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Inconsistencies in moment methods
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In this work we show that moment methods devised to solve the Boltzmann kinetic equation for a simple gas
exhibit some inconsistencies. This puzzle, which also appears for the Chapman-Enskog method, is solved
resorting to a perturbative expansion in the Knudsen number, thus allowing for a clear way to arrive at a
closure condition.
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The classical moment problem, namely, the determination The main result in this paper clearly exhibits this problem

of a positive-densityf (x) from its moments for a rather specific situation, and further shows that this
scheme is inconsistent when we do not have an expansion

(1) parameter to properly classify the different terms occurring

in the approximation. A solution is proposed by appealing to

a power series expansion in terms of the Knudsen number.

has been of great use in a variety of situations both in equi- Let us start with the Boltzmann equation for a simple

librium and nonequilibrium phenomena. Sufficient and necimonatomic gas consisting of rigid spheres without an exter-

essary conditions for this to happé¢h,?], as well as ex- hal force,

amples in which the distribution function is not determined

from its moments, are availab[@]. In the latter case, the atlot+c v £=J(f.f), @

corresponding functiofi(x,t) is usually governed by nonlin- . . . o .

ear differential or integro-differential equations whose exactvheref(cr,t) is the_ Slngle-partl_cle distribution funct!o.n,

solution is not known. This implies the necessity of con-the molecular velocity, and(f,f) is the Boltzmann colhspn

structing suitable methods to find approximate solutionskernel[34]. The number density(r,t), the hydrodynamic

Typical examples are the Fokker-Planck equatigh the velocity u(r,t), and the temperaturé(r,t) are defined as

nonlinear Schidinger equationg5], the kinetic theory of —usual,

dense gasdg#$,7] and the Boltzmann equation where the mo-

ments method, or its variants, has been widely used with n(r,t) 1

some succes[ﬁ—'SZ]. In this paper we would like to concen- u(r,t) — mc | f(cr,t)dc. 3

trate ourselves in the so-called Grad’s moment method de- 5 L

veloped some fifty years ag8—10] to solve the Boltzmann 2nkgT(r,1) zmC

nonlinear integro-differential equation appearing in the ki- ) o )

netic theory of inert dilute gases taken as rigid spheres.  1he peculiar velocity is given bf=c—u and kg is the
All moment methods developed to solve the BoltzmannB0ltZmann constant. Now we consider a functig(c,r,1t),

kinetic equation share the hypothesis that the single-particl@ultiply Eq. (2) by ¢, and integrate over the molecular ve-

distribution function can be expanded in a complete set ofoCity to obtain

orthonormal polynomials containing their molecular velocity H”<'z”> »

dependence. Such an expansion, which in principle is al ) _ v ) _

infinite series, must be approximated in order to obtain a Jt TV (u{g)+n(Cy)) n<< &t>+<c Vrlﬁ)) 2

finite summation of several terms. This means that we 4

choose a finite set of relevant moments to study the behavior

of the systenf9]. As a result of this procedure we obtain the Where

single-particle distribution function written in terms of some

cpefficients toggther with veIociFy ponnqmiaIs. The (;oeffi— n<¢>:f W(C,r.Hf(er t)de, (5)

cients are functions of the spatial coordinates and time, so

they describe the macroscopic behavior of the system. To

obtain the macroscopic equations for all relevant variablesand

we take the Boltzmann equation and construct the general

Maxwell-Enskog(ME) transport equatiof33]. Although the

ME equation was written even before the Boltzmann equa-

tion, it has been somewhat ignored by its users that it allows

for the construction of an infinite set of equations for all theis the source of the quantity. Also n(r,t) has been abbre-

functions of molecular velocity one is interested in. Theviated byn. It is well known that when we choose any of the

question that obviously arises is if all such equations aresollisional invariants written in Eq(3) as the functionsy,

independent and consistent among themselves. the corresponding source vanishes and the ME equation re-

b
f f(x)x"dx, n=0,1,2...,

2¢=f $(C,r,0)J(f,F)dc 6)
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Py
1+ XX(2 i—vi-vd)

produces the conservation equations. Also, the heat flux ( m )3/2 ;{ V2
fo= ex
2

q(r,t) and the pressure tense(r,t) are defined as moments =n kT
of the distribution function, B

qu x(V =5)|. (12

q(r, t)—f L mC2C f(c,r,t)dc 7) 5p

Now, it is well known that the Grad’s distribution function as

given in Eqg.(12) when used in the ME equation for the
P(r,t):j mCC f(c,r,t)dc, (8 collisional invariants reproduces the conservation equations

for the number density, the momentum density, and the en-

and they will become important in the following discussion. €rgy. Moreover, in the Grad’s method, the following step is
Notice that the ME equation as written in E@) is exact, diven in order to obtain the transport equation for the pres-
pro\/ided thatf is an exact solution of the Boltzmann equa- sure tensor and the heat flux. Let us concentrate in the equa-
tion. tion for the heat flux and take, as usual, the function

