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Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model
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We study noise-induced resonance effects in the leaky integrate-and-fire neuron model with absolute refrac-
tory period, driven by a Gaussian white noise. It is demonstrated that a finite noise level may either maximize
or minimize the regularity of the spike train. We also partition the parameter space into regimes where either
or both of these effects occur. It is shown that the coherence minimization at moderate noise results in a flat
spectral response with respect to periodic stimulation in contrast to sharp resonances that are observed for both
small and large noise intensities.
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Coherence resonance~CR! is the effect of noise-enhance
regularity of an excitable system’s output. It has been fou
in a number of theoretical models@1–4# and experimenta
systems@5–8#. The systems discussed so far are multidim
sional for which only a few analytical attempts have be
made@9,10#. This may lead to the conjecture that the effe
cannot be found in one-dimensional systems as is somet
asserted in the literature@11#. In contrast, it was shown nu
merically by Pakdamanet al. @12# that coherence resonanc
can be observed in a one-dimensional model with a thres
condition, namely, the leaky integrate-and-fire~LIF! model
that is the work horse of many theoretical studies in neu
biology. Here we employ exact expressions for the m
common measures of coherence resonance to study the e
in the LIF model. Moreover, by means of these results
will demonstrate that the inverse effect can appear, too. I
absolute refractory period is included, a most irregular sp
ing can be obtained if the noise intensity is at a finite val
We further show that this effect manifests itself at differe
noise intensities depending on which statistic is used to m
sure coherence. Both coherence resonance and incohe
maximization may indicate biologically relevant functiona
ities as we will discuss at the end of this work.

The LIF model describes the dynamics of the volta
across the nerve membrane between excitations by
Ornstein-Uhlenbeck process

v̇52v1m1A2Dj~ t ! ~1!

where we have set the membrane time constant to 1~variable
and parameters are nondimensional!. The parameterD stands
for the intensity of the white Gaussian noise whilem denotes
the base current which we consider as a parameter ra
than an input. A strong nonlinearity of the model is intr
duced by a threshold condition: whenever the volta
reachesvT , a spike is fired; we setvT51 throughout our
study. After excitation, the neuron is for timet in an absolute
refractory state followed by a reset tovR50. The output
spike train can be expressed by

x~ t !5 (
t iPT

d~ t2t i ! ~2!
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whereT is the set of spiking times generated by the mod
The spike count in time window (0,t) is the integral of the
output

n~ t !5E
0

t

dt8x~ t8!. ~3!

In Fig. 1, the model is illustrated for the excitable case a
referred to as thenoise-activated firing (subthreshold) re
gime: the resting state of the deterministic systemv* 5m

~for which v̇50 atD50) is smaller than the threshold~i.e.,
v* 5m,vT). For this case the neuron fires only in the pre
ence of noise. Furthermore, there are three time scales
volved in the process: first, the relaxation time for passa
from the reset point to the resting value, second, the esc
time for the noise driven escape from this resting value
threshold; and third, the absolute refractory period.

The other dynamical regime is thedeterministic firing (su-
prathreshold) regimefor v* 5m.vT . Here, the neuron fires
at vanishing noisy driving in a strictly periodic fashion
Since the resting value is beyond the threshold, the volt
will always relax to this value and there is only relaxatio
time and absolute refractory period present in the system

The dynamical behavior of the model can be charac
ized by several measures.

~1! The stationary spike rate characterizes the activity
the neuron regardless of randomness or periodicity of
spike train. The rate is given by the mean output of t

FIG. 1. Trajectory of the voltage variablev(t) @evolving from
Eq. ~1!# and spike train form50.8, D50.015, vT51, vR50, t
50.5.
©2002 The American Physical Society16-1
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neuron and coincides with the inverse mean interspike in
val (^•& denotes the ensemble average!

r 05^x~ t !&5
1

^T&
, ~4!

