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Inconsistencies in moment methods
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In this work we show that moment methods devised to solve the Boltzmann kinetic equation for a simple gas
exhibit some inconsistencies. This puzzle, which also appears for the Chapman-Enskog method, is solved
resorting to a perturbative expansion in the Knudsen number, thus allowing for a clear way to arrive at a
closure condition.
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The classical moment problem, namely, the determina
of a positive-densityf (x) from its moments

E
a

b

f ~x!xndx, n50,1,2, . . . , ~1!

has been of great use in a variety of situations both in e
librium and nonequilibrium phenomena. Sufficient and n
essary conditions for this to happen@1,2#, as well as ex-
amples in which the distribution function is not determin
from its moments, are available@3#. In the latter case, the
corresponding functionf (x,t) is usually governed by nonlin
ear differential or integro-differential equations whose ex
solution is not known. This implies the necessity of co
structing suitable methods to find approximate solutio
Typical examples are the Fokker-Planck equation@4#, the
nonlinear Schro¨dinger equations@5#, the kinetic theory of
dense gases@6,7# and the Boltzmann equation where the m
ments method, or its variants, has been widely used w
some success@8–32#. In this paper we would like to concen
trate ourselves in the so-called Grad’s moment method
veloped some fifty years ago@8–10# to solve the Boltzmann
nonlinear integro-differential equation appearing in the
netic theory of inert dilute gases taken as rigid spheres.

All moment methods developed to solve the Boltzma
kinetic equation share the hypothesis that the single-par
distribution function can be expanded in a complete se
orthonormal polynomials containing their molecular veloc
dependence. Such an expansion, which in principle is
infinite series, must be approximated in order to obtain
finite summation of several terms. This means that
choose a finite set of relevant moments to study the beha
of the system@9#. As a result of this procedure we obtain th
single-particle distribution function written in terms of som
coefficients together with velocity polynomials. The coef
cients are functions of the spatial coordinates and time
they describe the macroscopic behavior of the system
obtain the macroscopic equations for all relevant variab
we take the Boltzmann equation and construct the gen
Maxwell-Enskog~ME! transport equation@33#. Although the
ME equation was written even before the Boltzmann eq
tion, it has been somewhat ignored by its users that it allo
for the construction of an infinite set of equations for all t
functions of molecular velocity one is interested in. T
question that obviously arises is if all such equations
independent and consistent among themselves.
1063-651X/2002/66~3!/032103~4!/$20.00 66 0321
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The main result in this paper clearly exhibits this proble
for a rather specific situation, and further shows that t
scheme is inconsistent when we do not have an expan
parameter to properly classify the different terms occurr
in the approximation. A solution is proposed by appealing
a power series expansion in terms of the Knudsen numb

Let us start with the Boltzmann equation for a simp
monatomic gas consisting of rigid spheres without an ex
nal force,

] f /]t1c•“ r f 5J~ f , f !, ~2!

where f (c,r ,t) is the single-particle distribution function,c
the molecular velocity, andJ( f , f ) is the Boltzmann collision
kernel @34#. The number densityn(r ,t), the hydrodynamic
velocity u(r ,t), and the temperatureT(r ,t) are defined as
usual,

S n~r ,t !

u~r ,t !

3
2 nkBT~r ,t !

D 5E S 1

mc
1
2 mC2

D f ~c,r ,t !dc. ~3!

The peculiar velocity is given byC5c2u and kB is the
Boltzmann constant. Now we consider a functionc(c,r ,t),
multiply Eq. ~2! by c, and integrate over the molecular ve
locity to obtain

]n^c&
]t

1“ r•~nu^c&1n^Cc&!2nS K ]c

]t L 1^c•“ rc& D5Sc,

~4!

where

n^c&5E c~C,r ,t ! f ~c,r ,t !dc, ~5!

and

Sc5E c~C,r ,t !J~ f , f !dc ~6!

is the source of the quantityc. Also n(r ,t) has been abbre
viated byn. It is well known that when we choose any of th
collisional invariants written in Eq.~3! as the functionsc,
the corresponding source vanishes and the ME equation
©2002 The American Physical Society03-1
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produces the conservation equations. Also, the heat
q(r ,t) and the pressure tensorP(r ,t) are defined as moment
of the distribution function,

q~r ,t !5E 1

2
mC2C f ~c,r ,t !dc, ~7!