Due to the lack of such an exact solution of the Boltz-#(C.r,t)=mC?C,. Accordingly, we obtain the evolution
mann equation, to illustrate our point we will first take the equation forg, in which we have the drift term that is non-
Grad’s 13-moment approximatiof8] for the distribution linear, and keeping only the linearized collision kernel we
function, have

a(2uqy) 22 du  kgT dpoy kg T
f=0

kgT AT ee ML 5080
C>2<_ W) +Mxycxcy+ MxCxCrt MyzCyCy X + 5 qx(?X +2 m X pxxé’X( m

1+ px

kT

KeT mC? 2pg, d(p+pY) J (keT
+ fhzz C - C -5 - —+5p_

4
KT p X X W>+§,39qx=0, (13

+ r“yy( C§

mC? mC? where, which appears in the the collision kernel, is defined
+ eycy(kB_T _5> zcz< 5) } 9 by pB=p/n andu is the shear viscosity of the fluid. Equa-
tion (13) with the equation for the pressure tensor were used
by Grad to study the shock wave structii€]. In fact, the
usual variables, such as the number density, the hydrody-
m |32 mC2 namic velocity, the temperature together with the viscous
—) exp( - —) (10)  tensor, and the heat flux correspond to the most natural se-
2mkgT 2kgT lection of relevant variables to describe the system. They
have been used to study simple systems beyond the local
equilibrium regime.

where
f(o)(c,r,t)zn(

is the usual local Maxwellian distribution function, and all

other quantities are defined as follows: Further, the ME equation can be also used for other func-
tions of the molecular velocity; particularly when we take
“ :l< Pxx _1>, oy = m ( Pyy _1), =mC>, we obtain an equation fan(y)=n(mC3)=Q,.
¥ 2kgT | nkgT YV 2kgT \ nkgT The remarkable point is that one finds by direct calculation

thatQ,= 2q,, so that in principle, the evolution equation for
m P,, m Q, should be proportional to Eq13). However, a direct
, calculation shows that

Mzzzm nkBT - Mxyzwpxy;
6 dq, K°T?on KT P,y au+24 au
m b ; m ) m 5uax m ox m dx X ax 5qxax
,U/ = ) = q 1 = q "
g2 T sk Y Bk Y KPo oT nKT oT 4
(12) m ax O m ax . 5PP%- (14)

To simplify the calculations we consider a longitudinal andA careful comparison between Eq43) and(14) shows that
stationary flow such thai(r,t)=u(x)i, and all other quan- they are different and independent, though they should be
tities only depend on the coordinate. A|50 we consider that proportional to each other. It follows at once that this poses a
Pxy=Px;=Py,=0, 9,=q,=0, andP,,=P,,, asitis donein  serious problem since now we have two different equations
Ref. [10]. Further, the viscous tensor is given p§,=P,,  for the same physical quantity,, implying that their solu-
—p, wherep(x) is the hydrostatic pressure. We introduce tion may be different.

the dimensionless components of the velocity ag On the other hand, we ask ourselves if this inconsistency
=ym/kgTC,, vy=+Vm/kgTc,, andv,= ym/kgTc,. In this is specific of the Grad’s moment method, or if it arises when
case the 13-moment distribution function given in E8).  we use other approximate method. To illustrate this point we
reduces to the form will take the distribution function arising from the Chapman-
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Enskog solution to the Boltzmann equation. Consider firsivhere we have also subtituted the value for the collision
the same longitudinal stationary flow and introduce the samentegral in terms of thex component of the heat flux in the
dimensionless components of the molecular velocity, so thaChapman-Enskog approximation, such that 5pBqy

the Chapman-Enskog distribution function up to first order in= —16/9 \/kBT/quCE_ The terms in Eq(19) can now be
the Knudsen number can be written as follows: separated according to their order in the Knudsen number. In

32 2 fact, the heat flux can be written as follows:
fCE=n m exd ——|[1
27TkBT 2

2
v v U3
3p | o e 45 [m 29 m
Ox = 7zP€ te =
" 16 VigT| 5 KeT| 9

x(V - )} (15)
21 [du*| 0 kgT
—?p IX* | gx* m

K2 kBT
m

1%

*

kB
4pT X

We notice that the Chapman-Ensk@gE) distribution func-

X( | 45pkgT  dT*
tion has the same structure in the molecular velocity as the

u
m Ix*

Grad’s function in Eq(12). Moreover, it is consistent with 99 kgT [ dT* /[ gu* keT @ [ou*
the Navier-Newton-Fourier constitutive laws that are written ——=p— 3 p
85 m | gxx )\ ox* m gx* "\ gx*
as[34]
oCE_ _ 4pdu qCE:_l_SkB_'U“ i) 16 +3kB_T au*\ [ ap
XX 3 \ox % 4 m \ox) m | gx* | | gx*
Using Eqgs.(15) and(16), f°E can be brought into a form .9 OkgT [ou*) o [aqu*
similar to that of Eq.(12), from where it follows that the T Vet 2m | o | ot P\ o | | (20

