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Statistical thermodynamics of quantum Brownian motion:
Construction of perpetuum mobile of the second kind
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The Brownian motion of a quantum particle in a harmonic confining potential and coupled to harmonic
quantum thermal bath is exactly solvable. Though this system presents at high temperatures a pedagogic
example to explain the laws of thermodynamics, it is shown that at low enough temperatures the stationary
state is non-Gibbsian due to an entanglement with the bath. In physical terms, this happens when the cloud of
bath modes around the particle starts to play a nontrivial role, namely, when the bath tempeistsmeller
than the coupling energy. Indeed, equilibrium thermodynamics of the total system, particle plus bath, does not
imply standard equilibrium thermodynamics for the particle itself at Towarious formulations of the second
law are found to be invalid at lowl. First, the Clausius inequality can be violated, because heat can be
extracted from the zero point energy of the cloud of bath modes. Second, when the width of the confining
potential is suddenly changed, there occurs a relaxation to equilibrium during which the entropy production is
partly negative. In this process the energy put on the particle does not relax monotonically, but oscillates
between particle and bath, even in the limit of strong damping. Third, for nonadiabatic changes of system
parameters the rate of energy dissipation can be negative, and, out of equilibrium, cyclic processes are possible
which extract work from the bath. Conditions are put forward under which perpetuum mobility of the second
kind, having one or several work extraction cycles, enter the realm of condensed matter physics. Fourth, it
follows that the equivalence between different formulations of the seconddayy, those by Clausius and
Thomson can be violated at low temperatures. These effects are the consequence of quantum entanglement in
the presence of the slightly off-equilibrium nature of the thermal bath, and become important when the
characteristic quantum time scdlékgT is larger than or comparable to other time scales of the system. They
show that there is no general consensus between standard thermodynamics and quantum mechanics. The
known agreements occur only due to the weak coupling limit, which does not pertain to low temperatures.
Experimental setups for testing the effects are discussed.
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[. INTRODUCTION The laws of equilibrium thermodynamics apply both to
(quasjclosed quantum and classical systems, and to open
Faith in the laws of thermodynamics has been strengthelassical subsysteni§]. This can all be traced back to the

ened time and again because numerous counterargumeifsneral character of the Gibbs distribution that describes the
and perpetuum mobile setups failed. It was summarized irquilibrium state. The same laws dbelievedto apply as
the classical statement of Eddington in 194% “The law  well to open quantum subsystems. Our aim will be to show
that entropy always increases—the second law othat, though this belief is proper for weak coupling, it is not
thermodynamics—holds, 1 think, the supreme positionjustified for nonweak coupling between system and bath.
among the laws of Nature. If someone points out to you thaNonweak coupling means, physically, that a cloud of bath
your pet theory of the universe is in disagreement with Max-modes has been formed around the particle, which we shall
well's equations—then so much the worse for Maxwell’s still consider as a part of the bath. Although one could de-
equations. If it is found to be contradicted by observationfend the opinion that—as an example—for Kondo-type prob-
well, these experimentalists do bungle things sometimes. Buems there is no need or no sense to describe the impurity
if your theory is found to be against the second law of ther-spin (“the subsystem) separately from the Kondo cloud of
modynamics | can give you no hope; there is nothing for itconduction electrong‘the bath”), such a viewpoint is not
but collapse in deepest humiliation.” Nevertheless, we intendbvious for an array of mesoscopic Josephson junctions,
to show in this paper that there aseveral formulations of where the “bath” is the electromagnetic field, to which they
the second law that may not apply to systems coupled to may be strongly coupled. Since that regime shows up in
bath in the quantum regimé&his paves the way for a differ- many systems at low enough temperature even for a small
ent, modest definition of the most despised objects of modbut fixed coupling, there is an important case to make.
ern physicsperpetuum mobile of the second kide shall When deriving the Gibbs distribution for (guasjclosed
propose realizations wherein they can make a few or evesystem[5,6], the underlying statistical assumptions do not
many cycles, though not infinitely many. A short version of depend much on the quantum or classical nature. An open
the material appeared alreal®|, which was discussed in the subsystem is usually considered as being in contact with an
scientific literaturd 3,4]. initially equilibrium bath. Under some general statistical
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conditions concerning the baf—10], which are again the tical but “mechanical” or “quenched,” in any case nonther-
same for the quantum and classical cases, one derivesnaodynamic, behavior of the system on which it a&s7].
Langevin equation. The general behavior of the classicalhe physical meaning of the classical fluctuation-dissipation
Langevin equation is well know[6]. The stationary distri- theorem thus is stronger, since it insists on equal time scales
bution is Gibbsian, and, at least for the white noise case, thef friction and noise, which induces the standard thermody-
equivalent Fokker-Planck equation is the main tool to de-hamic behavior.

scribe the nonequilibrium statistical thedr/l]. The new properties become noneffective if the interaction

Much less is known about the quantum Langevin equationvith the thermal bath is weak or if temperature is high, in
[6,7,9,10,12—1% first proposed by Senitzky15] in the  Which case the subsystem relaxes to its own quantum or
weakly dampedweakly coupledl case, and in a more gen- classical Gibbs distribution. Both these cases will be referred
eral form by Ford, Kac, and Maz{i8], see also Ref16]. Its  to as the Gibbsian limit. We recall that its existence is typi-
stationary distribution has been obtained for the harmonigally not connected with very low temperatures, since even
potential, in which case it depends explicitly on the couplingfor a small but generic coupling between the system and the
constant, becoming Gibbsian only in the limit of weak cou-thermal bath, one always goes out of the weak coupling limit
pling [10,14,17. by taking the temperature low enough.

Let us recall that the situation where a particle is interact- It is a crucial fact that a non-Gibbsian stationary state
ing with an equilibrium bath is known as Brownian motion, implies the inadequacy of equilibrium thermodynamics. In
and the particle as well is referred to as a Brownian particlethe present paper we propose a generalized thermodynamical
As one of the paradigms of nonequilibrium statistical me-description of a quantum Brownian particle in a harmonic
chanics, the theory of Brownian motion has numerous appliconfining potential. This description is self-consistent, and
cations in condensed matter physi¢6,9,11,13,18,1p  does not usa priori the concepts of the equilibriutGibb-
atomic physics[6,20], quantum optics, and chemistry sian statistical thermodynamics. Instead we employ the
[10,21]. It is believed that some of those practical realiza-methods of nonequilibrium statistical thermodynamics devel-
tions can be considered as being weakly coupled with theipped recently for glasses and applied to black holes, where a
thermal baths, and then standard methods of statistical phy§eparation of time scales allows for a two-temperature ap-
ics can be applied10,22. However, there are nowadays proach[24-27.
well-known experimental situations, which are essentially far The universal character of equilibrium thermodynamics
from the weak-coupling regime. The main example of this isled to the general expectation that in one way or the other,
the case of weak links between superconductive regions, tHBermodynamics will be applicable to the full quantum do-
so-called Josephson junctions, in their overdamped regim@ain. A somewhat stronger point was expressed by Landau
[18,19, where the relevant ranges of parameters wer@nd Lifshitz[5], namely, that the proper formulation of equi-
achieved already 20 years ago. Even in quantum opticdibrium thermodynamics must be based on quantum mechan-
which has often been satisfactorily described by weakics. For the strongly coupling quantum situation one might,
coupling theorie$10], there are recent experiments showinghowever, not be convinced. Let us give three principal argu-
the necessity for moderate and strong coupling approachégents that question common wisdom.

(see, e.g., Ref.23]). In nuclear magnetic resonance experi- (1) The bath modes are correlated during the quantum
ments, on the other hand, very weak coupling occurs, but iime scalei/T, even when damping is instantaneous. When

leads to aT, relaxation time of transverg@onclassicalcor-  this time scale is larger than tharges} relaxation time of
relations, which can reach up to minutes. During that timethe system, the bath acts more like a quenched disorder than

related nonthermodynamic effects can occur. as a white noise. Thus the standard condition for going from
The cause of the crucial differences between quantum and Langevin equation to a Gibbs distribution is not fulfilled
classical Brownian motion lies in quantum entanglement. Aand new behavior should be expected.
complete description in terms of a wave function is possible (2) Assume that the overall systeftie Brownian particle
only for a closed system; subsystems are necessarily in RIUs the bathis in equilibrium at a low temperature. One of
mixed state. Since the quantum Gibbs distribution tends téhe many formulations of the second law states that no heat
the pure vacuum state foF—0, it is in that limit not an can be extracted from the bath. This just follows from the
adequate candidate for the description of the quantum sul§lausius inequality: @<TdS (here @ is the heat flowing
system nonweakly interacting with its thermal bath. Wherefrom the bath to the subsystem, the Brownian particle, while
typically, researchers have just guessed that thermodynami&is the entropy of the subsysterfor T—0. A naive argu-
would apply anyhow, we shall provide the opposite answement in support of this statement will be that the bath is close
by analyzing exactly solvable models. to its ground state, and therefore its energy cannot be low-
Another important property is embodied in the structureered. However, this argument is invalidated by quantum en-
of the quantum Langevin equati¢h7]. As predicted by the tanglement: Since the bath is not an isolated system itself, it
guantum fluctuation-dissipation theorem, but in contrast taannot be in a definite energy eigenstate. In particular, it
the classical case, the time-scales of fluctuations and dissipaannot be in the ground state, and its energy fluctuates even
tion are different, and even in the limit of instantaneous fric-for T—0.
tion, the noise does not become white, but has the character- (3) If a closed quantum system is its ground state, the only
istic quantum time scal#/kgT. During this period the noise change can be to do work on it. Now suppose that this sys-
has a memory and thus has the possibility to cause nonstatieem consists of a subsystem coupled to a bath, and that
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the external coupling connects to the subsystem, and not to Il. THE QUANTUM LANGEVIN EQUATION
the bath. Then typically the act_ion of doing work will re- It is common wisdom that the analysis of Brownian mo-
zhu;r li alsho t(;\_e S(—:_-para:ehenergfs of tze sul?jsysten;] and tﬂSn of noninteracting particles may be restricted to a single
_at - As the direction of the exchange depends on t € QUe&ownian particle. This insight goes back to Szilard in his
tion whether externally work was added or subtracted, in ON€omewhat related work on Maxwell's demdB3)], for a

of the cases the subsystem receives energy from the batfiansiation see Ref34]. In our analysis we shall also make
Since this comes from the unobserved bath modes, it canngfs simplification, but insist that the bath has many degrees
be identified as Work, and must be identified as heat €Xof freedom. Therefore it is equa"y equipped to Coup|e to a
tracted from the bath, even @t=0. gas of N noninteracting Brownian particles, and our results
Because these arguments question common wisdom, ther energy, work, heat, entropy, etc., must just be multiplied
only way to investigate the practical situation is to start fromby N. Because of this, our results yield, without any change,
first principles, namely, from standard quantum mechanicsthe intrinsic variables of a large Brownian system in its ther-
This is the general strategy of the present paper. modynamic limit.
Statements on violations of certain formulations of the
second law in the quantum microworld already appeared in A. The Hamiltonian

literature. Capek and his co-worke88] noticed such ef- h . L . ¢ h
fects in certain biophysically inspired models; Novotny re—H T .ﬁ qgant(ljjm Lgntgevmfequattl,on |fe(c'§r|veq rom tt_elgxact
cently pointed out that in a related model the violations can- amiftonian description of a subsystamrownian partic
and a thermal bath, by tracing out the degrees of freedom of
the bath. The influence of the particle on the bath is assumed
- L S be sufficiently small. Thus, only the linear modes of the
tivity; the latter author bases his view on results for permay i, are excited, and the interaction of the particle with the
nent currents in inhomogeneous superconducting fiB&E a1y is assumed to be linear. To be as pedagogic as possible,
Older works on violations in plasmas are due to Sheehae first take a definite model for the bath, namely, a collec-
[32]. tion of harmonic oscillators; later we will relax this assump-

Since the subject of violating the second law and introjon, For the total Hamiltonian we thus assufé
ducing perpetuum mobile has such a notorious history, new
works in this field should be as convincing as possible. Hio=H+Hg+Hy,

Therefore we present now a somewhat extensive, but self-

contained exact analysis that leads to our conclusions, partly p? 1,

already presented in Ref2]. Our methods are exact since H=K(p)+V(X), K(p)=5—, Wx)=3ax,

the case of a quantum particle in a harmonic confining po- (2.2
tential and coupled to a bath of harmonic oscillators with

bilinear couplings is exactly solvable. Notice that in a previ- P2 mw?
ous work[2] we also entered the discussion of the approxi- HB:E [ : L
mate solution for a weakly anharmonic force; this will not be i

touched here.

Our paper is organized as follows. In Sec. 1l we recall the
derivation of the quantum Langevin equation. In Sec. Il we H, =Z [—cixix+ ——x?
solve the statics of the total systegsubsystem plus batiby : m; wj
elementary techniques. In Sec. IV we show that the thermo-
dynamics of adiabatic changes can be described through twishere? is the Hamiltonian of the particle, consisting of the
effective temperatures, and that analogies with the usual twddnetic and potential energie§ and V, Hg is the Hamil-
temperature thermodynamics can be stated much furtheionian of the bath, andt, is the interaction Hamiltonian,
The generalized relations will have the effective form of thep,p; . X,X; are the momenta and coordinate operators of the
first and second law. Next we first present details on theparticle and the linear modes of the bak(x) is the confin-
violation of the Clausius inequality. In Sec. V we considering potential of the particle aneh andm; are the correspond-
the dynamics of the system for the case where the initial stat®g masses.
is Gibbsian, and for which the spring constant is slightly ~Notice that our total system is closed and its energy is
modified at time zero. In Sec. VI we use those results taconserved, except for the periods when work is done on it by
derive the energy relaxation and the entropy production. Irexternally changing a system parameter suchmasr a.
Sec. VIl we consider work done on the system for that situWhen we later on take as initial density matrix the Gibbs
ation of an instantaneously changed spring constant, and wdistribution exp¢- 8Ho)/Z, this still refers to our closed sys-
also consider work for smooth, cyclic changes. In Sec. Vllitem; in particular, it is not part of a larger thermodynamic
we mention a number of experiments where our results haveystem, with which heat exchange would be posgiBie36.
applications. In Sec. IX we view those results from the foun- Thex; terms ofHg+ H, form a complete square, singg
dations of thermodynamics and the definition of perpetuunincludes a self-interaction term proportionaltt This guar-
mobile. Finally in Sec. X we close the paper with a discus-antees that the total Hamiltonidri,,; will be positive defi-
sion. nite. In certain physical situatior(®.g., electromagnetic in-
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teraction), such a term is generated automatically by the B. Derivation of general quantum Langevin equation

coupling[13]. Indeed, under a canonical transformation. The operator equations of motion for the bath modes read

. 1
Pi =_n
Xj— F(Iv. Pi— — XiMjw; , (2.2 i~ P (2.6
H,or bECOMeES Pi= —XiMw] + CiX. 2.7

2 2 2 After introducing the creation and annihilation operators by
, P 1, 1 Ci mioi ,
Hmt=—m+—ax + 2 [ pi— —x + ——X;

2 2 i 2mi [OF 2
2 3) B h + . hmiwi +
(2. X = zmiwi(ai+ai)v pi=i T(ai_ai)

2.8
which corresponds to the minimal couplifigr subtraction 28
scheme. . .

In other situationgsuch as certain cases in nuclear andWe can write Eqs(2.6), and(2.7) in the form
atomic physics, see Refl3] for more details the self- 5
. . . ) [ ¢
interaction term is absent, and one hAg] ()= —iwa(t)+i i X(1). 2.9
2hmi(1)i
- p? - ~
H=o-+VX), Hi= —X> CiX;, (2.4  This equation is solved readily,
1
. ¢t [t
while Hg is unchanged. For a harmonic system one will have  a;(t)=e"'®i'a;(0)+i mf dse @ilt=s)x(s),
V(x)=3%bx?. In general, the potential energy will have a 1o (2.10
minimum only if b=Y"(0) is large enough. This happens
when the combination yielding
2 i(0
a:b—E € (25) Xi(t):Xi(O)COS(vit+ pl( )Sinwit
i mi(,()iz i Wi
% ['gssi 2.1

is positive. In the case we shall consider below, with ¢he +miwi 0 ssine;(t=9)x(s), 219

given by Eq.(2.23, this sum can be evaluated, leading to
a=b—yI', wherey is the coupling strengtidamping con-
stan) and T is a large cutoff frequency. So this system can
be mapped on the previous one provided we defiie)
=V(x)+3yI'x2. In doing so we identify with Hamiltonian
of the subsysteLn the EXp_reSS'dﬂ:’CJFV of _Eq._ (2',1,)’ The Heisenberg equations of motion for the Brownian
rather than K£+V, and with H, the combination X, particle read
+14I'x?. To give some motivation for this, let us notice that
we shall takel” large andy finite. In that case the expecta- 1
tion value(V) is large, proportional to/I", but this is almost X=—p, (2.13
fully compensated by an opposite term arising frof, ).
These cancellations have been accounted for by the mapping o2
to H andH,, leaving at most a If divergence for largéd’, D= — axt Y i 21
which actually arises at small temperatures froi). We P ax Z CiXi XZ miwiz' 219
shall come back to the pros and cons of this identification in
Sec. IV B 5, where we notice that it is already needed t
obtain the standard thermodynamics at very large

Some word of nomenclature is called for. The case of a .
harmonic potential(x)=3ax? is often called “the linear m'5<(t)=—ax(t)+77(t)—f dt’ y(t—t")x(t") — y(0)x(t),
case” in literature, of course referring to its linear force. The 0

pi(t)=—m,w;X;(0)sinw;t+ p;(0)cosw;t

+ciftd5003wi(t—s)x(s). (2.12
0

Scombined with Eq(2.1]) the last equation becomes

expressions “linear potential” and “nonlinear potential,” (2.19
that are sometimes found in the literature, are misnomers,
and will be avoided by us. where
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p;(0) C. Interaction energy and energy of the bath
I .
xi(0)coswit+ ——sinw;t

= The interaction Hamiltonian and the bath Hamiltonian can

502 be expressed im(t) andx(t). Using Egs.(2.11) and(2.12
:2 \/m[aJ(O)eiwiwai(O)e*iwit], and the definition(2.16 of 7(t) and definition(2.17) of
| I

v(t), one gets, using trigeometric relations,

U(t):Zi Ci

(2.19

t. 1

c? Hy(t) = —n(t)x(t) + j dsy(s)x(t—s)x(t)+ 57(0)X2(t)
scog wit), (2.1 0

mj o’ (2.19

y(t>=2

are the noise related to thmperturbedbath, and the friction
kernel, respectively. A partial integration brings

1
t . == (DX + ¥ (OX(0)X(1) = 5 ¥(0)X*(1)
() = — ax(t) — x(0) y(t) — fodsya—s)x(swn(t),

(2.19 +£ds«y(s)5<(t—s)x(t).

Notice that in this derivation the back reaction of the bath on

the particle has been taken into account in an exact manner.

It is described by the integrals in Eq®.11) and(2.12, and  Since thex;(t) commute withx(t), there is an equivalent
brings the damping terms(t)y(0)—x(0)¥(t)—[odsy(t  expression by putting(t) to the left in all terms. Further-
—s)x(s) in going from Eq.(2.14) to Eq.(2.18. more,

1t . 1t to
Het)=He(0) + 5 | dsv(S)9).x(91—5 | ds, [ as 35— sx(sx(sy (2.20
0 0 0

1t i 1t i 1t Sy i .
~1a(0)+ 5 [ sy (5).x(91 5 | a5 x(3. 301~ [ a5, [ "as s x(s0 35151,

whereHg(0) is the unperturbed bath agé,B}=AB+BA is an anticommutator. An equivalent expression is

1t . 1 1 1t .
Hg(t)=Hg(0)+ Ef dsy(s){7(8),x(8)} = 5 Y(D{X(1),x(0)} + 57(0)[X2(t)+X2(0)]+ Ef dsy(s)[{x(s),x(0)}
0 0

. 1t t . .
—{x(t—s),x(t)}]+ Ef dslf ds,y(s1—8,)X(81)X(Sy). (2.2))
0 0

The last equalities o, and Hg can be used in the limit HereI is the characteristic Debye cutoff frequency of the

wherey(t)=~ vy, (1) + y5_(1). bath, andy stands for the coupling constant; it has the di-
mension of kg/s. Our parameter, related to another one
D. Drude-Ullersma spectrum (y'=vy/m) that is sometimes employed, see, e.g., Ref.

For some, but not all, of our applications it is beneficial to &/l0ws us to consider changes in the effective nmass fixed
consider a fully explicit case for the bath. The bath is as-coupling to the bath.

sumed to have uniformly spaced modes, The thermodynamic limit for the bath is taken by sending
_ _ A—0, which induces relaxational behavior. As usual, the
wi=iA, i=123..., (222 “Heisenberg” time scale I will be extremely large, imply-

. ing that in the remainin roach the limit of “large times”
and for the couplings we choose the Drude-Ullersma spec- g tha € remaining approach the fim of "large fimes
always means the quasistationary nonequilibrium state where

trum (9,12 time is still much less than A/ In the limit A—0O each
2ymw?A T2 coupling ¢;~ VA is very weak. The fact that the bath has
ci= ST (2.23  many modes nevertheless induces its nontrivial influence. At
m wi +T finite but smallA the system would have an initial relax-
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ational behavior, which at times of ordeiAlis changed in a variations of parameters. Indeed, in this setup there should be
recurrent behavior. nothing very difficult in varyingL or C, in our notationm
It is customary to define the spectral density anda.
The theory of the dissipative harmonic oscillator is con-
T c? yol'? sidered in many workgsee Ref[9] and references therein,
Ho)=75 > o dlemw)=——7. (224 as well as a recent work for the driven c487]). We will
o w T now be primarily interested in thermodynamical aspects of
this problem.

It has the Ohmic behavial~ yw for o<TI", andy is called
the interaction strength or damping constant. &) is cut ] ) , .
off at the “Debye” frequencyl, it is called a quasi-Ohmic A. Shift of the bath frequencnes_due to coupling with the
spectrum. central particle

For many applications only the spectral density needs to In Fourier space the equation of motion of the particle
be defined. However, for our further calculations it is advan-may be written as
tageous to stick to the fully specified linear bath, with its

frequencies2.22) and coupling$2.23. It can then be shown ) ci2
that the friction kernel2.17 becomes a—mo +Ei 2 X=2i CiXi, (3.3
i
2y (= 2
y(t) = _7’f do coswt=yI' e Tl (2.25 and for the bath
™ Jo w’+T7? )
(— Mm%+ m o)X =CX. (3.4

It is nonlocal in time, but on time scales much larger than ) ) - )
1/ it may be replaced by s, (t)+ y5_(t). From these relations one derives a condition for the eigen-
Finally, we wish to mention that there are alternative waysreauenciesyy,

to derive the quantum Langevin equatif®j, since many of )

its properties are rigidly determined by general statements &  ,  , Ci
such as the quantum fluctuation-dissipation theolé&h m V& m mo?(w?— v?)
Nevertheless, we choose to focus on concrete models, be- o
cause they show in detail how the quantum Langevin equa- 2yI'%)? A
tion arises from first principles, and thus are better suited for = _ 2 12 2 2 (3.9
i T =1 (i) (0 —v9)
pedagogical purposes. i i
2.2 2
Iil. GIBBSIAN STATE FOR A HARMONIC __ v - n y I
CONFINING POTENTIAL m(V?+T1?) 51 w?+T?  7(12+T?)
The case of an oscillator subject to a parabolic confining A A
potential is a celebrated exactly solvable problem in quantum X 2 — = ' (3.9
. =1 | Wj 14 Wi +v
mechanics,
2 where we inserted the definitiof2.23 of the c;. The first
H(p,X)=K(p)+V(X)= L + Zax2. (3.2 sum may be replaced by an integral, while the second can be
2m 2 carried out exactly,
;I'het eigeinfrequency is already known from the classical § A A . V) "
reatment, - = - |- - —
S1|owi—v oty NIEL Y| N A |1 A
NG 62 v v
wo= . .
- +—|+ +—
m Y| N A l/f( 1 A
When this oscillator is coupled to an oscillator bath with A T
bilinear coupling, as was done in E@.1), the problem re- = ;—wcotf, (3.7

mains exactly solvable. It is in the true sense “the harmonic
oscillator model” for quantum Brownian motion.

