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Quantum chaos induced by nonadiabatic coupling in wave-packet dynamics
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The effect of nonadiabatic coupling due to breakdown of the Born-Oppenheimer approximation on chaos is
investigated. A couple of measuréadicatorg that detect the extent of chaos in wave-packet dynamics on
coupled potential functions are devised. Using them, we show that chaos is indeed induced by a nonadiabatic
coupling in individual time-dependent wave-packet dynamics. This chaos is genuinely of quantum nature,
since it arises from bifurcation and merging of a wave packet at the quasicrossing region of two coupled
potential functions.
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Quantum dynamics on coupled potential functions, in The coupled Schitinger equations similar to E@l) ap-
other words, nonadiabatic dynamifk], which is actually pear also in different studies of physics; the interaction of
realized in molecular vibrations and chemical reactions, proelectron spin with an oscillating electric field described in
vides a very unique subject in the study of quantum chaos. Aerms of the spin-boson Hamiltonig8—10], the quantum
total molecular wave function is usually expanded(@®  mechanical entanglement among composite subsystems
here confine ourselves to a two-state model, and it§11'12' and so on.
generalization is trivial ¥ (r,R,t)=¢3(R,t)®3(r;R) An essential analysis on the mechanism of chaos in nona-
+ ¢5(R,1)P5(r;R), where ®i(r;R) and ®5(r;R) are the diabatic systems of the conical intersection has been made by
eigenfunctiongwith r the electronic coordinatgsf the elec-  |eitneret al.[13]. Among others, they have shown that the
tronic Hamiltonian given at each nuclear positi®1 The  nponadiabatic chaos they studied reflects mostly chaos on the
equations of motion for the nuclear wave functiapR,t)  |ower one of the corresponding adiabatic potentials, (2.
are given in the following coupled form: The latter chaos can readily be induced since the lower adia-

batic potential is already highly anharmonfoften of a
K o3 double-well shapedue to the underlying coupling between
'ﬁﬁ $2 = #3) @ the electronic wave functions of different natures. Therefore
2 2 it is never easy to tell whether the above type of remixing of
. . . quantum waves purely causes chaos. Fujisaki and Takatsuka
The Born-Oppenheimer approximation neglects the coupling,,ye investigated this particular aspect to show that this can
elementsX;,(R) andXy(R), and effectively decouples Eq. ingeed be the case depending on the strength of nonadiabatic
(1) as coupling and a topographical relation between two adiabatic
potential surfacegl4]. The basic strategy was to find a fully
chaotic nonadiabatic system that has a regular or weakly cha-
otic dynamics in the lower adiabatic counterpart. However,
their numerical study, and those by Cederbaum and co-
workers[2,6,13 as well, resorted to the level statistics of an

ensemble of eigenvalues such as the spectral rigidity (

[2] for the conical intersection, in which the coupling is in- o . .
finite.) Since Eq.2) has a direct classical counterpart, manySFat'TQ’t'Cs. [5,15,14 and the n_earest-nelghbor level-spacing
studies have been made on the quantum manifestation of tl%iésmtél.’t'sn .[5'17]‘ _I-!ere n t_h|§ redp(_)r'g we shhow _that the di
corresponding classical chaos, the so-called quantum cha %na||a atic traEsmgn can Indeed induce chaos in an indi-
ogy [3-5]. In reality, however, the nuclear wave packets in"! _llf? wave-p?c tetd ynamu;g ted withi N
Eq. (1) can bifurcate and merge among themselves due to thghani(zsprAe:efgr Zsu ﬁéitrueri rclzil:os\/\gn '2 silrj]r?equg& rl:tT';\ Irrs],ﬁ-r-
coupling elements, thereby bringing about a complicated re o Eq 5 i gi€ pote di-
mixing of quantum waves. The manner of such remixing canoce IS concerneq g. ( )] many sensitive measureindi
depend on the types of nonadiabatic couplialy The pio- catorg to detect “chaos” have been proposed from many

neering work on chaos due to nonadiabatic coupling hagﬁferent dynamical aspect§4,5,1i_3—26. However, these
easures are not necessarily suitable to study whether the

been made by Cederbaum and his co-workers, who el onadiabatic interaction itself can cause chaos, simply be-
actually studying the dynamics associated with the conical . » SIMPYY |
. . . . . . n cause they are not so designed. As an illustrative
intersections in the vibronic coupling of NOC,H, , and . . . a

