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Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model
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We study noise-induced resonance effects in the leaky integrate-and-fire neuron model with absolute refrac-
tory period, driven by a Gaussian white noise. It is demonstrated that a finite noise level may either maximize
or minimize the regularity of the spike train. We also partition the parameter space into regimes where either
or both of these effects occur. It is shown that the coherence minimization at moderate noise results in a flat
spectral response with respect to periodic stimulation in contrast to sharp resonances that are observed for both
small and large noise intensities.
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Coherence resonan¢€R) is the effect of noise-enhanced where7 is the set of spiking times generated by the model.
regularity of an excitable system’s output. It has been foundrhe spike count in time window (0, is the integral of the
in a number of theoretical model4—4] and experimental output
systemg5—8]. The systems discussed so far are multidimen-
sional for which only a few analytical attempts have been n(t)= ftdtlx(t,) 3)
made[9,10]. This may lead to the conjecture that the effect 0 '
cannot be found in one-dimensional systems as is sometimes
asserted in the literatufd1]. In contrast, it was shown nu- In Fig. 1, the model is illustrated for the excitable case also
merically by Pakdamast al.[12] that coherence resonance referred to as thewoise-activated firing (subthreshold) re-
can be observed in a one-dimensional model with a thresholdime the resting state of the deterministic systerh=u
condition, namely, the leaky integrate-and-fitdF) model  (for whichv=0 atD=0) is smaller than the thresholde.,
that is the work horse of many theoretical studies in neuroy* = ;<3 -). For this case the neuron fires only in the pres-
biology. Here we employ exact expressions for the mosknce of noise. Furthermore, there are three time scales in-
common measures of coherence resonance to study the effegiived in the process: first, the relaxation time for passage
in the LIF model. Moreover, by means of these results werom the reset point to the resting value, second, the escape
will demonstrate that the inverse effect can appear, too. If afime for the noise driven escape from this resting value to
absolute refractory period is included, a most irregular spikthreshold; and third, the absolute refractory period.
ing can be obtained if the noise intenSity is at a finite value. The other dynamica| regime is tldeterministic f|r|ng (SU-
We further show that this effect manifests itself at differentprathreshold) regiméor v* = . >v+. Here, the neuron fires
noise intensities depending on which statistic is used to meagt vanishing noisy driving in a strictly periodic fashion.
sure coherence. Both coherence resonance and incoherernggce the resting value is beyond the threshold, the voltage
maximization may indicate biologically relevant functional- will always relax to this value and there is only relaxation
ities as we will discuss at the end of this work. time and absolute refractory period present in the system.

The LIF model describes the dynamics of the voltage The dynamical behavior of the model can be character-
across the nerve membrane between excitations by &Red by several measures.

Ornstein-Uhlenbeck process (1) The stationary spike rate characterizes the activity of
_ the neuron regardless of randomness or periodicity of the
v=—v+u+y2DE(1) (1)  spike train. The rate is given by the mean output of the

where we have set the membrane time constant(tarable
and parameters are nondimensignahe parameted stands
for the intensity of the white Gaussian noise whilelenotes

L[] |
the base current which we consider as a parameter rather P 7 N - P .V -
than an input. A strong nonlinearity of the model is intro- T u
duced by a threshold condition: whenever the voltage :
reachesvt, a spike is fired; we satt=1 throughout our
study. After excitation, the neuron is for timein an absolute o VR
0 20 20
t

v(t) _ x(t)

=]
[

refractory state followed by a reset tgz=0. The output
spike train can be expressed by

FIG. 1. Trajectory of the voltage variablgt) [evolving from
X(t)= E S(t—t;) (2 Eqg. (1)] and spike train foru=0.8, D=0.015,v=1, vg=0, 7
tieT =0.5.
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neuron and coincides with the inverse mean interspike inter- ) % 5 )
val ({(-) denotes the ensemble averpge (AT >:2Wf( ' ‘ﬁdye‘/ [erfdy)]
o)
1 y 2 [ MTUR
Fo=(x(t))= " (4) XJ dz&'® -z|, (10
(u—vp)/\2D V2D
(for a derivation, see, for instance, REL3)). where ®(-) denotes the Heaviside function. The integrals