It is well known that, besides its direct physical meaning,
the harmonic oscillator can be interpreted asLah circuit 1
[17]. Thenx may correspond to the char@eon a capacitor, P2+ D=2+, #1-2)=y(z)+mcotnz.

1/a to its capacitanc&, m to an inductance_,p to a flux 3.9
LQ, v to a resistanc®, and 5(t) to a random electromo-

toric force. Although we will not use this language explicitly, The eigenfrequencies, of the coupled system thus follow
it is useful to keep it in mind, especially when consideringas the roots of

where ¢(z) =dInI’(2)/dzis the diI" function and we used
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TV A (a/m—1?)(v?+T?)+yT'v? 3.9 Fol T,7)=Fg(T,y=0)+Fy(a,y,[',mT), (3.19

cot—— —=— . (8.

A mv yT?y where the first term is the free energy of the bath in absence
of the particle. Neglecting its divergent zero point energy one

The transcendental equation has no solution fet10
<A. For v>A there is one solution in each period of the
cotangent, except for the period that contains the peint T (> w22
= wo=+/a/m, where there occur either three solutions or Fe(T,y=0)= Kf doIn(1—e Aho)=— GhA
one. One can then check that in the limit of vanishing cou- 0 (3.16
pling v—0, there occur the modes;=iA (i=1,2,...), ’
and w,. Notice, however, that this behavior only pertains toyt is of order 1A, showing the extensivity of the bath, and
the regime of infinitesimal couplingy<<y. with y.~mA. implies the energy
For y=y., however, the interval containing, has only one
solution, sowy, is lost as a separate mode, its influence being

gets

2

taken by a shift of neighboring modes. Us(T.y=00=53 T 317
For finite y the solution of Eq(3.9) shows that the bath
modesw;>A now get shifted to and the linear specific heat and entropy
CKA— (KA A= - A, (310 il
vk=kA——(kA)A=wx— —d(wpA, : Ca(T,y=0)=Sg(T,y=0)= 7. (3.18
where The free energy shift due to the central particle, its cou-
pling to the bath, and the resulting disturbance of the bath,
Iy follows from Eq.(3.14 as[16]

(3.11)

v)=arctan .
#v) (a—mv?)(v2+T?)+ 42

1 (= 1 d
_ . ,BFp=—J dvIn| 2 sinhz Bhv —d) (3.19
Here the definition of the arctan is such tlyagoes monoto- mJo 2 dv
nously from¢(0)=0 to ¢(e°) = . We shall need ,
yI's (= 1
()= Y2y —7f0 dvin| 2 smhzﬂhv
2 2 2 272 2_\211/2
a—m +T'%) 4+ I + (I’
H@mmAGH T+ 9T T+ (%)% L alt(mi2e T —a)s?+ 3myt
. 2
_ YV (3.12 [(a=mp?)(v?+T2)+ y[ 22+ T2 (329
{(a_mV2)2+ ,yZVZ}l/Z’
where the approximation holds for larde A useful identity is
B. The Gibbsian state of th ticle and its bath 1 1 *
e Gi S|ansaeo- eparlce.an its ba ,BszanSin)‘(—,Bﬁvl +—,8ﬁf dv | 0(v—wvy)
The steps of the preceding subsection allow to calculate 2 2 0
the Gibbs free energy of the total system, 1 1
—;gﬁ(v) cotanh Eﬂﬁy , (3.21)

1
BFu(T,7)=2, In 2sinh v (3.13
: wherev is arbitrary andd is the Heaviside step function.

For smallA one may use the identit
y y 1. Intermezzo: the characteristic frequencies of the damped

oscillator

o0 1 .
,Ztl Alvd = A fo dwk A(ri) The present model for a damped harmonic oscillator has
three characteristic frequencies that do not depend on tem-

1 (> dog perature. They just follow from the linear equations of mo-
A fo dede A(ry) tion, and thus have the same value at high and low tempera-
tures.
o 1 1de¢(v) The denominator in Eq3.20 is a fourth-order polyno-
= fo dvi T+ — =4, | AW +0O4) mial in v2. It decomposes as
(3.19 m2(v2+T2)P4(iv)Pa(—iv), (3.22
and one gets where
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atyl al dw dw  1-w? doi,  y(1-w?)
3,2 _ab aw__dw 2_ _
Pa(w)=w T “"m %da " Mdm 2w’ da = 4mw '
aj or do
=(w—F)(w2+— + —o. (3.23 12_ Y — )2
m/ " m Mam = Famw(1TW*™ (3.33

The rootsw; , 3 of P; satisfy the relations For overdamping £<1) w is real positive. Our interest

is, in particular, the strong damping reginyd>am, where

w1+ w2+ U)SZF, (324)
a y am v
a+yI' = =11 1-= =r-2= ]
W1Wy+ Wow3zt Waw,= my , (3.25 “1 A @27 52 )’ @3 m (3.39
I and the approximations hold to leading ordefsin
a (3.26 Already in the classical regime, our system has three char-

W1 WrW3=""— . . . .
m acteristic relaxation times: for the coordinate, for the mo-

. o . . mentum, and for the noise. For larjeand y they are well
Two different situations can arise. Either all three roots areseparated

real (this is the case in the overdamped regipa, in the

underdamped regime, two of them are complex conjugate: 1 vy 1 m 1
w}=w,, Wwhereasws; is real. In both cases one has Tx:w—1~g> " ay y >m=r  (3.39
Re w;,3>0, which indicates that with time the particle re-
laxes toward a stationary state. In the quantum regime the quantum time scale
For smally these roots read
h
, r (7)2 T2 +iwp) T (3:39
w12:i|w0+_f+ -
' m 2(I'+iwo) M/ 8wy(I'Fiwg)® _ _
(3.27) can be comparable to or larger thap, inducing quantum
coherence effects of the noise and thus new physics.
T2 y 21“3(1“2—(»3) In case of underdampings &%) one haswv=iw, with
ws=l——— -\ T2 23 328 -
m(I'“+ws) \M (I'“+ wj) —i
0 0 — y(1¥iw)
w=+4e—1, ®12= (3.37
On the other hand, for a lardé one gets m
2 This leads to the renormalized oscillation timg and the
wr =2 14 A ll_ﬂn +i x damping timery,
L27om| 7~ ¥2 2T\ m
1
1-2am/y? 0T T TdT - (3.39
X 1i—y , (3.29 Vg —y?14m?
Vi1—4am/y?
Since 74 differs from 7, by a factor of order unity, we
B y 1(y\? may skip the latter and usg, and 7 as the relevant time
wz=T'— m T'lm (330 scales in the underdamped regime.
It is worth mentioning that the weak-coupling limit com-
We shall only need them to leading order id*1/ mutes with the quasi-Ohmic limit, in the sense that taking
largel” in Egs.(3.27) and(3.28 we get the same main term
_y(1-w)  2a _y(1+w) and at least the first correction as having taken smditinit
“177om T y(1+w) Y27 2m in Egs.(3.31) and(3.30.
y 2. Continuing the main argument for the Gibbsian state
wg=I'—, (3.3D In order to calculate the free ener¢§.20, we shall first
determine the following integral:
where we denoted
1
_dv vcotf(iav
e=—, w=yl—4e. (3.32 I(a,A,B)= . (3.39
Y 0 (A%+1?)(B%+1?)
Later on we shall need We can write
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o dvv

I(a,A,B):j

1 B 2

PHYSICAL REVIEW E66, 036102 (2002

dvv

+2
0 (A%+v?)(B?+1v?)

(e?"—1)(A%+1?)(B?+ 1?)

= BZ_A2|nZ+BZ_A2

_ 1 aB aA
 B2_A2 2 2
where we used the known formula
ZJOC tdt | o 1
=lnz—y(z)— —.
o [exp(2mt)—1](t2+Z?) 2z
(3.41)
By integration we obtain
Ja.A.B) fmdvlz_l 1 1
a,A,B)=| — In| 2sinr-a -
0 B M B
_ 1|raA 1|aA+1|FaB
B e iy =L
+ ! | aB 3.4
PR (3.42

In terms of the rootsy; , we may write Eq(3.11) as

14 14 14 14
¢(v)=arctan— +arctan— +arctan— — arctanl:.
w1 (OF) w3
(3.43

The derivation follows immediately after using E(R.22

with P3(s)=(s—w1)(s— w,)(s—w3) and expressing the
arctan in logarithms. The integral in EB.20) can now be

[

dvv B f“ dvy
(e —1)(A%2+1%) Jo (e?—1)(B?+1?)
T 1
~ a AB(A+B)’ (340

(3.49

This is just equal to-InZ’" with Z’ calculated in Eq(4.20
of Grabertet al. [38]. These authors did not point at the
physical role of theiZ’. Here we see that it is the part of the
partition sum of the total system related to the central par-
ticle and its coupling to the bath with its linear unperturbed
spectrumw,=k A. We nevertheless expect that the statics
and the dynamics hold for more general bath spectra, as long
as the interaction is bilinear, and the spectra ensure relax-
ation.

The internal energy of the total system reads

_hr [)’hr h(l)l ﬁh(l}l ﬁ(x)z Bh(l}z
PT o 27 | 2w 27 | 2w 2
h(l)g Bﬁwg
‘E‘/’< 2 )‘T (349

C. The effective temperatures

We shall now study two objectsT,=a(x?) and Tp
=(p?)/m, that would in classical equilibrium be equal To
and which we shall interpret below as effective temperatures.
As in the classical situation, it holds thizg8]

done by adding to ¢(v) a term [(I'—w;—wy
—w3)/ wa]arctan@/w,), which vanishes for any, on ac- 5 aF,
count of Eq.(3.24), and then using Eq3.42 with a=73. Ty=a(x )=2a£. (3.46
This finally brings the shift of the free energy due to the
presence of the Brownian particle We find
|
ﬁﬁwl ﬁﬁwz Bﬁw3
. ta (wl—rw( 5 ) (wp=T) w( 5| (03T y| - oo
“ M ( (02— w1)(w3—w1) (01~ 0)(03—0)) (01~ w3)(w2— w3) '
Likewise,
Bhﬁ)l Bh(l)z Bﬁ(x)?)
(P oF AT { @1 "”( 2m w2 ‘l’( 2 ©s¥\ o
To=—"=-2m——=T,+ (3.48
m am ™M (w2~ w)(w3=w1) (01~ 0)(w3—wy) (01~ w3)(w—ws3)
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To find the Gibbsian values fop—0 one has to notice that

i wg iwg | 2
Noat) U~ 207

ﬁa)o

PHYSICAL REVIEW E 66, 036102 (2002

and this yields the standard weak-coupling result known from all the books,

1 1 hw hw
U= STyt 5 Tp= Ty = Tp= o coth 220

2 ' xT ' 2 2

Sl p P 3.4
=—— T+imcot 5T (3.49
h ﬁwo
= wo+m (’y—>0) (35@

1. Thermodynamics and effective temperatures at high T

Using that for smalk

2
In['(2)=—Inz— yez+ Ezz, (3.51)

whereyg=0.577 2156 is Euler’s constant, one gets the free
energy

In['(z)= ! I 1I 2 ! !
nl'(z)= Z_E nz—z+§ n( 77)+E— 3603
(3.56
One gets for arbitrary and for lardé,
3
[ p— — _ T2
o T'Inl’ ij_ wklnwk GﬁaT

Bh? s 2 2 2 ﬁy 2mr’ hy
Fp=TiBhwot+ — [T~ wi - w;— 0f] = 2am| " P T gpml (LT Win(L+w)
Bh*(a+yTl) _ —W)]— ——T?
~TInBhwy+ ~ oam (3.52 +(1-w)in(1-w)] GﬁaT (3.57
wherewg=+a/m andI" has been taken large in the second 3 3 Ty
identity. The internal energy and entropy become Up=5 I'In F—k; wney |+ %Tz
hy | 2mI’ v
__ BhF(atyT) T Bhi*(a+yI) = In—+1}——[(1+w)ln(1+w)
Up—T+ T, Sp—lnﬁw0+l+ 6m . 2mm 0% A4mm
(3.53
+(1-w)In(1—w)]+ —T2 (3.58
. 6ha
From Egs.(3.47) and(3.48 we obtain at larg&
Sp=BUp—Fp) as) (3.59
h?a  Bih*a(a+yl =B(U,—Fp)=5—T. .
S N R Gk Y 354 3ha

12m 720m?

Notice thatS;, the shift in total von Neumann entropy due
and to the presence of the Brownian particle, differs strongly
from the von Neumann entropy of the particle itself, which
remains finite alf=0, as we shall show in Eq$4.35 and
(4.36. The non-additivity of entropies encountered here is a
deep aspect of quantum physics, where a subsystem can have
a larger von Neumann entropy than the full system.

Using Eq.(3.33 one finds at low temperatures and arbi-

(3.55 traryam/y?, w=1—4am/y? [48],

ph*(a+yl)  B*hAHI?

TP:T+ 12m - 473m £(3)

ﬁ3ﬁ4[ yI3m—(a+ 7F)2]

720m?
2. Thermodynamics and effective temperatures at low T Tp:ﬁ_yanF_m ypm [(1—-w)2In(1—w)
Tm m w
Further results can be obtained with the improved Stirling 4
formula, —(14+wW)2n(1+w)]+O(TH), (3.60
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hal 1+w 7
I — 4 -

%= 2 4
Ty W "T—w ShaT +O(T).

X

The above expressions simplify in the limit of strong

damping, see E(q3.3)),

hy I'm ha y?  wy )

FP(T)__Zwm(In7+1 * 2wy "am &ha |

hy I'm Y2 ay )

UP(T)__Zwm(In7+1 +—2 I am %T
(3.62

and[48]
7= g R o 3.6
P am" Yy Ty (T, (3.63
ha y? oy

T,=—In—+ ——T?+O(T%. (3.69

7y am 3ha

D. Interaction energy and bath energy

(3.6))

PHYSICAL REVIEW E66, 036102 (2002

Ug—(7(0)X)=(AdHio) = AdsF o= Ug(y=0).
(3.70

Finally we can change the Debye cutdff One has

~ 1
I drHyor= — 7(0)X+ 77(O)x+§yI‘x2. (3.70
This implies
~ yI'
(7(0)x)=(7(0)x) = 5T+ T'drFy, (3.72

and thus
yI'
Ug=Ug(y=0)+ Z—aTX+ ForFp—2vd,F,. (3.73

These results yield for the total energy

1

1
UtOt:U+U|+UB:§TX+ 2

To,+Ug(y=0)+TdrF,.
(3.79

Some results can be obtained by studying the dependenc@n the other hand, we have from Ed8.15, (3.16), and

of HigrandFo=Fo(y=0)+Fyonvy, I', andA. Let us first

write Eq.(2.1) as

Hio=H+Hg+H,,
(3.65

t 1 1 2
ajatz|, H,=—r;(0)x+5yl“x .

Hg=2, hA i 5
I

where 7(0)=ZX;c¢;x; . Now due to the expression E@®.23
for c; it holds thatz(0)~ \/y. This implies

Mot _ L 0xt SyT 2 (3.66)
Y oy 57 RS :
The relation{ 9Hyi/ dy) = IF o/ 9y yields the result
F, I JF
= N_ o9 P_ T o, P
(n(0)x)=yI'(x*) =2y Gy a x2r g
(3.67
Putting things together we get
Ui=(Hy=— Log, 42y 00 3.6
=(H)==5;Tx Yoy (3.68

In a similar manner we look at thA dependence. Using
wij=1 A and the decomposition in creation and annihilation

operatorq2.8), we get from Eq(2.16 att=0,

2

. o T
Adan(0)= 77(0)=Z WCiXi ,

(3.69

implying A, H,o=Hg— 7(0)x. Taking averages and using

Egs.(3.19, (3.16, and(3.17) brings

(3.17) Uy=Ug(y=0)+U,. Employing definition(3.46),
Ty=2ad,F, and definition(3.48, T,=—2mdF, and U,
=dg(BF,), one reaches the consistency relation

(ada—Mdym+1dr) BF ;= Bdg( BFp). (3.79

It holds because Eq3.23 taken at a rootn; implies

(adg—mip+Tor)wi=w; (i=1,2,3. (3.7

Typically the Debye frequencl will be large. Therefore,
wheny is not very small, the dimensionless parametEfa
has no reason to be small; it can even be large wheés
moderately small. This means that the ternizx), usually
taken as definition of the interaction energy, is not small;
rather, it is large negative. But it is compensated by the self-
interaction energy yI'(x?)=yI'T,/(2a) and by a similar
term that is present in the bath ener@y73.

Recalling that~, diverges most logarithmically ifv, we
have thus seen that the interaction enetyydiverges lin-
early. It is thus rather large, but nevertheless compensated by
a similar term from the bath. This behavior is not at all
restricted to the quantum regime; it occurs in the same man-
ner at arbitrary largd whereT,~T.

IV. THERMODYNAMIC ASPECTS
OF ADIABATIC CHANGES

A. Generalized thermodynamic formulation

We now make it clear that the relation with standard ther-

modynamics can be continued much further by introducing
the two effective temperatures

2
sz%, T,=a(x?). (4.)
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One reason to do this is that the stationary state for the har-
monic potential has a quasi-Gibbsian expression for the

Wigner function

PHYSICAL REVIEW E 66, 036102 (2002

U= Y2 i 1
_qumn 5 _Zwm[( +w)In(1+w)+(1—w)

e K(P)ITy = V)IT, XIn(1—w)]+ —T2 (4.10
W(p,x) =Wp(p)Wy(X) 2T, V2T A (4.2 | |
For large damping this reduces to
with IC(p) = p?/2m the kinetic energy and(x)=3ax? the 5
potential energy. This expression is quasi-Gibbsian, since U:ﬁ_y nm_I‘ h_a |n7_+1 +—T2 (4.11)
there occur two different temperaturelike variablédotice 2mm  y  2wy| am 6ha '

that the normalization isfdxdpW=1). There occur the

Boltzmann entropies of momenta and coordinate,

1 mT, 1

- [ dowippintwip) Vi 1= 502 4,
(4.3

1T, 1
sxz—f o|xvv(x)|n[W(x)J%]:Eln%Jrz (4.4)

(in S, and S, we ;kipped terms In2). The complete
“Boltzmann” entropy is

Sg=Sp+S=— f dpdxWp,x)IN[W(p,x)%]

The interaction energy of the cloud is now independem,of

Y L o(T),

>mm (4.12

Uine=

provided thatfl” is large.

2. Generalized free energy and the first and second law

The definition of the effective temperatures admits a clear
thermodynamical interpretation. For studying the role of an
adiabatically slow variation of an arbitrary parameter, such
asa or m, that we shortly denote by, the free energ¥ is
defined as

F=-TynZ,—T,InZ,. (4.13
1 mTpT,
:—|nﬁT+ 1. (45  The definitions Z,=fdp exd—K(p)/T,], Z=/dx exp
[—V(x)/T4] bring
1. Internal energy and interaction energy 1 1 T,
The energy of the central particle reads F==3TenmT,= 3 Tin 4.14
2 1 1 For considering changes in system parameters one needs
U= <2p>+ sa(x®)=z 5Tpt 5 Tx- (4.6) g g Y P
T
. . o . d[—T,InZ,]= —InZ,dT,— 5>dz
For a discussion of this identification in systems without a [=TelnZy] pmRz, P
self-interaction term, see Sec. Il A.
The interaction energy, i.e., thg energy o_f the cloud of zif dpe—ﬁpn(p)dlc(p)_spd-rp,
bath modes that surround the particle, is defined as Z,
1 1 Ty
Uin=Uior—Ug(7=0)~U=Up=U=U,= 5T, = 5 T. d[ - TunZ,]= - InZ,d Ty~ >-dZ,
X
(4.7

Comparing with Eq(3.74) one gets the shorter result

roe.

U int— ElN

4.9

At high temperatures one gets from E¢353 and(3.54)

h? h?

U= T+'B—(2a+yr) Uin=55-(6a+79T).

(4.9
Since the energy of the cloud involvés the nontriviality of

the cloud is a quantum effect.
At low temperatures one gets the internal energy

1
== J dxe AMdY(x) - S dT,. (4.1

X

Equation(4.13 then yields
dF= (4.1

with, in agreement with the derivationg.22 and (4.25
below, the work added to the system

—SdT,—Spd T+ dWey

dm da

Wrev= _Tpﬁ +TX5- (4.17

These relations are valid in spite of the fact thaandT,
are functions ofa andm.
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Because of Eqs(4.6), (4.3, and (4.4), the definition JT, dTx Ty|da
(4.13 is compatible with the standard identificatif4,25 Qe=dU—dWrey=| ——+ ——— | &5
F=U-T,5,—T 4.1 T
PSS (418 - 3ﬁ72T2da +O(Tda). (4.23
a

that one would write immediately for a two-temperature sys-

tem. From this relation one will indeed reproduce the stan- Itis seen that@®,,,=0 atT=0 for all y. Using Eqs(4.1)
dard formulation for the first law for situations with two and (4.5 we derive for largey and very largd”
temperatures,

da 1 ma
AS=— o -
dU=d0,ey+ DWiey, (4.19 2a|In(y*am) An(I'm/y)
Q0= TpdS, + T, dS, (4.20 LT (2 +0(T4)
o= Tpd S+ TS, ' 3#2a%In(y*/am) In(y?/am) '
where @,,, is the heat reversible added to the particle. A (4.24

detailed discussion concerning the general definitions of the . .
work and heat is given below, in Sec. VIl A. At T=0 the Clausius inequality says that no heat can be
The generalized thermodynamical relatiqsle—(4.20 taken from the bath; at_ best, heat can go from the Qentral
are in close analogy with those proposed recently for nonSyStem(here, the Br<)2wn|gn particlgo the bath. In our situ-
equilibrium glassy systemg24—26. Analogously to that ation dQ is of orderT_ , w_hlle TdSy\ is of ordeﬂ_'. Since we
situation,F pertains to the particle alone and, except at highonly do powercounting il and both expressions are non-
T, it differs from theF , of Eq. (3.4 in the preceding sec- (rvial, we may replace her&,y by Sg. Thus for the case
tion, which relates to the whole system—to be more precised@>0, where an amount of work)d,>0 is done on the
to the particle and the cloud of bath modes around it. system, the Clausius relation is violated at low but nonzero
Let us recall thaf, satisfies Gibbsian thermodynamics, T. ) o
while F does not. There are many physical systems, such as In the same way one can consider the variation of the
a Josephson junction strongly coupled to the electromagneti@ffective massm. Here one has
field, where the natural object to study is neverthelEss ’
since it relates for that case to properties of the junction only. _ d B p
It is common wisdom that energy is dispersed if the varia- DWrev= f dxdpWp,x) 07—mdm— B f dpWp) ﬁdm
tions are nonadiabatic changes. This is confirmed by Eq.
(7.43, which holds provided the whole time domain where dm
manda vary is accounted for. This leads to the general result = _Tpﬁ’

2

(4.25

dO=T,dS,+ T,dS (4.21) again in concordance with E4.17). This implies
aS d dT, dTy T,\dm
A

om oam m

that is also known from the study of glasses and, more gen- 0Qe,= 2

To— +TX%
erally, from two-temperature systems.

P om

hy
B. Violation of the Clausius inequality 2.rm2

dm+O(T?). (4.26

1. The Clausius inequality at small T . .
In contrast to the previous case there is a transfer of heat

Let us now consider two concrete examples, and study thgven if the bath temperature is zero. Thus, violation of the
Clausius inequality @=<TdS,y, which is one of the pos- Clausius inequality is even stronger in this case, since for
sible formulations of the second law. dm>0 one has'@>0, even thoughrdS,y=0 (for T—0).

For a very slow variation of the spring constanine gets  Thjs sjtuation with 9V,,,<0 corresponds to the work per-

formed by the system on the environment. To emphasize that

dH 1 5 the heat comes from the cloud of bath modes, we note that
dWrev:f dXde\(p,X)EdaZJ dxW(x) 5 x“da the general relations
da Wiey=dF,, dU=dU,—dU;jp;=dQe,+ dW,e,
=Txog (4.22 (4.27
imply

in agreement with Eq(4.17). The first law implies for the
heat added adiabatically to the particle at [®w dQe,=Td§—dUjy. (4.28
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For changingm in the T=0 situation it indeed holds that y—0, whereT, andT, tend to their Gibbsian valuesee Eq.
(3.50] of the harmonic oscillator coupled very weakly to its
dQey= —dUjp (4.29  bath, the situation treated in all textbooks.