. : example, let us consider the “entropy” fopi(t) as
other moleculeg2,6]. Heller also investigated randomness — THT I a0y Il G20 Bt hich is ti ind
induced by semiclassical hopping of trajectories among the” I ¢3(){S1(1)[In|rONS1M[], which is time inde-
relevant diabatic potential functiof]. It is thus established pendent and hence one should redefine it Qs
that the nonadiabatic transition can induce chaos, which has fdR|#3(R,t)|?In|¢3(R,t)|? (Ref. [25]). One can naively

no naive classical counterpart. extend the entropy to the nonadiabatic case of

T+VE(R)  XiAR)
Xxu(R)  T+V3(R)

d
ih - SHRD=[T+VIR)ISH(R). 2)

V2(R) are called the adiabatic potentialSee, however, Ref.
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Eqg. (1) as Qpag= —Tr[#1(1)){d1(1)|In| it S1(1)]
—Trl[ #5(1) )(#5(1)[In|S5(1) ) H5(V)[]. But this quantity is al-
ready time-dependent in contrasto (The correct form can

be actually constructed, but it is too complicated for numeri-

cal application). Likewise, one can define
Baag=— [ dRIGHROPIGLROI?

- [ aRlgsR O PRIgAR DI

However, this entropy should become larger anyway when
wave packet is bifurcated ontd$(R) and V(R) irrespec-

tive of the presence of chaos. It is therefore quite difficult to
determine whether the increment of the entropy is originated 5
from chaos or the nonadiabatic interaction. Similarly, >

straightforward application of other existing indicators could
not necessarily work well. We therefore take this opportunity

to reconsider the measure of chaos.

An important property of a classically mixed state is that

two phase-space distribution functions, dait) andI'’'(t),
whose initial distributiond”(0) andI'’(0) are slightly dif-
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ferent from each other, are relaxed to a same state irrespec-

tive of their initial difference, usually in a manner thagt)
—I'"(t)=(I"(0)—TI""(0))exp(—at). A direct application of

FIG. 1. Wave functions on the modified Hen-Heiles potential
after propagating up to=200. (Absolute units are used through-

the above idea is to calculate a distance between two quaRUt)

tum density operatorsp,,(t)=|,(t)){,(t)] and p,(t)
=[4,/(1)){¥, (1), wheren and u’ specify the initial con-

space ag(y,(t)— ¢, ()|, (1) — ¢, (1))]. As above, it is

ditions of wave packets. A rather general definition of a dis-duite natural to define the following quantity:

tance between the two densities if(ﬂ;[(t)—p#/(t))N with

an arbitrarily integeN. However, in contrast to the classical
exponential decay, one always have(p'l;g(t)—puy(t))N
=Tr(p,(0)—p, (0)" for anyN. This is due to the quantum
coherence arising from Hermiticity of the Hamiltonian. We
therefore make the density operat@artly decoherent. We
define local area#\; (i=1,2,...) inconfiguration space,
which are mutually exclusiveA;NA;j=¢. The projection
operator associated withy; is PizfAidr|r>(r|, with the ba-
sic propertiesP;P;=P;8;, =;*P;=1, and[P; ,H]#0. A
density operator sandwiched B3 as p ) (t) =Pip,(1)P;
=Pil, (1)), (1)|P; plays a key role as in the theory of
Pechukas$22]. p,,;y(t) may be regarded as a density create
by an observation process that is associated Rijtht timet

[22]. The norm is well conserved in the modified density,

that is, =Trp,i=Trp,. However, at the same time, we
should note the fact that; Tr pl'\:(i)iTr p/'j for N=2. Hence,

a natural definition of the distance between two partly deco-

herent density operators is
M

Do<t):i§1S.‘zTr[pM(i)<t>—puf(i)m]z, 3

whereS,=Tr P; is a normalization factoM is the number of

partitioning of the entire space. It is our usual practice to(a)

divide the space in such a way thgt="S; for all i andj.

One can formulate another simple idea of the distancec)

which is similar to but different fronDy(t). Let us consider

Ds(t):Ei S 2 () = ¢, (O Pil (1) — i, (D)2,
(4)

which can measure the relaxation of a wave function in the
Hilbert space.D;(t) retains more information of quantum
phase tharD(t) does. We now test holy(t) and D;(t)
work in a single potential dynamics.