(2) The coefficient of variation(CV) i.e., the relative above have to be evaluated numerically.
standard deviation of the interspike interval, measures the For calculation of the power spectrum the characteristic

uncertainty of the single interspike interval function of the interspike interval, i.e., the Fourier transform
of the interspike interval probability density is needed. This

m is given by p(w)=prp(w)p(w), i.e., the product of the
R= T (5 Fourier transforms of the first passage time distribution for

the Ornstein-Uhlenbeck process and of the distribution for

_ 5 5 _ ) ) . the deterministic absolute refractory period. The first func-
with (AT%)=((T—(T))") being the variance of interspike i is known for decadef0] and reads in our notation
intervals. Poissonian spiking is associated wilh=1

whereas a strictly periodic spike train leads evidentlyRto

=0. In general, a low CV indicates a regular spike train, a Dio FOR 5
high value indicates a large incoherence of spiking. (w)=e’ D _ vR— Tt 2u(v1—UR)
(3) The diffusion coefficient of the spike count determines Pep u—vr| 4D '
how fast the variance of the spike count grows, hence, it is Di,| —=
like the CV a measure of spike train incoherence. For a re- D
newal process it can be also expressed by the moments of the 1D
interspike interva[14] where D,(z) denotes the parabolic cylinder functig@i]
5 that can be obtained by means of computer programs like
b :E"mg<n2(t)_<n(t)>2>: 1(ATY) (6)  MATHEMATICA OF MAPLE. The characteristic function of the
eff 2, dt 2 (T)? : absolute refractory period is given by
pw)=€*T (12)

(4) The power spectrum of(t) =x(t) —(x(t)) measures
the periodic components of the spike train. It is related by @nd, hence, the spectrum can be determined according to Eq.
formula from renewal theory to the characteristic function of(7),
the interspike intervap(w) (i.e., the Fourier transform of

the interspike interval density, see, e.g., R&b]) D Mm—UT &9 ML—UR
lw \/B lw \/5
© e A e(w))? SK(@)=To 2,
S;(w)=f dr(x(t)x(t+7))e'"=rg—————. (7) p [ FVT) _gsgiorp | #TUR
- 1-e(w) | % o 5

13
Note that the spectrum at vanishing and infinite frequency is a3
related to the diffusion coefficient of the spike count, coeffi-an exact result that is, to our knowledge, new.
cient of variation, and the spike rate, respectively, as follows: The quantities introduced can be also estimated by com-
puter simulations. In order to verify our analytical results, we
lim S(w) =2D¢x=R%r g, lim S(w)=r,. (8)  have used a simple Euler scheme with a time step between
©—0 w—o 102 and 10 ® (latter at high noise intensitfor the integra-
tion of Eq. (1). Up to 5x 10° spikes were used to estimate

For the LIF model, all these functions can be calculated. Théhe mean and variance of the interspike interval as well as
spike rate and coefficient of variation are known for a longth® power spectrum of the spike train. The results of simula-
time (see, e.g., Ref$16,17 and references thereinn fact,  tions were always in very good agreement with our analyti-
the first three measures are given in terms of the first twgal results as it should be.

moments of the sum of the first passage time fromu g to It is well known that the effect of coherence resonance
v=vy [18] and the absolute refractory period. We haverel!es on the presence of at least two time scales with distinct
found that the original formulas involving up to four quadra- N0ise dependences in the systeth In the LIF model these

tures(see, e.g., Ref19]) can be written more compactly as are the aforementioned relaxation and escape times. Even at
vanishing absolute refractory period, the relaxation time may

(a introduce a certain regularity in the spike train since at mod-
(Ty=7+ J dyevzerfc(y), 9) erate noise intensity it can be larger than the activation time
(u—v7)/V2D but still show only a small jitter.

