHtot! ~7.3!

due to the cyclic character of the trace. If no
Wtot(p,x,p1 ,x1 , . . . ) is the Wigner function of the whole
system, then this implies the identity

dUtot5E dpdx)
k

dpkdxk Wtot~p,x,p1 ,x1 , . . . !

3dHtot~p,x,p1 ,x1 , . . . !

5E dx dp W~p,x,t ! dH~p,x!, ~7.4!
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since we only consider cases where forces are attached t
central particle, sodHtot(p,x,p1 ,x1 , . . . )5dH(p,x), im-
plying that thepk , xk integrals over the full Wigner function
just bring the Wigner function of the subsystem. Taking in
account that no heat was added to the total system, diQtot

50, we may conclude that the work diW extracted from the
subsystem equals the work subtracted from the total sys
diWtot5dUtot5diW.

We again consider the situation where att50 the system
was Gibbsian, with spring constanta0, and it is instanta-
neously changed to a new valuea. For achieving this an
amount of workW0, given in Eq.~7.13! has to be added to
the system. Fora.a0 this is just the work needed to mak
the spring attached to the particle stiffer. Whena0,a this
work is negative; energy is extracted, since the spring
weakened. For work extraction from the thus created n
equilibrium state we shall make additional changes in
spring constant.

B. Maximally extractable work

Now the total system consisting of central particle a
bath is out of equilibrium, some work can be extracted fro
it. Before the interaction between the bath and the part
has been switched on, the total energy was

U tot~02!5UB~T!1Up~T,a0!, ~7.5!

whereUB(T)5p2T2/(6\D) andUp(T) are the initial ener-
gies of the unperturbed bath and the perturbation due to
Brownian particle, defined in Eq.~3.17! and by Up
5]@bFp#/]b with Fp taken from Eq.~3.44!, respectively.
After the switching of the interaction has been complet
the energy has become

U tot~01!5W01UB~T!1Up~T,a0!. ~7.6!

Let us now consider what the maximum amount of wo
is that can be extracted from the overall isolated system
the considered nonequilibrium state. First of all, we not
that we are interested in the work done due to the none
librium character of this state, and not in the work whi
might be done due a change of the Hamiltonian. Theref
during extraction processes the parameters of the Ha
tonianHtot will be either fixed or vary cyclically, such tha
after the process has been completed, the system ha
same Hamiltonian as initially. To determine the maximu
amount of extracted work we will employ the following fo
mulations of the second law, which are undoubtedly valid
the considered thermally isolated system@5,44,45#.

~i! No work can be extracted from a system in its equil
rium state.~Let us recall that thermal isolation means that
external supply of heat is given; the allowed transformatio
are variation of parameters by external sources!.

~ii ! The converse is true as well under certain gene
conditions@47#. If no work can be extracted by any mea
from a system in a given state, then this state is equilibriu

As follows from ~i! some work can be extracted from
nonequilibrium states. In the same way~ii ! implies that if
03610
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work has been extracted in all possible ways, the system
left in an equilibrium state at some temperatureTfin . Since
the overall system is thermally isolated, the extracted wor
in magnitude equal to the complete change of energy~this is
the statement of the first law!: uWmaxu5Utot(0

1)2Ufin(Tfin),
whereUfin(Tfin)5U tot(Tfin ,a) is the energy of the final equi
librium state. Because the entropy is conserved during va
tions of parameters, the optimal final equilibrium state w
have a density matrix

rfin5
exp@2bfinHtot#

Z
, ~7.7!

involving the temperatureTfin51/bfin , which is determined
by constancy of the von Neumann entropy of the total s
tem,

Stot~T!5SB~T,g50!1Sp~T,a0!5Stot~Tfin!5SB~Tfin ,g50!

1Sp~Tfin ,a! ~7.8!

with SB(T,g50)5p2T/3\D from Eq.~3.18!. Remembering
that the level splittingD of the bath modes is very small, on
can solve

Tfin5T1
3\D

p2
@Sp~T,a0!2Sp~T,a!#. ~7.9!

This yields

uWmaxu5W01U tot~T,a0!2U tot~T,a!

2TSp~T,a0!1Tp~T,a!

5W01F tot~T,a0!2F tot~T,a!

5W01Fp~T,a0!2Fp~T,a!. ~7.10!

In the last step we canceled the contributions of the unp
turbed bath. Not unexpectedly, the result just depends on
free energies of the total system.

Notice that for a cycle consisting of the changesa0→a
and~much! latera→a0, the maximally extractable work be
comes the sum of the amounts of work,W0(a0→a)
1W0(a→a0), so for cycles in principle all work can be
recovered.

1. Values at high and low T

In the classical limit the free energy is given by the fir
term in Eq.~3.52!, just the value for a harmonic oscillato
whether or not it is coupled to other harmonic oscillato
The maximally extractable work is

uWmaxu5
1

2 F a0

12a0
1 ln~12a0!GT5

1

4
a0

2T1O~a0
3!.

~7.11!

At low T the difference in free energy of the total syste
between the equilibrium states at the initial and final value
the spring constant is
2-34
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F tot~a!2F tot~a0!5Fp~a!2Fp~a0!5
\a

2pg Fa0

w
ln

11w

12w
1

a0
2

2w2 S 12
12w2

2w
ln

11w

12wD G1~a01a0
2!

pgT2

6\a
. ~7.12!

The energy added att50 is

W05
1

2 S a

a0
21DTx~a0!5

\a

2pg Fa0

w
ln

11w

12w
1

a0
2

w2 S 12
12w2

2w
ln

11w

12wD G1~a012a0
2!

pgT2

6\a
. ~7.13!
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So by making the instantaneous change ina the maxi-
mally extractable work~7.10! reads

uWmaxu5a0
2F \a

4pg

1

w2 S 12
12w2

2w
ln

11w

12wD1
pgT2

6\a G .

~7.14!

If we let the system relax, this will run away in the bath on
time scaletx . By making clever subtraction schemes, w
may recover some of it, and in principle all of it.

For the caseT5Tfin50 Eq. ~7.10! merely says that tha
all energy exceeding the ground-state energy of the new
tem can, in principle, be extracted.

C. Work extraction by further sudden changes

Here we present the formalism of work extraction v
sudden changes of a parameter. Besides presenting the
eral setup, we will display the validity of the Thomson
equilibrium formulation of the second law within the prese
situation.

Let there be a closed system with a HamiltonianH in a
state r(t1) at the momentt1. Certain parameters of th
Hamiltonian are varied in a very fast way such that fort1

1 its
Hamiltonian becomesH1, but the state remainsr(t1) due to
the sudden character of the variation. The work done by
external source reads

W15tr@r~ t1!~H12H!#. ~7.15!

In the second step the system is allowed to evolve accor
to the new HamiltonianH1. At momentt2 when the system
reaches the state

r~ t2!5e2 i (t22t1)H1 /\r~ t1!ei (t22t1)H1 /\, ~7.16!

its parameters are suddenly returned to their original va
The work done in this step reads

W25tr@r~ t2!~H2H1!#. ~7.17!

The total work done by the source for this cyclic variation
the parameter reads

W5W11W2

5tr@r~ t1!~ei (t22t1)H1 /\ H e2 i (t22t1)H1 /\2H!#,

~7.18!
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where we have used Eq.~7.16!. Notice that we consider the
closed overall system, and only due to this fact the evolut
of the system for times betweent1 and t2 is given by the
HamiltonianH1.

It is not difficult to see from Eq.~7.18! that the second
law is satisfied for the present setup. Let us first assume
at the momentt the system was in the ground state ofH:
r(t1)5u0&^0u. Then one has

W5^0u ei (t22t1)H1 /\ H e2 i (t22t1)H1 /\ u0&2^0u H u0&>0,
~7.19!

just by the definition of the ground state. The same sta
ment, namely,W>0, holds whenr(t) is the Gibbs distribu-
tion of the initial state at positive temperatureT51/b:
r(t1)5exp(2bH)/Z, Z5tr exp(2bH) @47,64#.

Our work extraction mechanism involves a second cha
of the spring constant, which is cyclic: at timet2 we impose
a jumpa→a25a(12a2) and it keeps that value, until att3
it is put back toa. The work involved in this cyclic two-step
process is

DW5U tot~ t2
1!2U tot~ t2

2!1U tot~ t3
1!2U tot~ t3

2!

5
1

2
~a22a!@^x2& t2

2^x2& t3
#. ~7.20!

The change in particle energy betweent2
2 and t3

1 is

DU5
1

2m
@^p2& t3

2^p2& t2
#1

1

2
a@^x2& t3

2^x2& t2
#.

~7.21!

Thus the change in heat during the work extraction proces

DQ5
1

2m
@^p2& t3

2^p2& t2
#1

1

2
a2@^x2& t3

2^x2& t2
#.

~7.22!

The values of^x2& and ^p2& at time t2 are set by the
spring constantsa0 anda solely, and can be taken from th
preceding section. When we taket3 large, we can take for
that situation the limiting values for a system with sprin
constanta2. We then find

DW5~a22a!FTx~a!

2a
1

a0\

2pg
CxS gt2

2mD2
Tx~a2!

2a2
G ,
~7.23!
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DU5
1

2
Tp~a2!2

1

2
Tp~a!1

a

2a2
Tx~a2!2

1

2
Tx~a!

2
a0\a

2pg
CES gt2

2mD , ~7.24!

DQ5
1

2
Tp~a2!2

1

2
Tp~a!1

1

2
Tx~a2!2

a2

2a
Tx~a!

2
a0\a

2pg
CpS gt2

2mD2
a0\a2

2pg
CxS gt2

2mD . ~7.25!

1. Classical regime

In the classical case with strong damping we use
~6.13! and obtain

DW5
1

2
a2

2T2
1

2
a0a2Te22at2 /g. ~7.26!

This has a minimum at

a2* 5
1

2
a0e22at2 /g, DWmin52

1

8
a0

2T e24at2 /g.

~7.27!

Work can only be extracted under proper conditions, tha
to say, whena2 is between 0 anda0exp(22v2t2). Otherwise
the cyclea→a2→a disperses energy.

The heat absorbed by the subsystem is at linear orde
a0 insensitive to the work extraction,

DQ5DU52
1

4
a0Te24at2 /g. ~7.28!