~for a derivation, see, for instance, Ref.@13#!.
~2! The coefficient of variation,~CV! i.e., the relative

standard deviation of the interspike interval, measures
uncertainty of the single interspike interval

R5
A^DT2&

^T&
, ~5!

with ^DT2&5^(T2^T&)2& being the variance of interspik
intervals. Poissonian spiking is associated withR51
whereas a strictly periodic spike train leads evidently toR
50. In general, a low CV indicates a regular spike train
high value indicates a large incoherence of spiking.

~3! The diffusion coefficient of the spike count determin
how fast the variance of the spike count grows, hence,
like the CV a measure of spike train incoherence. For a
newal process it can be also expressed by the moments o
interspike interval@14#

Deff5
1

2
lim
t→`

d

dt
^n2~ t !2^n~ t !&2&5

1

2

^DT2&

^T&3
. ~6!

~4! The power spectrum ofx̃(t)5x(t)2^x(t)& measures
the periodic components of the spike train. It is related b
formula from renewal theory to the characteristic function
the interspike interval%(v) ~i.e., the Fourier transform o
the interspike interval density, see, e.g., Ref.@15#!

Sx̃~v!5E
2`

`

dt̃^x̃~ t !x̃~ t1 t̃ !&eivt̃5r 0

12u%~v!u2

u12%~v!u2
. ~7!

Note that the spectrum at vanishing and infinite frequenc
related to the diffusion coefficient of the spike count, coe
cient of variation, and the spike rate, respectively, as follo

lim
v→0

S~v!52Deff5R2r 0 , lim
v→`

S~v!5r 0 . ~8!

For the LIF model, all these functions can be calculated. T
spike rate and coefficient of variation are known for a lo
time ~see, e.g., Refs.@16,17# and references therein!. In fact,
the first three measures are given in terms of the first
moments of the sum of the first passage time fromv5vR to
v5vT @18# and the absolute refractory period. We ha
found that the original formulas involving up to four quadr
tures~see, e.g., Ref.@19#! can be written more compactly a

^T&5t1ApE
(m2vT)/A2D

(m2vR)/A2D
dyey2

erfc~y!, ~9!
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^DT2&52pE
(m2vT)/A2D

`

dyey2
@erfc~y!#2

3E
(m2vT)/A2D

y

dzez2
QS m2vR

A2D
2zD , ~10!

where Q(•) denotes the Heaviside function. The integra
above have to be evaluated numerically.

For calculation of the power spectrum the characteris
function of the interspike interval, i.e., the Fourier transfo
of the interspike interval probability density is needed. Th
is given by r(v)5rFP(v)rt(v), i.e., the product of the
Fourier transforms of the first passage time distribution
the Ornstein-Uhlenbeck process and of the distribution
the deterministic absolute refractory period. The first fun
tion is known for decades@20# and reads in our notation

rFP~v!5ed

DivS m2vR

AD
D

DivS m2vT

AD
D ,d5

vR
22vT

212m~vT2vR!

4D
,

~11!

where Da(z) denotes the parabolic cylinder function@21#
that can be obtained by means of computer programs
MATHEMATICA or MAPLE. The characteristic function of the
absolute refractory period is given by

rt~v!5eivt ~12!

and, hence, the spectrum can be determined according to
~7!,

Sx̃~v!5r 0

UDivS m2vT

AD
D U2

2e2dUDivS m2vR

AD
D U2

UDivS m2vT

AD
D 2edeivtDivS m2vR

AD
D U2 ,

~13!

an exact result that is, to our knowledge, new.
The quantities introduced can be also estimated by c

puter simulations. In order to verify our analytical results, w
have used a simple Euler scheme with a time step betw
1023 and 1025 ~latter at high noise intensity! for the integra-
tion of Eq. ~1!. Up to 53105 spikes were used to estima
the mean and variance of the interspike interval as wel
the power spectrum of the spike train. The results of simu
tions were always in very good agreement with our anal
cal results as it should be.