The following two-dimensional modified Hen-Heiles
system [27], H=pZ/2m,+pj/2m,+(x*+y?)/2+x*(ay?
+y)+y3(by—1)/3, is convenient to test the indicators,

dsince its chaotic properties have been well studied. We here

seta=0.6, b=0.2 (see Fig. 1, m,=1.0087, andm,=1.0.

An initial wave function is a coherent-state Gaussian wave
packet i, (X,y) =N exp —(X—Xo)2A +ipyo(X—Xo) /i — (y
—Yo0) 2k +ipyo(y—Yo)/%i], with 7 =0.005 throughout. We
have chosen four sets of the parametera

= (X0,Px0+Y0:Py0), as listed in Table I, so as to correspond
TABLE |I. Initial locations, momenta, and classical energies
characterizing the initial Gaussian wave packets.

Xo Yo Pxo Pyo Ec

0.1 0.1 0 0 0.01073
(b) 0 -0.2 0.5066 0 0.15

0 0.32 0.3594 -0.3 0.15
(d) 0.42 0.425 0 0 0.249 186

the standard distance between two state vectors in the Hilbest
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T ] and ¢,/ (t) have infinitesimally fine structurg®@scillations
1 in their spatial distributions, which never happens in our ge-
(a) neric systems. Anyhow, it turns out that the “converged
value” of Dj(t) at a larget (t—) exhibits a remarkable
[P o] distinction of their “chaoticity”: D3(t) damps to a smaller
PR o i A (b) value (with a faster speedor more chaotic wave packet. On
(c) the other hand) ((t) is found to be not so sensitive Bs(t)

o3 is.

L (d) Now we proceed to our goal by extending the above dis-
0 100 200 tance Dy(t) for a nonadiabatic system of E@l). Let us
write such a vector wave function fg,)= (| ') |¢Z)",
where againu specifies an initial condition and tr means the
transposition. The corresponding density operatorpjs
=160 62N (¢ D] (¢?)]) and the projected density

log;oD3(2)

=z operator is defined as a diagonal matrip,
3 =diag(Pi| 4)(6(|Pi Pil ¢} (| Py). Then, Do(t) is
i;” readily extended as
M
Do()=2, S *Tr(pu(y = pur())” (5

FIG. 2. Chaos on the modified Hen-Heiles potential function; The extension oDs(t) Is also straightforward, that is,

log,gDo(t) and logyD3(t) in the top and bottom panels, respec-
tively, are plotted versus. The curvesa—d correspond, respec- D _ -2 M pWp M= pLy2
tively, to the wave packeta—d in Table | and Fig. 1. 3() 2, S o ¢#’| il P )

2 2
to four typical classical motions, which ate) highly regu- * |<¢’§tz)_ ¢§L')|Pi|¢f)_ ¢£¢’)>|2}' 6)
lar, (b) weakly regular on a torus near the quasisepardijx,
weakly chaotic in a relatively thin quasiseparatrix, &idg
strongly chaotic in a wide chaotic sea. The magnitude of the
classical Liapunov exponent should be of the ordefap<
(b) < (c) < (d). Figure 1 displays the snapshots of these four
|, (x,y,t)|? at t=200. They clearly display the increasing
extent of randomness of the wave packets from the paakels
to (d). For a giveny,,, a slightly different wave packef,,: _
is generated by setting’ = (Xo—0.01p,0,Y0,Pyo) - Figure 2 Mo ;
showsD(t) andDj(t) for the above packets. As expected, e I3 o
they basically exhibit decaying patterns. Bdig(t) and - s : :
Dy(t) show exponential-like decay in the early stage. How- 0 50 ¢ 100 %00 %0 ¢ 100 150
ever, they also bear a large fluctuation, which reflects signifi-
cant deformation of the wave packets at the turning points.
Therefore it would not be a good idea to utilize the exponent -
in the initial decay as an indicator of chaos. In a later stage, 5[,
the decay slows down and eventually undergoes saturatior '
which is a major difference from the classical ergodicity. » o