Let us notice that in literature some other ways were pro-
for all values ofw, even whenl' is not very large. For a posed to establish effective characteristics for nonunder-
change ina it holds thatdU;,,= O(T#), but Eq.(4.28 nev- damped Brownian oscillator. In RdB] it is shown that there
ertheless reproduces E@.23, because of relatiofB.59). is a mapping to the Gibbsiattunderdamped oscillator

Let us briefly discuss consequences drawn from the viothrough the definition of an effective mass and frequency.
lation of the Clausius inequality in the quantum regime. FirstFor the description of Hg Prokof’ev studies a related model
of all, it appears that it occurs in the overall Gibbsian statewith a gap inJ(w) at small » [40]. In this approach he
so that globally(i.e., when applied to the overall closed sys- makes a different identification for the effective temperature.
tem) thermodynamics is valid by definition. In particular, Surely, choosing a quantity as “effective temperature” is to
since the overall system does not absorb heat during ansome extent a matter of taste, that can only be justified by the
variation of a parameter, and3¥0 is consistent with the induced simplification of the physical results. For our ther-
T—0 case of the Clausius inequalitiater we will see that modynamic approach other definitions of effective tempera-
this is also the case at finite temperatures, whepeigistill  tures will not be very helpful. Oufl, and Ty, however,
zerg. Nevertheless, the local state of the particle is not Gibballow us to formulate the generalized Clausius inequality and
sian and does allow violations as we have seen. We stredgey also occur in the Maxwell-Boltzmann-like for(#.2) of
that this violation arises due to quantum entanglement, whickhe Wigner function. Last but not the least, these effective
leads to non-Gibbsian effective temperatures for the statiorfemperatures enter in the same way as in glasses and other
ary state of the Brownian particle. If the effective tempera-two-temperature systems, such as black holes.
tures forT— 0 would equal their Gibbsian valuésoy/2, the
state of the particle would be pure, which is impossible since 2. Von Neumann entropy

it does interact with the bath. In the next section we shall discuss the von Neumann
When later discussing the Thomson’s formulation of theentropy of the central particle. To investigate it one needs the

second law, we will see that it is perfectly valid for the over- density matrix Corresponding to the Wigner fUnCthhZ)

all Gibbsian state, so that the above violation of the CIaUSiU&Or the harmonic oscillator this can be worked out eXleCltIy

inequality provides us with an explicit example showing thatone approach is to introduce an effective mass and an effec-

at low temperatures the very equivalence between differerfye frequency[9], and insert these results in the expression

formulations of the second law is lost. for the entropy of the effective harmonic oscillator. We found

A further aspect of this matter is the squeezing of phasg more insightful to redo the derivation. The standard rela-
space and entropy, relevant for computing in the quantunggn

regime. In a separate paper we have shown that the so-called

Landauer bound for the erasure of one bit of information, u u _
that arises from the Clausius inequality, is violated in a simi- <x+ 5P~ §> = i dpe PYIW(p,x)  (4.30
lar manner39].

Notice again that the effective temperatures remain finite ) o ) ) )
in the limit T—0 [see Eqs(3.63, (3.64 and Fig. 1, and conne_cts the densﬂy matrix in coord_lnate representation with
both are larger than the bath temperaftr&he fact that they f[he Wigner function. From this relation one gets the follow-
are nonequal is due to a mixed state of the particle. Indeed, 89 formula[38]:
guantum system nonweakly interacting with its environment,
will be in a mixed state even if the whole closed systghe xlplx') 1 exli

article and environment togethés in a pure stat¢e.g., the PIX )= "=
\F/)acuum state k P ’ 2m(x°)
The existence of different temperatuigs, T,, andT for

the subsystem and bath should be compared with the zerotf}, physical meaning of Eq4.31) is clear The diagonal

law, which states that systems interacting for a long time areelementSJ@:x’) are distributed at the sca@, while the

in equilibrium, and share common temperature. Notice eSpanaximaIIy off-diagonal elementsx& —x’), which charac-

cially that the above difference petween temperatures is nqt.t%rize coherence, are distributed with the characteristic scale
consequence of any metastability and/or incomplete equm%/«—pg

bration, so that our effective temperatures do not depend o We h find eigent . d ei £ thi
the dynamics of the particle and have somewhat more defi- e have to find eigenfunctions and eigenvectors of this
nite status compared with those defined, e.g., for glassy syéj—enSIty matrix,

tems[24,25,27. Typical derivations of the zeroth laygee,

e.g., Ref[5] for one of the most clear exampjesssentially / / "N

use the assumptions that the interaction with the bath is very f dx' (X ) a(X") = Pafr(X). (432
weak, and that the total entropy can be considered as the sum

of entropies of the subsystem and the bath. Evidently, thiThe solution of this problem uses some tabulated formulas
last condition is not satisfied in our case, except for the limitfor Hermite polynomials, and results in

(x+x")? B (x—x")?
8(x?)  2r%(p?|
4.3
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FIG. 1. The effective temperatur@s, T, vs the bath temperaturefor two values of the dimensionless damping. For the parameters
involved we take the following value#:y/(4mwm)=1, A#T'/(27) = 100. Left partam/y?>= 80 (underdamping from top to bottomT,, Ty,
T. Right part, the same but withm/ y?>=0.2 (moderate overdamping

11" 1
1| V72 v*2
Pr=—7 e (4.33 dS,n= 7dv. (4.39
v+ E v+ E v— E
f.(x)=c Hy(cx)e 72 (4.34

In other words, the sign of the changeSyy is determined
by the sign of the change in. This holds as well for the
( (p?) )1’4 Ap AX \/<p2><x2) \/mT T, change inSg, so qualitatively they carry the same informa-

=\ 2.2 v= ) tion, and this already was used above to simplify one point

A5(X) of the discussion, namely, the Clausius inequality at Tow
(4.39 Let us stress that von Neumann entr&y; is the unique
_ _ _ . quantum measure of localization, whereas the entroBies
whereH,, are Hermite polynomials, and it holds the®;  5nqg characterize localizations of momentum and coordi-
due to the Heisenberg uncertainty relation. The result for the, ;o separately. The differences betw&grands,  are due

von Neumann entropy now reafi3] to the fact that in quantum theory momentum and coordinate
cannot be measured simultaneously; in this s&)sand S,
_2 p,Inp characterize two different measurement setups. Nevertheless,
n n

for the harmonic particle ifS,y increaseqddecreases then
S,+ S increases(decreasgsas well. Notice that the real
In( v— _) (4.36 importance oSp.andSX becomes.clear vvhen they have to be
used to generalize the Clausius inequality. The von Neumann
entropy cannot be used for this purpose whendyef T, .

il
vTo)T

1
v-5

+_
5 In

The first terms in its large expansion are
3. Clausius inequality at large T

Sy=lnv+1— i1 1 4.3 At low T only power counting inT was needed for show-
N 242 32m* 26886 ' ing the violation of the Clausius inequality. The precise defi-
nition of entropy, and the quantitative difference between the
From Egs.(4.3), (4.4), and (4.5 we notice that the same Boltzm.ann gntropy and the von Neumann entrppy were not

quantityv governs behavior of the Boltzmann entropy, essential, since t_heTu_jS—>0 anyhow. Here we W'Sh to .ShOW
that the same violation already happens at arbitrarily large

(x*)(p?)

1 temperature. To do this we have to use the von Neumann
Sg==In"——-L+1=Inv+1. (4.3g  entropy of the subsystem.
2 h? In this section we consider very large temperatufes,
>h1". Using Eq.(3.54) we find from Eq.(4.26) for a change
This appears to coincide with the leading terms of @g7.  in mthat
It is known to be larger than the von Neumann entropy, and
this is obvious from the sign of the correction terms. -
If some parametera( or m) is varied, then the derivative dQ=[1— Bha
of S,n with respect to it reads 12m

ﬁdm,
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1 B*he(a+ 'yr)} 1 B2h2yT’

dSn=

So, for a changelm>0 it is seen that at arbitrarily large The standarexpectationthat this should vanish is again
temperature the Clausius inequality is violated. The relativeseen to be invalid, and the Clausius inequality is violated for

violation (dQ—TdS,y)/dQ is of ordersi2yI'/(mT2). dT>0. As before, the terms in the right hand side vanish
For a change ira we find only in the weak coupling limity—0, the classical limit
h—0, or the infinite temperature limp—0.
22 43 4
do=1 — i+ B — palat(2/9y] Tda, 5. On our identification of the energy of the subsystem
2a 24m 480m> . . L
(4.41) In Sec. Il A we have considered two physical situations.

In the first case the Hamiltonian contains a self-interaction
282 Bia+ T term ~>_<2. For that case the above results on the Clausius
TdSn=1 — — _ Y da. inequality apply unambiguously. In the second case there is
2a  24m 480m? no such self-interaction, but the potential enefgpx? is split
(4.42  asiax’+ 3 yI'x?, and the first part is counted in the energy
of the subsystem, while the last part is counted with the
These expressions differ at relative orggli*yI'/m?, and interaction energy. Let us now shortly look at what happens

the Clausius inequality is violated fara>0. . when this is not done, and=(H) is considered as energy
The important conclusion of this Sec. is that the violation . ~
of the subsystem. At largeT one will have U=U

of the Clausius inequality already occurs at arbitrarily hlgh+%(yl"/a)TzTJr%(yF/a)T. Since the work is not modi-

temperatures. Later we point out that a similar conclusion. 7 A . e
can be drawn about the violation of the zeroth law at Iarggled by this identification, one will have a shift in the change

temperatures. of heat,dQ=dQ+ 3 yI'[dT/a— Tda/a?]. From Eqs.(4.42
We stress that the Clausius inequality is violated for anyand(4.43 itis seen that then even at very large temperatures
finite coupling, and the violating terms only disappear in thedQ—TdS§,y will not vanish whenevery is nonzero. Thus,
weak coupling limity—0, or in the classical limiti—0,  when there is no self-interaction our identification %fas
equivalent to the high-temperature limit. the Hamiltonian of the subsystem is already mandatory for
having a proper classical limit. The underlying reason is that
4. Clausius inequality for comparing two systems the Wigner function has the Maxwell-Boltzmann form

settled as to whether the von Neumann entropy is the true
physical entropy. As we are inclined to believe that it is, we

have discussed that entropy above. .

Let us, however, now consider cases where there is nE'VOlVing a a.nd .nOIb:a.“L ¥I". This fixes th_e entropy, and
doubt. For systems in true Gibbsian equilibrium the proper?y the Clausius inequality also the change in heat, thus leav-
entropy of the subsystem is surely its von Neumann entropy'd One consistent choice for the energy.

We can now compare two such equilibrium systems, having

slightly different system parameters. In standard thermody- V. EXACT DYNAMICAL SOLUTION

hamics such a comparison does not yield a new insight, as We now consider the situation where our closed system
the equilibrium state of the system is independent of !ts his'starts at timet=0" from a Gibbsian initial distribution. It
tory. We' S.hOUId point out that in the th_ermodynqmms of ould arise if long before the total system was coupled to a
glasses it is customary to compare cooling experiments uperbath,” that allowed relaxation to equilibrium, after
different but fixed Pressures. A related comparison was aIS%R/hich the cyonnection was cl86]. A more realistic situ,ation
”.‘ade. for black holes. it could be shown that comparing theoccurs when the bath has small nonlinearities, that drive the
situation of a single black hole before and after a smaIkNhole system to its global Gibbsian state

amount of matter was added, is analogous to comparing two '
different black holes with slightly different masdesl]. This o . B o
universality pointed at a thermodynamic behavior of black A The case when the initial state is a modified Gibbsian

holes, and the physical framework could indeed be provided We assume that far<0 the system is in a Gibbsian state
by one of us, by drawing an analogy with the thermodynamat temperaturd with certain parametera=a,, m=mg, y

ics of glasse$27]. = y0. At t=0 these parameters are instantaneously changed

For our present case we can compare two equilibriumg a m and y, and the system will relax to a steady state.
systems at slightly different temperatures. This has the benrhis setup generalizes previous studies in which for tites
efit that the work term is absent, thus needing no interpreta= g particle and bath are uncoupled, described/jpy 0. An
tion, and it implies@=dU. Using the fully exact expres- important benefit is that in the strong damping limit the
sions for the energy and the von Neumann entropy, it is thepresent initial state can be close to the final state, which is, of
straightforward to show that at large course, impossible if;=0 but y is large. When making the

IT

For nonequilibrium systems the question has not been
exp( -

1
T 2+ 1ay2
2mp zaX
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change y,—+vy at t=0, an amount of work 3(y For smallA one may use

— y0)[(x?) has to be supplied to the system. This was truly

large in our papef2], where we tooky,=0, butl’ and y * 1

large. In the present setup we can chogge vy, butag#a, _ - 5= (5.10
implying that the work need not be large, even when the == [(i—K) 7+ o) ] sirdo(wy)

Debye frequency’ is large. ]
to find

1. The eigenmodes of the initial state

o 2, 2
In the most general case the Hamiltonian hastfof the e [2Amg(I'+ wj) sing
parametersy, yo, andmg. It reads K myol'2 0

0

2
p; 1
H=2 5—+5 > JmmxA;X; (5.0 I+ w? 2A w;sing
=02m; 2 i7=o el= (5.11)

i 2 2_ 2\
F2+wi m(wf—vy)

with
) where ¢S=¢0(wk). In the zero coupling limity,—0 one
A 0f Yol A A - A — 06 has ¢£—0, so thaty,— wy and indeedef— 6. The latter
0 mg OO ym, Y setup occurs in the standard treatments where bath and sub-
(5.2  system are initially uncoupled.

wherec(? is given by Eq.(2.23 with y, replacingy, 2. The noise

> 2N 12 We assume Gibbsian equilibrium fo<0. Let us now
o0 = \/ Yom; @i _ (5.3 introduce for the creation and annihilation operatm}s by,
' T @P+T? satisfying[ by ,b/ 1= 8 by

Let us denote the eigenvalues Aty vﬁ. From a previous

section, Eqs(3.10 and (3.12, we infer that the eigenfre- : h K( ot i ot “ind
quencies are shifted, Xi EK V2m o, e/ (b e +be "),

1
_ ot Am; ' -
ne= o= —dolwi) A, (5.4 pj=i> T'Weﬁ‘(ble'”kt—b&_'vkt). (5.12
k

where ¢, satisfying G< ¢o=< , is given by

[hA 242 ) .
'}/OFZV X= 2 —( k)Sin ¢(|§ (blel th+ bke7| th)’
¢o(v)=arctan (5.5 K myol ?v

(ag—Mov2) (2 +T2)+ y[v? o Tk

In later sections we only need that for larGe AA(T?+ v2) . .
y b pZE #Sin(ﬁk movk(ibl'relvkt_ible—lvkt)_
k myol 2w 0

0 k

) _ YoV (5.13
S Pol ) {(ag—mgr?)?+ 7’%7/2}1/2. 50

_ They indeed satisfyx; ,p;]=i% &;; due to the normalization
The eigenvectors are condition, as well agx,p]l=i#%, [x,p;]=[%;,p]=0. For
t<0 the Hamiltonian then reads

K K c(? ay 5.7
€= &TT——"5" o : 1 1
Vmomy (@ = vi) H=5 2 fivdbiby+bb) =2 hvk( biby+ 5) :
K K
with normalization factor (5.19
i_1+2 [cf]? (5.9 In the Gibbsian state that describes our closed system for
a? = Mom;(w?— ,,E)Z' ' t<0, the density matrix is
. o . . 1
The following normalization conditions hold: e Ze‘BH. 5.15
k K kAl
ee =4, e'e=74. 5.9 )
zk: e ;0 o 9 It has the Bose occupation numbers
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2 1 ciefcosw;t [ 29T2A  2A singf 2
<blbk+ bkbl>: 1+ h— = Coﬂ‘(—ﬁﬁ Vk) . Z il ! = Y ¢0 Yk
efh—1 2 i=1 Vm; 7T(F2+VE) m i=1 wiz—vﬁ

(5.16
1'*2
+——— | Coswit. 5.1
Combining Egs.(2.16 and (5.12 we now have for the wi2+ r? @i (618
noise
Gradstein and Rhyzhif42] present on p. 40, Eq1.445.2
the equality
h
77(t)=i21 ; VZm-vk c; ef| (bl +Dby)coswit “. coskx 1 o cosh{ ma— ax) -
= i e N
=1 K2+ o2 202 2a  sinhma (5.19
. Pk .
+i ;(bl_bk)smwit : (5.17  According to them it holds for &x=<2, but it actually
! only holds for G=x=<r, while further it is symmetric and
periodic. We have to apply this with=tA, which is surely
To carry our tha sum, we have to evaluate between 0 andr, for the casesv=iv/A anda=I"/A,
|
k 2
cie;cosw;t 2yI'eA cosi@wl'/A—-Tt) wvcogmy /A—wt
GO0 _ 22 gingt O ) WeOS I A~ 1) (5.20
=1 \/ﬁ m([2+ ,,E) sinh(7I'/A) sin(mv/A)
= ﬂ[r singk e "'+ v .cog o+ 1t) ] (5.21)
m(I?+ vﬁ) 0 X o .
|
In the last step we have used E§.4) and neglected terms of 3. The noise correlator

order exp2I'/A), which are extremely small. The primitive

. . . The noise correlator now decomposes in two parts:
of this relation yields

1
s ceksinot | 2yI2A singke Tt K(s,)=5(n(t)n(s)+n(s) n(t) )=Ko(s—1) +Ky(s,1).
= —singse
=1 \/ﬂwi m(I'?+ Vﬁ) 0 (5.29
+Sin( g+ vit) 1. (5.22  The first term is the stationary noise known from the situa-

tion where system and bath were initially uncoupled:

When we insert this in expressiqh.18 for the noise we
have the explicit result

lyﬁkaZAWF—ivk '+iy, )
() Ek: w(I?+ VE)[ o ve o f

sk Lok
><sin¢('§e‘“+e'¢o+'thbﬂ:+e"%"”ktbk}.

©

Ko(s—t)= %fo do Ko(w)cosw(t—s)  (5.25

:i Jw dwi(w)ei“’(s_t)
277 — '

with spectrum

(5.23
o ) — yh 2
The memory of the initial staté.e., the dependence @y, Ko(w)= 1 TR (5.26
mo, and y,, coded in¢g) is washed out after a time, tanhilghwr To

=1/, apart from a harmless phase factor. Notice that the

time dependencies are ekgf), as one would have expected

from Eq.(5.12. Also note that the exp{I't) terms underline It indeed does not involve parameters of the initial state. The
the special role oft=0, just as it does elsewhere in Eqg. connection between properties of the noise and the friction
(2.18. We shall later verify that this passes a consistencykernel is the consequence of quantum fluctuation-dissipation
check. theorem(5,9,17.
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As shown in Ref[43], the quantum noise has correlation member that we assume thdt is larger than other
Ko(t)=—In(T't)>0 at small timest<1/Ml". At T=0 there characteristic frequencies of the damped Brownian pajticle
occurs for large times the celebrated power-law, anticorre-
lated decay 4. Variances and covariance arising from the initial state

The Gibbsian initial state leads to three coupled Gaussian
random variables: the random initial conditiozs= p, and
Z,=Xq, and the noises(t) = n(t) for t=0. More precisely,
when we discretize the time axis in poirtts the function

This is cut off at times larger than the universal quantum?a(t) becomes a set of variables, . Their correlations and

hy
Ko(t)=— 7 (5.27)

coherence time, =#/T, where cross correlations are
- T.(ag,Mq, ¥o)
myT? mt)|]7? 2y 2 _ 1x{80.Mo, ¥0)
Ko(t)=— Y sinh — (5.29 (Po)=mMgTp(ag,Mg, %), (Xo) 2 ,
f Bh
The divergence of this expressiontat0 shows that a regu- K(s,t)= Ew(s) () + (1) 7(s)), (5.32
lator like I" is needed. 2
Let us briefly explain the qualitative reasons for the above 1

structure of the quantum noise. As seen from @q16), the V=0 Si(t)=—{n(t)Dat t
guantum noise is just a weighted sum of the unperturbed (Pox) =0, Si(1) 2<77( JPot Pom(V)).
coordinates of the baths oscillators. Fbr+0 the unper- L
turbed bath appears in its lowest energy level, and since en- _ -
ergy and coordinate do not commupest because coordinate S2(1) 2 (n(Oxo0*+Xo7(1)). (5.33

and momentum do not commuitehe quantum noise fluctu-
ates even folf—0, and brings a nontrivial structure k(t) ~ Fort’<0 we also define the more general quantities
in contrast to the classical case, where the noise is just absent
for zero temperatures. On the other hand, the total intensity Sy(t,t')= E(n(t)p(t')-l— p(t") 5(1)),
of the quantum noise is zero far—0: as seen from Eq. 2
(5.26, [dtK(t)=2vT. For the total integral to be zero, the 1
correlatorK(t) should change its sign at some intermediate "N / /
time t. For longer times the quantum noise is anticorrelated. S(t)= 2<77(t)x(t )X (). (.34
The correlator displays a power-law behavior, since the cor-
relation timescaléi/T is now infinite. A colored noise gen- It holds that
erated by the low-temperature quantum thermal bath will be 5
the main cause of our effects. The classical white noise situ- "— /
ation Ko(t)=2yT4S(t) is recovered by taking the high- Si(tt)=mo ot S(LE). (.39
temperature limit T>4T).
The second term of Eq5.24) is due to the initial corre- The most interesting term reads
lation of particle and bath,

by (= 1
Kl(s,t):Klle_r(s+t)+K12(S)e_Ft+ Klz(t)e—rs, SZ(tyt )_ - yofo dVSIn¢O(V) COthEﬁﬁV
(5.29
r
- I e ’ H —I't
10 —  T24e? X Vcosﬂ sinwt )sm¢>0(v)e
K11=—J do Ko(@)———sif¢o(w),  (5.30
TJ0 ®
+cog ¢po(v)+vt—wt']]|. (5.39
1(= r
Kiot)= ;Jo do Ko(w)|—cog ¢o(w) + wt] It yields
. - fimoy (= . 1
—sin ¢o(w) + wt]|sing(w), (5.32 Si(t)= » fo dv vsinggy(v) cothE,Bhv
TNYo
where ¢, is defined by Eq(5.5). X{=sinpo(v) e "'+ sin ¢po(v) + vt]}
The standard case of initially uncoupled Brownian par- (5.37)

ticle and bath is recovered forg— 0, where¢y—0. Then

Ki, and K;; vanish, making the noise correlator time- andS,(t)=S,(t,0).

translation invariant. In the general case, the initial correla- For the sake of completeness we also mention that for
tion only affects the very short time regintes 7,=1/" (re-  t<0, t'<0
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1 , ) B h °°d 2+ 2 -
§<x(t)x(t )+ x(t )X(t»_ﬂ"}’oJ'o v 7 Sinfgo(v)

1
xcothzﬁﬁvcow(t—t’),

(5.39

which allows us to determinéx(t)x(0)+x(0)x(t)) and
(x2(t)). The results pertain for>0, t'=0 if the system is
not modified at =0, viz. ap=a, my=m, yy=y. Therefore
they allow a consistency check on the averagé{pbf Eq.

(2.19 in the stationary state. For lardé there occurs an

apparent time dependened exp(—I't), arising from its first
two terms—(7(t)x(t))+ yI'exp(=Tt){x(0)x(t)). It can now

be verified that, in the stationary state, these large, fast termﬁ(s)

cancel, and so do the other time dependencies.
The general case where the system is modifietl=ad
will be considered now.