It is well known that the effect of coherence resonan
relies on the presence of at least two time scales with dist
noise dependences in the system@2#. In the LIF model these
are the aforementioned relaxation and escape times. Eve
vanishing absolute refractory period, the relaxation time m
introduce a certain regularity in the spike train since at m
erate noise intensity it can be larger than the activation t
but still show only a small jitter.
6-2
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MAXIMIZING SPIKE TRAIN COHERENCE OR . . . PHYSICAL REVIEW E 66, 031916 ~2002!
The ratio between relaxation and activation time sc
~i.e., the ratio of the correponding mean passage times! can
be monotonically changed by varyingm. An increase of the
base current yields a longer relaxation from the reset poin
resting voltagev* 5m and decreases at the same time
distance from resting voltage to threshold and thus the
cape time. Hence, increasingm increases generally the co
herence of spike train and—ifm remains subthreshold—
leads to a more pronounced coherence resonance.

In Fig. 2 coherence resonance is demonstrated for
leaky integrate-and-fire model in the noise-activated fir
regime (m,1). In order to verify that the effect is not due t
the presence of a finite refractory period we sett50. While
the effect is only weakly present for small base currentsm
50 . . . 0.5) we find a pronounced minimum in the coef
cient of variation for larger but subthreshold values ofm
('0.5 . . .0.9). The diffusion coefficient of the spike cou
increases only monotonically. A new feature is observed
the base current is even further increased. Atm50.99 ~Fig.
2, rhs! the coherence at optimal noise implies a minimum
the diffusion coefficient of the spike count that occurs a
slightly smaller value ofD. This minimum is remarkable
because the rate increases with noise intensity also in
range of decreasing diffusion.

The maximized coherence can also be seen in the po
spectral density~Fig. 3!. The neuron possesses a nois
induced eigenfrequency, which appears as a peak in the s
trum. This peak is most pronounced for an ‘‘optimal’’ nois
Note that spectra with a dip at low frequency and a pea
finite frequency have also been obtained from data of
neurons and nondynamical models of spike train genera
in Ref. @22#. The resonance can be quantified by the deg
of coherence as introduced in Ref.@12#, i.e,

b5
S~vmax!2r 0

Dv/vmax
~14!

wherevmax is the frequency of the first peak andDv is the
half-width of the respective peak over the high-frequen

FIG. 2. Analytical results for rate, coefficient of variation, an
diffusion coefficient of spike count vs noise intensity fort50.
Left: parameterm is varied from 0 to 0.9 in steps of 0.1. Right: fo
m50.99 compared to results~circles! from a numerical simulation
of the model.
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limit @S(v→`)5r 0#. The functionb that was numerically
determined using Eq.~13! is shown in Fig. 3~bottom! and
reveals a maximum at roughly the same noise intensity aR
andDeff . Note that according to Eq.~8! the minimal values
of R andDeff correspond to the minimal values ofS(v50)
and S(v50)/S(v→`), hence, all measures of CR can b
described by different noise-dependent features of the po
spectrum.

Up to this point we have not taken into account the ab
lute refractory period—the third time scale in the system. F
a finite but small valuet50.1 ~measured in units of the
membrane time constant, which we have set to equal 1!, the
measures of CR do not change much for small to mode
noise intensity. However, the firing rate of the neuron is n
restricted (r 0,1/t), i.e., in the somewhat trivial strong nois
limit the neuron fires strictly periodically with a period tha
tends to the inverse of the refractory period. This ag
means that in both dynamical regimes, the coherencecan be
minimized~or incoherence maximized! for a finite value of
the noise intensity. Consequently, the coefficient of variat
as well as the diffusion coefficient of the spike count pa
throughmaximaas functions of noise. This is necessarily t
case in the deterministic firing regime where the neuron fi
strictly periodically in either limits of vanishing and infinit
noise intensity.