vR)/V2D

031916-2



MAXIMIZING SPIKE TRAIN COHERENCE CR.. .. PHYSICAL REVIEW E 66, 031916 (2002

10" .
10

I
104%
5) ™

10 ,

ﬁﬁ

10° ,

o M‘m«wmmwt
2

10°1 N
10" s .
10°F , 5
0 5 10
. - . ®
FIG. 2. Analytical results for rate, coefficient of variation, and
. . . o . - . - 0-8 T T T T
diffusion coefficient of spike count vs noise intensity for0.
Left: paramete is varied from 0 to 0.9 in steps of 0.1. Right: for
n=0.99 compared to resultsircles from a numerical simulation B
of the model.
041 .
The ratio between relaxation and activation time scale
(i.e., the ratio of the correponding mean passage firoas
be monotonically changed by varying An increase of the
base current yields a longer relaxation from the reset point to 0.0 ; ; ; ;
resting voltagev* = u and decreases at the same time the 107 10° 107
distance from resting voltage to threshold and thus the es- D
cape time. Hence, increasing increases generally the co-
herence of Sp|ke train and_w remains subthreshold— FIG. 3. Power Spectra for different noise intensi(m) and the
leads to a more pronounced coherence resonance. degree of coherence vs noise intenghgttom at ©=0.99, 7=0.

In Fig. 2 coherence resonance is demonstrated for thE'0T P fo bottom:D=10 °, 2x10°% 2x10 %, 5x10°%,
leaky integrate-and-fire model in the noise-activated firingl? - theory(gray according to Eq(13) compared to simulations
regime w<<1). In order to verify that the effect is not due to (black.
the presence of a finite refractory period we set0. While
the effect is only weakly present for small base currepts ( limit [S(w—)=rq]. The functiong that was numerically
=0...0.5) we find a pronounced minimum in the coeffi- determined using Eq.13) is shown in Fig. 3(bottom and
cient of variation for larger but subthreshold valuesgof  reveals a maximum at roughly the same noise intensity as
(=0.5...0.9). The diffusion coefficient of the spike count andD. Note that according to E¢8) the minimal values
increases only monotonically. A new feature is observed ifof R and D4 correspond to the minimal values 8fw=0)
the base current is even further increaseduAt0.99 (Fig.  and S(w=0)/S(w— =), hence, all measures of CR can be
2, rh9 the coherence at optimal noise implies a minimum indescribed by different noise-dependent features of the power
the diffusion coefficient of the spike count that occurs at aspectrum.
slightly smaller value ofD. This minimum is remarkable Up to this point we have not taken into account the abso-
because the rate increases with noise intensity also in thiate refractory period—the third time scale in the system. For
range of decreasing diffusion. a finite but small valuer=0.1 (measured in units of the

The maximized coherence can also be seen in the powégnembrane time constant, which we have set to equahg
spectral density(Fig. 3). The neuron possesses a noise-measures of CR do not change much for small to moderate
induced eigenfrequency, which appears as a peak in the spewise intensity. However, the firing rate of the neuron is now
trum. This peak is most pronounced for an “optimal” noise. restricted (,<1/7), i.e., in the somewhat trivial strong noise
Note that spectra with a dip at low frequency and a peak alimit the neuron fires strictly periodically with a period that
finite frequency have also been obtained from data of realends to the inverse of the refractory period. This again
neurons and nondynamical models of spike train generatiomeans that in both dynamical regimes, the cohereacebe
in Ref.[22]. The resonance can be quantified by the degreeninimized(or incoherence maximizedor a finite value of
of coherence as introduced in Rgf2], i.e, the noise intensity. Consequently, the coefficient of variation

as well as the diffusion coefficient of the spike count pass
~ S(wmax) —To throughmaximaas functions of noise. This is necessarily the
B= case in the deterministic firing regime where the neuron fires
strictly periodically in either limits of vanishing and infinite
where .« is the frequency of the first peak addo is the  noise intensity.
half-width of the respective peak over the high-frequency If the refractory period is small#=0.1 corresponds to

