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Effect of a-stable sorptive waiting times on microbial transport in microflow cells
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The interaction of bacteria in the fluid phase with pore walls of a porous material involves a wide range of
effective reaction times which obey a diversity of substrate-bacteria adhesion conditions, and adhesive mecha-
nisms. For a transported species, this heterogeneity in sorption conditions occurs both in time and space.
Modern experimental methods allow one to measure adhesive reaction times of individual bacteria. This
detailed information may be incorporated into nonequilibrium transport-sorption models that capture the het-
erogeneity in reaction times caused by varying chemical conditions. We have carried out [jBroglaian
dynamig simulations of adhesive, self-motile bacteria convected between two infinite plates as a model for a
microflow cell. The adhesive heterogeneity is included by introducing adhesive reactiofutiserstood as
time spent at a solid boundary once the particle collides agajnas i random variable that can be infinite
(irreversible sorptionor vary over a wide range of values. This is made possible by treating this reaction time
random variable as having amstable probability distribution whose propertigsg., infinite moments and
long tail9 are distinctive from the standard exponential distribution commonly used to model reversible
sorption. In addition, then-stable distribution is renormalizable and hence upscalable to complex porous
media. Simulations are performed in a pressure-driven microflow cell. Bacteria m@tiiitgn by an effective
Brownian force acts as a dispersive component in the convective field. Upon collision with the pore wall,
bacteria attachment or detachment occurs. The time bacteria spend at the wall varies over a wide range of time
scales. This model has the advantage of being parsimonious, that is, involving very few parameters to model
complex irreversible or reversible adhesion in heterogeneous environments. It is shown that, as in Taylor
dispersion, the ratio of the channel half widtho the Brownian bacteria motility coefficiefiD, or dispersion
coefficien) t,=b?/D, controls the different adhesion regimes along with the value.dfiniversal scalings
(with respect to dimensionless tinig=t/t;,) for the mean positiomx)=V§ﬁtf , and mean-square displace-
ment,(AX?)=D3t? exist for long-time dispersion and the coefficients were obtained. The model can account
for a great many sorptive processes including reversible and irreversible sorption, and sub- and superdispersive
regimes with just a few parameters.
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I. INTRODUCTION Bacterial motility is of importance to a wide spectrum of
applied scientific disciplines, including human health, food
The present study is motivated by the desire to predict nscience, and.en\_nronmental bioremediation. Analysis of mi-
o . ¢robe dynamics is far from complete. The phenomena found
spread of genetic information through complex natural po- . e . . .
. . S . . . _is as diverse as life itself2,3], involving mechanisms of
rous media. Specifically, our group is interested in verifying

; ; . > “bacteria motility, bacteria-substrateurface and cell-to-cell
the two following hy_p_othesesél) !\le\_/vly_lntroduced b?‘Cte“a interactions, hydrodynamic interactions, chemotaxis, thermo-
can exchange specific genes with indigenous species that

) L is, magnetotaxis, and adhesion. These mechanisms act on
attached to a surface provided the genes are judiciously s a4ia| scales ranging from nanometers to millimeters. To
cated in the genome of the donor bacterium. Under this hyyngerstand the mechanisms of bacterial motility, one needs
pothesis, the survival of the newly introduced bacterium ISknowledge from several scientific disciplines: anatomy, ge-
unimportant provided the genes of interest are transferred tgetics, chemistry, and physi¢z].
the indigenous speciesi) Given information on the “sticki- An important factor in the engineering of biobarriers or
ness” and hydrodynamic characteristics of the indigenoupioremediation is the microbial partitioning that takes place
and introduced populations, it is possible to mechanisticalljhetween the aqueous and solid phases. Factors that affect
predict the success of gene transfer strategies in porous meuch partitioning are numerous, but include such things as
dia. This later hypothesis is partially addressed by the worlgrowth and starvation conditiod—6], limiting of nutrients
presented herein, that is, this is a first step in verification of7], potential toxicity in the aqueous phafg], as well as
hypothesis(ii). A first step in verification of hypothesi§)  varying surface properties of the adsorbent. The proper rep-
may be found in WJ1]. resentation of the biological phase is a matter without con-
sensus(as noted in the exchanges of Widdows®] and
Jaffe and Taylof10]). We present a model which will serve
*Now at Department of Chemical Engineering, Purdue Univer-as a basis for an unstructured biological population, and will
sity. focus on the individual dynamics of a single microbe, or a
"Email address: jcushman@purdue.edu system of such particles in relatively low concentration so
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that they have little effect on the surrounding environmentexplained how flagellated cells swim and how their molecu-
and each other. One may think of this as the initial stagdar sized engines work2]. Only recently significant findings
before a type of colonization of the surface occurs. about nonflagellated organisms have emerfied. Non-
Before we focus on the main aspects of this study, welagellated microbes are thought to move by producing trav-
briefly refer to some of the most relevant research on theling waves that propagate down the surface of the microbe.
subject. Although several references and models are memsamuelet al.[17] have discovered fine hairs just a few na-
tioned in the Introduction, no excessive details are giverhometers thick and a fraction of a micrometers long sur-