evolution equations constructed from the ME equation will
become the same as E@&3) and(14). This rather relevant
argument shows that the CE method will have the same inAccording to the Chapman-Enskog method, it is just
consistency as that arising from the Grad’s equations. the first term in Eq.(20) which we can take as a
Here we have illustrated the inconsistency in the simplestesult, because the single-particle distribution function used
way for two quantities that, being proportional to one an-corresponds to an expansion up to first orderein On
other, lead to a different set of equations which in principlethe other hand we could write the collision integral in terms
should be equivalent. of the temperature gradient. It means thai4/3)pBqy
Although both Grad’s and Chapman-Enskog’s distribution= (5kgT/Im)pe(aT*/dx*) in such a way that its direct sub-
functions exhibit the same inconsistency, we recall that thetitution in the second member of EQ0) shows how the
last one can be written in terms of the Knudsen number terms in the first order i cancel, and therefore, all others
=|/L, wherel =(4u/3p) VkgT/m is the mean free path and must add to zero. Taking into account that this expansion is

L the typical macroscopic length, so that valid only up to first order ire, the second and higher-order
0 . terms are negligible, so instead of an additional condition we
Pex 3 ou (17  Simply have to neglect them.
p 2 € ax* On the other hand, we have Hd4) that is also valid for
the heat flux, so that the same procedure can be carried out.
O 45 JT* It means that we substitute the Navier-Stokes-Fourier consti-

(18)  tutive equations expressed in terms of the Knudsen number

— A€
P kBT 16° x> and arrange each term accordingly; so

where the asterisked variables are dimensionless. Direct sub-

stitution of Egs.(17) and (18) in the drift term of Eq.(13) 2 /kB_Tu* d [keT ,0T*
shows that 8 Vm" x m P€
o[ Ak e o) 2L e[ 0 keT kT 0o
Ix* m Lo oox*) 27Llgxx)laxx m m | gx* D€ ot
99 pkBT aT*\ [ gu* kgT 0 [ep)|du* 9 [kaT 0 [kaT qu*
3 - _ ipEZ i u* u*
8 mL ax* m gx*\ L\ gx* 2 m IxX* m ax*
3kBT € (7U* 3 (7U* T* k * T* k T
m L *)[ *p(l 2 )1 +3 J —9ip 2 o i +3ip J
X X ax* Ix* m Ix* IxX* m = gx*
5p J kBT kB CE kB
" T( ox* F) BRI 19 BT @D
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Equations(19) and (21) show that to lowest order in the The important and subtle point to understand is how can
Knudsen number, both are equivalent and consistent with th&e obtain consistent results, a fact deeply buried in the struc-
Fourier’s law. The remaining terms are of higher ordeejn ture of the nonlinearity in the Boltzmann equation. The drift
and therefore we do not have the right to impose that théerms in the Boltzmann equation, which are nonlinear, lead
equations must be satisfied, since we are using a distributio@ different results according to the specific approximation
function valid only up to first order ia. It is obvious thatthe  performed in the distribution function. On the other hand, the
higher-order conditions cannot be satisfied, and in generagradg method does not have any small parameter to follow
they are not the same for any arbitragffunction we choose  the order of the approximation, so we have to impose on the
to describe the behavior of the system. The same argumegh)ytion an arbitrary number of additional conditions coming
can be extenqed to classify terms of or@&r n>2. from the ME equation. In contrast, the Chapman-Enskog so-
To summarize, the lack of an exact solution to the Boltz-jnn contains the Knudsen number as a small parameter
mann equation drives us to take some approximation to SOIVgnd being a first-order approximation we do not have to re-
it. Several methods have been developed in the literature t uire the solution to satisfy such conditions. As we have

account for such a task. In particular, the Grad’s 13-momen o :
S . shown, the Chapman-Enskog solution is completely consis-
approximation has been used to study problems like th

shock wave structure and othdids]. However, we assert ?ent up to first order in th,e Krl1ud'sen_ number,. as it should be.
here that the set of equations for the moments chosen to %@ the case of the Grad's distribution function, we do not
relevant can be evaluated along several lines. In fact, the ME2VE any reason to eliminate the conditions imposed by the
equation gives us the procedure to construct an arbitrar)/E €quation, because the existence of a perturbative ap-
number of equations related to the chosen moments. djroach in terms of a small parameter is not guaranteed. The
course, one would expect that all those equations should By way to use the Grad's approximate solution is through
equivalent. What we have shown in this work is a surprising?n additional expansion that takes into account an iterative
result, in which the ME equation gives us two or more dif- solution in powers of the Knudsen number to order the
ferent evolution equations for the same quantity. Also, thgerms. Obviously, this fact makes the Grad’s method some-
first-order Chapman-Enskog distribution function leads towhat useless in practice. We expect that the deficiency re-
the same difficulty. It means that the averageg dfinctions  ported here for the Grad’s moments method is also present in
calculated with this distribution function yields equations other applications of the moments method, the details will be
that are not equivalent, for the same dynamical quantities. published later on.
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