There are two cases.
~1! a0.0. The central spring is stiffened,a.a0, and en-

ergy is supplied att50. This energy leaks away, mostly a
heat into the bath, (DQ,0) and partly as work extracte
from the total system (DW,0), more precisely, from the
particle.

The ratio of extracted work to maximally extractable e
ergy is, in the regime wherea0 is small but finite and
T@\v0,

h5
uDWu
uWmaxu

5
1

2
e24v2t2. ~7.29!

So our mechanism extracts maximally 50% of maximum;
do this it must start immediately (t250) and last as long a
possible (t35`).

~2! a0,0. The central spring is weakened att50. Energy
is taken out from the system. The amount,1

2 T(ua0u2a0
2) is

less than the amount that could have been extracted b
adiabatic change,12 T(ua0u1 1

2 a0
2). After that has been done

heat flows from the bath to the particle (DQ.0), as if the
particle were at a lower temperature. In the course of
process work can be extracted, maximally the absolute v
of Eq. ~7.27!, as is usual for two-temperature systems. T
basic issue to extract work is to have a mechanism t
03610
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given the initial change ina, is the closest to adiabaticity
These conclusions also hold for moderate and weak da
ing.

2. Low-temperature regime

At T50 we get from Eq.~7.23!

DW5
\a

2pg Fa2
2Cx~0!2a0a2 CxS gt2

2mD G , ~7.30!

whereCx(0) is defined in Eq.~6.25! andCx(t) in Eq. ~6.6!.
The minimum occurs for

a2* 5
a0

2Cx~0!
CxS gt2

2mD , DWmin52
\v2a0

2

8pCx~0!
Cx

2S gt2

2mD .

~7.31!

The change in heat and internal energy is

DQ5DU52a0

\a

2pg
CES gt2

2mD . ~7.32!

We consider again the following separate cases.
~1! a0.0. The spring is stiffened att50 and energyW0

is supplied. Att501 the energy is, to linear order ina0,
equal to its final value, sinceCE(0)50. This changes since
energy comes from the bath, on a time scaletp which is
short for strong damping, wheretp5m/g. In the initial time
regimegt2/2m,t0 this mainly leaks away to the bath, and
small part can be extracted as work. In the regimet0
,gt2/2m,smin this also happens, but the energy of the su
system goes below its final value, so the particle becom
‘‘too cold.’’ In the final regimegt2/2m.smin energy flows
back to the particle and again a small part can be extracte
work. This is then work extracted from the nonequilibriu
bath, and the surprise is that this can be done although
tially energy was put on the particle. This recovery of ene
stored in the bath is a quantum effect.

DW,0 means that work is extracted from the total sy
tem. Equation~7.31! is the maximally extractable amount o
work with the present mechanism. As an efficiency factor
may normalize with respect to the maximally extractable
ergy from Eq.~7.11! the energy that would otherwise lea
away into the bath,

h5
2DWmin

uWmaxu
5

1

2
C2~v2t2!. ~7.33!

When one starts the extraction quickly after the init
change (t1'0) one can still get half of the work back in thi
way, the same rate as in the classical regime. Even mor
obtained when one still starts att250 but stops at the mo
ment that the energy current goes no longer towards the
ticle, but away from it, i.e., atv2t35smin . One then has
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DW52
1

2
a2a@^x2& t50; a0

2^x2& t3 ; a2
#

5
\a

2pg
$a2

22a0a2@12Cx~v2t3!#%

>2
\a

8pg
a0

2@12Cx~v2t3!#2. ~7.34!

The efficiency is

h5
2DW
uWmaxu

5
1

2
@12Cx~v2t3!#2, ~7.35!

which indeed has the proper behavior fort3→0 andt3→`.
The maximum is, due to Eqs.~6.35! and ~6.38!,

hmax5
1

2
@12Cx~smin!#

250.5961; ~7.36!

it exceeds the classical efficiencyh51/2. So the quantum
statistical excess energy flow from the particle into the b
indeed allows a more optimal recovery of energy initially p
on the particle.

The most interesting feature is that with the pres
mechanism it is also possible to extract work solely from
bath a mechanism forbidden by the original Thomson form
lation of the second law. Indeed, afterv2t5smin energy will
flow back from the bath to the particle. By starting the e
traction mechanism atv2t25smin and exploiting all times
after this for the work extraction, the maximal efficienc
~7.33! is

hmax5
1
2 C2~smin!50.004 222 625 76. ~7.37!

In contrast to the classical case, it goes to a finite lim
when a0→0. This occurs because in the quantum case
energy;a0

2, with respect to which the extracted work h
been normalized, is one order of magnitude smaller than
initially supplied energyW0;a0.

~2! a0,0. The spring is weakened and energyW0 is
extracted. Some energy can be extracted. Forv2t2,smin it
comes from the bath, but in the regimev2t2.smin the par-
ticle has excess energy, which then supplies the work.

D. Work extraction by smooth changes of the spring constant

Let us now consider the case where the spring cons
a(t)5@12a(t)#a, is slightly changed (ua(t)u!1) in a
smooth manner, starting from the equilibrium statea(2`)
5a. In Appendix A we derive for the rate of work added
the system

dW
dt

5
dWrev

dt
1

dP

dt
, ~7.38!

where
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dWrev

dt
52

g

2m

da~t!

dt F1

2
Tx1

\a

2pg
a~t!Cx~0!G ,

~7.39!

with t5gt/(2m), is the adiabatic~‘‘reversible’’ or ‘‘recov-
erable’’! rate of work and

dP

dt
5

\a

4pm

da~t!

dt E
0

`

ds a8S gt

2m
2s DCx~s! ~7.40!

is the rate of energy dispersion.

1. Completed changes

Integrating over the full change one has

Wrev52
1

2
~a f2a i !Tx2

\a

4pg
Cx~0!@a f

22a i
2#,

~7.41!

wherea i5a(2`) anda f5a(`), and

P5
\a

4pgE2`

`

dt1 a8~t1!E
2`

`

dt2 a8~t2!Cx~ ut12t2u!.

~7.42!

For a full process~covering the whole region wherea8
Þ0) P is non-negative, since it is an integral over a no
negative function,

P5
\a

2gE2`

`

dzuA~z!u2R Ĉx~ i z!, ~7.43!

where the Laplace transformĈx was given in Eq.~6.51! for
the caseT50; it can be verified that ReĈx( i z) is positive for
all real z. Furthermore,

A~z!5E dt

2p
a8~t! ei zt. ~7.44!

The positive energy dispersion for a completed, nonad
batic cyclic change of system parameters (a i5a f) is the
Thomson formulation of the second law. We see that a p
tive dispersion also holds for noncyclic but complet
changesa iÞa f , as is known to occur on general grounds

We can check previous casea(t)5a0u(2t), a8(t)5
2a0d(t), for which Eq.~7.13! is, atT50, equivalent to

W05Wrev1P5
1

2
a0Tx1

\a

2pg
a0

2Cx
(0) . ~7.45!

2. Incomplete changes

Let us now consider the temporal build up of this result
the regime of strong damping. Leta have the form
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a~t!5amh~Vt !, ~7.46!

wheream is a small amplitude andh is a bounded function (uhu<1), with h(2`)50, h8(`)50. If h(`)Þ0 it could be an
error function; ifh(`)50 a Gaussian. 1/V is the typical time duration of the change. Using Eqs.~6.48!–~6.50! we get from
Eq. ~A10!

dP

dt
5

\a

4pm
a8 Fa8Cx

(0)1a9Cx
(1)2

1

2
a-Cx

(2)G
5

\V2am
2

12p
h8~Vt !F S 2pgT

\a D 2

h8~Vt !1
gVC̃x

(1)

a
h9~Vt !2

g2V2

a2
h-~Vt !G ,

~7.47!

whereC̃x
(1) was defined in Eq.~6.49!; for weak damping it equals 3pAam/8g, while for large damping it becomes unity. Th

integrated effect is

P~ t !5
\Vam

2

12p H S 2pgT

\a D 2E
2`

Vt

dj@h8~j!#21
gVC̃x

(1)

2a
@h8~Vt !#21

g2V2

a2 F2h8~Vt !h9~Vt !1E
2`

Vt

dj@h9~j!#2G J .

~7.48!
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For a completed change the second and third terms van
leading to a positive energy dispersion, in concordance w
Eq. ~7.43!. It is seen that then the standard behaviorP;V
applies whenT is large enough or whenV is small enough.
However, in the quantum regime where the duration 1/V is
smaller than the quantum time scalet\5\/T, the last term
in Eq. ~7.48! dominates, with a new behaviorP;V3.

Another quantum effect is that at lowT and for typical
times the second term in Eq.~7.47! is larger in magnitude
than the other ones. This too occurs, since the integra
Cx(t) vanishes atT50, and leads to new possibilities
which we discuss now.

3. Work extraction from a smooth cyclic change

One definition for a perpetuum mobile of the second k
is that there is a machine that performs a cycle in which
receives heat from a bath and converts it fully into wo
done on the surroundings. Additional requirements can
cur; we shall discuss them in Sec. IX H. Here we analy
whether such a full energy conversion can be realized in
setup. The aim is thus to have a cyclic change of a sys
parameter with the properties

DU50, DQ52DW .0. ~7.49!

Including in Eq.~A6! also the contribution of the momen
tum, we have, to linear order ina,

U~ t !5
1

2
Tp~a!1

1

2
Tx~a!1

\a

2pg FaS gt

2mDCE~0!

2E
0

`

dt a8S gt

2m
2t DCE~t!G . ~7.50!

Let us choose fora(t) a curve in the shape of a double be
and consider the system at some timet1 after the first peak,
and compare it to the situation at a later timet2, after the
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second peak. We require that the spring constant has
same values at these instants,a(t1)5a(t2), where t1,2
5gt1,2/2m. This implies for the internal energy

DU5U~ t2!2U~ t1!

5
\a

2pgE0

`

dt@a8~t12t!2a8~t22t!#CE~t!.

~7.51!

At low T and for slow changes this can be expanded,

DU5
\a

2pg H @a8~t1!2a8~t2!#CE
(0)1@a9~t1!