P~r ,t !5E mCC f ~c,r ,t !dc, ~8!

and they will become important in the following discussio
Notice that the ME equation as written in Eq.~4! is exact,
provided thatf is an exact solution of the Boltzmann equ
tion.

Due to the lack of such an exact solution of the Bol
mann equation, to illustrate our point we will first take th
Grad’s 13-moment approximation@8# for the distribution
function,

f 5 f (0)F11mxxS Cx
22

kBT

m D1mxyCxcy1mxzCxcz1myzcycz

1myyS cy
22

kBT

m D1mzzS cz
22

kBT

m D1uxCx S mC2

kBT
25D

1uycyS mC2

kBT
25D1uzczS mC2

kBT
25D G , ~9!

where

f (0)~c,r ,t !5nS m

2pkBTD 3/2

expS 2
mC2

2kBTD ~10!

is the usual local Maxwellian distribution function, and a
other quantities are defined as follows:

mxx5
m

2kBT S Pxx

nkBT
21D , myy5

m

2kBT S Pyy

nkBT
21D ,

mzz5
m

2kBT S Pzz

nkBT
21D , mxy5

m

kB
2T2n2

Pxy ,

myz5
m

kB
2T2n2

Pyz , ux5
m

5kB
2T2n

qx , uy5
m

5kB
2T2n

qy .

~11!

To simplify the calculations we consider a longitudinal a
stationary flow such thatu(r ,t)5u(x) î , and all other quan-
tities only depend on thex coordinate. Also we consider tha
Pxy5Pxz5Pyz50, qy5qz50, andPyy5Pzz, as it is done in
Ref. @10#. Further, the viscous tensor is given bypxx

0 5Pxx

2p, wherep(x) is the hydrostatic pressure. We introdu
the dimensionless components of the velocity asvx

5Am/kBTCx , vy5Am/kBTcy , andvz5Am/kBTcz . In this
case the 13-moment distribution function given in Eq.~9!
reduces to the form
03210
x

.

-

f G5nS m

2pkBTD 3/2

expS 2
v2

2 D F11
pxx

0

4p
~2vx

22vy
22vz

2!

1
1

5p
A m

kBT
qxvx~v225!G . ~12!

Now, it is well known that the Grad’s distribution function a
given in Eq. ~12! when used in the ME equation for th
collisional invariants reproduces the conservation equati
for the number density, the momentum density, and the
ergy. Moreover, in the Grad’s method, the following step
given in order to obtain the transport equation for the pr
sure tensor and the heat flux. Let us concentrate in the e
tion for the heat flux and take, as usual, the functi
c(C,r ,t)5mC2Cx . Accordingly, we obtain the evolution
equation forqx in which we have the drift term that is non
linear, and keeping only the linearized collision kernel w
have

]~2uqx!

]x
1

22

5
qx

]u

]x
12

kBT

m

]pxx
0

]x
17pxx

0 ]

]x S kBT

m D
2

2pxx
0

r

]~p1pxx
0 !

]x
15p

]

]x S kBT

m D1
4

3
brqx50, ~13!

whereb, which appears in the the collision kernel, is defin
by rb5p/m andm is the shear viscosity of the fluid. Equa
tion ~13! with the equation for the pressure tensor were u
by Grad to study the shock wave structure@10#. In fact, the
usual variables, such as the number density, the hydro
namic velocity, the temperature together with the visco
tensor, and the heat flux correspond to the most natura
lection of relevant variables to describe the system. Th
have been used to study simple systems beyond the l
equilibrium regime.

Further, the ME equation can be also used for other fu
tions of the molecular velocity; particularly when we tak
c5mCx

3 , we obtain an equation forn^c&5n^mCx
3&5Qx .