(14)

Awl ®may
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FIG. 4. Analytical results for rate, coefficient of variation, and
diffusion coefficient of spike count vs noise intensity for finite
Left 7=0.1, u is varied: O(solid), 0.5 (dotted, 0.8 (dasheg 1.1
(thin solid), 1.5(thick dotted. Right, foru=1.2, 7= 0.4 (solid) and
7=1 (dashed compared to numerical simulation resulisrcles
and squares dotted lines give the strong noise expressions accord-
ing to Eqgs.(15) for 7=0.4.

one-tenth of the membrane time consjatite incoherence is
maximized at a rather large noise intendifyg. 4, Ihg. For
larger values ofr (7=0.4 or 1) the maximum in the CV is
shifted towards smaller values Bfwhile the maximal CV is
reduced by increasing (Fig. 4, rhs. These features can be
also extracted from the large noise asymptoticsRoand

0 o 20
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FIG. 5. Power spectrdop) in the deterministic firing regime for

D.. Expanding the mean and variance of the interspike indifferent noise intensities and spectral cohergibcgtom) as a func-

terval to first order in YD yields @r=0v1=1)

tion of noise intensity aju=1.2, 7=0.4. From top to bottomb

=10210 2,10 1,10P,10', 1%, theory(gray) according to Eq(13)

ro~1[ 7+ \=/\2D],

compared to simulation&lack).

the features of maxima the smalleiis. For comparison, we
(15) show in Fig. 4(rhs, dotted ling the approximations accord-

(2D)1/4
R~ e, ————,
\/—11+T\/2D/7T
5 D/
~C D
N 1+ 72D/ )3

ing to Eq.(15) for 7=0.4.

The incoherence maximization becomes apparent also in
the power spectra. In the deterministic firing regime and for
7=0.4, for instance(these are reasonable parameters for
many systemg23]), the spectrum at weak noise exhibits
large peaks around the deterministic eigenfrequency and its

wherec; is a constant¢; ~0.782). By the latter two expres- higher harmonicgFig. 5, upper paneJs For growing noise
sions, it is possible to estimate the locations of maxima othe spectrum becomes “featurelesgFig. 5, mid panels

R(D) andD4(D), respectively,
D rmax™ 77/(27'2)

Do, ma= 27/ 7°=4D gmax.

whereas at large noise intensity again a peak appears due to
the finite absolute refractory periddig. 5, lower panels
Consequently, the degree of coherence goes through a mini-
mum as a function of noise. Remarkably, the spectral inco-
herence is maximizedd is minimized at lower noise than

the CV and the diffusion coefficient of the spike count. For
example, forr=0.4 the CV attains its maximum fob

From this, the following conclusions can be drawn which are~16, the degree of spectral coherence is minimize® at

also confirmed by comparison with the exact resuitslo-
cations of maxima are independent of base curtehtFig.
4, Ihg (i) maxima shift towards smalldd for increasingr

~0.2. In between these values an increase in noise intensity
leads not only to growing variability but also to an increase
in the periodic component of the spike train. This is due to

(cf. Fig. 4, Ihs and rhs (iii) D¢ attains its maximum at a two competing effects: growing noise makes large excur-

larger noise intensity than the CV does, dnd CV is maxi-
mized if the rate is half of its maximal valug o(Dgrmay
~1/(27)]. The approximationgl5) and(16) better describe

sions of the voltage variable towards negative values pos-
sible, thus increasing the variability of the interspike interval;
it leads, however, also to sequences of subsequent short pas-
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FIG. 7. Response amplitude with respect to an additive periodic

signal as a function of noise intensity and driving frequency for
FIG. 6. Lines in parameter planer,u) separating regions =1.2 andr=0.4.