since there exist in the literature good reviews on the SUbje%unding a cyanobacterium. This finding enhances the wave
[2,11]. propagation theory and provides a better explanation based

on fine hair self propulsion.
A. Relevant scales Biondi et al. [18] studied swimming bacteriéE. coli) in

In a single microflow cell, at least three different length "estricted geometries, measuring cell velocity, tumbling
scales need to be explored. Within tens of nanometars-  Probability, and turn angle of single cells in micro channels.
micron scalgfrom the pore wall, bacterium-wall interactions They concluded that only when capillaries are smaller than
will dominate over diffusion or convection. On the scale ofthree times the diameter of the bacteria, there exist a visible
several bacterium radia few microng, hydrodynamic inter- change in the bacteria’s motility with respect to their motility
actions between the microbe and the surface and other paf a bulk fluid (unrestricted medja The macroscopic motil-
ticles, bacterial motility, and reduced diffusion dominate. Atity in unrestricted geometry with respect to motility in very
the scale of the pore radidtens of microns to millimetejs  small capillaries is increased by a factor proportional to the
convection, bacterial motility, hydrodynamic dispersion, andsize of the system. By design, sticking to the glass surfaces
diffusion in the bulk phase combine to affect transport. did not occur in their experiments.

Associated with each length scale, there, exists a time Phillips et al. [19] measured in separate experiments the
scale which plays an important role in this biophysical transmotility of E. coli. They determined the distribution of cell
port problem and consequently in designing an efficienye|ocities was slightly skewed from normal, and the run
Brownian dynamics computational algorithm. We discussength time distributions were exponential. They were unable
this and the various processes in subsequent sections. 15 measure turn angles between consecutive runs because

cells would not remain in the microscope’s focal plane long
B. Bacterial motility and advection enough. The values of the variables that could not be mea-

The movement of bacteria in a stagnant fluid is describegured were taken for their analysis from Berg and Brown
by a run and tumblgor twiddle) behavior[2,12]. This be- [20]. They also suggested that the macroscopic behavior of
havior consists of a sequence of runs, that is, a linear movepopulation motility can be predicted from microscopic obser-
ment in a particular direction, followed by tumbles which arevations. In particular, the expressions proposed by Othmer
random changes of direction. While the length of the jumpset al. [21], and Riveroet al. [22] were suitable for the con-
in the motility pattern seems to be better described by a Levylitions tested.
flight random searcf2,13], it has been modeled as a Brown-  The behavior of motile cells near a solid surface has been
ian motion in the present work. The diffusion coefficient is extensively studied experimentally in the absence of bulk
associated with bacteria self-propulsion rather than a thermdlow, but relatively little is known about matile cell behavior
bath. Brownian dynamics seem to describe such a motilityn advective flow field$23]. Camesano and Log483] stud-
pattern in certain cases, and a number of studidsly sup-  ied the effect of fluid velocity on the transport of motile and
port its use for modeling bacteria motility. The classicalnonmotile bacteria. They observed that the collision effi-
Brownian diffusion coefficient is replaced with a larger co- ciency (defined as the ratio of particles that attach to soil
efficient representing bacteria self propulsion. This assumegrains to particles that collide with the sSodecreases as the
the run and tumble mechanism has a similar probability lanmean velocity decreases. An alternative definition of colli-
or limit theorem to that of a larger particle in a bath of many sion efficiency closer to what is presented here is that given
identical, smaller particles. The random forces can bey Rijnaartset al.[24]: Collision efficiency is the probability
thought of as a sum of Brownian forces together with ran-of a cell to attach upon reaching a substratum. This may be
dom swimming forces generated by a microbe in a homogeeomputed as the ratio of collisions where particles attach to
neous liquid. If there is no chemo-, thermo-, or magnetotaxisoil grains, to total number of collisions against the soail.
then the angular diffusion is isotropic. We assume the ranTesting against nonmotile bacteria, they hypothesize that
dom forces are normally distributed and independent. Thewimming cells are able to avoid sticking to soil grains at
normality assumption is an averaging over different particldow-fluid velocities, while at high-fluid velocities, bacteria
trajectories. Swimming bacteria patterns may exhibit specificould not reduce attachment. The present work examines in
features different from those of Brownian dynamics. Kuovirtual experiments the movement of single-cell organisms
and McGrath[16], for instance, dispute the validity of subjectto convective flow and fluctuations driven by Brown-
Brownian models applied to bacterial transport based on obian dynamics. The fluctuations owe their origin to the swim-
served fluctuations of Listeria motility. ming character of the microbe. It also includes attachment

