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Addendum to “Random population dispersal in a linear hostile environment”
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We extend the previous results, describing the population dispersal that occurs in some insects and small
animal populations when this process is not strictly random, by including both the downgradient diffusion and
the full Pearl-Verhulst logistic growth term in the equation of evolution. Motivated by the increasing fragmen-
tation of natural habitats that is the result of human activities, we consider a finite habitat surrounded by a
hostile environment. Previous wofRhys Rev. E62, 4032(2000] considered only the case of an unbounded
habitat, obviating issues concerned with the critical habitat size and the adoption of strategies best suited to
achieve lower densities by dispersal through downgradient diffusion.
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[. INTRODUCTION the special7] traveling wave solutions for an infinite habi-
tat. Here we will consideD=Dy+D4n. This diffusion

Dispersal of insects and small animals occurs due to anodel follows from an analysis of lion-ant dispersal in a
combination of factors whose interplay is still not well un- laboratory setting[8,9] and has also been postulated on
derstood[1]. A number of laboratory and field studies of purely theoretical grounds as describing biased random mo-
different insect specieg2] and small animal$3] indicated tion [10]. Previous work9—-12] which has only considered
the need for a reassessment of the then existing mathematidhke case of an unbounded habitat, has with a single exception
descriptive paradigm. The latter was based on the Fishdi3]takenDy=0. When the PV growth term is replaced with
equation[4] and successfully used in the seminal work ofa linear Malthusian growth terrf®—11] this allows the re-
Skelam[5] describing the dispersal of muskrats and also oalsulting generalization of Eql) to be transformed into an
trees. In that descriptive framework dispersal is treated as equation previously studied and solved in connection with
purely random process, described by simple diffusion, andhe flow in a porous mediurfii4]. NeglectingD, was justi-
the population densitgi(x,t) is assumed to evolve according fied in the case of lion-ant disperddl] for which this term
to was shown to be small except near the dispersal front in the
infinite space being considered. Traveling wave solutions for
the case wher® =D ,n® together with the generalized PV
growth termBn?(1—n) have also been studig¢d?2].

As humans expand the range of their activities the frag-
i.e., through a superposition of diffusion and a logistic, Pearlimentation of natural habitats has become all too common.
Verhulst(PV), growth term. HereD is the diffusion coeffi- This provides the motivation here for considering dispersal
cient, 8 is the growth rate, andN is the habitat carrying in a finite habitat surrounded by a hostile environment. We
capacity; in what follows we scaleto N. retain both the full PV growth term and takB =D,

A conclusion that followed from the studies cited above + D n, since near the boundaries»at 0, L where the den-
was that in some species dispersion is not solely due to rarsity becomes vanishingly small, th2, term can become
dom movement, but that it is at least partly due to a desire talominant and cannot be neglectagriori. Since the equa-
lower the local density. This confers some advantages relaion we will need to consider is analytically more complex
tive to increased survival, e.g., it results in equilibrium den-than Eg. (1), it is unlikely that an exact solution can be
sities below the carrying capacity providing a buffer in thefound. However, we are able to obtain an approximate solu-
event resources, which for some reason are diminished antpn through the use of a technique applied earlier to (.
also, it reduces competition for resources in single specielsl5]. The solution found here does shows the expected quali-
habitats. tative behavior, particularly in the case of the equilibrium

A number of approaches to modifying E@.) have been solution which is reduced from that for the case of purely
taken to describe a more nuanced view of the dispersal praqandom dispersal. In the following section we first describe,
cess. A common feature of these approaches is the replactiien apply the method of solution. A discussion of the solu-
ment of the fluxj=—Dg(d/dx)n with a density-dependent tion found then follows in Sec. Ill.
diffusion coefficientD (n) _ that increases with so that dif-
fusion is enhanced, where the density is high-favoring down-
gradient diffusion. This introduces a second nonlinearity into Il. FORMULATION AND SOLUTION
Eq. (1), which itself remains unsolved except for the steady as discussed above, we consider
state case in a finite habitg], and the pertubativEs] and
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wheren has been normalized 8 andD; here and in what

follows has a factoN ! incorporated into it. The habitat aAn:(anlAlJrzanzAi*"")(A1K11+A§K12+"')
size isL and the boundary conditions arg0t)=n(L,t)
=0, where for reasons of simplicity we consider dispersal in =(amA+anAi+- K 2+ AZK o+ (8)

only one dimension. The method of solution that we employ

here is similar to that used in obtaining normal solutions toj; follows thatAn=O(A§), so that toO(Af) we have
the Boltzmann equatiofi6] and has been described in detalil
previously [15]. Briefly, we ignore the fact that Fourier K1:AL(0)
analysis is intended to apply to linear equatigig] and A(t)= S _
look for solutions of the form [K11+K12A1(0)]Je™ "8 =K 1A (0)