B. Exact solution of the Langevin equation

Now we consider the exact solution of the quantum

Langevin equation,

=2

. t .
D b= —axyx(0)- fodt'y(t—t'>x<t'>+ n(0),

(5.39

PHYSICAL REVIEW E 66, 036102 (2002

: i} to.
p(t)=p(0)f(t)+mx(0)f(t)+ Jodt'f(t—t')ﬂ(t’),
(5.45

where f(s) and y(s) are the Laplace transforms d{t),
y(t). Expanding f(s) for small s, one finds thatf(0)

=f(0)=0, f(0)=1. Now we turn to our standard case of
the Drude-Ullersma spectrum,

_ ~ yI
Yt =oTe M A= . (5.46
For f(s) one has
m(I'+s) I'+s

T (stT)(m2ta)tsyl (St wy)(S5+w,) (St wg)

I'+s

-, 5.4
Py~ S (49
whereP3(s) was defined in Eq(3.23), where also its roots

w1 5 3 are discussed.
Likewise, one has for the initial Gibbsian states

The general solution of Ed5.39 is obtained with the help  One may write

of Laplace transformation. The reader may recall the follow- 3

ing standard relations between functigk@), B(t) and their
Laplace-transformg£{Al=A(s) = [ cdte S'A(Y):
c“tdt'A(t—t')B(t')J=A(s)é(s),
0
L{A}=—A(0) +sA(S). (5.40
One gets
msxs) —mx(0)=p(s),
SP(s)—p(0)=—ax(s) — ¥(s)sX(s)
+7(s). (5.41)
Together this yields

A 1 - X
X(8)=—[mx(0)s+p(0)+ 7(s)]f(s), (542

where

~ m

f(s) (5.43

T me+ar sy(s)

Thus, the solution of Eq5.39 reads

—X(O)F O+ = p(0)f(H)+ = [ dtf(t—t) it
x(O=x(O)f(t)+ —p(O)f(t)+ EJO vit=t)n(t"),
(5.44

e mo(T' +5) 548
of8)= (s+T)(Mes2+ag) + syl '
. f. 3
f9=2 5o TO=2 fie™t,
F—wi
(5.49

i:(wi+1_wi)(wi—1_wi)’

where, in this connectionp,= w3, not to be confused with
the definitionwy=+/a/m elsewhere in the work.
For largel’ one has

m 1
flz—fzzy—w, fa=F (5.50

with w defined in Eq(3.32.
Let us now set, in analogy with E¢5.13),

#A(T2+ v2)
x0=3 \/TZV”k [ BB+ B (Dby].
k

(5.51)
This implies
RA(T2+v2) . .
p()=m> \/ ———— [BOb+ B (Db,
K myl vy
(5.52

One has from Eqs(5.44), (5.47), and (5.49 B=B(vy),
with
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3

2 ; —w;t —T't ivt —w;t
Y iyt Wy 1 e —ive®—e igo) &€
g(v)—\/%sm%(v); fi(—w+ive +m(F2+v2)iZ:lfl sin ¢o(v) o T
(5.53
|
Thee "'t terms cancel since, due to E®.47), which brings
f: A 2 3 2.
—==f-n=0. 659 MmN ymefly) o
w—T 24,2 <1 wi+iv T (i ot¥).
m(I'“+v9) =1 Wi vomTfo(iv)
Next one can check that (5.56
. m(I2+ »2)sin ¢(v) This leads to the exact result
e = —
yI2vt(iv) _ 8
Blr)=poe"+ 2, Bi(v)e ",
2. 2vei <
ei%(V):mo(l“ +v A)sm bo(v) (555 | |
Yol ?vio(iv) Bo(v)=sing(v) e ¢ 160
()= sindo(v) ;| \/o(—wi+iv)+ 12 7o (5.57
Bi(v o(v) f; Yo witiv m(C+1 .

For large times only the first term remains, and the initial

condition only enters through its phase factor exgtid),

T =0)  yomTo(iv)(w+iv)]

In the rest of this work we shall be mainly interested in
the situationyy= vy, mg=m while a, is different from but

which has no physical effect, thus showing that the centratlose toa. One gets in the regime of lardé andt>1/T" to
particle relaxes to its equilibrium state independent of itslinear order ina—a,,

initial condition. In the case,=1, the expression foB; can
be simplified by writing it as the ratio of two polynomials,

and using the fact thab; is a zero of 1f(— ), allowing to
eliminate thew? term of the numerator. This brings

a—ag+ (my—m)v?
m

fi
wi+iv’

(5.58

Bi(v)=singo(v)

which is still exact. Using Eq5.595 we can also express the
result as

2w bt [ :
ﬂ(V,t)Zm f(iv)e'+[a—ag—(m—my)v° ]
3 f
xfo(iv);l wi;iye—wit . (5.59

It is trivial to check that, when no change is madetat0
(vo=vy, mg=m, and ag=a), the result B(v)
=singexp(rt) shows that Eq(5.51) extends the negative
time behavior(5.13 to all positive times, even though the
noise and the damping had a spedialit in that case un-
physica) role int=0.

. . . a—ag[e “it~ "
—a igo(v)—ig(v)+ivt | 14 o
B(v)=sing(v) € 1 et
e*o)zt*ivt
T epriv )] (560

wherew is defined in Eq.(3.32 and w;, in Egs. (3.24—
(3.38.

VI. ENERGY OSCILLATION AND NEGATIVE
ENTROPY PRODUCTION

We consider the dynamical evolution of a system initially
in equilibrium characterized by a spring constagt which
att=0 is instantaneously changed a@=a. These param-
eters are connected as

a0=(1—ao)a. (61)
We shall assume that|<1. We also assume a large Debye
frequencylI’, but this does not lead to principal changes.

A. Nonmonotonous relaxation of the energy at lowT

Let us now consider how the system relaxes to its steady
state. From Egg(5.51) and(5.16) one has
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2 (I2+v?)
x%)= d —B*Bcoth Bhv,

vz)

(p?H=m f dv————— ﬁ*Bcoth Bhv. (6.2

PHYSICAL REVIEW E 66, 036102 (2002

1. Classical regime
At large T the tanh linearizes. One can do contour inte-
gration to find for overdamping, i.e., far=am/y?<% and
w=+1-4e>0, the exact results

TyT sinhwr)]?
Cu(r)=——e 27 costiwr) + ———/ , (6.9
The infinite time values, discussed already in E§s47) and
(3.48, can be checked from these expressions. For the evo- myT . 5| sSinh(w7) 2
lution from the initial state to these values, we shall consider Cp(n=—-e "A-w)— —|, (610
timest>1/T", and we can just take the limit— o since no
divergences occur, except for thd'lterm of the static part T sinhwr)]? ,
(p?) at T=0. Inserting Eq.(5.60 we get to linear order in CE(T):HG ™\ | coshwT) + —w +(1-w?)
g,
i 2
sinhlwr
v 5 1T fia c. 7 6.2 —r\f\, ) ] (6.17
(t)——a(x )= +a02 om (63
For overdamping (&w<1) these functions are_strictly
_ (p?) -~ ha yt positive. For underdamping one has to replace iw, im-
Ki)=—-—=5Tp+ao5—Cpl 5|, (6.9 i — , e
2m 2 2wy F\2m plying coshwr—coswr and sinh@wzn)/w—sinwn)/w. Then
Cyx and C, get zeroes, but remain non-negative, whie
1 1 fa yt remains strictly positivéFigs. 2 and 3
U= T + 2T +“02 Ce om/’ (6.9 For the relaxation of the energy this implies
with the relaxation functions of coordinate, momentum, and U=T+ EaOT { coshiwr) + sinhiwr)]?
energy, 2
2 sinh(wr)]?
C.(r)= 2(1-w )fw dy ycoth(Bfi yy/4m) +(1-w?)| ————| (e 2" (6.12
" W S [(1w) 2y (L= w) ]
e (L-wtiy)r o= (L+wtiy)7 For strong overdampings(—0, w~1—2¢) this becomes a
_ i (6.6)  simple exponential decay,
1-w+iy 1+w+iy
— - —deT
c )_ . dy ycoth g yy/am) U—T+2a0Te . (6.13
P w 2.2 2.2
—o[(1+w)“+ 1-w)“+ — —
3 Yl Y] _ In case of underdamping;>%, one hasw=iw with w
iy(1—w)e’(1’W+'y)7_iy(1+w)e’(1+""+'y)f = 4e—1. This yields by analytic continuation
1-w+iy 1+w+iy '
1 sin(wr
(6.7) U=T+ EaOT[ cogwr)+ n( )|
« dy ycoth B# yy/4m)
E(T)_W 2 +1+W n2 —-27 6.1
—w [(1—iy)2—w?] = Si (WT) e “". (6.19

{(1_W)e—(1—w+iy)r (1+w)e~ +wrinr
>< -

(1—w+iy)? (1+w+iy)?

(6.9

Of course, one just haSg=C,+C,. The integration vari-

The term multiplyingeq is an oscillating function, and is
strictly positive. Its derivative

. aoT 1+w?
U= Yo siné(wr) e 27
m w2

(6.195

able isy=2mv/y. The appearance of the dimensionless time
scaler= yt/2m is natural, since in the underdamped regime,has zeros but does not change sign. Physically this means:

wherew is imaginary, the damping time is jusf=2m/vy,
see Eq(3.38. In the overdamped regime the time scatgs
andr, from Eq.(3.35 are coded in the terms {Aw) 7 in the
exponentials,

damping one ha¥ r,= (1—w) yt/2m—at/y.

depending on the sign af,, both the kinetic and the poten-
tial energy oscillate either above or below their final value,
and the total energy flow is unidirected; it goes towards the

respectively. In particular, for strong over-bath whena>a,, i.e., ;>0 and from the bath to the par-

ticle in the opposite case.
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® coth(b+ bu/W) ucosur+sinur
1 CX(T)ze*Tf _du —
-w u’+1 1+u?
0.8
cog2wot+ur
| Sosi2wt HuT) (6.18
0.6 2w
0.4 where a correction factor-tu/w in numerator and denomi-
nator have canceled, and we denoted
0.2 1
b=§ﬁhw0. (6.19

1 2 3 4 5 Z

FIG. 2. The underdamped situatioB, as a function of the Evaluating this to leading order invi/we get
rescaled dimensionless tinme= 76= 7/|w|, normalized to unity at

z=0, for largeT and §=0.5. ) Ty 3 Bhwg
=
X 4\Jam\ sint? % Bhwg

In the limit of weak damping@> 1) one gets

1 sin(2wt) + coth 8% wycos Zth) e %"  (6.20
U=T+ anT I 1+ ?0] e_yt/m,
W

For largeT this agrees with E(6.9), of which the last factor
now becomes céet. For T=0 andr=0 it agrees with Eq.

U=— yaol sir?(wot) e~ 7, (6.1  (6.27) below. Likewise,
m
. - . Ty 7 Bhag
Notice that the small but oscillating term hhas become of Cp(7)= —
leading order fotU. 4yam| sint? 3 Bhwg
2. Weak damping regime —Coth% Bh 00COS 2wt ) e 27, (6.21)
In the weak damping limit it holds that

As in the classical limitCg=C;+C, picks up a contribu-

W= —iw~ 2 am>1. (6.17)  tion of Cg that is subleading but oscillating; it is most easily
obtained by evaluatinG¢ in a manner similar to E(6.18),
For performing the integrals, we writ€,(7) first as an in- Ty 1 Bhw,
C e . . — . _ C,(T)Z —
Fegral from O to |£f2|n|ty, and make the shift-w+u, yield E Jam | sint? L Bhw
ing up to order <,
c —coth3 Bhwycos 2wot> e 2.  (6.22
1
0.8 When insertingC,+ C, in Eq. (6.5 we have for the leading
' decay of the energy
0.6
U 1ﬁ cothlﬁﬁ + T (2 Bho)” g v/m
= ~hw = w ~ e —— y
0.4 27702 °7 270 Sink L Bha,
(6.23
0.2
showing that to leading order i in the weak damping limit
+ s £ - 5 >z the energy does not oscillate, but monotonically leaks into

the bath(when ay>0) or is taken from the battwhen «

FIG. 3. The underdamped situatio, as a function of the <0). At low temperature this happens with an exponentially
rescaled dimensionless tinze= 6= 7/|w|, normalized to unity at small rate. But the rate of energy transfer, determined by Eq.
z=0, for largeT and §=0.1. (6.22,
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aT| (% Bhwg)? value is, to leading order i, just opposite to the one of
__ Y% 2 0 the kinetic energy. Consequently, the particle already has the
2m | sink? 3 Brwy proper energy, but this will not remain so; fagp>0 first a
flow from the bath will occur and then a reversed flow, after
3 Bhwg which the equilibrium will be reached by a second energy

flow from the bath to the particle.
At large times >1) and stillT=0 one gets in case of
overdamping {>0)
is an oscillating function that changes sign in each period
whenevefT is not infinite. Thus the rate of energy transfer is

- COS 2wyt | €™, (6.24)
tanhs B w, 0 )

not unidirected except for the classical limit. When averaged ] sinhwr
over one period, the cosine is subleading and a unidirected Cu(r)=— 282729 coshwr+ ’
flow emerges.
3. Quantum regime for nonweak damping C(n 1 e7Tsinthr
T)=— 3
At T=0 one hasycoth(@hyy/4m)=|y|. For time 7=0 P g273 w
one finds by direct integration
_ sinhwr
1 1-w? 1+w CE(T):—2 5 5€ | coshwr+ , (6.29
_ ET
C(0)= o o Inl—W' (6.295
, and for underdampingw(>>0)
and we define the shorthand
1 1+w o
_ - —  sinwr
Mw)= 2W|n1—w' (6.26 Cu(1)=— e | coswr+ —|,
26272 w
It further holds that . —
1 sinwr
Co(n)=——Fze —,
Cp(0)=—C,(0), Cg(0)=0. (6.27) 27 w
These results can be verified using the relations Ce(7)=— %ef CoSwT+ SIrEle. 630
ET w
a((1=0)) ~T,(a) = —T,(ap)~T,(a)
X ap 7Y X The latter expressions all exhibit an infinity of oscillations
aroundC=0. For overdamping one h&3,(0)>0, while it
B ,d(Tx/a)  ha .0 has a negative tail; consequently there remains one oscilla-
R PRy (0} tion even in the limit of strong damping. In that limit
(v large, one may ser=(1—w)r=at/y. For large, but
L 2(t=07 )~ T (a) = — apa e — ay 2 (0) ixidsse(;p(—?fr)]/ea% gets Cu=Ce=-2expColler, Gy
m P “da Oy PN

(6.28 4. Strong damping at low T

Let us now writeC,(t) as
So after the instantaneous change of the spring constant (
>1M"), the deviation of the potential energy from its final Cy(t)y="f(r,w)+f (7,—w), (6.3)

2(1-w?) = ycoth(by/\V1-w?)[ (1L—w)cosyr—ysinyr]
fu(T, W)= W e W)Tf dy

o [(14+wW)2+y2][(1—w)2+y?]? , (6.32
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whereb was defined in Eq(6.19.
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In the zero-temperature limit one takgsothp y\s)=|y|

We investigate in some greater detail two particular casesand gets

w—1 (strong overdampingandw=0 (the border between
overdamping and underdampingFor the first case one
changes the integrating variable-y/(1—w) and arrives at

fu(m,w)="f,(2e7),

f(o)=e 7 fx dy y coth( b y\/e)[ cosyo— ysmya]

- [1+y?]?
(6.33
(6.3%)

Recall thatw=\1—4¢g, and in the limite—0 one hasw

=1-2e—1. It is seen that in this limif,(7,—w) is small
compared td,(7,w) due to an extra factar and, above all,
a quickly decaying exponentia 2"=e~?'®. Thus, we will
omit f,(7,—w). Then one has a scaling form

at t
CE(T,S):CX(T,S):fl(ZST):fl<7> =f1<7_—).

(6.39

Notice also that for this function small and large tempera-thus hasCg~

tures are determined by the dimensionless ratiafe
=3Bhaly=3h/(7,T). If this parameter is smaliwhich is

y[cosyo—ysinyo ]
[1+y?]?

fﬂoj=2e’”J:d (6.37)

This function can be exactly expressed through Meijer func-
tions, but we will not write this representation explicitly,
since it is useful only for numerical computations. Notice
that Eq.(6.47) can be once more checked with help of Eq.
(6.37. The behavior off {(co) for different temperatures is
presented in Fig. 4.
It starts with f(0)=1, becomes negative atr,

=0.407 211889989, goes through a minimum, and finally
bends up to 0 for 7—o0. The minimum is characterized by

O min=0.879 087 308 04

—0.0918980496, c,=f] 0.404 842.

(6.39

f1(omin) = (omin) =

In this limit C, has an interesting behavior. We discussed
already thatC,(0)=—C,(0). For small o, C, quickly
grows, goes through zero, and then becomes of argstart-
ing aselnl/o for small, but not too smalt. For finite s one
C,, implying that now the total energy makes
one oscillation, despite the strong damping.

For ag>0 it says that, after initially energy has been put

always achieved for large temperature and also for fixed temen the particle by the change @af,—a>ag, this energy
perature and large dampinghen we go back to the situation leaks away into the bath. However, at intermediate times
of Eq. (6.13 because more energy leaks away than in the final state, so a part has
f(Der)— to come back at moderately late times. This honmonotonic
1(2e7) behavior (“bouncing”) is familiar of the noise correlator,
which is anticorrelated at large times in the quantum regime.
Let us now turn to the behavior &, for w=0,

—deT

el 6.36
ﬁwO\/; .
combined with Eqs(6.5 and(6.35 yield (6.13.

ycoth b y) [ (1—y?)cosyr— 2ysmyr]
[1+y?]*

y cothlb y) [cosyT— ysinyr]
[1+Yy%]°

CX(T)ZSTein:dy j dy
(6.39

The behavior of this function is depicted in Fig. 5. It is seen that the case8@ andw=1 are qualitatively similar. As
expected, the negative tail @,(t) is more pronounced fow=0. ForC(t) one has

Co(t)=F (W) + (7, — W),

ef(lfw)rfw dy

The behavior ofC(t) in the overdamped situation can be studied along exactly the same lines@gtpr

y coth(b y+/e)[y?cog2 e y) +y Sin(2 € 7y) ]
[1+Y?]2 (1+ €%y?)

(6.40

2(1—w) y coth( b y/\J1—w?)[ y2cosyr+y(1—w)sinyr]
- .

fo(mw)= [(1+w)2+y?] [(1—w)?+y?P?

(6.41

cpa)zzee*kff dy
0

—2e‘27J dy
0

coth( b y/\e )[y cog 2 7y) +sin(2 ry)]
[1+y?]?

(6.42
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Due to the additional factar, this is smaller thaiC,(t) for 7>1, and this justifies Eq6.35. Nevertheless, on the qualitative
level C,(t) displays nearly the same behavior@gt). This is demonstrated by Figs. 6 and 7.

Let us now investigate properties @f,(t) in the underdamped limit, whene=iw=i4e—1, andw is real. In the
additional weak damping limit one has~ 1/y— . Using Eqs.(6.32 and(6.33 one gets

r( byw ) _ _ _
y cot — [(Lw—i)cos(yTw)—y sin(yrw)]

8(w2+1) (= w241
Cyt)y=———e"Im| ™| dy — — , (6.43
w* 0 [(A+i)2+y?] [ (Iw—i)2+y?]?
cot?—( byw [y2 cogyrw)+ (1w —i)y sin(y7w) ]
— T -
C,(t) 8 e rim| (thw—iye™ [ d ' s - (6.44)
== m — 1 — — .
ol w2 ( )e 0o Y [(LW+i)2+y2] [(Lw—i)2+y?]?

The behavior of these functions, as well @g(t) =C,(t) %

+Cy(t), is depicted in Figs. 8 and 9 fdr=0. It is seen that fo d7Cy(7)=8[B(1,5—2B(2,4—-3B(3,3]=0,
for the initial time of ordery/, Cy andC, oscillate with the
amplitude higher for largew.

(1-w)?-y?

J,areum=-w | ayi-

5. Moments of the relaxation functions at low temperature 1-w)?+y?]3

We can also determine the integral 1
=-——[B(1,2-B(2,1)]=0, (6.46

" 1-w
J’ drCy(7)
0
. whereB(w,z)=I'(w)I'(2)/T"(w+ z) is the B function. It ac-
=8(1—w?) dy ycoth B# yy/4m) tually holds for allw that
—=[(1+w)?+y?P[(1-w)?+y?]®
X[(1=w?)?=2y*(1+w?)—3y"]. (6.45 C§O>(T=O)EfxdTCX(r,T=O)=O. (6.47)
0

At T=0 it can be simply checked that it vanisheswat 0
and neaw=1, This surprising zero-temperature outcome will have impor-
tant consequences when it comes to work extraction. It is

£
1 C
1
0.8
0.8
0.6
0.6
0.4 0.4
0.2 0.2
t
0l 03 7.5 y t 0.5 1
: -0.2

FIG. 4. The case of strong dampin§,(t) as a function of
dimensionless timé& normalized to unity at=0, for different val- FIG. 5. The case withv=0 (the border between overdamping
ues of the dimensionless temperatéire1/(b+\/e) = 2T y/(%a). Up- and underdamping C,(t) as a function of dimensionless timge
per curve f— o [taking into the normalization the expression given normalized to unity at=0, for different values of the dimension-
by Eq.(6.36]. Middle curve,6=1 [see Eq(6.33]. Lower curve, less temperatured=1/b=T2m/(%#a). Upper curve, 6=1,
T=6=0 [the expression given b§.37]. In the latter case there is middle curve,§=0.2, lower curveT = #=0. In the two latter cases
still an oscillation, despite the strong damping. there is an oscillation.
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c It can also be verified that at zefioand arbitrarye,
0.6
0.4 (1) - I 2w
Cyl=- dTTCX(T,TZO)z—ZCX ,
0.2 0 24¢
T
1 2 3 4 5 : t
~0.2 2 2 2\3
~ 3+w) (3w —1)+3(1—w)°A (W)
-0.4 C(Xl):( ( - ( . , (6.49
w

FIG. 6. The overdamped situatioa=0.1 (w=0.7745).C(t) ) _ )
as a function of time, for different values of the dimensionless temWhere\ is defined in Eq(6.26), and

perature 6=1/(b\e)=2Ty/(ha). Upper curve, §=33; lower
curve, #=0.

similar to [”..dtK(t)=2yT—0 for T—0, whereK(t) is 2 “dr 2 !
the autocorrelation function of the quantum noise. For small C= _j d7 7°Cy(7,T=0)= 23 3
T one gets ’ e (6.50

64?2 mT
3(1-w?) \ Ay(1—w?)

C(O)T:fxdc = . . :
(1) o A7) These coefficients are exact and positive fomallThe minus

signs in the integrals arise because the negative tail of
6.48 C,(7,T=0) gets a larger weight than its positive center.
' These results follow from the Laplace transform

1 2

T12

2myT
ha

Cx(Zu,T=O)=f drCy (7, T=0)e 2"
0

1 N 1-w? | (1+2u—w)In(1+2u—w) (1+2u+w)In(1+2u+w)
2uw?  8u?(1+u) (u—w)w(1l+u—w) (u+w)w(1l+u+w)
2u%(1+u)?+2u(1+uw+w?—w? 2u%(1+u)?2—2u(1+u)w+w?+w?
In(1—w)— In(1+w)]|.
(u+w)w3(1+u—w) (u—w)W3(1+u+w)
(6.51)
0.85 1 0.6 1
s 0.55 2 n 0.4
9 0.25 9 0.2 2
g -0.25 3 @ -0.2
Vo 55 O 0.4/ 3
-0.85 -0.6
2 4 6 8 10 12 1 2 3 4 5 6
dimensionless time dimensionless time

FIG. 7. The zero-temperature behavior of thdunctions vs the dimensionless time. Left pavt= 0.9 (strong overdamping 1, C,, 2,
Ce=C,+Cy, 3,C,. Right part, the same but withv=0.1 (weak overdamping
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At T=0 all even moments of,, vanish. This implies in
particular that the integral o€g=C,+C, vanishes. The
Laplace transform o€ reads in that case

(‘:E(zu,T=0)=f drCe(7,T=0)e 2"
0

(1+w)(1+2u+w) 1+2u+w
= n
4uw(l+u)(1+u+w)  1tw
(1-w)(1+2u—w) 1+2u—w

CAu2 — : 1-w
4uw(1l+u)(1+u—w)

(6.52

The Laplace transforn€,(2u,T=0) follows asCg(2u,T
=0)—C,(2u,T=0).
For later use we evaluate the related coefficients
1 ayT

0 2
CO= | drCe(r)== ed) +O(TH
S G T P ’

= 1
cdH= —f d7rCe(7)= —= +O(T?),
0

207 (6.53

% 1
c<2>=—f d27Ce(7)= —— + O(T?).
E 0 77Ce(7) 243 (T9)

They differ from theC{®*? only by the factorC!»), which
goes to unity for large damping.