2a9~t2!#CE
(1)2

1

2
@a-~t1!2a-~t2!#CE

(2)J ,

~7.52!

where the coefficients are given in Eq.~6.53!.
Let us assume that we have two consecutive chan

characterized by a common bell-shaped functionk(x) with
uk(x)u<1, but involving different rates of changeV1,2,

h~t!5k~V1t !1k„V2~ t2t2
c!…, ~7.53!

where the parametersV1.V2.0 and t2
c.0 are such that

the profiles have negligible overlap. Choosing the timest1,2
as

t15
x̄

V1
, t25t2

c1
x̄

V2
, ~7.54!

we indeed satisfy the cyclic conditiona(t1)5a(t2)
5amk( x̄). The difference in energy is
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DU5
am\~V12V2!

12p H S 2pgT

\a D 2

k8~ x̄!1
g~V11V2!

a
k9~ x̄!

2
g2~V1

21V1V21V2
2!

a2
k-~ x̄!J . ~7.55!

Let us assume thatx̄ is fixed but such thatk8,0 while
k9.0; this is possible becausek has both convex and con
cave parts, implying that there is an interval with such b
havior. In the examplek(x)5exp(2x2/2), there is an inflec-
tion pointxif51 and one needsx̄.1. Let us also assume tha
T!\a/g. Then for
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V11V25
4p2gT2

\2a

uk8~ x̄!u

k9~ x̄!
~7.56!

the first two terms can cancel, while the exposed correc
term and the higher ones are small. Thus under these co
tions it is possible to have a cyclic process withDU50 to
orderam ; if am

2 corrections are taken into account, the co
dition for cancellation is shifted by an amount of orderam
and can again be met. Thus it is possible to start from
equilibrium state, make a first cyclic change ofa and then a
second, which process contains itself a cyclic change oa
with DU50. The work during this cycle comes solely from
the energy dispersion. Using Eq.~7.48! we obtain the leading
terms
DW5
am

2 \

12p H S 2pgT

\a D 2S V1E
x̄

`

dj@k8~j!#21V2E
2`

x̄
dj@k8~j!#2D 1

g~V2
22V1

2!C̃x
(1)

2a
@k8~ x̄!#2J

5
\am

2

12p S 2pgT

\a D 2H V1E
x̄

`

dj@k8~j!#21V2E
2`

x̄
dj@k8~j!#21

1

2
~V22V1!C̃x

(1)uk8~ x̄!u3

k9~ x̄!
J . ~7.57!
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The higher-order terms are small for the same reaso
above. IfDW,0 this amounts to work exerted by the syste

on the environment. One can always havek9( x̄) small

enough~by choosingx̄ close to the inflection point! to make
the combination of theV1 terms negative, and chooseV2 so
small that the whole expression remains negative. So
indeed possible to have a cycle where the extracted w
uDWu comes solely from the bath.

We should stress that these work cycles are realiza
only because in the first part of the process, fort,t1, energy
was lost@W(t1)2W(2`).0#; a part of this is recovered
If, on the other hand, all the work is counted, then no wo
extraction is possible@W(`)2W(2`).0#, cf. Eq. ~7.42!.

Alternatively, one may conclude that there are nonequi
rium initial conditions ~for instance, the state of the tota
system at timet1) which allow cycles that fully transform
heat obtained from the bath into work done on the envir
ment.

From the analysis it is clear that under less strict con
tions it is even possible to make a cycle that extracts w
that comes partly from the bath and partly from the syst
~‘‘efficiency larger than 100%’’!.

4. Perpetuum mobile with many work extraction cycles

One can make several of these cycles. Even though
previous finding that complete cycles disperse energy sh
temper the hope to gain more work by doing more cycles,
consider the issue here, since work extraction from m
cycles is one of the ways to express our unexpected res
as

is
rk

le

k
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k
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y
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Let there beN cycles witha(t)5amh(t) havingN non-
overlapping bell-shaped parts, like in Eq.~7.53!, wherek(x)
could be the Gaussian exp(21

2x
2). Each cycle is character

ized by its typical inverse duration timeVn!a/g and loca-
tion tn

c , and each new cycles is slower than the previous o
Vn11,Vn . See Fig. 11 for a schematic plot. For havin
cyclic behavior in the energy one finds from Eq.~7.55! that
for low T and small but almost equalVn’s, one should
choosex̄ close to the inflection pointxif of k,

x̄n2xif5
a

2gVn

uk8~xif !u

k-~xif !
S 2pgT

\a D 2

1
3gVn

2a
1OS g2Vn

2

a2 D .

~7.58!

In order that this be small for alln one needs thatVN
@gT2/\2a. Strictly speaking thean5amh( x̄n) are now not
exactly equal; this can be healed by slightly adjusting
profile in the nth cycle: k„Vn(t2tn)…→k„Vn(t
2tn

c)…k(xif ) /k( x̄n), yielding a(tn)5amk(xif ) for all n. For

small x̄n2xif this correction factor is close to unity and ca
be omitted from the rest of the argument.

Let us define

T̃5
2pgT

\a
. ~7.59!

Taking Eq. ~7.48! at t5tn , where n cycles have been
performed, and using thatx̄2xif!1 and thatuVn2Vn11u
!Vn , brings for the yield of thenth cycle
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P~ tn!2P~ tn21!5
am

2

12p
\H I 1VnT̃21I 2

g~Vn
22Vn21

2 !

2a

1I 3

g2Vn
3

a2 J , ~7.60!

where

I 15E
2`

`

dj@k8~j!#2, I 25C̃x
(1)@k8~xif !#

2,

I 35E
2`

`

dj@k9~j!#2. ~7.61!

For having an equal yield per cycle, one demands

P~ tn!2P~ tn21!5Wcycle52
am

2 \a

12pg
w52

am
2 \a

12pg
T̃3v,

~7.62!

wherev.0 andw5T̃3v are dimensionless. It will turn ou
that there exists a consistent solution forv in some definite
range. Assuming thatV(n)5Vn is a smooth function ofn
one obtains

I 1VT̃21I 2

g

a
VV81I 3

g2

a2
V352w. ~7.63!

Solving for dn/dV and going to a new variabley
5b\V/(2p) one gets the total number of cycles

N5
I 2

T̃
E

b\VN/2p

b\V1/2p dyy

v1I 1y1I 3y3
. ~7.64!

The total yield is then

Wtot5NWcycle52
am

2 I 2

12p

\a

g
T̃2E

b\VN/2p

b\V1/2p

dy
v y

v1I 1y1I 3y3
.

~7.65!

Here the minus sign indicates that work is performed by
system on the environment. This is possible because
~7.48! expresses that, in order to make the work extract
cycles, one had to start from the equilibrium state and cha
a from a(2`)50 up to a(t1). In this first part of the
process energy was dispersed at an amount

P~ t1!51
am

2 I 2

24p

\g

a
V1

2 . ~7.66!

Notice that forv@(b\V1)3 the extracted work becomes
according to Eq.~7.65!,

Wtot52
am

2 I 2

24p

\g

a
~V1

22VN
2 !, ~7.67!

so for VN!V1 there is an almost perfect recovery, which
possible since the number of cycles is still large.
03610
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For moderatev more cycles are possible, but less work
recovered. For the lower integration variable Eq.~7.58! gives

yN [
b\VN

2p
@

gT

2p\a
. ~7.68!

For strong damping the physical time scale istx5g/a. One
assumes thatV1 is a large but finite number of times 1/tx .
ChoosingT!\a/g means that the upper integration lim
y15b\V1/2p is much larger than unity. But it is still pos
sible to chooseyN !1, which is a useful condition for
achieving many cycles. One then has for smallv,

N5
I 2

4AI 1I 3

\a

gT
, ~7.69!

which is indeed large. In the overdamped regime the yi
can thus be expressed as

Wtot52
am

2 I 2

24AI 1I 3

\a

g
vT̃252

am
2 AI 1I 3

6p2I 2

\a

g

v

N 2
.

~7.70!

In the limit of weak damping we should notice that

I 2[ Ĩ 2A«, ~7.71!

where«5am/g2@1 and whereĨ 2 is a numerical constant o
order unity. Thus the work dispersed for achieving the no
equilibrium condition att1 is

P~ t1!51
am

2 Ĩ 2

24p

\V1
2

v0
, ~7.72!

where v05Aa/m is the free oscillation frequency. Let u
recall thattd52m/g is the damping time. ForT!\V1 it
holds that

FIG. 11. Schematic plot of the cyclic changes in the spr
constant, where successive cycles are slower and slower.h charac-
terizes the size of the change andt denotes the dimensionless tim
The interval2`,t,t1 marks the process that establishes the n
equilibrium state att5t1. The picture shows three full cycles, in th
intervalst i,t,t i 11 ( i 51,2,3). Their start and end points are ind
cated by bullets.
2-40
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N5
Ĩ 2

4AI 1I 3

«
\v0

T
. ~7.73!

At the typical temperatureT&\v0 this carries an additiona
large factor«. The yield per cycle carries a factor 1/«, so this
total yield is independent of«. For smallv it reads

Wtot52
am

2 p2 Ĩ 2

6AI 1I 3

v
T2

\v0
52

am
2 p2 Ĩ 2

3

96~ I 1I 3!3/2
\v0

v«2

N 2
,

~7.74!

which can be comparable to the dispersed work, but i
always less.

Summarizing this section, we have investigated the p
ence of many work extraction cycles both in the strongly a
weakly damped regimes. At lowT their maximal number can
be large but finite. The divergenceN;1/T is probably cut
off at low enoughT when the amplitudea0 of our changes is
small but finite. When more thanN cycles are made, the
possibility of work extraction is lost, because of the disp
sion inherent to cycles. At moderateT the possibility of work
extraction by cyclic changes is quickly lost; it is a strict
quantum effect.

VIII. EXPERIMENTS TO TEST THE BREAKDOWN
OF THE SECOND LAW

In this section we will briefly comment on practical rea
izations of the low-temperature, nonweakly damped quan
Brownian motion. We do not intend to make detailed prop
als for experimental setups, but we will mention certa
fields which, according to commonly shared experimen
views, display the above-mentioned strong-coupling and
low-temperature regime.

A. Once more: the characteristic time scales

Let us first recall once more that there are several imp
tant time scales in the problem.t0 is the characteristic time
brought about by the external potential, which the parti
will have if there is no interaction with the thermal bath. F
reasonably simple confining potentials there is only one s
time. In particular, for the harmonic external potentialV(x)
5 1

2 ax2 it is readt051/v05Am/a. Since no indications of
damping are seen in this time, it can have a physical mea
only for very weak damping:g→0.