If the refractory period is small (t50.1 corresponds to

FIG. 3. Power spectra for different noise intensities~top! and the
degree of coherence vs noise intensity~bottom! at m50.99, t50.
From top to bottom:D51025, 231025, 231024, 531023,
1021, theory~gray! according to Eq.~13! compared to simulations
~black!.
6-3
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LINDNER, SCHIMANSKY-GEIER, AND LONGTIN PHYSICAL REVIEW E66, 031916 ~2002!
one-tenth of the membrane time constant!, the incoherence is
maximized at a rather large noise intensity~Fig. 4, lhs!. For
larger values oft (t50.4 or 1) the maximum in the CV is
shifted towards smaller values ofD while the maximal CV is
reduced by increasingt ~Fig. 4, rhs!. These features can b
also extracted from the large noise asymptotics ofR and
Deff . Expanding the mean and variance of the interspike
terval to first order in 1/AD yields (vR50,vT51)

r 0'1/@t1Ap/A2D#,

R'Ac1

~2D !1/4

11tA2D/p
, ~15!

Deff'c1

D/Ap

~11tA2D/p!3
,

wherec1 is a constant (c1'0.782). By the latter two expres
sions, it is possible to estimate the locations of maxima
R(D) andDeff(D), respectively,

DRmax'p/~2t2!

DDeffmax'2p/t254DRmax. ~16!

From this, the following conclusions can be drawn which a
also confirmed by comparison with the exact results:~i! lo-
cations of maxima are independent of base current~cf. Fig.
4, lhs! ~ii ! maxima shift towards smallerD for increasingt
~cf. Fig. 4, lhs and rhs!, ~iii ! Deff attains its maximum at a
larger noise intensity than the CV does, and~iv! CV is maxi-
mized if the rate is half of its maximal value@r 0(DRmax)
'1/(2t)#. The approximations~15! and~16! better describe

FIG. 4. Analytical results for rate, coefficient of variation, an
diffusion coefficient of spike count vs noise intensity for finitet.
Left t50.1, m is varied: 0 ~solid!, 0.5 ~dotted!, 0.8 ~dashed!, 1.1
~thin solid!, 1.5~thick dotted!. Right, form51.2, t50.4 ~solid! and
t51 ~dashed! compared to numerical simulation results~circles
and squares!, dotted lines give the strong noise expressions acco
ing to Eqs.~15! for t50.4.
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the features of maxima the smallert is. For comparison, we
show in Fig. 4~rhs, dotted line! the approximations accord
ing to Eq.~15! for t50.4.

The incoherence maximization becomes apparent als
the power spectra. In the deterministic firing regime and
t50.4, for instance~these are reasonable parameters
many systems@23#!, the spectrum at weak noise exhibi
large peaks around the deterministic eigenfrequency and
higher harmonics~Fig. 5, upper panels!. For growing noise
the spectrum becomes ‘‘featureless’’~Fig. 5, mid panels!
whereas at large noise intensity again a peak appears d
the finite absolute refractory period~Fig. 5, lower panels!.
Consequently, the degree of coherence goes through a m
mum as a function of noise. Remarkably, the spectral in
herence is maximized (b is minimized! at lower noise than
the CV and the diffusion coefficient of the spike count. F
example, fort50.4 the CV attains its maximum forD
'16, the degree of spectral coherence is minimized aD
'0.2. In between these values an increase in noise inten
leads not only to growing variability but also to an increa
in the periodic component of the spike train. This is due
two competing effects: growing noise makes large exc
sions of the voltage variable towards negative values p
sible, thus increasing the variability of the interspike interv
it leads, however, also to sequences of subsequent short

-

FIG. 5. Power spectra~top! in the deterministic firing regime for
different noise intensities and spectral coherence~bottom! as a func-
tion of noise intensity atm51.2, t50.4. From top to bottom:D
51023,1022,1021,100,101,102, theory~gray! according to Eq.~13!
compared to simulations~black!.
6-4
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MAXIMIZING SPIKE TRAIN COHERENCE OR . . . PHYSICAL REVIEW E 66, 031916 ~2002!
sages from the reset to the threshold level, thereby enlar
the spectral coherence that measures the periodicity. W
respect to the transmission of time dependent signals,
minimum in spectral coherence is certainly more import
~see below! than the maximum in the CV vs noise streng
This is remarkable since the noise intensity of maximiz
spectral incoherence is biologically more plausible than
values obtained for maximal CV.