(Recall that the entropf) also shows the similar saturation u
bounded from abov§25,26.) Even if partial decoherence  _gg5l>"
has been introduced through Ed8) and (4), #,(t) and .
¥, (1) themselves do never coincide with each otfieecall -
that D;(t) andDg(t) are both time independent for no par- -0.5
tition of space M=1).] The present results have been given

by the_ partition numbeM =256 (16 by 16. However, our FIG. 3. Quantum chaos induced by the nonadiabatic coupling.
numerical survey shows that the dependenc®gft) and () jog,iD(t) versust. The upper and lower curves arise from the
Ds(t) on M is neither very significant nor qualitative for agiabatic and nonadiabatic dynamics, respectivblyThe same as
sufficiently largeM [28]. It is expected that botD5(t) and  in the panela), butD(t) in place ofD(t). (c) A wave packet on
Dy(t) should be bounded from below even for infinitely the lower adiabatic potential surfade) The lower-part component
large partitioning M — <), unless the wave functiong,(t) of the corresponding nonadiabatic wave packet.

(b

&

log;0Ds(f)
log;0Do(®)

]
JE!——
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We now consider a nonadiabatic problem arising fromin Eq. (1). The relaxation process off(x,y) and that in the
breakdown of the Born-Oppenheimer approximation. Our inonadiabatic system are measured separately with two
vestigated system is a simple model system extensively studlightly different wave packets, and,, in terms ofD(t)
ied by Heller [7], which consists of a pair of two- andDj(t). Figure 3 shows a generic example taken from
dimensional harmonic potentials in diabatic representatiomany calculations. Again, the similar Gaussian wave
plus associated coupling elements. These two harmonic pgacket is selected withu=(Xo,Px0,Y0,Pyo)=(0.0,0.0,
tentials make a skew angée which is called the Duschinsky —0.770667,0.0). The trajectory ovij(x,y) starting with
angle. Its Hamiltonian system l;;=T&;+V{j (i.j=12), this initial condition is regular, which has been confirmed
where T=4(p2+p2), Vi=1(w2¢?+w2n?)+e (i=1,2); using the Poincarsurface of section set at the saddle point.
with a coordinate” transformatiosi; =x cosé—(y+yp)sing,  (No naive classical motion exists in the nonadiabatic sys-

71=XSin 6+ (y+yg)cosd and &,=x cosé+(y—yy)sing, n,  tem) Figure 3a) showsDs(t) for the quantum dynamicg on
=—Xsin 9+(y—y0)0030_ The oﬁ-diagona| elements are as- the lower adiabatic potential and that in the nonadiabatic

sumed to have a formVl,=V3 =fexd—a(Vi(x,y) System. The solid curve having the higher value represents
—V4(x,y))2], which gives the coupling along the crossing the dynamics onvi(x,y), whereas the lower ongbroken
seams. The parameters used 6%0.872 w2=1.175, ¢, line) arises from the nonadiabatic system. It clearly evi-
—€,=0.001, y,=0.25, §=7/6, a=500 anéf=0.0075. dences that the nonadiabatic interaction applie¥%(x,y)

The relationship between the adiabatic and diabatic represef@s induced chaos in a significant magnitude. The similar
tations is in general quite involved, but nonetheless found t&ituation is also observed (t), Fig. Ib), which turned

be subject to an interesting mathematics of gauge theor§ut to be less sensitive to cr;aotlcny as in Fig. 1. The contour
[29,30. In this paper, our “simulated” adiabatic potential Plot of the wave packet oy(x,y) [Fig. 3()] and that on
surfaces are generated by,Y)_dependent Orthogona| trans- the lower adiabatic surface in the nonadiabatic Syi’[Elgl

formation of the diabatic potential§] . The adiabatic poten- 3(d)], att=150, visually supports the above conclusion. It is
tial surfacesva(x,y) andV3(x,y) are ordered in such a way thus confirmed that the nonadiabatic interaction can indeed

- i i -packet dynamics. More
that V3(x,y) <V3(x,y), and henceVa(x,y) (VA(x.y)) is mduce. chaos in the Ie\{el of wave pac .
calledl'EheyI{)weI%l(JpggD adiabatic potelntial surfazxce. Refer 1o &Xtensive and systematic analyses will be reported in future
Fig. 3(c) for Vi(x,y). (28]
To see the effect of the nonadiabatic transition, we com-
pare the wave-packet dynamics on the lower adiabatic poten- The authors thank Dr. H. Fujisaki for valuable discus-
tial V§(x,y) in Eq.(2) alone and that of the total Hamiltonian sions.
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