If damping is large, then the characteristic dynami
times aretp5m/g, tx5g/a. The overdamped regime ap
pears withtp!tx , and in this casetp and tx can be inter-
preted as the relaxation times of the momentum and coo
nate, respectively.

In contrast, very weak damping meansg→0, and the
damping time td;tp5m/g is the longest characteristi
time. For intermediate values ofg the characteristic dynami
cal times in the overdamped regime are 1/v1,2 defined in Eq.
~3.31!, and for the underdamped regime they are given in
~3.38!.

The aim of this work is to consider the regime whe
another time scale, the characteristic quantum time scalt\
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5\/T, plays a dominant role. In particular, this time sca
governs quantum correlations of the bath@35#. The high-
temperature classical case naturally corresponds tot\

!t0 ,tp ,tx and there quantum correlation effects can be
glected.

Equilibrium quantum thermodynamics is recovered in t
limit t\ ,t0!tp , which means that the momentary motion
the Brownian particle practically does not notice dampin
though it does so at long times. Obviously, this conditi
cannot be satisfied at low temperatures. In the present p
we are interested in the regime where both damping
quantum correlation effects are important:tp;tx;t\ , in-
cluding possibilities oftp!tx or tp ,tx!t\ , where our re-
sults are only strengthened. As noted at the end of Sec.
new possibilities for work extraction have been found to o
cur in this last domain, where the inequalitytp!tx!t\ says
that the noise is~anti!correlated throughout the systems r
laxation. It thus looks more like a quenched random varia
than an annealed one, thus not at all behaving like a w
noise, the standard ingredient needed to derive from
Langevin equation a Gibbsian equilibrium state.

Before proceeding with concrete examples, let us just
tice that there is nothing exotic in the quantum time sc
itself: t\57.6 ps atT51 K, which is fully in range of the
modern technologies.

B. Possible experimental realizations

1. Josephson junctions

The first example to be discussed is that of Joseph
junctions @18,19,49,50#. This well-known phenomenon rep
resents a standard example of quantum Brownian mot
The Josephson junction consists of two superconduc
separated by a thin insulating barrier. Cooper pairs of e
trons ~or holes! are able to tunnel through this barrie
thereby maintaining phase coherence in the process,
leading to a possibility to have superconducting curre
There is a direct map between properties of this junction,
the standard model of the quantum Brownian moti
@18,19,49,50#. In particular, the coordinatex can correspond
to the phase difference of the Cooper pair wave functio
the friction founds its place as resistance, mass is relate
capacitance, and the current noise has the standard spec
~5.25!, ~5.26!, and can be related toh(t). Under certain well-
defined conditions one can neglect tunneling of the ph
from one metastable state to another@18#, and consider it in
a confining, nearly harmonic potential. This system coup
to the environment, which acts as the bath of our theory
practice, one can notice the occurrence of strong couplin
low T since then a careful shielding of the sample is nee
in order to prevent an influence of the environment to
measuring apparatus. It appears that the nonweakly dam
and low-temperature limits are well known for Josephs
junctions, and were a subject of rather long experimen
activity @18,19,50#. For example, the following regime wa
explicitly realized as a condition of ‘‘really quantum effects
@19#: tp;0.1 ps which is smaller thant\ at 1 K. The ratio
tp /tp need not be of order one, but can vary significan
~from 0.1 to 10) depending on the construction of the jun
2-41
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tion; for details see Ref.@19#. In experiments reported in Re
@18# the authors achievedt\ /tx;10 at T51 K, andtp /tx
;0.1, which is a typical overdamped, low-temperature ca
Notice that these experiments were among the first o
where the spectrum of the low-temperature quantum n
was measured and found to be in perfect agreement with
assumed standard form of the quantum Langevin equati

C. Low-temperature electrical circuits

Experiments on mesoscopic, low-temperature electr
circuits @51,52# provide yet another example, where no
Gibbsian values ofTx were clearly observed, and found to b
in good agreement with the theoretical predictions. We re
that the linearRLC can be mapped to the harmonic Brow
ian particle: the coordinatex and the momentump of the
particle correspond to the charge and the current of the
cuit, andm anda are directly connected with the inductan
L and the inverse capacitance 1/C of the circuit@see also our
discussion after Eq.~3.1!#. Finally, the damping constantg
corresponds to the Ohmic resistanceR. One notices that the
~quasi-!Ohmic limit, whereG is the largest characteristic fre
quency of the problem, is conveniently realized in t
present context.

First of all we notice that for experiments described
Refs.@51,52# all the relevant characteristic time scales ha
basically similar values:t\;tp;tx51028 s, which makes
the situation especially relevant for our purposes.

Here we will briefly discuss the possibilities of expe
mental detection the Clausius inequality violation at lo
temperatures, since this seems to be the simplest pos
issue. Moreover, the most evident situation is realized upo
slow variation of the inductivity ~mass! L, where for
T→0—according to Eq.~4.26! and in clear contrast with the
Clausius inequality di Q<0—one gets a finite positive hea
provided thatdm5dL.0. One needs to observe^x2& and
^p2& for several different values of the inductivity~mass! L.
This is sufficient to recover the corresponding changes of
average energy, as well as to recover the work accordin
Eq. ~4.25!. The heat is then obtained by subtracting the wo
from the energy. In the second step one can check the
sistency of the results by observing directly the work do
by the external source. Altogether, the challenge of the m
experimental observation is in observation of the varianc

In Ref. @51# the authors considered mesoscopic electr
circuits in the context of single charge tunneling. The us
circuits had thickness of the order 10 nm and width of
order 1 mm. The observations allowed indirect determin
tion of ^x2&. With the subsequent improvement made in@52#
the correspondence with the theoretical expression~3.47! is
perfect. The observations were done withC51/a54.5 fF,
L54.5 nH, and forR5g in the range 101–103 kV. For
damped circuits the relative importance of damping is qu
tified by the quality factortp /t0, which in the above range
of parameters varies from 1021 to 1023. To avoid thermal
noises the circuits were cooled up to 20 mK. At such a l
temperature quantum effects are dominating, since the q
tum time scalet\5\/T;1028 s is larger than the othe
ones,t0;1029210210, tp;1028, andtx;1029 s. To get
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an idea of the magnitude of the expected effect, let us e
mate the outcome forDQ.L dQ/dL. With the above pa-
rameters andR5g5103 kV one gets from Eq.~4.26! DQ
;10219 J51 eV.

Since for mesoscopic circuits the formula forTx was al-
ready verified, it is now a matter to perform three measu
ments~the equivalents ofTp , Tx and the work production!
on a single sample, to verify unambiguously the breakdo
of the Clausius inequality.

1. Trapped ions

As another more elementary example one can mentio
trapped ion immersed in a photon bath. Taking as an estim
the mass of the proton (m510226 kg!, andg510215 kg s21

@10#, one getstd;t\ at 1 K, so the quantum coherenc
effects are still active. The ideal example of a harmo
Brownian particle will be an ion trapped in a so-called Pa
trap @53#, or an electron or ion in a Penning trap@54#. These
electromagnetic traps are nowadays well realizable
suited for variation of parameters. In particular, high qua
tum number Rydberg states may have a long lifetime an
strong coupling to the radiation field.

IX. ON THE FOUNDATIONS OF THERMODYNAMICS
AND PERPETUUM MOBILE

This section summarizes to what extent the standard r
tions and laws of thermodynamics can be applied to a qu
tum Brownian particle. There are many formulations of t
second law, and some of them have been found to be inv
in previous discussion. One may go to the extreme limit
saying that there is no motivation to discuss thermodynam
in the way we did. To show that it is justified to do so, w
summarize our results in the light of common thermod
namic wisdom, and point at the agreements and contra
tions.

For a general, pedagogic text on the history and pres
status of thermodynamics and the second law, we refer
reader to the recent work by Uffink@55#. For a collection and
discussion of the original papers, see the book by Ke
@56#. A very recent discussion on the basis of the axioma
thermodynamics was presented by Lieb and Yngvason@57#.
For a discussion of what can be meant by ‘‘the’’ entropy o
system, see Ref.@58#.

A. Has the standard thermodynamics been violated
or did it never apply?

The conclusion of our analysis is that thermodynam
does not work when, in the quantum regime, ones consid
the Brownian particle in its reduced Hilbert space, thus su
ming out the bath variables of the total system. This ma
sense when the characteristics of the particle are directly
servable, as is indeed the case with the standard exampl
the Brownian motion. There are, however, situations, wh
only some composite~system plus bath! quantities are mea
sured, and the need for a separation between particle
bath is questionable~there still can be a possibility that suc
a separation can be given on a different, more coarse-gra
2-42



to
re
io
he
th
s,
on
a
s

ar
ak
s
n
h
v

.
ic
th
h

th
i

va
us

e
io
a
er
e

-
fu

u

ll

ag
ilib

e

fo
t i
tre

rd

k-
e
ag-

w-
and

on-
ys-
ble
ure

n-
to
and
its
e

ost
gy

m
ics

hat
of

di-
s-

is

e

-
m-
ual-
re

In
ical
em
ed
k-
ee
in

tua-

n

g

of

STATISTICAL THERMODYNAMICS OF QUANTUM . . . PHYSICAL REVIEW E66, 036102 ~2002!
description of the overall system, but we will not enter in
that discussion!. This is the case with a Kondo system, whe
the measured quantity is, for instance, the magnetizat
which is set by the magnetic impurity and the bath toget
~i.e., it lives in the common space of the particle and
bath!. Also for the dressing of a ‘‘bare’’ electron by photon
it is a standard practice of the quantum field theory to c
sider the dressed mass and charge as directly observ
quantities. However, when the subsystem is a Joseph
junction or a mesoscopic circuit, its own characteristics
perfectly measurable, so there is an important case to m
When looking at the budget of the junction alone, one ha
keep in mind that it may exchange energy with its enviro
ment and, in particular, modify the cloud. At low enoug
temperature this mechanism displays unexpected beha
and is responsible for nonthermodynamic characteristics

If one considers the subsystem as a Brownian part
immersed in a heat bath, then first it should be noticed
the particle acquires a cloud of bath modes around it. T
dressing is a manifestation of the~strong! damping of the
particle by the bath. One can then ask the question: ‘‘if
standard thermodynamics does not apply, where was
lost?’’ If no technical errors have been made in our deri
tions, then the answer must be: ‘‘It never applied.’’ Let
consider arguments for that point of view.