The effect found may be also observed in the noi
activated firing regime if the absolute refractory period
sufficiently small. The respective value oft will depend on
the base current. This is illustrated for the coefficient
variation in Fig. 6. For parameter values to the left of t
dashed line and below the solid line~region II!, the CV
shows a minimum~coherence resonance! and a maximum
~incoherence maximization!. For values above the solid lin
~region I!, CV drops monotonically from 1~Poisson limit! to
zero. As mentioned above, for base currents larger tha
~region III!, the CV necessarily has to go through a ma
mum, however, there is no coherence resonance~i.e., mini-
mum vsD) in this case. We note that the biologically re
evant region is below the linet51, hence, within the
regions~II and III! where the CV has at least a maximum

One may relate certain transmission features of neu
models to our findings. The driving used in our study, i.e
constant base current and noise of a constant intensity
flects the influence of neuronal synaptic background ra
than a realistic signal added to this background. How do
effects of coherence resonance and incoherence maxim
tion influence the transmission of such additional~for in-
stance, periodic! stimuli?

For periodically driven LIF neurons~studied, e.g., in
Refs. @24–30#!, a strong resonance in the response can
expected if the power spectrum exhibits one or several str
eigenfrequencies@26,27#. More generally, a broadband sign
~i.e., a superposition of periodic signals with given frequen
distribution! is distorted, i.e., only a certain frequency ba
is filtered—a property that can be considered as a sim
form of signal processing. This filtering can be realized
ther by neurons operating in the deterministic firing regi

FIG. 6. Lines in parameter plane (t,m) separating regions
where theR is a monotonic function ofD ~region I!, a function with
minimum and maximum~II !, or a function with just one maximum
~III !. The insets show the corresponding shapes of theR vs D
curves.
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or in the noise-activated firing regimeat a suitable noise
level @26,28#. The latter is a consequence of coherence re
nance@10,29#.

In contrast, a rather uniform transmission is expected
the power spectrum is broad~i.e. featureless!. In other words,
a periodic signal will be transmitted largely irrespective of
frequency and a broadband signal will be reproduced with
distortion@30#. A noise level that maximizes the incoheren
of spike train is thus associated with a minimized distor
signal transmission.

To illustrate the latter property we use the results fro
Ref. @27# where the transmission of periodic additive a
noise coded signals were studied. For a weak periodic mo
lation of base current, i.e.,m→m1« cos(vt) the asymptotic
firing rate of a LIF neuron will be time dependent accordi
to r (t)5r 01«uaucos(Vt1f) wherea is the response ampli
tude andf is the phase lag. The response amplitude re
@27#

a5
r 0iV/AD

iV21

DiV21S m2vT

AD
D 2edDiV21S m2vR

AD
D

DiVS m2vT

AD
D 2edeiVtDiVS m2vR

AD
D .

~17!

A plot of the response amplitude vs driving frequency a
noise intensity for suprathreshold base current and finite
solute refractory period~Fig. 7! reveals strong resonances f
small and large noise intensities occurring at the determi
tic eigenfrequency and at the inverse of the refractory per
multiplied by 2p, respectively. At moderate noise intensi
where the incoherence maximization in the absence of p
odic modulation was observed~corresponding to the mini-
mum in spectral coherenceb), however, the response doe
not depend crucially on driving frequency; of course, this h
come at the cost of a significantly reduced response am
tude compared to that in the low noise case. For the respo
to a noise coded signal one finds a similar behavior~not
shown!.

In conclusion, we have shown that tuning the inpu

FIG. 7. Response amplitude with respect to an additive perio
signal as a function of noise intensity and driving frequency form
51.2 andt50.4.
6-5
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noise level may either minimize or maximize the coheren
of the spike train generated by a simple model neur
Hence, noise can confer either a pronounced or a flat ba
pass characteristic to a neuronal system, and thus sig
v

va
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u
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cantly change the transmission of temporally varying~non-
static! signals.
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