B. Entropy production versus energy dispersion

PHYSICAL REVIEW E 66, 036102 (2002

where 5;5 is small as I/'. Indeed, from this definition and
the exact dynamical solutiofb.44), (5.45 one may derive

. . t
$h(0) =Mxa()+ Pyl + | dt g(t—t) (1),
(6.55
where

3 2
_Z wl R —wit
9= 2 fie

(6.56

is of order 1I' for largeI’. Now recall that for the harmonic
situation the Wigner function is given as

W(pixlt): J’ de dXOW(p01X010)<6(p(t)_ p)

X 8(X(t) —x)), (6.57

where the average is taken with respect to the noise,
W(p,x,t) andW(pg,Xq,0) are final and initial Wigner func-
tions, whilep(t), x(t) are the solutions of Eq2.18) for the
corresponding initial conditions, and for a particular realiza-
tion of the Gaussian noise. Equatigh.57) is not the most
general definition of the Wigner function, but it is exact for
harmonic systems.

We now seek a closed equation for the Wigner function
(6.57). DifferentiatingW(y,,y,,t) we get

To derive the rate of entropy production we first need theynhere

Wigner function and its temporal evolution.

1. Fokker-Planck equation for the Wigner function

To derive the evolution equation for the Wigner function,

we shall write the Langevin Equatid2.18) in the form

p=—ax—_p+y+dp, (6.54

2.5 5 7.5 10 12.5 15

IW(y1.y2,) ﬁ(ka)_i B
ot A oy a0y
X S(x(t)=y)[n(t)+ dp(t)]), (6.58
vi=—ax-2p, v=" (6.59

are the damped Newtonian acceleration and the velocity, re-

spectively. The termSp is a linear combination 0bo, Xo»
and n(t'). Due to the Gibbsian initial state, these are Gauss-
ian random variables and their cross correlations were given

w

Z N A
~/ v\

2.5 5 7.5 10 12.5 15

FIG. 8. The underdamped situation. @, as a function of the rescaled dimensionless time-/|v_v|, for T=0 andW=2, 2,Cpas a
function oft, 3, C¢ as a function ot both for the same values of the parameters.
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1 a
e W(p,x,t)=

10 1 2w\ 4amKV—m?2V?2

° A ] aKx?—Vpx+Vp?4m
o & xexpl — .

—~— 4KV—mV?/a

-5

(6.64
-10
s 3 Inserting this in Eq(6.62, one finally gets

5 10 15 20 25 m . .
D, (t)=2K(t)+ —[K(t)+V(1)], 6.6

FIG. 9. The underdamped situation. @y, 2, C,, 3, Cg, as p(t) ® 7[ ® ] 669

functions of the rescaled dimensionless titwer/|w|, for T=0 and
w=10. As compared with Figi8), the amplitude of oscillations is _ m - Vs m..

much larger. It is seen also th@{ andC, are quite close to each Du(y=2V(t)+ 0 [KO+VO]+ av(t)+ av(t)'
other. (6.66

in Egs. (5.32—(5.37). Let us denote these variables by the Let us also define the time-dependent but currentless state
vectorz={pgy,Xq,7(t)}, and their correlations by the matrix

Mij=(z;z;). One then has for its joint distribution Ja p?
Wg(p,X,t)= expg —
. . 27\ mDy(t)Dy(t) 2mDpy(t)
Po(z) = ————ex ——z-M--lz-). 6.6 2
ol2) Jde(27M) p( 2M;7). (660 _%X(t) (6.67)
X

Using the relation
g for which indeed the right hand side of the Fokker-Planck

S equation(6.62 vanishes, though the left hand side does not.
ZiPO(Z):_E_ Mijﬁ_PO(Z) (6.61) This is the locally stationary distribution. For sufficiently
] Zj long times, that is wheD,(t) andD(t) are changing with

time slowly enoughWg; becomes a solution of the Fokker-
one can perform a partial integrations, which brings a closegblanck equation.

equation folW. The final result is that we obtain a diffusion-
type equation(Fokker-Planck-Kramers-Klein equatipfior 2. H function and entropy production

W itself L . . . .
itselt, The H functionis defined as the information theoretical

distance between the actual Wigner functMx,p,t) and

M = /W= — P M 7 Zp+ ax|w the locally stationary Wigner functiow,(x,p,t),
ot m Jx dpl\m
W(x,p,t)
2 J*W H=f dxdp Wx,p,t)In—————=0. (6.68
+[DX(t)_Dp(t)]&pé’xW+ 'pr(t)Ev We(X,p,t)
(6.62  The™ function is non-negative due to the inequality
where the diffusion coefficientd, andD, are instantaneous ﬂlnﬂz W 1 (6.69
functionst. (Notice that in Ref.[2] we used the notation We We™ Wg 7 '

Dyp=D,,D=D,,Dy,=Dy—D,.) The derivation along this

road is somewhat lengthy. A quicker way to derive the result

is to use the solution of the Fokker-Planck equation, deter- HBJ dxdg W(x,p,t) —Wg(x,p,t)]=0. (6.70
mined by the moments

) Thus,H is equal to zero only fotW(x, p,t) = Wg(X,p,t), i.e.,

on _m. o in the stationary state. Since values Hf at intermediate

(P9 =2mK(1), (px)=_V(1), (x)=_V(1), times are higher than its final value, it is reasonable to look at
(6.63 its rate of change. In particulgl changes with time due to

the time dependence of the reference Wigner distribution

whereK (t)=(K(p)) andV(t)=(V(x)) are the expectation Ws,, whereas the remaining part dff{/dt appears to be

values of kinetic and potential energy, respectively. Thenduced solely by the battsee below. We define theen-

time-dependent Wigner function thus reads tropy production ¢S/dt by
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. W(x,p,t) d;S endangered. It is also clear that for a free Brownian particle
: =f dxdp V\ét(X,p.'f)Wpt)Jr at (y=0) the entropy production is zero.
st 6.71) Finally, we mention that the difference betweéBg/dt

and the entropy production is just the entropy flux,
This leads to

dS dS; diS
diS _ fd J LGN 67 Wzﬁ__ dedeXpt)anst(Xpt)
qr o) ddp W Ing G DT (672 6.7
This definition has the following properties. It takes the value
(1) It is equal to zero in the stationary state. . _
(2) It is equal to zero if the Brownian particle does not deS  K(t)  V(b)
couple with the bath. 9t D0 ® + D)’ (6.78
(3) It is non-negative in the classical case, wh@e P X
=Dp=T. . Let us recall that in the relaxation process no work is
The last two properties are proved below. performed, so a change in energy can only be due to a
Using Eq.(6.67) and denoting change of heat exchanged with the bath. Therefore, the last
relation can be written as
RO.P.1) W(x,p,t) 6.73
X,pt)=—r, .
P Welx,p,0) ds o 0
e p X
- =+ = (6.79
one gets dt D, D
dH where Q,=K and Q,=V are the changes of heat in the
E:f dxdp[ £LW(x,p,t) ]InR(x,p,1) momentum and coordinate sector, respectively, wbilg,
are the corresponding diffusion coefficients in the Fokker-
_f dx dp R, p,t) We (X, p,t) Plar.lck operator of Eq.(6.62. Notice that th|s entropy flow
deviates from the standard expressiah.S/dt=9Q/T

= Qp/T+ Q,/T, which does not make sense sinQedoes

:f dx dp Wx,p,t) £TInR(x,p,t) not scale withT at low T.
The Boltzmann entropy reads

_f dx dp R, p,t) Wel(X, pit). 6.74 _f dpde\(p,x,t)In%W(p,x,t)

where/ is the Fokker-Planck operator of the right hand side

; 1 m
of Eq. (6.62. Noting that _ 1+—In 3 <4KV— /2 (6.80
R R JR|?
LInR=2LIR=- R2 YDp(t) ap +[Dx() Its rate of change is
B IR IR 6.79 dSs  2aKV+2akV—-mW 6.80
% op dt 4aKV—m\2 '

and making once more integration by parts one ends up with The entropy production is the difference between them

and appears to be quadratic in the deviation from the equi-

di_S:f dx de\/(x—,p,t) D, (t )[M librium state. To second order in the small parametgy
dt R?(x,p,t) P defined in Eq(6.1), it becomes
&R(vaat) aR(Xaprt)) 2 12 ’ ’
+ — . d S h aa C C
(D) =Dp(O—7, ap C 2 L acprep| 24 =X
dt 16’7T2 2 T2 T2
(6.76 . P
Now it is clear that in the classical white-noise limit, where T2 C!’ c"] (6.82
D,=D,, the entropy production is non-negative. The posi- 2T, Ty

tivity of d;S/dt just means that from the global viewpoint the
approach to the stationary state is monotonous. In contrast, iwhere CF’, denote the dimensionless derivatives
the quantum case the positivity of the entropy production iIC,, ,(7)/d.
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3. Classical limit BHT PBhwg
In the classical limit, wherd,=T,=T, the rate of en- Ay= w(ﬁ) —Rezp<| 2w ) (6.99
tropy production thus becomes the sum of two squares, much
like the energy relaxation functio@g of Eq. (6.11), At high T the last contribution of Eq(6.89 vanishes(at
least, it is of order 17, which we discard everywhere in this
dS aad 74at/ysinhZW7- sinhwr)? work), so Eq.(6.89 is recovered.
E:A'Te W2 costwr+ The term withA ¢ is responsible for the occurrence of

both positive and negative values of the rate of entropy pro-
sinFFWT] duction. At low T one hasA ¢— In(I'/wg), which is moder-

+(1-w?) (6.83  ately large. Therefore, below some specific temperafiire
~hwol/In(I'lwg) the rate of entropy production can be nega-
tive, a surprising result. This finding goes against the formu-
lation of the second law in the form of positivity of the
= ;S ag entropy production. In our system the negative rates are not
AiS=j dtm= e (6.89 totally unexpected since oscillatory behavior is also exhib-
0 ited already in the rate of energy decay E§.24).

The integrated entropy production is, to leading order in
v, insensitive to the oscillations. When averaged over one
period, the cosine and sine are subleading and a positive rate
emerges. The full integral reads

W2

The total entropy production is thus

This result holds for aliv.
In Eq. (7.42 we derive the general result for the energy
dispersion. In the present setup we hawét)= ay6(t),

yielding
2 2
haaj g (Bhwo)
— AS= 4|1+ —— 6.9
ATl Ty C,(0). (6.85 iS=3 ( Sin?han (6.99)
With the help of Eq.(6.9) we find while the energy dispersion is
ATl af ATl af f
g (6.86 All_agf,, Bhoo | (6.92
T, 8 sinhBhwg

This just coincides withA; S, explaining that both describe Both expressions have the same order of magnitude, and
the same physics. , coincide at large and small

In the strong damping limiv— 1 one has a simple expo-  consequently, in the Gibbsian limit the rate of entropy
nential decay, production oscillates in the case of underdamping, as does

ds aa? the rate of internal energy. After averaging over one period
2 _TT0 4aty (6.87)  the oscillations are washed out. This justifies our identifica-
dt Y tions of entropy flux and production.

In the weak damping limit, but still at high temperatures, the

. . . 5. Entropy production at zero temperature
result oscillates, but is non-negative,

Also at zero temperature the entropy production can be

diS  yed ot/ negative. Let us consider the case of strong damping, where
rra ?Slnzwot e 27m, (688  e<1 andT,~eT,, implying
Notice the similarity with the rate of energy dec/16). d;S, h2yad

1
(1+&)C2+ 5CxCx

dt = 2,272
4. Weak damping limit at moderate temperature 16" m"T,

In the weak-damping limit y—0, where T =T, a(l+e) , .
_1 1 : = f'(a’)[fl(a')-l-efl(a')]
=shwgcoth(GBhwy), the entropy production follows from 4y\?
Egs.(6.82, (6.20, and(6.22) to leading order as
+O(£?). (6.93
diS _ yag| Bhwy 17
rTT sin*2wot +| cos %ot—m Now we know thatf, has a negative minimum at;,. Let

us expand, using the numerical constants from (B8,

2 1
+—A1/ftanh§,8ﬁwosin 4wot)e‘27”m. (6.89 1 )
™ fl(o'):fl(o'min)+ECZ(U_Umin) ) (6.99
The termA ¢ comes from the differenc&,—T,, given in
Eq. (3.48. It reads whereo=at/y. Then we get
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ds, a(l+e)af , _hy 1 14w
(l'jt = A2 Cz(a' i) (0= OminT €). Tx—%s Ox _Wlnl W’ (6.97
(6.95
This is negative foto ,i,—e<o<0omn- The minimum is of 6,
order — &2, and the area of the negative part is of oreér =15 (6.98

Notice that negative value holds over a time winddw
=g, corresponding t\t= 7,=m/y. This is much less than
the free oscillation period,= \m/a, so after averaging over
one period it disappears. However, in tterongly over-
damped regime there are no oscillations, so there is no com-
pelling reason to average over one period.

For a numerical investigation of the entropy production at

whereA=2ml'/vy is a large dimensionless parameter. Then
Eq. (6.82 can be presented in a more convenient form,

i - P d S aa? 1
T=0 we will first of all introduce a parametrization for the -0 )2 '+C!)(CL+ 6%e*C!
effective temperatures P dt 16y 262((CX) Fe(OF GO 077Gy
hy 1-0
To=m m Oy ! _C ) ©99
2 (w2
Op= aw (1+w)In 1+w (1=w) In(l_w As for the functions involved in this expression, we recall
(6.9  thatCp,(7)="f,(7,w)+f,(7,—w) and notice that
|
coth b \/ cogy(l—w)
df(rw) _ 4(1-w?) _(1_W)T y r( YN 1w | S " (6.100
dr w [(1+w)2+(1-w)2y2|[1+Yy?]
coth b \/ cogy(l—w)7]+ysi 1-w
dzfX(T,W):4(1_W2)(1_W) e_(l_W)T y "< y 1+w { E{y( )7'] y r{y( )T]} (610])
dr? w [(1+w)>+(1-w)?y? ][1+y?]
2coth b Si 1-w
dfp(7,w) :_4(1_W)2 7(1—w)r y ’—( g 1+w e " (6.102
dr w [(1+w)%+(1—w)?y?|[1+Yy?]

The behavior of the entropy production is depicted in Fig.unobservable bath modes, so it is identified as heat. In par-
10. It is seen that there is a small region, where the curvescular, in no way work was added to or extracted from the

are negative. Fow=0.1 (weak overdampingthe negative
region is yet noticeable, but already far=0.7 (moderate

overdamping this region is almost indistinguishable. This is

system, except for the initial moment, where the strength of
the central spring was modified.
We shall now consider the possibility of additional

in agreement with the above analytical analysis in the limitchanges in the spring constant and its implications for work

e—0.

VII. WORK AND HEAT

extracted from the system.

A. General definition of work and heat

So far we have discussed the system’s relaxation from a The behavior of a statistical system under interaction with
nonequilibrium initial state. Since the total system is iso-external macroscopic sources is the standard area of applica-
lated, in this process energy is transferred from the subtions for any thermodynamical theory. As is well known, in
system to the bath, or vice versa. This energy is related to thehis setup one neglects the influence of the statistical system
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FIG. 10. Rate of entropy productidup to a factoraa%/(leszef)] vs dimensionless time. Left part, T=0, w=0.1. Right part,
magnification of the region arount=1.75.

to the dynamics of the source. Therefore, one can keep thether authorg5,6,44—46, we shall associate it with the

parameters of the system as given functions of time, angyork gw produced by external sources, in close relation
solve the corresponding equations for the system’s dynamicgyith the definition of work in classical mechanics and stan-
We start with general remarks about the energy budget ofiard thermodynamics. The first term in the right hand side
any variation. _ ] represents the variation due to the statistical redistribution of
Let us consider the change of a system parametétis  the phase space. We shall identify it with the change in heat

assumed to be intrinsic, that is to say, to characterize th . . )
Brownian particle but not the bath or the interaction betwee Q. Equation(7.1) can then be written as the usual first law,

the particle and bath. In the situation discussed in the body of

this work, o can stand for the spring constambf the har- du=dQ+dw (7.2
monic potential, the effective width of the anharmonic po- ] ]

tential, or the massn (for electrical circuits and junctions ~ The work, as defined in Eq7.1) can be shown to be the
mass is connected with inductivity and can be subjected t§hange of the total closed systenttie particle plus bath
variations; this also makes sense in systems wheig an ~ €nergy due to the variation of the parameter First one
tem parameters, such as presiure change of energy is determined solely by work. This fact is

First one has to identify the Hamiltonian of the sub-due to the conservation of energy, and can be easily illus-
system. In Eq(2.1) we have chosef{=p%m+ ax? as in tratecj usmg-the von Neumann equation of mgtlon for the
absence of the bath. It should be stressed that we did n&ensity matrixp, of the total system. Indeed, since
include the self-coupling yI'x? or (part off the interaction )
energy in{. Our choice is the natural one in the sense that %: _ '_[ Heol]
the limits of large Debye frequendy and subsequent large dt 7 LProt: Thotls
dampingy lead to moderately large values of the energy of
system and bath, and not to large terms of opposite sign thane has
cancel in the total energy, as would occur, e.g.3 #'x?
were counted for the subsystem. See also the discussion indUo1=d tr(pioiHiot) =tr(prot dHior) T t(Hior dptot)
Sec. IVB5.

A change with time of the mean energy is considered due i
to a variation of a parameter according to the prescribed =tr(pror dHio) = 7 dt (ot [prors Hiorl)
trajectory a(t)

=tr(pror dHior) (7.3
v dJ dxdp Wp.x,t) H(p.x) due to the cyclic character of the trace. If now
Wioi(PsX,P1,X1, - - - ) IS the Wgner function of the whole
:f dxdpH(p,x) dW(p,x,t) system, then this implies the identity

+f dxdp Wp,x,t) dH(p,x), (7.2 dUtot:J ddeI_kI dpdXq Wioi(P,X,P1,X1, - - +)

. . . . XdHtot(p1X1p11X11 R )
whereW(p,x) is the Wigner function of the Brownian par-

ticle. The last term results from the change in the Hamil- _
tonian, so it is a mechanical, nonstatistical object. Following _J dx dp Wp.x,t) dH(p.x), 74
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since we only consider cases where forces are attached to th@rk has been extracted in all possible ways, the system is
central particle, sodHoi(P,X,P1,X1, - - - )=dH(p,X), im-  left in an equilibrium state at some temperatiisg. Since
plying that thep,, x integrals over the full Wigner function the overall system is thermally isolated, the extracted work is
just bring the Wigner function of the subsystem. Taking intoin magnitude equal to the complete change of enéttyyg is
account that no heat was added to the total syste@,d the statement of the first 3w Wpa{=Uio(0 ") = Ugin(Tsin)
=0, we may conclude that the work/d extracted from the ~WhereUsn(Tin) =Uo(Trin @) is the energy of the final equi-
subsystem equals the work subtracted from the total systerfibrium state. Because the entropy is conserved during varia-
IWior= AU, o= dWV. tions of parameters, the optimal final equilibrium state will
We again consider the situation wheretat0 the system have a density matrix
was Gibbsian, with spring constaat, and it is instanta-
neously changed to a new val@e For achieving this an
amount of workW,, given in Eq.(7.13 has to be added to
the system. Foa>a, this is just the work needed to make . ) N .
the spring attached to the particle stiffer. Wheg<a this involving the temperaturd@y,= 1/B5,, which is determined
work is negative; energy is extracted, since the spring i¥Y constancy of the von Neumann entropy of the total sys-

weakened. For work extraction from the thus created non€™
ilibri hall k itional ch in th
equilibrium state we shall make additional changes in t eS[ot(T)ZSB(T,)/:O)+Sp(T,ao)=Smt(Tﬁn)ZSB(Tﬁn,y=0)

spring constant.
+Sp(Thin @) (7.9

- inHo
Pfinzw, (7.7

B. Maximally extractable work
with Sg(T,y=0)=7?T/3%A from Eq.(3.18. Remembering

Now the total system consisting of central particle and s :
bath is out of equilibrium, some work can be extracted fromthat the level splitting\ of the bath modes is very small, one

it. Before the interaction between the bath and the particlg an solve
has been switched on, the total energy was 35A
Tin=T+ —[Sy(T.ap)—Sy(T.a)]. (7.9
Ui 07)=Ug(T)+Up(T,ay), (7.5 ™

whereUg(T)=n?T?/(64A) andU,(T) are the initial ener- This yields
gies of the unperturbed bath and the perturbation due to the

Brownian particle, defined in Eq(3.17 and by U, [ Whnad = Wot Ui T 80) —Uiof( T, )
=d[ BF,]/dB with F, taken from Eq.(3.44), respectively. _TS(T STA(T
After the switching of the interaction has been completed, Sp(T,20) +Tp(T,2)
the energy has become =WotFiT,a0) —Fol( T, @)
=Wy+F,(T,ay)—F,(T,a). 7.1
U0 )=Wot Ug(T) +Up(T.a0). (7.6 o+ FolT20) = Fp(T.2) (719

. . In the last step we canceled the contributions of the unper-
Let us now consider what the maximum amount of work

. . ‘turbed bath. Not unexpectedly, the result just depends on the
is that can be extracted from the overall isolated system g energies of the total system.

the considered nonequilibrium state. First of all, we notice Notice that for a cycle consisting of the changes—a

t_ha_t we are interested _in the work done glue to the non?qugnd(much latera—ag, the maximally extractable work be-
librium character of this state, and not in the work which comes the sum of the amounts of workyy(a,—a)

might be dong due a change of the Hamiltonian. Therefor(.a%L Ws(a—ao), so for cycles in principle all work can be
during extraction processes the parameters of the HamlL—eCOVereol
tonian H,,: Will be either fixed or vary cyclically, such that '
after the process has been completed, the system has the
same Hamiltonian as initially. To determine the maximum o o ]
amount of extracted work we will employ the following for-  In the classical limit the free energy is given by the first
mulations of the second law, which are undoubtedly valid fortem in Eq.(3.52, just the value for a harmonic oscillator,
the considered thermally isolated systEsm4,45. whether or not it is coupled to (_)ther harmonic oscillators.
(i) No work can be extracted from a system in its equilib- The maximally extractable work is
rium state(Let us recall that thermal isolation means that no
externa_l s_upply of heat is given; the allowed transformations Wined :E %o +in(1—ag) | T= 1a§T+O(ag).
are variation of parameters by external sources 2[1-ag 4
(i) The converse is true as well under certain general (7.11
conditions[47]. If no work can be extracted by any means
from a system in a given state, then this state is equilibrium. At low T the difference in free energy of the total system
As follows from (i) some work can be extracted from between the equilibrium states at the initial and final value of
nonequilibrium states. In the same wéi) implies that if  the spring constant is

1. Values at high and low T
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B _ ha |ag 14w ap 1-w? 1+w yT?
Ftot(a)_Ftot(aO)_Fp(a)_Fp(aO)_F w MW o Y |n1 +(agt ap) 6ha (7.12
The energy added a0 is
W_l 2t iane ha |ag 1+w af 1—w2I 1 ot 202 myT? -
07715, ()= Wi w2 ow "1 (a0t 2ap) g (7.13

So by making the instantaneous changeaithe maxi- where we have used E(j7.16). Notice that we consider the
mally extractable work7.10 reads closed overall system, and only due to this fact the evolution
of the system for times betwedn andt, is given by the
Hamiltonian;.
. It is not difficult to see from Eq(7.18 that the second
(7.14 law is satisfied for the present setup. Let us first assume that
' at the moment the system was in the ground state 7@f

If we let the system relax, this will run away in the bath on a?(t2)=0)(0|. Then one has

time scaler,. By making clever subtraction schemes, we _ i(ty—ty)Hy 1 St ty)Hy 1|

may recover some of it, and in principle all of it. W=(0] etz wrai 3 e T T |0) — (0] H|O>(2701’9)
For the casel=T;,=0 Eq. (7.10 merely says that that '

all energy exceeding the ground-state energy of the new syfyst by the definition of the ground state. The same state-

ha 1

_ 2
[ Whnad = @5 A7 yw?