1. The full energy versus equilibrium energies of the bath
and the particle

A well known sufficient condition for the derivation of th
standard equilibrium thermodynamics is that the interact
energy between the bath and the particle is negligibly sm
There are at least two things that can be meant by the t
‘‘interaction energy.’’ The standard approach, see, e.g., R
@59#, connects this energy with the average valueUI5^HI&
of the interaction Hamiltonian. According a different view
point the interaction energy can be associated with the
effect of the interactionU int5^ H2H(g50) &. Obviously,
this last definition is only meaningful in the equilibrium
state, since during the dynamical evolution from a noneq
librium state it is just conserved and equal to its~arbitrarily
chosen! initial value. In order to avoid any loophole, we wi
analyze below both definitions.

One notices that in the stationary state the full aver
energy of the system is not reduced to those of free equ
rium particle and bath, i.e.,U intÞ0. It reads in the stationary
state

U int5Up2
1

2
Tp2

1

2
Tx5G

]Fp

]G
. ~9.1!

The result is given explicitly by Eqs.~3.44!, ~3.45!, ~3.47!,
and ~3.48!. In a strict formulation of thermodynamics on
may want to require that the equilibrium value ofU int be
negligible. This may be viewed as a sufficient condition
separating of what is meant by the system from wha
meant by the bath. In any case, the above examples s
that it is by no means necessary. In our caseU int→0 would
imply g→0 or T→`, and indeed in both limits the standa
thermodynamics is recovered. However, for fixedg the same
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system has at noninfiniteT a nonzeroU int . Whereas the limit
of large T can be naturally achieved in practice, the wea
coupling limit g→0 is much more difficult to realize, sinc
coupling constants are generally fixed numbers whose m
nitude cannot be manipulated at will. If one favors a vie
point that thermodynamic quantities, such as heat, work,
temperature, should only be discussed for vanishingU int ,
then actually almost all realistic systems should not be c
sidered as thermodynamic. This would apply to many s
tems at low enough temperature, leaving an uncomforta
situation with respect to the well behaved high-temperat
properties of the same systems.

We recall that it is not meaningful to consider this qua
tity out of equilibrium. If one wishes to do something akin
it, one has to define a local region around the subsystem
consider how the system inside that region approaches
local equilibrium, while the surplus energy runs far away. W
shall not entertain that scenario.

2. Classical thermodynamics does not need a vanishing
interaction energy

Let us now analyze what are the consequences of the m
standard understanding of the vanishing interaction ener

UI[^HI&→0. ~9.2!

This condition can be applied also in the nonequilibriu
situation. Here we notice that the classical thermodynam
itself provides a definite argument against the viewpoint t
the use of thermodynamic quantities and the existence
thermodynamic laws must always be connected with con
tion ~9.2!. The simplest thing to notice is that the very exi
tence of the classical~high-temperature! Gibbs distribution
for the Brownian particle interacting with its thermal bath
not at all connected with a vanishing interaction energy@see
Eq. ~9.5! below#. A similar argument can be stated in th
dynamical situation. Let us consider theH theorem
@6,11,60–62# which is one of the most well known formula
tions of the second law in the nonequilibrium thermodyna
ics, and represents a particular case of the Clausius ineq
ity. We already discussed this relation in Sec. VI B 2, whe
it was shown@see, e.g., Eq.~6.76!# that for our model this
relation holds if temperature of the bath is high enough.
fact, this is a much more general relation, and for class
Brownian motion it can be stated as a rigorous theor
@6,11,60,61#. It was also generalized to the coarse-grain
quantum Markovian dynamics, which is valid in the wea
coupling situation for not very low bath temperature; s
Ref. @62# and references therein. The analogous inequality
the master-equation framework was derived in Ref.@60,61#.

Our present purpose is to show that in the classical si
tion ~high-temperature thermal bath! the H theorem, or the
Clausius inequality, isnot connected with any restriction o
the average interaction energy^HI&. In particular, the latter
quantity can be as large as one wishes.

The motion of a classical Brownian particle interactin
with an Ohmic thermal bath at temperatureT is described by
the classical Fokker-Planck-Kramers-Klein equation@6,11#.
~Note that this equation is typically written for the case
2-43
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separated initial conditions between the particle and the b
this, however, will not influence the subsequent argume!
As can be deduced from this equation@6,11#, theH function
between the actual solution of the equation at some fi
time t and its stationary Gibbsian solution monotonously d
cays with time:dH/dt<0. This then implies the Clausiu
inequalitydU[dQ<TdSB , whereU is the average energ
of the particle, andSB52* f lnf is its Boltzmann entropy; it
is defined as in Eq.~6.80!, where the Wigner function
W(x,p) should be substituted by the true probability dist
bution f (x,p) of the coordinate and momentum. Since the
is no external source, the whole change of energy is att
uted to heat:dU[dQ, viz., U̇5Q̇ . For our particular situ-
ation this inequality can be derived from Eq.~6.76! upon
noting that for the classical caseWst can be substituted by
the Gibbs distribution, and thatDx5Dp . Now we are going
to show that at the same time the average interaction en
can bearbitrary large. One uses Eq.~2.19!, combines it with
the solutions~2.11!, ~5.44!, and~5.45! of the Langevin equa-
tions, and recalls that in the classical situation the nois
white: ^h(t)h(t8)&52gTd(t2t8). This leads to a result tha
could also have been taken from Eq.~2.19! in the limit of
largeG,

UI~ t !52^x~ t !h~ t !&1g~ t ! ^x~ t !x~0!&2
g~0!

2
^x2~ t !&

1g ^x~ t !ẋ~ t !&, ~9.3!

whereg(t)5gG e2Gt as given by Eq.~2.25!. Recall that for
large G one hasg(t)5gd1(t)1gd2(t). Thus, the second
term in the right hand side of Eq.~9.3! is zero. Also using
Eq. ~5.44! and assuming for simplicity ^h(t)x(0)&
5^h(t)p(0)&5^p(0)x(0)&50 ~separated initial condition!,
one finds

^x~ t !h~ t !&5
2gT

m E
0

t

ds f~s!d~s!5
gT

m
f ~0!50, ~9.4!

where f is defined by Eqs.~5.49! and ~5.50!. Further trans-
formations with help of Eqs.~5.44! and ~5.45! lead to

UI~ t !52
gG

2
^x2~ t !&1gS ^x2~0!& ḟ ~ t ! f̈ ~ t !

1^ ẋ2~0! & f ~ t ! ḟ ~ t !1
gT

m2
f 2~ t !D . ~9.5!

It is seen that the interaction is not zero for both finite tim
where the above Clausius inequality applies, and the infin
time limit, where^HI(t→`)&52gGT/(2a). Moreover, in
the second case it is large by its absolute value due to
factor G. By means of this simple and well-known examp
we conclude that finite interaction energy by itself does
preclude the application of the second law.

Finally, it is interesting to mention that a discussion som
what similar to that presented here appeared in the boo
Terletskii @59#. This author carefully discusses the role
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vanishing interaction energy in the standard equilibrium th
modynamics, and points out severe limitations of that
sumption in the context of long-range interacting mac
scopic systems, e.g., gravitationally interacting particles.
then conjectures that the standard thermodynamics coul
a particular case of more general theories, where the assu
tion on the vanishing interaction energy is not valid anymo

Let us mention a related model studied by us, where
central oscillator is replaced by a spin-1

2 particle~spin-boson
model!. This model has an exactly solvable limit, where t
transverse field vanishes and thez component of the spin is
conserved. Upon relaxation from a nonequilibrium initi
state, the von Neumann entropy increases (H theorem!. By
applying fast pulses to this system, again situations oc
where work is extracted from a quantum system in a n
equilibrium initial state@63#. In this system the interaction
energy is a fixed constant, which can be absorbed in the
energy.

Putting all arguments together, we reach the unavoida
conclusion: there are principle problems to get the stand
thermodynamics at not very large temperatures and not v
small couplings, more specifically, in the regime of quantu
entanglement. There is no resolution to this, and in syste
with standard thermodynamics at high temperatures, un
pected energy flows appear to be possible.

B. The nonthermodynamic regime of quantum entanglement
between system and bath

Let us inspect in some detail the weak damping limitg
!Aam. Here it can be shown that, even atT50, one has
U int!U, since, due to Eq.~3.48!, U int;g but U→ 1

2 \v0,
implying that the condition for the application of thermod
namics is almost fulfilled. Nevertheless, the Clausius
equality is typically violated, by an amount of, again, ord
g.

In many subsystems coupled to a bath, the following th
regimes will occur.

~1! At large T there is the classical regime, and equili
rium is described by the classical Gibbs distribution.

~2! There is a ‘‘standard’’ quantum regime where the ba
only enters through its temperature, and equilibrium is n
described by the quantum Gibbs distribution.

~3! At very low temperatures there occurs a quantum
tanglement between subsystem and bath. Here the Gibbs
tribution and standard thermodynamics are lost.

Regimes 1 and 3 always occur, while regime 2 may
occur if the coupling is strong. In regime 3 thermodynam
is endangered and typically not applicable.

C. Zeroth law

The zeroth law is often said to state that in an equilibriu
situation there will be a unique temperature. A standard
mulation is that if two bodies are each in equilibrium with
third body, then they are also in equilibrium with each oth
and the three bodies have a common temperature. Le
look, however, at a careful formulation out of equilibrium:If
two parts of the system have an infinitesimally small te
2-44
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perature difference, then they will spontaneously equilibr
and reach a common temperature.

For the~nearly! harmonic situation two differenteffective
temperaturesTp andTx can be related to the momentum a
the coordinate. Recall that these temperatures arise from
generalized form~4.15!–~4.19! of the Clausius inequality
The legitimation of such a definition of effective temper
tures is confirmed by their successful use in glassy ther
dynamics@24,26#.