€)

_ Forn>1 theA, can be found to any desired orderAn
n(x,tH)= > An(t)sin(nmx/L), ()  from Egs.(4-9 and, as noted above, it is immediately ap-
parent from comparison of tHe(A,) terms on either side of
where A, (1) =A,(A,(t)), N=2.3,.... As in the case of the Eq (5) that a,;=0, so that all of the terms indicated as

: ” 3
Boltzmann equation, we do not necessarily expect such spehlgher order” are at least 0D(A;), and for small values of

cial solutions to be accurate at very short times; this dependéhcindbe neglected °”.”‘.t?r|”(‘jed'at.e and Il?ng tm;e scales for
on the nature of the initial condition. In the context of the WNICh dependence on initial data Is weak. Further, we can

Boltzmann equation, this is known as initial s[ib8,19. determine the higher approx_imations to any de_sired order in
Substitution of Eq(3) into Eq. (2), followed by multipli- A; through the simple algorithm that follows directly from

. 2 .
cation by sinimx/L), and then integration ovex lead to  Ed-(8), €.9., equating terms @(A;), we find
equations for thé\,; for n=1, we find

Kn2

42" 2K 1 Ky

d n=3,5,.... (10
aA1=A1[,3—DO(7T/L)2]—Ai[(4qu1/3L2)+(8,8/3m)]
) This indicates that the coefficients of the presumed sAll
TO(A1A2, ArAs, - AZ A, ) terms become smaller with increasingasn™?; it can also
= A Kt AZK ot e 4 be verified thaians_, ang,... also deprease with _inc_reasing
PR T2 @ 5o that Eq(9) provides a good qualitative description subject
to the restrictions noted earlieA({ small, times for which

Assuming for simplicity that the initial condition is symmet- dependence on the initial data is wgak

ric aboutx=L/2, so thatA,,= 0, the equation for the remain-

ing A, is
Il. DISCUSSION
d Ai Th o . i
- _ 2 ere are two qualitative features of the solution that fol
th” Anl B=Do(mn/L)"]+ n(n—2)(n+2) (851w low “by inspection” from Eq. (9). First, if Dy is identically

zero there is no critical habitat size below which an initial

2 2 2
+(4mD1 /L) (n"=2)+ (87D, /L] population becomes extinct. This is intuitive; as the popula-

+ (higher-order terms
=A,Kn1+AZK .+ (higher-order terms (5)

25 ¢

20
where here and below “higher-order terms” denotes terms

that are of the same forrfwith differing numerical coeffi-
cient as those shown explicitly in Edq4). 15

In order to close these equations, we make use of the:z2
assumed functional dependence of #efor n>1 to rewrite 2 10
Eq. (5) using the substitutions
d A o A d A 6 :
dt™ " SA; dt ! ®
0
and 0 5 10 15 20 25
D,/D,
- 24 ...
An=amArtanpArt: -, () FIG. 1. 1(?Aleq versus the purposeful dispers@®, /D, for
L./L=0.99 (top curve, L./L=0.95 (middle curve, and L./L
so that =0.90 (bottom curve.
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tion falls diffusion to the boundary decreases allowing the In Fig. 1, we illustrate the interplay betwe®y andD;
interior population to recover sufficiently to avoid extinction, (the latter normalized by) for several values of /L. If

and a stablé20] equilibrium with A, () =|K,/K4,| is es-  the ratioD, /D, is considered as a measure of purposeful
tablished[21]. WhenDy# 0 the population can become ex- dispersal, we see from Fig. 1 that the degree to which this
tinct if Dy is too large regardless of the value Bf ; the  occurs must increase as the habitat size becomes larger rela-
critical length is L.=m(Do/B)Y? unchanged from that tive to the critical length in order to achieve the same pre-
when dispersal is solely due to random movement. It alsderred density limit. The most effective strategy to follow in
follows from Eq. (9) that when a surviving equilibrium doing this would be to decrease random dispersal, which not
population is established, increasing nonrandom dispersabnly increases purposeful dispersal but also decreages

i.e., increasingD,, will decrease population densities well. This is more effective than the other available alterna-
throughout the habitat thereby reducing vulnerability to thetive, decreasing the birth rate, which is also likely to be more
possibility of resource shortages. strongly influenced by factors unrelated to dispersal.
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