1-w? 1+w\| wyT?
2w Iﬂ'l—w 6ha

tem can, in principle, be extracted. ment, namelyW=0, holds wherp(t) is the Gibbs distribu-
tion of the initial state at positive temperatuiie=1/3:
C. Work extraction by further sudden changes p(ty)=exp(—BH)/Z, Z=trexp(—BH) [47,64].

Here we present the formalism of work extraction via Our work extraction mechanism involves a second change

sudden changes of a parameter. Besides presenting the g&f-the spring constant, which is cyclic: at tirigwe impose
eral setup, we will display the validity of the Thomson’s ajumpa—a,=a(l-a,) and it keeps that value, until &
equilibrium formulation of the second law within the presentit iS put back toa. The work involved in this cyclic two-step
situation. Process 1S

Let there be a closed system with a Hamiltonfdnn a
state p(t;) at the momentt;. Certain parameters of the
Hamiltonian are varied in a very fast way such thattiprits 1
Hamiltonian become®(,, but the state remains(t,) due to =§(a2—a)[(x2)t2—<xz)t3]. (7.20
the sudden character of the variation. The work done by an
external source reads

AW=Up(t3) = Uitz )+ Upert3) = Up(ts)

The change in particle energy betwegnandty is
Wi=trlp(t)(Hi—H)]. (7.19

1 1
AU= —[(p?).— (PP .1+ za[ (x%).— (x®)¢.].
In the second step the system is allowed to evolve according ZmHP g™ (P + 5al0C = ()]
to the new Hamiltoniart{,. At momentt, when the system (7.2

reaches the state _ ) . )
Thus the change in heat during the work extraction process is

P(tz) _ e_i(t2_t1)H1/hp(tl)ei(tZ_tl)Hllh' (716)

1 1
AO= 2y _(p2). 14 = 2y w2y 1
its parameters are suddenly returned to their original value. Q 2m[<p Ny (P7),] 232[<X Ny~ ]
The work done in this step reads (7.22

Wo=t{p(tz)(H—"Hy)]. (7.17) The values of(x?) and (p?) at timet, are set by the
spring constants, anda solely, and can be taken from the
The total work done by the source for this cyclic variation of preceding section. When we takg large, we can take for
the parameter reads that situation the limiting values for a system with spring
constanta,. We then find

W=W;+Ws,
. ) Ty(a) aph Yo Tx(ay)
_ i(to—ty)Hq /% —i(ty—ty)Hy I _ —(a.,— X o= X
tr p(ty)(e' (e~ W/ gy g= it lh 94y ] AW=(a,—a) 5a +2m X(Zm 22,

(7.18 (7.23
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1 a 1 given the initial change ira, is the closest to adiabaticity.
AU=3STy(@)— 5 Tp(@)+ 2_a2TX(a2)_ > Tx(a) These conclusions also hold for moderate and weak damp-
ing.
a’oﬁa ’ytz
N 27y F om)’ (7.24 2. Low-temperature regime

At T=0 we get from Eq(7.23
1 1 1 a,
AQ=3Ty(ay) — 5 Tp(@)+ 5 Tx(@) — 5-Tu(@)

AW= ha 2 ’yt2
agha [yt agha, [ t, (7.25 W= 2y @2C(0)~ a0z G 5} | (730
27y P\ 2m 27y X\2m/’ '
. . whereC,(0) is defined in Eq(6.295 andC,(7) in Eq. (6.6).
1. Classical regime The minimum occurs for
In the classical case with strong damping we use Eq.
(6.13 and obtain . @ c ()/_IZ S ﬁwzag ) &
1 1 “272¢C0) ™ 2m/) min~ " 8wC,(0) X\ 2m)’
AW= Ea%T— anazTe_zat2/7. (7.26 (7.3
This has a minimum at The change in heat and internal energy is
al :Ea0672a’[2/7 AWgin=— 1cz%T e 4atly ha vty
2 ’ "8 ' AQ=AU=—ay5—C —) 7.3
(7.27 027y "Bl 2m (7.32

Work can only be extracted under proper conditions, that i
to say, when, is between 0 andgexp(—2w,t,). Otherwise
the cyclea—a,—a disperses energy.

The heat absorbed by the subsystem is at linear order i
a insensitive to the work extraction,

?Ne consider again the following separate cases.

(1) @p>0. The spring is stiffened @t=0 and energyV,
isr supplied. Att=0" the energy is, to linear order if,
equal to its final value, sincEg(0)=0. This changes since
energy comes from the bath, on a time scalewhich is

1 short for strong damping, wherg,=m/y. In the initial time
AQ=AU=— ZaoTe%atZ/y- (7.28  regimeyt,/2m< 7, this mainly leaks away to the bath, and a
small part can be extracted as work. In the regimge
There are two cases. <yt,I2m<o i, this also happens, but the energy of the sub-

(1) ay>0. The central spring is stiffened;>a,, and en-  system goes below its final value, so the particle becomes
ergy is supplied at=0. This energy leaks away, mostly as “too cold.” In the final regime yt,/2m> o, energy flows
heat into the bath, XQ<0) and partly as work extracted back to the particle and again a small part can be extracted as
from the total system A\W<0), more precisely, from the Work. This is then work extracted from the nonequilibrium
particle. bath, and the surprise is that this can be done although ini-

The ratio of extracted work to maximally extractable en-tially energy was put on the particle. This recovery of energy

ergy is, in the regime wherey, is small but finite and Stored in the bath is a quantum effect.
T>Hhwo, AW<0 means that work is extracted from the total sys-

tem. Equation(7.32) is the maximally extractable amount of

1 s, (7.29 work with th_e present mechanism. As an efficiency factor we

n= Winad 2 e ' : may normalize with respect to the maximally extractable en-
ergy from Eq.(7.11 the energy that would otherwise leak

So our mechanism extracts maximally 50% of maximum; toaway into the bath,

do this it must start immediatelft{=0) and last as long as

A1

possible {3=»). AW 1
_ (2) @p<<0. The central spring is weakened &t0. Er12ergy = IW—T _ Ecz(wztz)- (7.33
is taken out from the system. The amoufiT(| ao| — «f) is ma

less than the amount that could have been extracted by an

adiabatic change; T(| ag| + 3 @3). After that has been done, When one starts the extraction quickly after the initial
heat flows from the bath to the particlA 9>0), as if the change ¢;~0) one can still get half of the work back in this
particle were at a lower temperature. In the course of thisvay, the same rate as in the classical regime. Even more is
process work can be extracted, maximally the absolute valuebtained when one still starts gf=0 but stops at the mo-

of Eq. (7.27), as is usual for two-temperature systems. Thement that the energy current goes no longer towards the par-
basic issue to extract work is to have a mechanism thatjcle, but away from it, i.e., atv,t3= o, One then has
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1 ) 2
AW= = 5 @8 (X*)i=0;.0, (X )ty a, ]

ha )
= m{az_aoaz[l_cx(wzts)]}
ha 2
=— %ao[l_cx(ﬁ)zts)] - (7.39
The efficiency is
-AW 1 5
7l=|W—x|=§[1—Cx(wzt3)] , (7.39
ma

which indeed has the proper behavior fgr~0 andt;— .
The maximum is, due to Eq$6.35 and (6.38),

1
77max:§[1_Cx(amin)]2:0-5961; (7.36

it exceeds the classical efficienoy=1/2. So the quantum

PHYSICAL REVIEW E66, 036102 (2002

dW,eV:_lda(T)
dt 2m dr

1 fhia
3 Tt 5y @(MCA0) |,
(7.39

with 7= yt/(2m), is the adiabatid“reversible” or “recov-
erable”) rate of work and

dil  #a da(7) (=

[N
Gt 4mm dr Jo ”(m “)Cx“’) (749

is the rate of energy dispersion.

1. Completed changes

Integrating over the full change one has

1 fha 2
Wievm — 5(as— ) Ty—7—C(0)[af— ai ],

statistical excess energy flow from the particle into the bath

indeed allows a more optimal recovery of energy initially put

on the particle.

The most interesting feature is that with the present
mechanism it is also possible to extract work solely from the
bath a mechanism forbidden by the original Thomson formu-F

lation of the second law. Indeed, aftept= o, €nergy will

flow back from the bath to the particle. By starting the ex-

traction mechanism ab,t,= oy, and exploiting all times

after this for the work extraction, the maximal efficiency

(7.33 is

Dmas= 3 C?(0min) =0.00422262576.  (7.37)

In contrast to the classical case, it goes to a finite limit
when ay—0. This occurs because in the quantum case th
energy~a§, with respect to which the extracted work has

2 4y
(7.41
wherea;= a(—«) and a;= a(«), and
ha (= , o ,
M= [ dnam | dna ()G In=ma.
(7.42

or a full process(covering the whole region where’
#0) II is non-negative, since it is an integral over a non-
negative function,

H—hard A2 C (i 7.4
=2,) . JADIPRCL(10), (7.43

where the Laplace transfor@®, was given in Eq(6.51) for

éhe caser=0; it can be verified that R&,(i £) is positive for
all real . Furthermore,

been normalized, is one order of magnitude smaller than the

initially supplied energyVy~ ao.

(2) @p<0. The spring is weakened and energy, is
extracted. Some energy can be extracted. &b <o, it
comes from the bath, but in the regimgt,> o, the par-
ticle has excess energy, which then supplies the work.

D. Work extraction by smooth changes of the spring constant

Let us now consider the case where the spring consta

a(t)=[1—a(t)]a, is slightly changed |@(t)|<1) in a
smooth manner, starting from the equilibrium stafe-)

=a. In Appendix A we derive for the rate of work added to

the system

AW _ W, dIT

dt dt = dt’ (7.39

where

d _
A(§)=Jéa’(7) elir, (7.42)

The positive energy dispersion for a completed, nonadia-
batic cyclic change of system parametets = «¢) is the

Thomson formulation of the second law. We see that a posi-
tive dispersion also holds for noncyclic but completed

rﬁhanges(xivéaf, as is known to occur on general grounds.

We can check previous case(t)=ay0(—t), a'(7)=
—ayd(7), for which Eq.(7.13 is, atT=0, equivalent to

1 fia 2~(0)
V\/O=V\/rev+l'l=anTx+—aOCX )

Ty (7.495

2. Incomplete changes

Let us now consider the temporal build up of this result in
the regime of strong damping. Let have the form
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a(1)=aph(Qt), (7.46

wherea, is a small amplitude ant is a bounded function|i|<1), with h(—=)=0, h’(*)=0. If h(=)#0 it could be an
error function; ifh() =0 a Gaussian. { is the typical time duration of the change. Using E@s48—(6.50 we get from
Eq. (A10)

dll #a 1
T 1 ~(0) n~1)_ — _me~(2)
at 1+ ma a'Cy’+a"Cy za Cy }
hQ2a? 2mT yQ“c‘:(” Y202
= o Th (Qt) h'(Qt)+ h"(Qt)——zh”'(Qt) ,
a

(7.47)

whereC{! was defined in Eq(6.49; for weak damping it equals®y/am/8y, while for large damping it becomes unity. The
integrated effect is
ﬁﬂafn[ ot QOCcth 2()2

2 2 Q
urdl e (P [h'(n]2+

fia

=7

Ot
oo+ [ adrer)
(7.48

For a completed change the second and third terms vanisbecond peak. We require that the spring constant has the
leading to a positive energy dispersion, in concordance witlsame values at these instants(7;) = «(7,), where 71,

Eq. (7.43. It is seen that then the standard behavior () = yt, J/2m. This implies for the internal energy

applies wher is large enough or whef) is small enough.

However, in the quantum regime where the duratiai} 19 AU=U(t,)—U(ty)

smaller than the quantum time scalg=7/T, the last term

in Eq. (7.48 dominates, with a new behavibf~ Q3. ha dT[a (r,—7)—a'(1,— 7)]Ce(7)
Another quantum effect is that at low and for typical T 2wy v 2 B

times the second term in E@7.47) is larger in magnitude
than the other ones. This too occurs, since the integral of
C,(7) vanishes atT=0, and leads to new possibilities
which we discuss now.

(7.5

* At low T and for slow changes this can be expanded,

3. Work extraction from a smooth cyclic change AU= Zﬁa [[a (1)) — (Tg)]C(O)+[a”(T )
™

One definition for a perpetuum mobile of the second kind
is that there is a machine that performs a cycle in which it . ) ” W @)
receives heat from a bath and converts it fully into work —a'(7)]Ce '~ 5[a"(m) —a"(m)]CE7,
done on the surroundings. Additional requirements can oc-
cur; we shall discuss them in Sec. IXH. Here we analyze (7.52
whether such a full energy conversion can be realized in our
setup. The aim is thus to have a cyclic change of a systerW
parameter with the properties

here the coefficients are given in E§.53.
Let us assume that we have two consecutive changes,
characterized by a common bell-shaped functigr) with

AU=0, AQ=—-AW>0. (7.49  |k(x)|=<1, but involving different rates of chang®; ,,
Including in Eq.(A6) also thg contribution of the momen- h(7)=k(Q1t) +k(Q,(t—13)), (7.53
tum, we have, to linear order i,
where the parametel@;>,>0 andt5>0 are such that
1 1 ha . L . .
Ut ==T(a)+=T(a)+=—|a (0) the profiles have negligible overlap. Choosing the timhes
2P 2 2y as ’

f dra’ (——7‘) Ce(n) . (7.50
Let us choose fowr(7) a curve in the shape of a double bell, . _ _ N
and consider the system at some timefter the first peak, We indeed satisfy the cyclic conditiony(r;)=a(7)
and compare it to the situation at a later time after the = a,k(x). The difference in energy is

X
t]_:_, tz t2+

0, 0, (7.59
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aph (Q—Qy) | [27yT\2  —  y(Q+Q,)  — 4m2yT? K’ ()]
= ! — K" + = .
AU 1 ra k' (x)+ a K" (X) O+Q, a KO0 (7.56
3,2(954_ 0,0,+ Qg) the first two terms can cancel, while the exposed correction

5 k”’(x)] . (7.55  term and the higher ones are small. Thus under these condi-
a tions it is possible to have a cyclic process witly =0 to
orderay,; if a2 corrections are taken into account, the con-
- ) dition for cancellation is shifted by an amount of ordey,
Let us assume that is fixed but such thak’<O while  ang can again be met. Thus it is possible to start from the
k”>0; this is possible becausehas both convex and con- equilibrium state, make a first cyclic changeaoénd then a
cave parts, implying that there is an interval with such besecond, which process contains itself a cyclic changa of
havior. In the examplé(x) = exp(~x%/2), there is an inflec-  \yith AU=0. The work during this cycle comes solely from
tion pointx;y=1 and one needs>1. Let us also assume that the energy dispersion. Using E.48 we obtain the leading

T<halvy. Then for terms
G| (2myT)? w X Q3-0HcH
AV\/:;YZ—W[ 2 o[ Caae @0, [ aak or +“Tl[k’<x>]2]
_fla’ﬁl 27T’yT 2 * , P x , 2 1 ~(1)|k,(;)|3
~Tor| da) (M) ae@n .| da @ gz 0T R, (757

The higher-order terms are small for the same reason as Let there beV cycles witha(7) = a,h(7) having NV non-
above. IFAW<0 this amounts to work exerted by the systemoverlapping bell-shaped parts, like in E@.53, wherek(x)

on the environment. One can always hawé(;) small  could be the Gaussian expfx?). Each cycle is character-

enough(by choosing?close to the inflection poihto make ized by its typical inverse duration timié,<a/y and loca-

C o : tiont;, and each new cycles is slower than the previous one,
the combination of th€), terms negative, and choo$k so Q.,,<0,. See Fig. 11 for a schematic plot. For having

small that the whole expression remains negative. So it isyclic behavior in the energy one finds from Ed.55 that
indeed possible to have a cycle where the extracted wor r low T and small but almost equal,’s, one should

|[AW| comes solely from the bath. — _ . .

We should stress that these work cycles are realizablghoosex close to the inflection poirk; of k,
only because in the first part of the process,tfat,, energy , ) 22
was lost[ W(t;) —W(—=)>0]; a part of this is recovered. . a_ [K'(xq)| (27yT n 37, L0 yQ,
If, on the other hand, all the work is counted, then no work 290, k(x| ha 2a a2 |’
extraction is possibl@(») — W(—x»)>0], cf. Eq.(7.42. (7.58

Alternatively, one may conclude that there are nonequilib-
rium initial conditions (for instance, the state of the total In order that this be small for alh one needs thaf)
system at timet;) which allow cycles that fully transform > yT?/#2a. Strictly speaking thev,= aynh(x,) are now not
heat obtained from the bath into work done on the environexactly equal; this can be healed by slightly adjusting the
ment. profle in the nth cycle: k(Q,(t—t,))—k(Q.(t

From the analysis it is clear that under less strict condi—tg))k(x)/K(x,), yielding a(,) = ank(x;) for all n. For
tions it is even possible to make a cycle that extracts WO”%maIIYn—xif this correction factor is close to unity and can
that comes partly from the bath and partly from the systenye gmitted from the rest of the argument.

n—

(“efficiency larger than 100%. Let us define
4. Perpetuum mobile with many work extraction cycles F 2wy T (7.59
One can make several of these cycles. Even though the ha '

previous finding that complete cycles disperse energy should )

temper the hope to gain more work by doing more cycles, we Taking Eq.(7.48 at t=t,, wheren cycles have been
consider the issue here, since work extraction from manyerformed, and using that—x;<1 and that|Q,— Q|
cycles is one of the ways to express our unexpected resultss(),,, brings for the yield of thenth cycle
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a2 B y(Q2-02_)) For moderates more cycles are possible, but less work is
TI(t,) —TI(t,_1)= %ﬁ 1,0, T2+1 an—aﬁ recovered. For the lower integration variable E§58) gives
T
ﬁﬁQN ’yT
2()3 yy=—f—"> ) (7.68
+|37 2” , (7.60 2 2mha
a
For strong damping the physical time scalerjs- y/a. One
where assumes thaf), is a large but finite number of times7/.
. ChoosingT<#%al/y means that the upper integration limit
|1:f défk’ (6)12, I2=Ef(1)[k’(xif)]2, y1=B%1Q /27 is much larger than unity. But it is still pos-
—o sible to choosey, <1, which is a useful condition for
achieving many cycles. One then has for snpall
_ " 2
o= |~ agwor (760 o e
= . ]
For having an equal yield per cycle, one demands Alhils Y
o2ha W2ha which is indeed large. In the overdamped regime the yield
— = =— 0 =—_I 3 can thus be expressed as
H(tn) H(tn—l) chcle 127T’}/W 127T’}/T v,
(762 W= a’ﬁ]lz ha =5 aﬁj\ |1|3 ha v
wherev>0 andw="T3y are dimensionless. It will turn out O o4, v exl, ¥ NP
that there exists a consistent solution foin some definite (7.70
range. Assuming thaf)(n) =}, is a smooth function oh o _ _
one obtains In the limit of weak damping we should notice that
- 2 1,=T,Ve, (7.70
I19T2+I2%QQ’+I37—293=—W. (7.63 2
a

wheree =am/y?>1 and wherd , is a numerical constant of
Solving for dn/dQ and going to a new variabley order unity. Thus the work dispersed for achieving the non-

=BhQ/(27) one gets the total number of cycles equilibrium condition at; is
I, (Bh0y2r  d a?l, hQ2
=2 Ls (7.64 T(t) = + =22 —*, (7.72
TJpryizro +1y+1gy 241w
The total yield is then where wy= ya/m is the free oscillation frequency. Let us
5 recall thattq=2m/vy is the damping time. FolT <A}, it
apls ha.  (BhQ/27 vy holds that
Wtot:Nchcle: T 1om v 2 dy—3 .
Y BiQyf2m v+ 11y+I13y h
(7.69
1
Here the minus sign indicates that work is performed by the
system on the environment. This is possible because Eq. 0-8
(7.48 expresses that, in order to make the work extraction
cycles, one had to start from the equilibrium state and change 0-6 *
a from a(—=)=0 up to a(7;). In this first part of the
process energy was dispersed at an amount 0.4
2
aml 2 ﬁ’y 2 0.2
=+— —071. .
I(ty) odr a Of (7.66 .
. t1 t 2 t 3 t 4
Notice that forv>(B%Q,)° the extracted work becomes, - - - -
according to Eq(7.65, FIG. 11. Schematic plot of the cyclic changes in the spring
2, 5 constant, where successive cycles are slower and slbvedarac-
a y . . : . )
Wig= — 22772 ?(Q%_szv)' (7.67) terizes the size of the change andenotes the dimensionless time.

The interval—o <t<t; marks the process that establishes the non-
equilibrium state at=t,. The picture shows three full cycles, in the
so for() <€) there is an almost perfect recovery, which is intervalst;<t<t;_; (i=1,2,3). Their start and end points are indi-
possible since the number of cycles is still large. cated by bullets.
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=#lT, plays a dominant role. In particular, this time scale

T hw
=—28?0. (7.73  governs quantum correlations of the baB8b]. The high-
4Vlls temperature classical case naturally corresponds;to
At the typical temperatur@ < w, this carries an additional ;ggt’gdp’Tx and there quantum correlation effects can be ne-

large factore. The yield per cycle carries a factore]lk0 this

total yield is independent of. For smally it reads Equilibrium gquantum thermodynamics is recovered in the

limit 7;,,79< 7, which means that the momentary motion of

2nl, T2 W23 e? the Brownian particle practically does not notice damping,
Wiet= — m v —__m” 2 wo—, though it does so at long times. Obviously, this condition
6VIds hwo  98(1415)% N2 cannot be satisfied at low temperatures. In the present paper

(7.74  we are interested in the regime where both damping and
. . .. quantum correlation effects are importamt;~ 7.~ 7;,, in-
m;;sﬁigsbe comparable to the dispersed work, but it IScluding possibilities ofrp<y or 7,,7,<7;, where our re-

Summarizing this section, we have investigated the preS§ults are only strengthened. As noted at the end of Sec. VII,

ence of many work extraction cycles both in the strongly and'&W possibilities for work extraction have been found to oc-

. ; : cur in this last domain, where the inequality< r,< 7, says
weakly damped regimes. At loWwtheir maximal number can S X i
be large but finite. The divergence~1/T is probably cut that the noise iganticorrelated throughout the systems re

) . laxation. It thus looks more like a quenched random variable
off at low enoughl when the amplitudey, of our changes is q

L than an annealed one, thus not at all behaving like a white

f)?sa}sl:bﬁil:; g?lssér\livgstr:aggﬁ i;hla(gt Cgtcelce;uséeomﬁgeai;ﬁ:-r noise, the standard ingredient needed to derive from a
O ' ™ L [ ti Gibbsi ilibri tate.
sion inherent to cycles. At moderaltehe possibility of work angevin equation a f>ibbsian equliiibriumm state

. : . . S . Before proceeding with concrete examples, let us just no-
extraction by cyclic changes is quickly lost; it is a strictly tice that there is nothing exotic in the quantum time scale
quantum effect.

itself: 7,=7.6 ps atT=1 K, which is fully in range of the

modern technologies.
VIIl. EXPERIMENTS TO TEST THE BREAKDOWN

OF THE SECOND LAW B. Possible experimental realizations

In this section we will briefly comment on practical real-
izations of the low-temperature, nonweakly damped quantum i . )
Brownian motion. We do not intend to make detailed propos- The first example to be discussed is that of Josephson
als for experimental setups, but we will mention certainjunctions[18,19,49,5Q This well-known phenomenon rep-
fields which, according to commonly shared experimentaf€Sents a standard example of quantum Brownian motion.

views, display the above-mentioned strong-coupling and/of N Josephson junction consists of two superconductors
low-temperature regime. separated by a thin insulating barrier. Cooper pairs of elec-

trons (or holeg are able to tunnel through this barrier,
thereby maintaining phase coherence in the process, and
leading to a possibility to have superconducting current.