In our case, Eq.~3.54! shows thatTp deviates at largeT
from Tx by a termbAG, with A5\2g/12m. So for any in-
finitesimal e, the regimeT.AG/e indeed has temperature
Tp and Tx that differ less thane. However, since they are
parameters of the steady state, they will not equalize spo
neously, in conflict with the above formulation of the zero
law. Instead, they become more and more different from e
other at lower temperatures, and at zero bath temperaturTp

andTx are both finite but different from each other. The fa
that they remain finite just indicates that the correspond
quantum state does not have sharp values forp andx; so this
is a consequence of quantum complementarity. The fact
these effective temperatures take non-Gibbsian values
consequence of the quantum entanglement. In the Gibb
limit of weak coupling~i.e., g→0) for the harmonic oscilla-
tor, both temperaturesTx , Tp tend to their common value
1
2 \v0cotanh(12 \bv0) of the harmonic oscillator weakly
coupled to its bath.

We should mention that the existence of the zeroth law
frequently viewed just as an axiom, but under certain con
tions it can be derived from the second law~the entropy of a
closed system never decreases! @5#. As we mentioned al-
ready, this derivation is based on the use of a weak inte
tion between the particle and its thermal bath. It confir
that if this weak-coupling condition is valid, then the tw
effective temperatures are indeed approximately equal.

D. First law

The first law relates the change of the system’s ene
into the heat added to it and the work done on it. It canno
broken, since it is a direct consequence of energy conse
tion, a central concept in quantum mechanics. Neverthel
the formulation of this law is not merely a tautology, becau
it allows to separate clearly those ingredients of the ene
change, which arise from nonobservable degrees of free
~heat obtained by the Brownian particle from the therm
bath! and external sources~work done by them on the whol
system!. Our identification of the energy of the subsystem
the expectation value of the HamiltonianH was supported in
Sec. IV B 5 by requiring application of standard thermod
namics at highT, and is imposed by the form of the Wigne
function. We stress that, given this identification of ener
our identification of the heat diQ added to the subsystem an
the work diW done on it are well accepted and widely di
cussed in literature; see, e.g., the books by Keizer@46#,
Balian @44#, and Klimontovich@6#.
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E. Second law

Let us stress that there are many formulations of the s
ond law. There are several formulations of the second
that are, at least apparently, violated by the solution of
problem.

1. Thomson’s formulation, Kelvin’s principle

The formulation by William Thomson, later Lord Kelvin
of Largs, is:It is impossible to perform a cyclic process wi
no other result than that heat is absorbed from a reserv
and work is performed. We call this the ‘‘Thomson formula-
tion,’’ whereas Uffink @55# uses the name ‘‘Kelvin’s prin-
ciple.’’ An earlier and more particular version of this stat
ment appeared due to Carnot:Given an engine that is
reversible and that operates between two fixed tempera
baths. Then no other engine operating between these s
temperatures can exceed this engine in efficiency.Closely
related is the Kelvin formulation:It is impossible, by means
of inanimate material agency, to derive mechanical eff
from any portion of matter by cooling it below the temper
ture of the coldest of the surrounding objects@56#.

For general quantum systems starting from the equi
rium state, this can be proven mathematically@47#; a simpli-
fied proof will be presented elsewhere@64#. In our setups it
can always be verified, see, for example, the fact that
energy dispersion~7.43! is non-negative. After finishing the
cycle the bath is not exactly in its Gibbsian state, but it is s
very close to it, because the bath is extensive. Basically
dispersed energy has run away to infinity, leaving the sys
locally again in a Gibbsian state. This implies also that s
cessive cycles will further disperse energy.

However, out of equilibrium Thomson’s formulation ap
pears to be endangered. The first point to notice is that
can already occur at the classical level. The reason is sim
Consider, as we did in Sec. VII C, a sudden weakening of
central spring. In doing so, energy is extracted from the s
tem, but, due to the sudden nature, it is not the optim
amount. One can improve on this by making the followi
cycle: quickly put the spring back at its original value, a
then make the change slower. This cycle that started i
nonequilibrium state will yield work, and this work come
from the bath. We conclude that the Thomson’s formulat
can only refer to system changes on long enough time sca
such that the initial state is practically in equilibrium.

A more exciting violation of the nonequilibrium Thom
son’s formulation was observed for smooth changes of
spring constant at low enough temperature. In Sec. VII D
we discussed the case ofN @1 bell-shaped cycles in the
spring constant; each cycle has two inflection points, prep
and postpeak. Starting in the Gibbsian state, the first cycle
to the postpeak inflection point is considered as a mechan
that produces for us a proper ‘‘initial’’ nonequilibrium stat
If the typical duration of the successive cycles increas
parameters can be chosen such that after each return o
spring constant to its postpeak inflection point value, the s
tem has the same energy, while a prescribed, fixed amou
work is extracted. There can beN;1/T of these cycles,
which can be large at low enoughT. They extract heat from
2-45
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the bath and convert it fully into work, forbidden by th
general ~i.e., nonequilibrium! Thomson’s formulation. It
could be checked that the total amount of extracted wor
less than the energy dispersed in the first part of the
cycle, so for the full process Thomson’s formulation is n
endangered. The interesting fact is nevertheless that t
can beN;1/T of these cycles, which can be large at lo
enoughT. Actually, making more cycles implies a small
total extracted work;1/N 2, since these cycles themselv
lead to additional dispersion.

In contrast to the violation of the Clausius inequality,
be discussed below, the violation of Thomson’s formulat
is a consequence of both quantum regime~low temperatures!
and the nonequilibrium character of the whole system~par-
ticle and bath!. Indeed, any amount of work extracted b
means of the particle is in fact extracted from the wh
system. If this global system is in equilibrium~namely, it is
exactly described by the Gibbs distribution!, there will be no
possibility to extract work by making a cyclic change of
system parameter, since this formulation of the second
applies as well to any closed equilibrium system@47,64#. On
the other hand, the full account of quantum effects is nec
sary to show our work extraction, since it disappears in
Gibbsian limit, namely, both at moderate temperatures an
for weak coupling to the thermal bath@69#.

2. Clausius’ principle

Clausius states:It is impossible to perform a cyclic pro
cess which has no other result than that heat is absor
from a reservoir with a low temperature and emitted into
reservoir with a higher temperature. It is impossible for
self-acting machine, unaided by any external agency, to c
vey heat from one body to another body at a higher tempe
ture @56#.

The work gained could be used to drive some friction
process at a higher temperature, which would turn it i
heat, in conflict with this principle. Nevertheless, this pri
ciple is obeyed at high temperatures, and only violated in
quantum regime at lowT.

3. Clausius inequality

This formulation claims that in any thermodynamical pr
cess~in particular, for variation of a system parameter! the
amount of heat received from the thermal bath by the part
is limited from above by the bath temperature times
change of the von Neumann entropy of the particle,

di Q<TdSvN . ~9.6!

A particular formulation of this law is that no heat can
extracted from a zero-temperature thermal bath—it can o
be dumped in it~i.e., then it is impossible to have di Q>0).
This situation is particularly interesting, since it does n
employ in any way the concept of entropy, and therefore
be applied to situations, where entropy is not known, or
well defined. Physically it is also easy to understand. T
energy of the cloud of bath modes around the subsystem
change if a system parameter is changed, even atT50. This
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change in energy of nonobservable modes is heat, and it
be positive or negative, depending on the sign of the chan
In one of the cases energy from the cloud will increase
subsystem’s energy, violating the Clausius inequality. Fo
closed system di Q goes to zero, and one recovers from t
above inequality the more standard formulationdSvN>0,
which appears to be a particular case of the Clausius ineq
ity.

We have shown that both the general~all T) and particu-
lar (T50) formulations are violated in the quantum cas
Although at high temperatures these violations are sm
they nevertheless do exist. For researchers who are relu
to follow our identification of the effective temperatures,
will perhaps be hard to agree on the violation of the zer
law, discussed above. However, the violation of the sec
law, which also sets in at arbitrarily large temperatur
should be easier to accept, since the Clausius inequality d
not employ the notion of effective temperatures. Moreov
in Sec. IV B 4 we have discussed a formulation that co
pares only equilibrium systems.

For our harmonic system we succeeded in generaliz
the Clausius inequality, involving two temperatures and t
entropies, in the very same way it was done for glassy s
tems and which applies to black holes.

In hindsight, the derivation of the Clausius inequality
nontrivial in the case under consideration. In standard th
modynamics one formulation of the second law is that
total entropy of a closed system cannot decrease. When
plied to a subsystem coupled to its equilibrium bath, t
immediately leads to the Clausius inequality. Here o
makes two assumptions: equilibration of the bath and ad
tivity of the entropy. Let us follow the subsequent step
Because of its equilibrium nature, the heat received by
bath is associated with an entropy change, diQbath

5TdSbath . Energy conservation says that diQbath1diQ50,
where the latter is the heat received by the subsystem.
implies

dS2
d–Q
T

5dS1dSbath5dStot>0. ~9.7!

In the world of quantum entanglement, however, both
sumptions are less obvious. First, it does not hold thatStot
5S1SB . We have shown this explicitly, since atT50 one
hasStot5SB50, butS5SvN.0. Both the fact that energy is
not quickly redistributed in the bath and the nonadditivity
the entropy imply that there is noa priori reason to expec
that the Clausius inequality is satisfied. In concordance w
that, we have shown that it is indeed not valid.

4. The rate of energy dispersion is non-negative

Positivity of the rate of energy dispersion underlies t
classical no-perpetuum-mobile formulations of the seco
law, including those of Thomson and Clausius. In S
VII D 2 we have pointed out that at low enough temperatu
the rate of energy dispersion can easily be negative. T
holds even when one starts in equilibrium. Thus no
2-46
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negativity of energy dispersion cannot serve as a unive
formulation of the second law.

5. The total entropy of a closed system cannot decrease

The most standard formulation of the second law is t
the ~coarse grained! entropy of a closed system cannot d
crease. In classical physics for a subsystem in contact w
heat bath the equivalent is that the rate of entropy produc
of the subsystem is non-negative. For situations close
equilibrium it can often be expressed as a bilinear expres
in generalized currents, and the matrix elements are ca
Onsager coefficients; this matrix is positive definite in
examples known to us.

The rate of production of Boltzmann entropy was a
considered by us. In the case of weak damping there o
oscillations in the production rate around zero in each per
this sets in at moderate temperatures, and is akin to the
cillations in energy that already occur at any noninfinite te
perature. In Sec. VI B 4 and VI B 5 we have pointed out th
even at low temperatures and in the limit of strong damp
the rate of Boltzmann entropy production can be negat
So this criterion also does not qualify as a solid definition
the second law.