where theR is a monotonic function oD (region ), a function with
minimum and maximunill), or a function with just one maximum
(IlN). The insets show the corresponding shapes of Rhes D

curves. or in the noise-activated firing regimat a suitable noise

level[26,28. The latter is a consequence of coherence reso-

nance[10,29.
sages from the reset to the threshold level, thereby enlarging !N contrast, a rather uniform transmission is expected if
the spectral coherence that measures the periodicity. Witd1€ power spectrum is brodie. featureless In other words,
respect to the transmission of time dependent signals, th@periodic signal will be transmitted largely irrespective of its
minimum in spectral coherence is certainly more importanfrequency and a broadband signal will be reproduced without
(see belowthan the maximum in the CV vs noise strength. distortion[30]. A noise level that maximizes the incoherence
This is remarkable since the noise intensity of maximizedof spike train is thus associated with a minimized distorted
spectral incoherence is biologically more plausible than thesignal transmission.
values obtained for maximal CV. To illustrate the latter property we use the results from

The effect found may be also observed in the noiseRef. [27] where the transmission of periodic additive and

activated firing regime if the absolute refractory period isnoise coded signals were studied. For a weak periodic modu-
sufficiently small. The respective value ofwill depend on  |ation of base current, i.ey— u+ & cosgt) the asymptotic
the- b-ase- Cur!’ent. ThIS iS i”ustrated for the Coefficient Offiring rate of a LIF neuron W|” be “me dependent according
variation in Fig. 6. For parameter values to the left of they, (t)=r,+ ¢|a|cos@t+ ¢) wherea is the response ampli-

dashed line and below the solid lireegion 1), the CV  y,4e andg is the phase lag. The response amplitude reads
shows a minimum(coherence resonancand a maximum [27]

(incoherence maximizationFor values above the solid line
(region ), CV drops monotonically from {Poisson limif to
zero. As mentioned above, for base currents larger than 1

-0 -0
(region 1ll), the CV necessarily has to go through a maxi- . Dig-1 . —e’Dig_; a—
mum, however, there is no coherence resondnee mini- a= rO'Q/\/B \/5 ‘/5
mum vsD) in this case. We note that the biologically rel- -1 p=vr| o L—UR
evant region is below the line=1, hence, within the Dig NG) —e’e™ D D
regions(ll and Ill) where the CV has at least a maximum. (17)
One may relate certain transmission features of neuron

models to our findings. The driving used in our study, i.e., a
constant base current and noise of a constant intensity ré plot of the response amplitude vs driving frequency and
flects the influence of neuronal synaptic background rathenoise intensity for suprathreshold base current and finite ab-
than a realistic signal added to this background. How do theolute refractory perio@ig. 7) reveals strong resonances for
effects of coherence resonance and incoherence maximizamall and large noise intensities occurring at the determinis-
tion influence the transmission of such additioifar in- tic eigenfrequency and at the inverse of the refractory period
stance, periodicstimuli? multiplied by 27, respectively. At moderate noise intensity
For periodically driven LIF neurongstudied, e.g., in where the incoherence maximization in the absence of peri-
Refs.[24-30), a strong resonance in the response can bedic modulation was observe@orresponding to the mini-
expected if the power spectrum exhibits one or several strongium in spectral coherengg), however, the response does
eigenfrequenciel26,27. More generally, a broadband signal not depend crucially on driving frequency; of course, this has
(i.e., a superposition of periodic signals with given frequencycome at the cost of a significantly reduced response ampli-
distribution is distorted, i.e., only a certain frequency bandtude compared to that in the low noise case. For the response
is filtered—a property that can be considered as a simpléo a noise coded signal one finds a similar behaviuot
form of signal processing. This filtering can be realized ei-showr).
ther by neurons operating in the deterministic firing regime In conclusion, we have shown that tuning the input's
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noise level may either minimize or maximize the coherencecantly change the transmission of temporally varyingn-
of the spike train generated by a simple model neuronstatig signals.

Hence, noise can confer either a pronounced or a flat band- This work was supported by DFG Sfb 5858.L. and L.S.-
pass characteristic to a neuronal system, and thus signifz.) and by NSERQA.L.).
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