Let us first recall once more that there are several imporThere is a direct map between properties of this junction, and
tant time scales in the problemyg is the characteristic time the standard model of the guantum Brownian motion
brought about by the external potential, which the particle[18,19,49,50 In particular, the coordinate can correspond
will have if there is no interaction with the thermal bath. Forto the phase difference of the Cooper pair wave functions,
reasonably simple confining potentials there is only one suckhe friction founds its place as resistance, mass is related to
time. In particular, for the harmonic external potentigk)  capacitance, and the current noise has the standard spectrum
=%ax? it is read o= l/wo=ym/a. Since no indications of (5.25), (5.26), and can be related tg(t). Under certain well-
damping are seen in this time, it can have a physical meaningefined conditions one can neglect tunneling of the phase
only for very weak dampingy—0. from one metastable state to anoth&8], and consider it in

If damping is large, then the characteristic dynamicala confining, nearly harmonic potential. This system couples
times arer,=m/y, 7,=vyl/a. The overdamped regime ap- to the environment, which acts as the bath of our theory. In
pears withr,<7,, and in this case, and 7, can be inter-  practice, one can notice the occurrence of strong coupling at
preted as the relaxation times of the momentum and coordiow T since then a careful shielding of the sample is needed
nate, respectively. in order to prevent an influence of the environment to the

In contrast, very weak damping means-0, and the measuring apparatus. It appears that the nonweakly damped
damping time 7q~7,=m/y is the longest characteristic and low-temperature limits are well known for Josephson
time. For intermediate values gfthe characteristic dynami- junctions, and were a subject of rather long experimental
cal times in the overdamped regime are {4 defined in Eq.  activity [18,19,5Q. For example, the following regime was
(3.31), and for the underdamped regime they are given in Egexplicitly realized as a condition of “really quantum effects”
(3.38. [19]: 7,~0.1 ps which is smaller tham, at 1 K. The ratio

The aim of this work is to consider the regime where 7,/ 7, need not be of order one, but can vary significantly
another time scale, the characteristic quantum time sgale (from 0.1 to 10) depending on the construction of the junc-

1. Josephson junctions

A. Once more: the characteristic time scales
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tion; for details see Ref19]. In experiments reported in Ref. an idea of the magnitude of the expected effect, let us esti-
[18] the authors achieved, /7,~10 atT=1 K, and 7,/7, mate the outcome foAQ=L dQ/dL. With the above pa-
~0.1, which is a typical overdamped, low-temperature caserameters andR=y=10> k) one gets from Eq(4.26 AQ
Notice that these experiments were among the first ones 107 1° J=1 eV.
where the spectrum of the low-temperature quantum noise Since for mesoscopic circuits the formula fé¢ was al-
was measured and found to be in perfect agreement with theady verified, it is now a matter to perform three measure-
assumed standard form of the quantum Langevin equationsnents(the equivalents off,, T, and the work production

on a single sample, to verify unambiguously the breakdown

C. Low-temperature electrical circuits of the Clausius inequality.

Experiments on mesoscopic, low-temperature electrical 1. Trapped ions
circuits [51,52 provide yet another example, where non-
Gibbsian values of , were clearly observed, and found to be
in good agreement with the theoretical predictions. We recaQ
that the lineaRLC can be mapped to the harmonic Brown- [10], one getsry~7, at 1 K, so the quantum coherence

an partlcle: the coordinate and the momentunp of the .effects are still active. The ideal example of a harmonic

pa.rtlcle correspond to_ the charge and th? currept of the C'Brownian particle will be an ion trapped in a so-called Paul

cuit, andm_ anda are dlre_ctly connected_wnh the inductance trap[53), or an electron or ion in a Penning tré®]. These

L and the inverse capacitanceéCldf the circuit[see also our  gjocomagnetic traps are nowadays well realizable and
discussion after Eq3.1)]. Finally, the damping constant g jiteq for variation of parameters. In particular, high quan-

corresponds to the Ohmic resistarikeOne notices that the 1, \ymber Rydberg states may have a long lifetime and a
(quasiyOhmic limit, wherel is the largest characteristic fre- strong coupling to the radiation field.

quency of the problem, is conveniently realized in the
present context.
First of all we notice that for experiments described in 1X. ON THE FOUNDATIONS OF THERMODYNAMICS

Refs.[51,52 all the relevant characteristic time scales have AND PERPETUUM MOBILE

bhasm'?llyt.smnar va]uI?srhl 7p t:‘X 10°% s, which makes This section summarizes to what extent the standard rela-
the situation especially relevant for our purposes. . tions and laws of thermodynamics can be applied to a quan-
Here we W!" briefly d|scu_ss t_he pos_5|b|l|;|es .Of EXPET" tm Brownian particle. There are many formulations of the
mental detection the Clausius inequality violation at low econd law. and some of them have been found to be invalid
Femperatures, since this seems to_ be .the_S|mpI.est p053|q previous’discussion. One may go to the extreme limit by
|s|sue. Mo_re:\[pver, tfhetr:nost Sv'i.entt S|tuat|onL|s reﬁllzed fupon §aying that there is no motivation to discuss thermodynamics
Slow “variation 0 € nductivi y(mass , Where Tor i the way we did. To show that it is justified to do so, we
T—0—according to Eg(4.2 and in clear contrast with the summarize our results in the light of common thermody-

Clausius inequality @<0—one gets a finite positive heat namic wisdom, and point at the agreements and contradic-
provided thatdm=dL>0. One needs to obser{&® and  ons.

(p) for several different values of the inductivitmass L. For a general, pedagogic text on the history and present
This is sufficient to recover the corresponding changes of thgiatys of thermodynamics and the second law, we refer the
average energy, as well as to recover the work according tRaader to the recent work by Uffif65]. For a collection and
Eq.(4.25. The heat is then obtained by subtracting the workgiscussion of the original papers, see the book by Kestin
from the energy. In the second step one can check the copsg) A very recent discussion on the basis of the axiomatic
sistency of the results by observing directly the work donghermodynamics was presented by Lieb and Yngvdsah

by the external source. Altogether, the challenge of the maifqr g giscussion of what can be meant by “the” entropy of a
experimental observation is in observation of the variancessystem, see Ref58].

In Ref. [51] the authors considered mesoscopic electrical
circuits in the context of single charge tunneling. The used ) .
circuits had thickness of the order 10 nm and width of the A Has the standard thermodynamics been violated
order 1 um. The observations allowed indirect determina- or did it never apply?
tion of (x?). With the subsequent improvement mad¢5a] The conclusion of our analysis is that thermodynamics
the correspondence with the theoretical expresé€Bo#7) is  does not work when, in the quantum regime, ones considers
perfect. The observations were done wil-1/a=4.5 fF,  the Brownian particle in its reduced Hilbert space, thus sum-
L=4.5 nH, and forR=17 in the range 10-1C° kQ. For  ming out the bath variables of the total system. This makes
damped circuits the relative importance of damping is quansense when the characteristics of the particle are directly ob-
tified by the quality factorr, /7o, which in the above range servable, as is indeed the case with the standard examples of
of parameters varies from 16 to 10 3. To avoid thermal the Brownian motion. There are, however, situations, where
noises the circuits were cooled up to 20 mK. At such a lowonly some compositésystem plus bathquantities are mea-
temperature quantum effects are dominating, since the quasured, and the need for a separation between particle and
tum time scaler,=#/T~10 8 s is larger than the other bath is questionabléhere still can be a possibility that such
ones,7y~10 °-10 1% 7,~1078% andr,~10 % s. To get a separation can be given on a different, more coarse-grained

As another more elementary example one can mention a
rapped ion immersed in a photon bath. Taking as an estimate
he mass of the protom{=10 26 kg), andy=10 " kgs™?
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description of the overall system, but we will not enter into system has at noninfinitfEa nonzerdJ,,;. Whereas the limit
that discussion This is the case with a Kondo system, whereof large T can be naturally achieved in practice, the weak-
the measured quantity is, for instance, the magnetizatiorgoupling limit y— 0 is much more difficult to realize, since
which is set by the magnetic impurity and the bath togethecoupling constants are generally fixed numbers whose mag-
(i.e., it lives in the common space of the particle and thenitude cannot be manipulated at will. If one favors a view-
bath. Also for the dressing of a “bare” electron by photons, point that thermodynamic quantities, such as heat, work, and
it is a standard practice of the quantum field theory to contemperature, should only be discussed for vanishihg,
sider the dressed mass and charge as directly observalileen actually almost all realistic systems should not be con-
quantities. However, when the subsystem is a Josephsmidered as thermodynamic. This would apply to many sys-
junction or a mesoscopic circuit, its own characteristics areaems at low enough temperature, leaving an uncomfortable
perfectly measurable, so there is an important case to maksituation with respect to the well behaved high-temperature
When looking at the budget of the junction alone, one has t@roperties of the same systems.
keep in mind that it may exchange energy with its environ- We recall that it is not meaningful to consider this quan-
ment and, in particular, modify the cloud. At low enough tity out of equilibrium. If one wishes to do something akin to
temperature this mechanism displays unexpected behaviitt one has to define a local region around the subsystem and
and is responsible for nonthermodynamic characteristics. consider how the system inside that region approaches its
If one considers the subsystem as a Brownian particléocal equilibrium, while the surplus energy runs far away. We
immersed in a heat bath, then first it should be noticed thaghall not entertain that scenario.
the particle acquires a cloud of bath modes around it. This
dressing is a manifestation of tietrong damping of the 2. Classical thermodynamics does not need a vanishing
particle by the bath. One can then ask the question: “if the interaction energy
standard thermodynamics does not apply, where was it | o ;5 how analyze what are the consequences of the most

lost?” If no technical errors have been made in our deriva-g,qarq ynderstanding of the vanishing interaction energy
tions, then the answer must be: “It never applied.” Let us

consider arguments for that point of view. U,=(H,)—0. 9.2

1. The full energy versus equilibrium energies of the bath

. This condition can be applied also in the nonequilibrium
and the particle

situation. Here we notice that the classical thermodynamics
A well known sufficient condition for the derivation of the itself provides a definite argument against the viewpoint that
standard equilibrium thermodynamics is that the interactiorthe use of thermodynamic quantities and the existence of
energy between the bath and the particle is negligibly smalithermodynamic laws must always be connected with condi-
There are at least two things that can be meant by the tertion (9.2). The simplest thing to notice is that the very exis-
“interaction energy.” The standard approach, see, e.g., Retence of the classicahigh-temperatuneGibbs distribution
[59], connects this energy with the average vallie=(H,)  for the Brownian particle interacting with its thermal bath is
of the interaction Hamiltonian. According a different view- not at all connected with a vanishing interaction englgge
point the interaction energy can be associated with the fulEq. (9.5 below]. A similar argument can be stated in the
effect of the interactiorJ,,=( H—"H(y=0)). Obviously, dynamical situation. Let us consider thel theorem
this last definition is only meaningful in the equilibrium [6,11,60—62 which is one of the most well known formula-
state, since during the dynamical evolution from a nonequitions of the second law in the nonequilibrium thermodynam-
librium state it is just conserved and equal to(@sbitrarily  ics, and represents a particular case of the Clausius inequal-
choseninitial value. In order to avoid any loophole, we will ity. We already discussed this relation in Sec. VI B 2, where
analyze below both definitions. it was shown[see, e.g., Eq(6.76)] that for our model this
One notices that in the stationary state the full averageelation holds if temperature of the bath is high enough. In
energy of the system is not reduced to those of free equilibfact, this is a much more general relation, and for classical
rium particle and bath, i.eU;,;#0. It reads in the stationary Brownian motion it can be stated as a rigorous theorem
state [6,11,60,61 It was also generalized to the coarse-grained
quantum Markovian dynamics, which is valid in the weak-
coupling situation for not very low bath temperature; see
Ref.[62] and references therein. The analogous inequality in
the master-equation framework was derived in Ré®,61].
The result is given explicitly by Eq€3.44), (3.45), (3.47), Our present purpose is to show that in the classical situa-
and (3.48. In a strict formulation of thermodynamics one tion (high-temperature thermal batthe H theorem, or the
may want to require that the equilibrium value Gf, be  Clausius inequality, i:ot connected with any restriction on
negligible. This may be viewed as a sufficient condition forthe average interaction energ¥,). In particular, the latter
separating of what is meant by the system from what iqquantity can be as large as one wishes.
meant by the bath. In any case, the above examples stress The motion of a classical Brownian particle interacting
that it is by no means necessary. In our cbigg—0 would  with an Ohmic thermal bath at temperat(rés described by
imply y—0 or T—, and indeed in both limits the standard the classical Fokker-Planck-Kramers-Klein equatjérnl1].
thermodynamics is recovered. However, for fixethe same  (Note that this equation is typically written for the case of

1_ 1 aF,
Uint: Up_ —Tp— ETXZF T

5 9.7
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separated initial conditions between the particle and the batlanishing interaction energy in the standard equilibrium ther-
this, however, will not influence the subsequent argument.modynamics, and points out severe limitations of that as-
As can be deduced from this equati@11], the function ~ sumption in the context of long-range interacting macro-
between the actual solution of the equation at some fixedcopic systems, e.g., gravitationally interacting particles. He
timet and its stationary Gibbsian solution monotonously dethen conjectures that the standard thermodynamics could be
cays with time:d}/dt<0. This then implies the Clausius ga particular case of more general theories, where the assump-
inequalitydU=dQ=<TdS;, whereU is the average energy tjon on the vanishing interaction energy is not valid anymore.
of the particle, andg= — [ fInf is its Boltzmann entropy; it | et us mention a related model studied by us, where the
is defined as in Eq(6.80, where the Wigner function central oscillator is replaced by a spinparticle (spin-boson
W(x,p) should be substituted by the true probability distri- mode). This model has an exactly solvable limit, where the
bution f(x,p) of the coordinate and momentum. Since theretransverse field vanishes and theomponent of the spin is
is no external source, the whole change of energy is attribconserved. Upon relaxation from a nonequilibrium initial
uted to heatdU=dQ, viz., U= Q . For our particular situ- state, the von Neumann entropy increasdstijeorem. By
ation this inequality can be derived from E@.76) upon applying fast pulses to this system, again situations occur
noting that for the classical cas¥; can be substituted by where work is extracted from a quantum system in a non-
the Gibbs distribution, and th&,=D,. Now we are going equilibrium initial state[63]. In this system the interaction
to show that at the same time the average interaction energgnergy is a fixed constant, which can be absorbed in the spin
can bearbitrary large. One uses Eq2.19, combines it with  energy.
the solutiong2.11), (5.44), and(5.45 of the Langevin equa- Putting all arguments together, we reach the unavoidable
tions, and recalls that in the classical situation the noise isonclusion: there are principle problems to get the standard
white: ( (t) »(t"))=2yTS(t—t"). This leads to a result that thermodynamics at not very large temperatures and not very
could also have been taken from Eg.19 in the limit of =~ small couplings, more specifically, in the regime of quantum
largeT’, entanglement. There is no resolution to this, and in systems
with standard thermodynamics at high temperatures, unex-
¥(0)

Uy ()= = (X() (1)) + 7(1) (X(DX(0))— T(xz(t)) pected energy flows appear to be possible.

+ 7<x(t)5((t)>, (9.3 B. The nonthermodynamic regime of quantum entanglement
between system and bath

wherey(t)=yI' e 't as given by Eq(2.25. Recall that for
largeI" one hasy(t)=vyd, (t)+vS_(t). Thus, the second
term in the right hand side of Eq9.3) is zero. Also using
Eg. (5.449 and assuming for simplicity (7(t)x(0))
=(n(t)p(0))=(p(0)x(0))=0 (separated initial condition
one finds

Let us inspect in some detail the weak damping limit
<+/am. Here it can be shown that, even B0, one has
Uir<<U, since, due to Eq(3.48, Ui~y but U— 37w,
implying that the condition for the application of thermody-
namics is almost fulfilled. Nevertheless, the Clausius in-
equality is typically violated, by an amount of, again, order
Y.

In many subsystems coupled to a bath, the following three
regimes will occur.
) . (1) At large T there is the classical regime, and equilib-
wheref is defined by Eqs(5.49 and (5.50. Further trans-  rjym is described by the classical Gibbs distribution.
formations with help of Eqs(5.44) and(5.45 lead to (2) There is a “standard” quantum regime where the bath
only enters through its temperature, and equilibrium is now

) S described by the quantum Gibbs distribution.

{(x*(0)) F(OT(D) (3) At very low temperatures there occurs a quantum en-
tanglement between subsystem and bath. Here the Gibbs dis-

) . yT tribution and standard thermodynamics are lost.
+((0) ) F(O)F (1) +— f2(1) | (9.5 Regimes 1 and 3 always occur, while regime 2 may not
m occur if the coupling is strong. In regime 3 thermodynamics
is endangered and typically not applicable.

2T [t T
(x(t)n(t))=%fodsf(s)ﬁ(s)=%f(0)=0, 9.4

T
Ui() == - (C(0)+ ¥

It is seen that the interaction is not zero for both finite times,
where the above Clausius inequality applies, and the infinite-
time limit, where(H,(t—))=—yI'T/(2a). Moreover, in
the second case it is large by its absolute value due to the The zeroth law is often said to state that in an equilibrium
factorI'. By means of this simple and well-known example situation there will be a unique temperature. A standard for-
we conclude that finite interaction energy by itself does notmulation is that if two bodies are each in equilibrium with a
preclude the application of the second law. third body, then they are also in equilibrium with each other,
Finally, it is interesting to mention that a discussion some-and the three bodies have a common temperature. Let us
what similar to that presented here appeared in the book bipok, however, at a careful formulation out of equilibriuth:
Terletskii [59]. This author carefully discusses the role of two parts of the system have an infinitesimally small tem-

C. Zeroth law
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perature difference, then they will spontaneously equilibrate E. Second law

and reach a common temperature. _ , Let us stress that there are many formulations of the sec-
For the(nearly harmonic situation two differergffective o, |aw. There are several formulations of the second law

temperatured, andT, can be related to the momentum and it are, at least apparently, violated by the solution of our
the coordinate. Recall that these temperatures arise from ”H?oblem.

generalized form(4.15—(4.19 of the Clausius inequality.
The legitimation of such a definition of effective tempera- 1. Thomson's formulation, Kelvin’s principle
tures is confirmed by their successful use in glassy thermo-
dynamics[24,26|.

In our case, Eq(3.54 shows thafT, deviates at largd
from T, by a termBAI’, with A=#2y/12m. So for any in-

The formulation by William Thomson, later Lord Kelvin
of Largs, is:It is impossible to perform a cyclic process with
no other result than that heat is absorbed from a reservoir,

L . . and work is performedWe call this the “Thomson formula-
> . . . .
finitesimal €, the regimeT>AI'/e indeed has temperatures tion,” whereas Uffink[55] uses the name “Kelvin's prin-

T, and T, that differ less thare. However, since they are .~ " | . . . .

P . . ciple.” An earlier and more particular version of this state-
parameters of the steady state, they will not equalize sponta- . . !

. . . . ment appeared due to CarndBiven an engine that is

neously, in conflict with the above formulation of the zeroth . )
law. Instead, they become more and more different from eac eversible and that operatgs betwee_n two fixed temperature
other at lower temperatures, and at zero bath temperajure tear;hse.r:artrllj ?gsngacr)ntheirczggIr;ﬁiso%enraitrl]r;girtl)eé\;fviiie:mtihi;e same
andT, are both finite but different from each other. The fact P g ysely

L .~ related is the Kelvin formulationt is impossible, by means
that they remain finite just indicates that the correspondm%f inanimate material agency, to derive mechanical effect
guantum state does not have sharp valuep famdx; so this

, 5 from any portion of matter by cooling it below the tempera-
is a consequence of quantum complementarity. The fact tha}re of the coldest of the surrounding objef&s].

these effective temperatures take non-Gibbsian values is a gqy general quantum systems starting from the equilib-
consequence of the quantum entanglement. In the Gibbsig{ym state, this can be proven mathematicfly]; a simpli-
limit of weak coupling(i.e., y—0) for the harmonic oscilla-  fied proof will be presented elsewhei@4]. In our setups it
tor, both temperatures,, T, tend to their common value can always be verified, see, for example, the fact that the

thwocotanhés Bwy) of the harmonic oscillator weakly €nergy dispersioli7.43 is non-negative. After finishing the
coupled to its bath. cycle the bath is not exactly in its Gibbsian state, but it is still

We should mention that the existence of the zeroth law i&/€"Y close to it, because the bath is extensive. Basically the
frequently viewed just as an axiom, but under certain condidiSPersed energy has run away to infinity, leaving the system
tions it can be derived from the second Iéthe entropy of a Iocal!y again in a_G|bbS|an §tate. This implies also that suc-
closed sysm never docreass]. A5 we menioned o CESSNE OIS eSS oY,
ready, this derivation is based on the use of a weak interac- ' q P

. . ) ' ears to be endangered. The first point to notice is that this
tion petV\_/een the part|<_:le and |ts th(_armal_bath. I Comclrms<F:)an already occur at the classical level. The reason is simple.
that if this weak-coupling condition is valid, then the two

Hect indeed . | | Consider, as we did in Sec. VIl C, a sudden weakening of the
effective temperatures are indeed approximately equal.  oniral spring. In doing so, energy is extracted from the sys-

tem, but, due to the sudden nature, it is not the optimal
amount. One can improve on this by making the following
cycle: quickly put the spring back at its original value, and

The first law relates the change of the system’s energ)t»he” make the change slower. This cycle that started in a

into the heat added to it and the work done on it. It cannot bd&'oneauilibrium state will yield work, and this work comes
broken, since it is a direct consequence of energy conservg-om the bath. We conclude that the Thomson’s formulation

tion, a central concept in quantum mechanics. Nevertheles§2" only refer to system changes on long enough time scales,

the formulation of this law is not merely a tautology, becauseSlJCh that the 'T".“a' state Is practically in eq_u_|I|l?r|um.
A more exciting violation of the nonequilibrium Thom-

it allows to separate clearly those ingredients of the energy s formulation was observed for smooth changes of the

change, which arise from nonobservable degrees of freedogbring constant at low enough temperature. In Sec. VI D 4
(heat obtained by the Brownian particle from the thermalWe discussed the case #f>1 bell-shaped cycles in the

bath and external sourcdsvork done by them on the whole  gying constant; each cycle has two inflection points, prepeak
system. Our identification of the energy of the subsystem as,q nostpeak. Starting in the Gibbsian state, the first cycle up
the expectation value of the Hamiltonidhwas supported in  tg the postpeak inflection point is considered as a mechanism
Sec. IV B 5 by requiring application of standard thermody-that produces for us a proper “initial” nonequilibrium state.
namics at highr, and is imposed by the form of the Wigner |f the typical duration of the successive cycles increases,
function. We stress that, given this identification of energy,parameters can be chosen such that after each return of the
our identification of the heat@ added to the subsystem and spring constant to its postpeak inflection point value, the sys-
the work @V done on it are well accepted and widely dis- tem has the same energy, while a prescribed, fixed amount of
cussed in literature; see, e.g., the books by Ke{z#], work is extracted. There can h&~1/T of these cycles,
Balian[44], and Klimontovich[6]. which can be large at low enough They extract heat from

D. First law
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the bath and convert it fully into work, forbidden by the change in energy of nonobservable modes is heat, and it can
general (i.e., nonequilibriump Thomson’s formulation. It be positive or negative, depending on the sign of the change.
could be checked that the total amount of extracted work i$n one of the cases energy from the cloud will increase the
less than the energy dispersed in the first part of the firssubsystem’s energy, violating the Clausius inequality. For a
cycle, so for the full process Thomson’s formulation is notclosed system@ goes to zero, and one recovers from the
endangered. The interesting fact is nevertheless that theehove inequality the more standard formulatid§,=0,
can be N~1/T of these cycles, which can be large at low which appears to be a particular case of the Clausius inequal-
enoughT. Actually, making more cycles implies a smaller ity.
total extracted work~1/N?, since these cycles themselves ~ We have shown that both the genetall T) and particu-
lead to additional dispersion. lar (T=0) formulations are violated in the quantum case.
In contrast to the violation of the Clausius inequality, to Although at high temperatures these violations are small,
be discussed below, the violation of Thomson’s formulationthey nevertheless do exist. For researchers who are reluctant
is a consequence of both quantum regiioev temperatures  to follow our identification of the effective temperatures, it
and the nonequilibrium character of the whole syst@ar-  will perhaps be hard to agree on the violation of the zeroth
ticle and bath Indeed, any amount of work extracted by |aw, discussed above. However, the violation of the second
means of the particle is in fact extracted from the wholelaw, which also sets in at arbitrarily large temperatures,
system. If this global system is in equilibriufnamely, it is  should be easier to accept, since the Clausius inequality does
exactly described by the Gibbs distributjpthere will be no  not employ the notion of effective temperatures. Moreover,
possibility to extract work by making a cyclic change of ain Sec. IV B 4 we have discussed a formulation that com-
system parameter, since this formulation of the second layares only equilibrium systems.
applies as well to any closed equilibrium systp#i,64. On For our harmonic system we succeeded in generalizing
the other hand, the full account of quantum effects is neceshe Clausius inequality, involving two temperatures and two
sary to show our work extraction, since it disappears in thentropies, in the very same way it was done for glassy sys-
Gibbsian limit, namely, both at moderate temperatures and/aems and which applies to black holes.

for weak coupling to the thermal baff9]. In hindsight, the derivation of the Clausius inequality is
nontrivial in the case under consideration. In standard ther-
2. Clausius’ principle modynamics one formulation of the second law is that the

Clausius statest is impossible to perform a cyclic pro- total entropy of a closed system cannot decrease. When ap-

cess which has no other result than that heat is absorbe®/ied to a subsystem coupled to its equilibrium bath, this
from a reservoir with a low temperature and emitted into almmediately leads to the Clausius inequality. Here one
reservoir with a higher temperature. It is impossible for a Makes two assumptions: equilibration of the bath and addi-
self-acting machine, unaided by any external agency, to corflVity Of the entropy. Let us follow the subsequent steps.
vey heat from one body to another body at a higher temperaBecause of its equilibrium nature, the heat received by the
ture [56]. bath is associated with an entropy changeQ,dn

The work gained could be used to drive some frictional=TdS,an- Energy conservation says tha@gl,,+dQ=0,
process at a higher temperature, which would turn it intovhere the latter is the heat received by the subsystem. This
heat, in conflict with this principle. Nevertheless, this prin-implies
ciple is obeyed at high temperatures, and only violated in the
guantum regime at low. g0

dS— — =dS+dS, . =dS,=0. (9.7
3. Clausius inequality T

This formulation claims that in any thermodynamical pro-
cess(in particular, for variation of a system parametére In the world of quantum entanglement, however, both as-
amount of heat received from the thermal bath by the particléumptions are less obvious. First, it does not hold Bgt
is limited from above by the bath temperature times the= S+ Sg. We have shown this explicitly, since @t=0 one

change of the von Neumann entropy of the particle, hasS,=Sg=0, butS=S,>0. Both the fact that energy is
not quickly redistributed in the bath and the nonadditivity of
dQ<TdS,y. (9.6) the entropy imply that there is na priori reason to expect

that the Clausius inequality is satisfied. In concordance with

A particular formulation of this law is that no heat can bethat’ we have shown that it is indeed not valid.

extracted from a zero-temperature thermal bath—it can only
be dumped in ifi.e., then it is impossible to haved=0).