We should stress that we did not find sensible produc
rates for other entropies. Perhaps not accidentally, the Bo
mann entropies of the coordinate and momentum sectors
the ones that enter into our generalized, two-temperature
sion of the Clausius inequality.

In our setup the von Neumann entropy for the full clos
system~fine-grained entropy! should not be confused with
the von Neumann or Boltzmann entropies of the subsyst
which pertain to the Brownian particle only. The von Ne
mann entropy of the full system is not altered by chang
the strength of the spring constant. This entropy remains c
stant during the overall unitary evolution of the whole sy
tem, and also remains constant during variations of a par
eter, since also there the overall evolution is still unitary. T
formulation of the second law in terms of nondecrease
entropy definitely refers to the coarse-grained entropy. In
classical situation the fine-grained entropy is conserved
well, by the Liouville dynamics. For more definitions of e
tropy, see Ref.@58#.

In passing we note that if one starts from a Gibbsian s
of the total system~central particle coupled to the bath!, and
changes a system parameter, then the conservation of en
prevents the system from relaxing to a new Gibbsian stat
the total system, since our total system is isolated. Never
less, the subsystem~the central particle! does relax to a state
characterized by the parameters, which can be coded in
effective temperatures, of that would-be global Gibbs
state. It is the finite amount of energy dumped in the ext
sive bath that does not relax, since our bath lacks anharm
interactions, or coupling to an external superbath. In cont
to a superbath, anharmonic interactions do not change
essence of the argument on the overall unitary evolut
conservation of both the von Neumann entropy and the
ergy. However, they can widen the set of observables ha
would-be Gibbsian values.
03610
al

t

a
n

to
n

ed
l

ur
d;
s-
-
t
g
e.
f

n
z-
re
r-

,

g
n-
-

-
e
f
e

as

te

py
of
e-

he
n
-
ic

st
he
n,
n-
g

F. Third law

This law claims that if the ground state of the Brownia
particle is nondegenerate, then its von Neumann entrop
equal to zero. This is a direct consequence of the quan
Gibbs distribution, which predicts the pure vacuum state
low temperatures. In our case neither the von Neumann
tropy nor the Boltzmann entropy vanishes when the b
temperature is zero. This occurs because the quan
Brownian particle is in an entangled mixed state, and the
fore cannot have vanishing von Neumann entropy.

The third law is recovered when taking the weak-coupli

limit. In that caseTp5Tx5 1
2 \v0cotanh(12 b\v0), implying

that the parameterv of Eq. ~4.35! takes the valuev
5 1

2 cotanh1
2 b\v0, which causes the von Neumann entro

of the particle~4.36! to vanish atT50. In a certain sense th
violation of the third law reported here for nonweak coupli
is the most straightforward consequence of quantum
tanglement.

G. Perpetuum mobile of the first kind

Taken literally, a perpetuum mobile performs perpetu
i.e., everlasting, motion. Nevertheless, rotational currents
ordinary superconductors, which may exist for several da
are rarely connected to perpetual motion. We shall there
employ the word ‘‘perpetuum mobile’’ for any principle tha
yields work.

One speaks of a perpetuum mobile of the first kind wh
the first law is violated, leading to an everlasting perfo
mance of work without any cost. Such a setup is imposs
in quantum mechanics, since it satisfies the first law by p
ciple. So there is no issue in the question what ‘‘perpetuu
means precisely.

H. Perpetuum mobile of the second kind

Another formulation of the second law is:It is impossible
to construct an engine which will work in a complete cyc
and convert all heat it absorbs from a reservoir, into m
chanical work@65#. A machine which would do so is called
perpetuum mobile of the second kind, and the second law
states that such a machine is impossible.

1. ‘‘Perpetuum’’ mobile or perpetuum mobile?

When the first law is respected but the second is violat
one speaks of a ‘‘perpetuum mobile of the second kin
However, we wish to make some remarks on the word ‘‘p
petuum.’’ Surely, in the eighteenth century such a perpetu
mobile was imagined, for instance, to cross the Atlantic
boat using only the energy stored in the ocean water.
such, there would be a basically infinite bath, and the mob
if realized, could function perpetually, i.e., ‘‘forever.’’ In gen
eral, when the bath is finite, it obviously has a finite energy
its disposal. In many setups, such as those with a finite
of energy extraction, this implies also finite duration of t
process. Thus even in the classical situation, the term ‘‘p
petuum’’ need not be a precise adjective for this type
mobile, and the point of view could be taken that a perp
uum mobile of the second kind need not function arbitrar
2-47
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long, but must only involve many cycles. In view of th
failure to find so far any practical realization, this stretch
the definition seems allowable to us.

In quantum physics the situation is even more clear. I
closed system the energy can never go below the grou
state energy, so the amount of extracted work is always
nite. As a result, there can never be an infinite amoun
cycles for which a definite amount of work is extracted p
cycle. One of the formulations of the second law is: ‘‘Pe
petuum mobiles of the second kind do not exist.’’ Such
strong physical statement must, of course, be richer than
general statement on the existence of a ground state.
crux is that already one such cycle, which extracts work fr
a thermal bath, is forbidden. So, already in general, perpe
motion of the second kind does not have its literal mean
of everlasting motion; rather, it is a notion for a work extra
tion principle, and one cycle is therefore good enough for
construction of a ‘‘perpetuum mobile.’’

2. The present situation

For our purposes the allowance of noneternal duration
perpetuum mobile is relevant, since our effects only hold
long as both the particle does not relax, which happens
the time scaletx , and is quantum coherent, which involve
the quantum time scale\/T.

We have discussed a work extraction mechanism that
clicly changes the spring constant in a certain time interv
Each of these cycles is slower than the relaxation time of
system. When the quantum time scalet\5\/T is also slower
than the relaxation time, there occurs unexpected beha
the contribution to the rate of dispersion inversely prop
tional to the duration of the cycle, normally the leading ter
has a small prefactor quadratic in temperature. Theref
quadratic and cubic terms in the inverse duration also pla
role. Out of equilibrium cycles have been designed wher
constant amount of heat extracted from the bath is fully c
verted into work, while the energy of the subsystem at
end of each cycle returns to its initial value.In this sense,
systems described by our models, with parameters in
appropriate regime, present at low temperatures true reali
tions of perpetuum mobile of the second kind. Probably, it is
also possible to extract work both from the bath and from
subsystem~‘‘efficiency larger than 100%’’!.

In a more stringent definition of perpetuum mobile o
requires that the cycle’s work be extracted ‘‘without any fu
ther change.’’ For our system this can be expressed as
requirement that the Wigner function of the subsystem
back at its original value. This would imply the requiremen
that DK50, DV50, and DV̇50 over each cycle, rathe
than only havingDK1DV50, whereK is the expectation of
the kinetic energy andV of the potential energy. The questio
whether this extended constraint can be satisfied by chan
the spring constant and possibly also the mass, is left for
future.

We should stress the conceptual difference between
present situation and a well-known case, where work can
extracted due to a temperature difference between two t
mal baths@5#. The latter is the standard setup for the therm
dynamic heat engine: two baths are explicitly separated f
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each other, and therefore the whole system is in a none
librium state, and can be used to perform work. If those ba
are kept in a direct contact for a sufficiently long time, th
they will go to equilibrium and after that no work can b
extracted@66#. In contrast, here we have presented a c
with a single thermal bath. After a sudden increase of t
strength of the central spring, the central particle will go
equilibrium after one relaxation timetx or td . But in doing
so, more than the initial surplus energy is transfered to
bath, and in particular to the cloud of bath modes in
immediate surrounding. After a certain moment, this h
flow towards the bath stops, and then a smaller backfl
occurs from the bath to the particle, before the whole com
into equilibrium. This backflow of heat is the mechanism th
makes it possible to extract work from the bath by manip
lating the particle, in a situation where this would be impo
sible classically. In particular, for smooth changes at z
temperatures the integral of this relaxation function
needed, but it appears to vanish, leading to a variety of
fects at low temperatures.

On a thermodynamic level, the analogy with the classi
case was strengthened because we could identify effec
temperatures, though we also stressed that by themse
they do not tend to become equal to each other. All th
intriguing aspects arise due to quantum effects, since
showed in detail thatthe same system coupled to the sa
bathdisplays at high temperatures the fully expected therm
dynamical behavior.

I. Perpetuum mobile of the third kind

One can define a perpetuum mobile of the third kind wh
work is performed at the cost of a diminishing, but still no
vanishing, zero-temperature entropy. This can, in princi
occur in systems such as glasses, which are able to rela
equilibrium, but are temporarily stuck in certain metasta
states. Then the zero-temperature entropy can be used
measure of this metastability@67#.

One could wonder whether our extraction of work is d
to the present nonvanishing zero-point entropy. Howev
this is not the case, since for the purely Gibbsian case
particle and bath, the particle would have the same ze
point entropy, but no work could be extracted. Moreover,
our case the zero point entropy is an indication of quant
entanglement and not of metastability.

X. CONCLUSION

This paper is devoted to the statistical thermodynamics
the quantum Brownian motion. The high-temperature cas
this model can serve as a convenient pedagogic exam
where almost all main statements of statistical thermodyn
ics are derived exclusively from first principles. Among oth
advantages, such an approach makes it possible to revea
conceptual restrictions and limitations of the common th
modynamic wisdom. With this aim in mind we focussed
the paper on the low-temperature~quantum! situation of the
Brownian motion model.

The stationary state of a quantum Brownian particle n
weakly interacting with its thermal bath is non-Gibbsian. It
2-48
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this property which makes the quantum Brownian motion
challenging problem, and classical thermodynamic wisd
appears to be inadequate even if the total state of the sy
and the bath is Gibbsian. Both the classical and the quan
Gibbsian thermodynamic theories emerge as particular lim
in this more general setup. The classical Gibbs distribut
with all its thermodynamic consequences is recovered
high temperatures, and the quantum Gibbs distribution is
tained for very weak damping.