The remarkable point is that one finds by direct calculat
thatQx5 3

5 qx , so that in principle, the evolution equation fo
Qx should be proportional to Eq.~13!. However, a direct
calculation shows that

6

5
u

]qx

]x
23

k2T2

m

]n

]x
16

kT

m

]Pxx

]x
13uPxx

]u

]x
1

24

5
qx

]u

]x

16
kPxx

m

]T

]x
26

nk2T

m

]T

]x
52

4

5
rbqx . ~14!

A careful comparison between Eqs.~13! and~14! shows that
they are different and independent, though they should
proportional to each other. It follows at once that this pose
serious problem since now we have two different equati
for the same physical quantityqx , implying that their solu-
tion may be different.

On the other hand, we ask ourselves if this inconsiste
is specific of the Grad’s moment method, or if it arises wh
we use other approximate method. To illustrate this point
will take the distribution function arising from the Chapma
3-2
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Enskog solution to the Boltzmann equation. Consider fi
the same longitudinal stationary flow and introduce the sa
dimensionless components of the molecular velocity, so
the Chapman-Enskog distribution function up to first order
the Knudsen number can be written as follows:

f CE5nS m

2pkBTD 3/2

expS 2
v2

2 D F12
m

3p S ]u

]xD ~2vx
22vy

22vz
2!

2
3m

4pT
AkBT

m S ]T

]x D vx~v225!G . ~15!

We notice that the Chapman-Enskog~CE! distribution func-
tion has the same structure in the molecular velocity as
Grad’s function in Eq.~12!. Moreover, it is consistent with
the Navier-Newton-Fourier constitutive laws that are writt
as @34#

pxx
CE52

4m

3 S ]u

]xD , qx
CE52

15

4

kBm

m S ]T

]x D . ~16!

Using Eqs.~15! and~16!, f CE can be brought into a form
similar to that of Eq.~12!, from where it follows that the
evolution equations constructed from the ME equation w
become the same as Eqs.~13! and ~14!. This rather relevant
argument shows that the CE method will have the same
consistency as that arising from the Grad’s equations.

Here we have illustrated the inconsistency in the simp
way for two quantities that, being proportional to one a
other, lead to a different set of equations which in princip
should be equivalent.

Although both Grad’s and Chapman-Enskog’s distribut
functions exhibit the same inconsistency, we recall that
last one can be written in terms of the Knudsen numbee
5 l /L, wherel 5(4m/3p)AkBT/m is the mean free path an
L the typical macroscopic length, so that

pxx
0

p
52

3

2
e

]u*

]x*
, ~17!

qx

p
A m

kBT
52

45

16
e

]T*

]x*
, ~18!

where the asterisked variables are dimensionless. Direct
stitution of Eqs.~17! and ~18! in the drift term of Eq.~13!
shows that

]

]x*
S 2

45pkBT

m

e

L
u*

]T*

]x*
D 2

21

2
p

e

L S ]u*

]x*
D S ]

]x*

kBT

m D
2

99

8

pkBT

mL
eS ]T*

]x*
D S ]u*

]x*
D 23

kBT

m

]

]x*
S ep

L D S ]u*

]x*
D

1
3kBT

m

e

L S ]u*

]x*
D F ]

]x*
pS 12

3

2
e

]u*

]x*
D G

1
5p

L S ]

]x*

kBT

m D 52
16

9l
AkBT

m
qx

CE , ~19!
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where we have also subtituted the value for the collis
integral in terms of thex component of the heat flux in th
Chapman-Enskog approximation, such that2 4

3 rbqx

5216/9lAkBT/mqx
CE . The terms in Eq.~19! can now be

separated according to their order in the Knudsen numbe
fact, the heat flux can be written as follows:

qx
CE52

45

16
peA m

kBTS ]

]x*

kBT

m D 1e2
9

16
A m

kBTF ]

]x*

3S 2
45pkBT

m
u*

]T*

]x*
D 2

21

2
pS ]u*

]x*
D ]

]x*

kBT

m

2
99

8
p

kBT

m S ]T*

]x*
D S ]u*

]x*
D 23

kBT

m

]

]x*
pS ]u*

]x*
D

13
kBT

m S ]u*

]x*
D S ]p

]x*
D G

2e3
9

16
A m

kBTF9kBT

2m S ]u*

]x*
D ]

]x*
pS ]u*

]x*
D G . ~20!