This situation is particularly interesting, since it does not Positivity of the rate of energy dispersion underlies the
employ in any way the concept of entropy, and therefore camlassical no-perpetuum-mobile formulations of the second
be applied to situations, where entropy is not known, or notaw, including those of Thomson and Clausius. In Sec.
well defined. Physically it is also easy to understand. The/ll D 2 we have pointed out that at low enough temperatures
energy of the cloud of bath modes around the subsystem withe rate of energy dispersion can easily be negative. This
change if a system parameter is changed, evan=Ql. This  holds even when one starts in equilibrium. Thus non-

4. The rate of energy dispersion is non-negative
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negativity of energy dispersion cannot serve as a universal F. Third law

formulation of the second law. This law claims that if the ground state of the Brownian
particle is nondegenerate, then its von Neumann entropy is
5. The total entropy of a closed system cannot decrease  equal to zero. This is a direct consequence of the quantum

The most standard formulation of the second law is tha\c’ibbs distribution, which predicts the pure vacuum state at

the (coarse grainedentropy of a closed system cannot de- to(‘)N temfre:ﬁ;urggit;?ngﬂ; Csr?fronem\]/;}gﬁe\éo\r/]v#eiuEingaetrr:-
crease. In classical physics for a subsystem in contact with err?;))/erature is 7ero. This ocgﬁrs because the quantum
heat bath the equivalent is that the rate of entropy prOdUCtiO%rownian particle is iﬁ an entangled mixed state, and there-
of the subsystem is non-negative. For situations close % re cannot have vanishing von Neumann entro;;y.
equilibrium it can often be expressed as a bilinear expression The third law is recovered when taking the weak-coupling
in generalized currents, and the matrix elements are calleld I that T —T.—1% tanhé: % iV
Onsager coefficients; this matrix is positive definite in all "Mt I that caseT,=T,= 37 vCotanh S wo), implying
that the parametew of Eq. (4.395 takes the valuev

examples known to us. 1 1 .
The rate of production of Boltzmann entropy was also 2 cotank; 87 wo, which causes the von Neumann entropy

considered by us. In the case of weak damping there occdf! tlh(ta_ part::(;|r?(4t.ﬁ.6) dtlo vanish ?frd:ho' Infa certain S|S nse t?e
oscillations in the production rate around zero in each period, I0lation of the third law reported here for nonweak coupiing

this sets in at moderate temperatures, and is akin to the o the most straightforward consequence of quantum en-

cillations in energy that already occur at any noninfinite tem- anglement.
perature. In Sec. VI B 4 and VI B 5 we have pointed out that
even at low temperatures and in the limit of strong damping
the rate of Boltzmann entropy production can be negative. Taken literally, a perpetuum mobile performs perpetual,

So this criterion also does not qualify as a solid definition ofj.e., everlasting, motion. Nevertheless, rotational currents in
the second law. ordinary superconductors, which may exist for several days,

We should stress that we did not find sensible productiorare rarely connected to perpetual motion. We shall therefore
rates for other entropies. Perhaps not accidentally, the BO|tZemp|oy the word “perpetuum mobile” for any principle that
mann entropies of the coordinate and momentum sectors aggelds work.
the ones that enter into our generalized, two-temperature ver- One speaks of a perpetuum mobile of the first kind when
sion of the Clausius inequality. the first law is violated, leading to an everlasting perfor-

In our setup the von Neumann entropy for the full closedmance of work without any cost. Such a setup is impossible
system(fine-grained entropyshould not be confused with in quantum mechanics, since it satisfies the first law by prin-
the von Neumann or Boltzmann entropies of the subsystengiple. So there is no issue in the question what “perpetuum”
which pertain to the Brownian particle only. The von Neu- means precisely.
mann entropy of the full system is not altered by changing
the strength of the spring constant. This entropy remains con- H. Perpetuum mobile of the second kind
stant during the overall unitary evolution of the whole sys- . o .
tem, and also remains constant during variations of a param- Another formulation of the second law is:is impossible
eter, since also there the overall evolution is still unitary. Thel® construct an engine which will work in a complete cycle,
formulation of the second law in terms of nondecrease ofNd convert all heat it absorbs from a reservoir, into me-
entropy definitely refers to the coarse-grained entropy. In th&hanical work[65]. A machine which would do so is called a
classical situation the fine-grained entropy is conserved ag€rPetuum mobile of the second kirahd the second law
well, by the Liouville dynamics. For more definitions of en- States that such a machine is impossible.
tropy, see Ref[58].

In passing we note that if one starts from a Gibbsian state
of the total systenfcentral particle coupled to the battand When the first law is respected but the second is violated,
changes a system parameter, then the conservation of entropgie speaks of a “perpetuum mobile of the second kind.”
prevents the system from relaxing to a new Gibbsian state dflowever, we wish to make some remarks on the word “per-
the total system, since our total system is isolated. Neverthgsetuum.” Surely, in the eighteenth century such a perpetuum
less, the subsystefthe central particledoes relax to a state  mobile was imagined, for instance, to cross the Atlantic by
characterized by the parameters, which can be coded in th®at using only the energy stored in the ocean water. As
effective temperatures, of that would-be global Gibbsiansuch, there would be a basically infinite bath, and the mobile,
state. It is the finite amount of energy dumped in the extenif realized, could function perpetually, i.e., “forever.” In gen-
sive bath that does not relax, since our bath lacks anharmonaral, when the bath is finite, it obviously has a finite energy at
interactions, or coupling to an external superbath. In contrasts disposal. In many setups, such as those with a finite rate
to a superbath, anharmonic interactions do not change thef energy extraction, this implies also finite duration of the
essence of the argument on the overall unitary evolutionprocess. Thus even in the classical situation, the term “per-
conservation of both the von Neumann entropy and the erpetuum” need not be a precise adjective for this type of
ergy. However, they can widen the set of observables havingobile, and the point of view could be taken that a perpet-
would-be Gibbsian values. uum mobile of the second kind need not function arbitrarily

G. Perpetuum mobile of the first kind

1. “Perpetuum” mobile or perpetuum mobile?
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long, but must only involve many cycles. In view of the each other, and therefore the whole system is in a honequi-
failure to find so far any practical realization, this stretch oflibrium state, and can be used to perform work. If those baths
the definition seems allowable to us. are kept in a direct contact for a sufficiently long time, then

In quantum physics the situation is even more clear. In dhey will go to equilibrium and after that no work can be
closed system the energy can never go below the groundxtracted[66]. In contrast, here we have presented a case
state energy, so the amount of extracted work is always fiwith a singlethermal bath. After a sudden increase of the
nite. As a result, there can never be an infinite amount ostrength of the central spring, the central particle will go to
cycles for which a definite amount of work is extracted perequilibrium after one relaxation timeg, or 74. But in doing
cycle. One of the formulations of the second law is: “Per-so, more than the initial surplus energy is transfered to the
petuum mobiles of the second kind do not exist.” Such abath, and in particular to the cloud of bath modes in its
strong physical statement must, of course, be richer than thenmediate surrounding. After a certain moment, this heat
general statement on the existence of a ground state. THew towards the bath stops, and then a smaller backflow
crux is that already one such cycle, which extracts work fronoccurs from the bath to the particle, before the whole comes
a thermal bath, is forbidden. So, already in general, perpetudhto equilibrium. This backflow of heat is the mechanism that
motion of the second kind does not have its literal meaningnakes it possible to extract work from the bath by manipu-
of everlasting motion; rather, it is a notion for a work extrac- lating the particle, in a situation where this would be impos-
tion principle, and one cycle is therefore good enough for thesible classically. In particular, for smooth changes at zero
construction of a “perpetuum mobile.” temperatures the integral of this relaxation function is
needed, but it appears to vanish, leading to a variety of ef-
fects at low temperatures.

For our purposes the allowance of noneternal duration of On a thermodynamic level, the analogy with the classical
perpetuum mobile is relevant, since our effects only hold asase was strengthened because we could identify effective
long as both the particle does not relax, which happens otemperatures, though we also stressed that by themselves
the time scaler,, and is quantum coherent, which involves they do not tend to become equal to each other. All these
the quantum time scal&/T. intriguing aspects arise due to quantum effects, since we

We have discussed a work extraction mechanism that cyshowed in detail thathe same system coupled to the same
clicly changes the spring constant in a certain time intervalbathdisplays at high temperatures the fully expected thermo-
Each of these cycles is slower than the relaxation time of thelynamical behavior.
system. When the quantum time scaje=#/T is also slower
than the relaxation time, there occurs unexpected behavior: I. Perpetuum mobile of the third kind
the contribution to the rate of dispersion inversely propor-

tional to the duration of the cycle, normally the leading term,WOrk is performed at the cost of a diminishing, but still non-

has a s_mall prefa!cmr qua_dratlc_m temperature. Therefor?}anishing, zero-temperature entropy. This can, in principle
guadratic and cubic terms in the inverse duration also play Bceur in systems such as glasses, which are able to relax to

role. Out of equilibrium cycles have been designed where D ; . ;
. ilibrium re temporaril k in certain m tabl
constant amount of heat extracted from the bath is fully coni%qu brium, but are temporarily stuc certa etastable

verted into work, while the energy of the subsystem at th states. Then the zero-temperature entropy can be used as a

A 4 Emeasure of this metastabilif$7].
end of each cycle returns to its initial value this sense, One could wonder whether our extraction of work is due

2. The present situation

One can define a perpetuum mobile of the third kind when

appropriate regime, present at low temperatures true realiza—hi is not th ince for th rel ibbsian f
tions of perpetuum mobile of the second kiRdobably, it is this is not the case, since for the purely Gibbsian case o

. article and bath, the particle would have the same zero-
also possible to extract work both from the bath and from the_ . ' .
subsysten“efficiency larger than 100%}. oint entropy, but no work could be extracted. Moreover, in

) -~ . our case the zero point entropy is an indication of quantum
In a more stringent definition of perpetuum mobile one P Py a

requires that the cycle’s work be extracted “without any fur- entanglement and not of metastability.
ther change.” For our system this can be expressed as the
requirement that the Wigner function of the subsystem be
back at its original value. This would imply the requirements  This paper is devoted to the statistical thermodynamics of
that AK=0, AV=0, andAV=0 over each cycle, rather the quantum Brownian motion. The high-temperature case of
than only havingAK+ AV =0, whereK is the expectation of this model can serve as a convenient pedagogic example,
the kinetic energy an¥l of the potential energy. The question where almost all main statements of statistical thermodynam-
whether this extended constraint can be satisfied by changirigs are derived exclusively from first principles. Among other
the spring constant and possibly also the mass, is left for thadvantages, such an approach makes it possible to reveal the
future. conceptual restrictions and limitations of the common ther-
We should stress the conceptual difference between theodynamic wisdom. With this aim in mind we focussed in
present situation and a well-known case, where work can bthe paper on the low-temperatuiguantum situation of the
extracted due to a temperature difference between two theBrownian motion model.
mal bathd5]. The latter is the standard setup for the thermo- The stationary state of a quantum Brownian particle non-
dynamic heat engine: two baths are explicitly separated fromveakly interacting with its thermal bath is non-Gibbsian. It is

X. CONCLUSION
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this property which makes the quantum Brownian motion dation as applied to nonequilibrium. As a consequence of
challenging problem, and classical thermodynamic wisdonthis, adiabatic changes of parameters are not the most opti-
appears to be inadequate even if the total state of the systemal ones anymore. It is interesting to notice that at low tem-
and the bath is Gibbsian. Both the classical and the quantueratures a larggbut finite) number of work-extracting
Gibbsian thermodynamic theories emerge as particular limitgycles is possible. In our opinion, this explicitly realizes the
in this more general setup. The classical Gibbs distributiorbasic nontrivial content of the perpetuum mobile of the sec-
with all its thermodynamic consequences is recovered fopnd kind, because any possibility for infinite number of such
high temperatures, and the quantum Gibbs distribution is obgycles is ruled out merely by the existence of the ground
tained for very weak damping. state for the overall system.

In Sec. Il we start from the quantum Langevin equation. The second aspect of the low-temperature relaxation is
At low temperatures this equation contains a colored Gausqhat noH theorem exists at low temperatures, i_e., the prop-
ian noise; because of quantum coherence, the bath cannglly defined entropy production appears to be negative for
generate white noise even in the limit where the friction ha%ome times. This holds even in the moderate'y Overdamped
no memory. To achieve this interesting situation, no more igegime, when the Brownian particle relaxes monotonically.
needed than the observation that quantum mechanics appligRecall that without any bath those frequencies are purely
[see detailed explanations after £§.28]. Moreover, the jmaginary, which leads to the known oscillatory behayior.
quantum fluctuation-dissipation theorem predicts differeniyjthin the underdampetiveakly coupledi situation negative

time-scales of noise and dissipation at low enough temperasntropy production persists up to high temperatures, and dis-
tures[5,6,9,17. This is how quantum coherence enters intogppears only in the explicitly classical limit.

the considerations. Its characteristic time ScabE/TE, where Let us recall that Thomson’s formulation of the second

we had set the Boltzmann constaat equal to unity so far. |aw in its most general and universally applicable fdibi
Restoring it, we have;=7/(kgT)=(6.23T) Kps. At T |n cyclic processes no work can be extracted from a closed
=1 K one hast;=6.23 ps, in the range of typical micro- equilibrium systenremains satisfied. This statement was de-
scopic processes in condensed matter. rived in Ref.[47], and we have presented a very simple proof
Since the stationary distribution is non-Gibbsian there arelsewherd 64]. It obviously applies to the analysis of this
conceptual differences compared with the equilibrium casepaper, since we start from a Gibbsian with modified spring
For the harmonic potential one can define effective temperaconstant, and the work extraction disappears when the
tures(4.1) for momentum and coordinate. Both temperatureschange in the spring constant vanishgg]. Also for cyclic
are different from the bath temperatufe Generalized ther-  smooth changes that start from equilibrium we could verify
modynamic relations can be introduced, which take a quasihe non-negativity of the energy dispersion.
Gibbsian form, Eqsi4.18 and(4.20, and are closely related  We now make some remarks concerning the definition of
to the ones in the thermodynamics of glasgzs-26. the thermal bath in our problem. The harmonic oscillator
The inapplicability of standard thermodynamics is mosthath model, which was used by us, is technically convenient,
clearly illustrated by the violation of the Clausius relation, put at the same time it possesses all relevant properties of a
dQ=<TdS heat received by the particle from the bath is re-thermal bath, which are typically postulated in the statistical
stricted by temperature of the bath times the change of ththermodynamics. The most important of them is that the bath
particle’s entropy. In Sec. IV B we construct an explicit ex- should have infinite amount of degrees of freedom, a neces-
ample which at low temperatures realizeé®>0. This vio-  sary condition to ensure relaxation of the Brownian particle.
lation is significant at low temperatures, where quantum efOn the other hand, the quantum Langevin equation, which is
fects are relevant, and is small for high temperatures. It i¢he starting point of our analysis, can be derived from rather
important to notice that this violation exists already for thedifferent schemesgsee, e.g., Ref.9]), since in a sense they
totally equilibrium (Gibbsian state of the overal(particle  are more universal than the detailed properties of the consid-
plus bath system[see our discussion after E@.28]. Since  ered thermal bath.
Thomson’s formulation of the second law is valid for such a  Finally, let us relax the conditions under which our results
state[47], we have the explicit counterexample showing thathave been derived. We have already mentioned that they
the very equivalence between different formulations of thehold as well forN>1 Brownian particles in an external po-
second law is broken at low temperatufés)]. tential. Though mutual interactions would complicate the
For the dynamical consideration we start from a nonequianalysis, it would not modify our basic statements. This can
librium initial state obtained from the total Gibbsian by already be seen from the case of noninteracting harmonically
changing the width of the confining potential. This changebound Brownian particles: under a change of variables they
involves a small, controllable energy input, and can be mordecome interacting ones, while the characteristics of the bath
realistic than the hitherto studied case where particle antemains basically unaffected because it has many degrees of
bath are initially uncorrelated. After the nonequilibrium statefreedom.
has been prepared, the ensuing relaxation of the particle pre- Our findings on the nonthermodynamical character of the
sents a number of thermodynamical anomalies at low temlow-temperature Brownian motion may have a wide scope of
peratures of the bath. First, energy put into the bath does netpplications such as cooling, energy storage, and thermody-
completely dissipates thek@ contrast to the classical situ- namical limits of low-temperature computing. Indeed, in the
ation), and thus work extraction from a single thermal bath isdomain of information theory there is a large literature based
possible. This violates the second law in Thomson’s formu-on the fact that only the erasure of information must neces-
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sarily involve a dissipation of hedsee extensive reviews in Now inserting Eq.(5.55 and taking the largd™ limit of
Ref.[34]), and the claim that the erasure of one bit of infor-{(j ) from Eq. (5.47), we get from Eq(5.60

mation costs at least an amount of enekgyf'In2, the so-
called Landauer bound. It is well known that this bound is

—wqt—ivt
based on a straightforward application of the Clausius in- B(v)=singy(v) e’ |1+ -2 (17e 1
equality. From our observations it is clear that the Landauer yw w;tiv
bound can also be broken, and strong effects may occur at 1@ wat-int
low temperatures. This may have implications for computing 1€ _ ” (A2)
in the quantum regimg39]. Wyt 1y

For spins coupled to a bath the quantum nature expresses )
itself in off-diagonal elements of the density matrix. Thesel\OW |et us remember that far<0 the spring constant was
decay after the timd;, which can range up to seconds. In o While for t=0 it is a;. Thus one could write in5.39:
this regime related work extraction setups are possibit a—a(t)=ao+(a;~ao) 9(_0' By treating the term &
Our results can be expressed in the statement that Max- &) O()X(1) together with7(t), one can read off the for-
well's demon exists: it is the property of quantum entangle-M@l solution from the analog of E¢5.44), and solve it per-
ment in quantum mechanid68]. They may further have turbatively to_ f|r_st order indé,—ap). It can be verified that
implications for thermodynamics in high-energy physics andne result coincides withA2). , ,
the early universe. This .fII'St order perturbation theory can immediately be
The aim of this paper has been to show that violations of€neralized for many steps,
the second law have a natural place in the physics of quan-
tum particles that are nonweakly coupled to quantum baths. at) =a=(1—apa, H<t<tyiq1), (A3)
In this domain we have given conditions for the realization
of the most notorious objects in the history of physics: per‘Whereto=—c andt,; was taken equal to zero so far, but can

petuum mobile of the second kind. be arbitrary. One writesa(t) =ap+ Zy=1(ax—ax-1) o(t
—t,) and gets
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“Stichting voor Fundamenteel Onderzoek der Materie” In Eq. (A4) we considered that effect of many small
(FOM), which is financially supported by the “Nederlandse changes in the spring constant. When we make many

X

1_e—(w1+iv)(t—tk) 1_e—(w2+iv)(t—tk)):|

wit+iv wytiv

Organisatie voor Wetenschappelijk OnderzgikVvO).” changes with smalk(t) =« in the domaint, <t<t,,,, we
get
APPENDIX A: SMOOTH CHANGES ‘
OF THE SPRING CONSTANT @) h
<X >= a +Tr_’y akCX(O)_;l (aj—aj_l)

In this appendix we derive the work for continuous
changes of the spring constant. Here we first notice that per- y(t—t))
turbative expressiofb.60 of the exact result5.57), (5.58 Cx(—)
can be derived directly by perturbation theory. Let us first
denotea by a; and expand als@ to first order ina; —a,.

2m ’ (AS)

wheret; =t; is the moment of the first change, taken equal to

We may use zero so far. Let us writexy=a(7) and assume that the
changes are small. Then the sum can be replaced by an inte-
gral,

S d
sind)e"/’cf""zsingboJr(al—ao)e*"f’O—(ZS
aa 2V(t)=a(x?(t))=T +ﬁa ytco
el (H=a((0))=Tu(@)+ -l a| 5]C0)
=sin¢o—(a;—ag)sif¢ye %o .
yI'%v w (oot
(A1) _fo dra om 7 Cyu(7) |, (AB)
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where the upper integration border could be put equat to
sincea’ vanishes for times less than

The work needed to make the charge ;— ay at timet,
is equal to3(a,— ay_1)(x?(ty)), so it equals

1
de:(akl_ak)[sz(a)+m a,Cy(0)
x te—t:
—121 (aj—aj1)Cy %)” (A7)

PHYSICAL REVIEW E66, 036102 (2002

dil  #a da(7)

dt ZMTJO do o (T—O')CX(O') (A].O)

is the rate of energy dispersion.

APPENDIX B: MODERATE CUTOFF FREQUENCY
AND FINITE CHANGE OF SPRING CONSTANT

In this appendix we address the vanishing of work disper-
sion at T=0, without making the approximation of large
Debye frequency'. Then the full equatior5.59 has to be
employed, rather than the approximati@n60. With the

If there are many steps with small increments, we can go gy of an algebraic manipulation program we have checked

a continuum limit. Replacing the sum by an integral, we
obtain the rate of work added to the system

AW dW,, dll

dt ~ dt = dt’ (A8)
where, withr= yt/(2m),
aw, v da(7)|1 a
Gt~ 2m dr |27 2ay (GO (49

is the adiabatidrecoverablgrate of work and

that atT=0 the important finding€{")=0, see Eq(6.47),
andC{’=C{?=0 (c.f. Eq.(6.53) remain valid. So a nega-
tive rate of energy dispersion occurs also for a finite cutoff.

Let us mention, however, that the effect is weakened
when g, the amplitude of the change of the spring constant,
is not very small. This probably affects the maximal number
of work extraction cycles.

If one changes the mass and not the spring constant, the
system does not exhibit this interesting behavior, since the
analogC!? does not vanish then, implying that the leading
term in the energy dispersion does not vanish at Tow
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