In Sec. II we start from the quantum Langevin equatio
At low temperatures this equation contains a colored Ga
ian noise; because of quantum coherence, the bath ca
generate white noise even in the limit where the friction h
no memory. To achieve this interesting situation, no more
needed than the observation that quantum mechanics ap
@see detailed explanations after Eq.~5.28!#. Moreover, the
quantum fluctuation-dissipation theorem predicts differ
time-scales of noise and dissipation at low enough temp
tures@5,6,9,17#. This is how quantum coherence enters in
the considerations. Its characteristic time scale is\/T, where
we had set the Boltzmann constantkB equal to unity so far.
Restoring it, we havet\5\/(kBT)5(6.23/T) K ps. At T
51 K one hast\56.23 ps, in the range of typical micro
scopic processes in condensed matter.

Since the stationary distribution is non-Gibbsian there
conceptual differences compared with the equilibrium ca
For the harmonic potential one can define effective temp
tures~4.1! for momentum and coordinate. Both temperatu
are different from the bath temperatureT. Generalized ther-
modynamic relations can be introduced, which take a qu
Gibbsian form, Eqs.~4.18! and~4.20!, and are closely related
to the ones in the thermodynamics of glasses@24–26#.

The inapplicability of standard thermodynamics is mo
clearly illustrated by the violation of the Clausius relatio
di Q<TdS, heat received by the particle from the bath is
stricted by temperature of the bath times the change of
particle’s entropy. In Sec. IV B we construct an explicit e
ample which at low temperatures realizes di Q.0. This vio-
lation is significant at low temperatures, where quantum
fects are relevant, and is small for high temperatures. I
important to notice that this violation exists already for t
totally equilibrium ~Gibbsian! state of the overall~particle
plus bath! system@see our discussion after Eq.~4.28!#. Since
Thomson’s formulation of the second law is valid for such
state@47#, we have the explicit counterexample showing th
the very equivalence between different formulations of
second law is broken at low temperatures@69#.

For the dynamical consideration we start from a noneq
librium initial state obtained from the total Gibbsian b
changing the width of the confining potential. This chan
involves a small, controllable energy input, and can be m
realistic than the hitherto studied case where particle
bath are initially uncorrelated. After the nonequilibrium sta
has been prepared, the ensuing relaxation of the particle
sents a number of thermodynamical anomalies at low t
peratures of the bath. First, energy put into the bath does
completely dissipates there~in contrast to the classical situ
ation!, and thus work extraction from a single thermal bath
possible. This violates the second law in Thomson’s form
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lation as applied to nonequilibrium. As a consequence
this, adiabatic changes of parameters are not the most
mal ones anymore. It is interesting to notice that at low te
peratures a large~but finite! number of work-extracting
cycles is possible. In our opinion, this explicitly realizes t
basic nontrivial content of the perpetuum mobile of the s
ond kind, because any possibility for infinite number of su
cycles is ruled out merely by the existence of the grou
state for the overall system.

The second aspect of the low-temperature relaxation
that noH theorem exists at low temperatures, i.e., the pr
erly defined entropy production appears to be negative
some times. This holds even in the moderately overdam
regime, when the Brownian particle relaxes monotonica
~Recall that without any bath those frequencies are pu
imaginary, which leads to the known oscillatory behavio!
Within the underdamped~weakly coupled! situation negative
entropy production persists up to high temperatures, and
appears only in the explicitly classical limit.

Let us recall that Thomson’s formulation of the seco
law in its most general and universally applicable form@5#:
In cyclic processes no work can be extracted from a clo
equilibrium system, remains satisfied. This statement was d
rived in Ref.@47#, and we have presented a very simple pro
elsewhere@64#. It obviously applies to the analysis of thi
paper, since we start from a Gibbsian with modified spr
constant, and the work extraction disappears when
change in the spring constant vanishes@69#. Also for cyclic
smooth changes that start from equilibrium we could ver
the non-negativity of the energy dispersion.

We now make some remarks concerning the definition
the thermal bath in our problem. The harmonic oscilla
bath model, which was used by us, is technically convenie
but at the same time it possesses all relevant properties
thermal bath, which are typically postulated in the statisti
thermodynamics. The most important of them is that the b
should have infinite amount of degrees of freedom, a nec
sary condition to ensure relaxation of the Brownian partic
On the other hand, the quantum Langevin equation, whic
the starting point of our analysis, can be derived from rat
different schemes~see, e.g., Ref.@9#!, since in a sense the
are more universal than the detailed properties of the con
ered thermal bath.

Finally, let us relax the conditions under which our resu
have been derived. We have already mentioned that t
hold as well forN@1 Brownian particles in an external po
tential. Though mutual interactions would complicate t
analysis, it would not modify our basic statements. This c
already be seen from the case of noninteracting harmonic
bound Brownian particles: under a change of variables t
become interacting ones, while the characteristics of the b
remains basically unaffected because it has many degree
freedom.

Our findings on the nonthermodynamical character of
low-temperature Brownian motion may have a wide scope
applications such as cooling, energy storage, and therm
namical limits of low-temperature computing. Indeed, in t
domain of information theory there is a large literature bas
on the fact that only the erasure of information must nec
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sarily involve a dissipation of heat~see extensive reviews i
Ref. @34#!, and the claim that the erasure of one bit of info
mation costs at least an amount of energykBTln2, the so-
called Landauer bound. It is well known that this bound
based on a straightforward application of the Clausius
equality. From our observations it is clear that the Landa
bound can also be broken, and strong effects may occu
low temperatures. This may have implications for comput
in the quantum regime@39#.

For spins coupled to a bath the quantum nature expre
itself in off-diagonal elements of the density matrix. The
decay after the timeT2, which can range up to seconds.
this regime related work extraction setups are possible@63#.

Our results can be expressed in the statement that M
well’s demon exists: it is the property of quantum entang
ment in quantum mechanics@68#. They may further have
implications for thermodynamics in high-energy physics a
the early universe.

The aim of this paper has been to show that violations
the second law have a natural place in the physics of qu
tum particles that are nonweakly coupled to quantum ba
In this domain we have given conditions for the realizati
of the most notorious objects in the history of physics: p
petuum mobile of the second kind.
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APPENDIX A: SMOOTH CHANGES
OF THE SPRING CONSTANT

In this appendix we derive the work for continuou
changes of the spring constant. Here we first notice that
turbative expression~5.60! of the exact result~5.57!, ~5.58!
can be derived directly by perturbation theory. Let us fi
denotea by a1 and expand alsof to first order ina12a0.
We may use

sinf eif02 if5sinf01~a12a0!e2 if0
df

da

5sinf02~a12a0!sin2f0 e2 if0
G21n2

gG2n
.

~A1!
03610
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’
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t

Now inserting Eq.~5.55! and taking the largeG limit of
f̂ ( in) from Eq. ~5.47!, we get from Eq.~5.60!

b~n!5sinf0~n! eint F11
a02a1

gw S 12e2v1t2 int

v11 in

2
12e2v2t2 int

v21 in D G . ~A2!

Now let us remember that fort,0 the spring constant wa
a0, while for t.0 it is a1. Thus one could write in~5.39!:
a→a(t)5a01(a12a0)u(t). By treating the term (a0
2a1)u(t)x(t) together withh(t), one can read off the for-
mal solution from the analog of Eq.~5.44!, and solve it per-
turbatively to first order in (a12a0). It can be verified that
the result coincides with~A2!.

This first order perturbation theory can immediately
generalized for many steps,

a~ t !5ak5~12ak!a, ~ tk,t,tk11!, ~A3!

wheret052` andt1 was taken equal to zero so far, but ca
be arbitrary. One writesa(t)5a01(k>1(ak2ak21)u(t
2tk) and gets

b~n!5sinf0~n! eint F12 (
k>1

ak2ak21

gw
u~ t2tk!

3S 12e2(v11 in)(t2tk)

v11 in
2

12e2(v21 in)(t2tk)

v21 in D G .
~A4!

At a given instant of time the sum has a finite number
terms because of theu functions.

In Eq. ~A4! we considered that effect of many sma
changes in the spring constant. When we make m
changes with smalla(t)5ak in the domaintk,t,tk11, we
get

^x2&5
Tx~a!

a
1

\

pg FakCx~0!2(
j 51

k

~a j2a j 21!

3CxS g~ t2t j !

2m D G , ~A5!

wheret15t i is the moment of the first change, taken equal
zero so far. Let us writeak5a(tk) and assume that th
changes are small. Then the sum can be replaced by an
gral,

2V~ t !5a^x2~ t !&5Tx~a!1
\a

pg FaS gt

2mDCx~0!

2E
0

`

dt a8S gt

2m
2t DCx~t!G , ~A6!
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where the upper integration border could be put equal to`,
sincea8 vanishes for times less thant i .

The work needed to make the changeak21→ak at timetk
is equal to1

2 (ak2ak21)^x2(tk)&, so it equals

dWk5~ak212ak!H 1

2
Tx~a!1

\a

2pg FakCx~0!

2(
j 51

k

~a j2a j 21!CxS g~ tk2t j !

2m D G J . ~A7!

If there are many steps with small increments, we can go
a continuum limit. Replacing the sum by an integral, w
obtain the rate of work added to the system

dW
dt

5
dWrev

dt
1

dP

dt
, ~A8!

where, witht[gt/(2m),

dWrev

dt
52

g

2m

da~t!

dt F1

2
Tx1

\a

2pg
a~t!Cx~0!G ~A9!

is the adiabatic~recoverable! rate of work and
tt

ws

et

03610
to

dP

dt
5

\a

4pm

da~t!

dt E
0

`

ds a8~t2s!Cx~s! ~A10!

is the rate of energy dispersion.

APPENDIX B: MODERATE CUTOFF FREQUENCY
AND FINITE CHANGE OF SPRING CONSTANT

In this appendix we address the vanishing of work disp
sion at T50, without making the approximation of larg
Debye frequencyG. Then the full equation~5.59! has to be
employed, rather than the approximation~5.60!. With the
help of an algebraic manipulation program we have chec
that atT50 the important findingsCx

(0)50, see Eq.~6.47!,
andCp

(0)5CE
(0)50 ~c.f. Eq. ~6.53!! remain valid. So a nega

tive rate of energy dispersion occurs also for a finite cuto
Let us mention, however, that the effect is weaken

whena0, the amplitude of the change of the spring consta
is not very small. This probably affects the maximal numb
of work extraction cycles.

If one changes the mass and not the spring constant
system does not exhibit this interesting behavior, since
analogCx

(0) does not vanish then, implying that the leadin
term in the energy dispersion does not vanish at lowT.
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