According to the Chapman-Enskog method, it is ju
the first term in Eq. ~20! which we can take as a
result, because the single-particle distribution function u
corresponds to an expansion up to first order ine. On
the other hand we could write the collision integral in term
of the temperature gradient. It means that2(4/3)rbqx
5(5kBT/ lm)pe(]T* /]x* ) in such a way that its direct sub
stitution in the second member of Eq.~20! shows how the
terms in the first order ine cancel, and therefore, all other
must add to zero. Taking into account that this expansio
valid only up to first order ine, the second and higher-orde
terms are negligible, so instead of an additional condition
simply have to neglect them.

On the other hand, we have Eq.~14! that is also valid for
the heat flux, so that the same procedure can be carried
It means that we substitute the Navier-Stokes-Fourier con
tutive equations expressed in terms of the Knudsen num
and arrange each term accordingly; so

2
27

8
AkBT

m
u*

]

]x*
SAkBT

m
pe2

]T*

]x*
D

29
kBT

m S ]

]x*
pe2

]u*

]x*
D

2
9

2
AkBT

m
pe2S ]

]x*
AkBT

m
u* D Fu* S ]u*

]x*
D

13S ]T*

]x*
D G29

kBp

m
e2S ]u*

]x*
D S ]T*

]x*
D 13

kBp

m
e

]T

]x*

52
16

15
AkBT

m
qx

CE . ~21!
3-3
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Equations~19! and ~21! show that to lowest order in th
Knudsen number, both are equivalent and consistent with
Fourier’s law. The remaining terms are of higher order ine,
and therefore we do not have the right to impose that
equations must be satisfied, since we are using a distribu
function valid only up to first order ine. It is obvious that the
higher-order conditions cannot be satisfied, and in gene
they are not the same for any arbitraryc function we choose
to describe the behavior of the system. The same argum
can be extended to classify terms of orderen, n>2.

To summarize, the lack of an exact solution to the Bol
mann equation drives us to take some approximation to s
it. Several methods have been developed in the literatur
account for such a task. In particular, the Grad’s 13-mom
approximation has been used to study problems like
shock wave structure and others@35#. However, we asser
here that the set of equations for the moments chosen t
relevant can be evaluated along several lines. In fact, the
equation gives us the procedure to construct an arbit
number of equations related to the chosen moments.
course, one would expect that all those equations shoul
equivalent. What we have shown in this work is a surpris
result, in which the ME equation gives us two or more d
ferent evolution equations for the same quantity. Also,
first-order Chapman-Enskog distribution function leads
the same difficulty. It means that the averages ofc functions
calculated with this distribution function yields equatio
that are not equivalent, for the same dynamical quantitie
ys

. E
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The important and subtle point to understand is how c
we obtain consistent results, a fact deeply buried in the st
ture of the nonlinearity in the Boltzmann equation. The dr
terms in the Boltzmann equation, which are nonlinear, le
to different results according to the specific approximat
performed in the distribution function. On the other hand,
Grad’s method does not have any small parameter to fol
the order of the approximation, so we have to impose on
solution an arbitrary number of additional conditions comi
from the ME equation. In contrast, the Chapman-Enskog
lution contains the Knudsen number as a small param
and being a first-order approximation we do not have to
quire the solution to satisfy such conditions. As we ha
shown, the Chapman-Enskog solution is completely con
tent up to first order in the Knudsen number, as it should
In the case of the Grad’s distribution function, we do n
have any reason to eliminate the conditions imposed by
ME equation, because the existence of a perturbative
proach in terms of a small parameter is not guaranteed.
only way to use the Grad’s approximate solution is throu
an additional expansion that takes into account an itera
solution in powers of the Knudsen number to order t
terms. Obviously, this fact makes the Grad’s method som
what useless in practice. We expect that the deficiency
ported here for the Grad’s moments method is also prese
other applications of the moments method, the details will
published later on.
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