Most research on bacterial motility has centered on flagand detachment from the walls including reversible and irre-
ellated organisms, lik&. coli. Berg and collaborators have versible sorption.
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C. Bacterial adhesion scales. With this, the algorithm centers on the effects of re-

Researchers looking at bacterial adhesion have useéfrs'ble and irreversible adhesion at the pore scale,tlaed

knowledge developed studying the sorption of macromol- fects of bacteria motility . - .
9 P ying b The transport of a Brownian particle sticking to a wall is

ecule_s or colloidal particles to formulate theories an_d deViS%naIyzed under advection by a Couette flow between infinite
experimental methods. In the development of sorption theoplanes. Laminar or creeping flow is the focus of the hydro-
ries, irreversible sorption has been more actively researchegynamic study, since the natural systéwater flow in geo-
than reversible sorption. This is in part because for manyogical formation$ of interest exhibits low Reynolds num-
applications(e.qg., filtration sorption is irreversible. Another bers and as such is rarely if ever turbulent. The bacterial
reason is that the irreversible problem is easier to analyze. &ajectories are modeled and statistical averages are com-
perfect sink wall or irreversible sorption bounddii] pro-  puted and discussed. The bacteria are modeled as Lagrangian
duces a system of equations for which solutions are knowrparticles subject to drag and self-propellifggwimming
A reversible sorbing boundary produces a far more compleforces. These forces are generally unknown, yet phenomeno-
system of coupled equations for which solutions are ofterogical and statistical information merits modeling them as
not readily availabl¢11,25. Sorption to a reversible bound- random. Brownian motion seems an appealing model for
ary depends on the history of sorptitanother type of steric bacterial swimming, and it is coupled to a probabilistic wall
effect, which in turn depends on phenomena occurring inattachment or detachment model. This probabilistic model
the bulk phase. The result is a nonlinear behavior. introduces stickiness parameters to control the attachment or
Bacteria often reversibly attach to mineral and biologicaldetachment process or physicochemical interactions between
surfaceg3,26—29. More experimental observations are nec-microbes and the solid matrix. Bacteria sorption is a compo-
essary to define the characteristics of residence times and tiséion of processes on many time scales. Dominant adhesive
effect of conditions such as stre¢s.g., starvation condi- processes may be ruled by short time in the diffusive layer
tions), chemical gradientéchemotactic behaviprhydropho- and longer-time adhesion associated with the submicron
bic or hydrophilic effects, etc. Adhesion strength is time de-scale. When the substrate conditions are variable in space,
pendent; adhesion may be reversible until a point in time irand the bacteria itself exhibits heterogeneity in the attaching
which the attachment becomes irreversif#8—30. conditions or mechanisms, one might expect that for many
It has been proposed that once a cell has arrived within gollision or attachment events, the distribution of waiting
few nanometers from a wall with an attractive potential, ittimes will look continuous instead of appearing multimodal
will be sorbed irreversibly30,31. Yet, when sorbed there or discrete.
remains a possibility for lateral displaceméBst] over dis-
tances of several particle diameters. This lateral translation Il. MODEL
coupled with the existence of heterogeneities over the sub- . .
strate may affect desorption. Upon arrival to positions where . H€ré we discuss the mathematical model for the transport

the attractive potential decreases, bacteria might be able §f Pacteria in solution which react with a solid surfeeel-
free themselves from the adsorbent's surface and swim int9C"Penk containing the solution. Mathematically, the volume
the aqueous phase. occupied by the solution is labeled free space or domain and

the solid surface is the domain boundary. Bacteria possess
search mechanisnj43] which are manifest in motility com-
posed by run and tumbles as discussed in the introduction.
Brownian dynamics provides a rigorous dynamical modelBacteria respond to stimulie.g., a chemical, thermal, or
sophisticated enough to study the rich behavior of bacterianagnetic gradient in which case the phenomenon are known
transport including sorption. Dealing with various boundaryas chemo-, thermo- or magnetotaxis, respectivély in-
conditions is not a trivial exercise when studying Browniancreasing or decreasing run times between tumbles. The ac-
particles. While “sticky” Brownian motion has been studied tual tumbling distribution appears unaffected by the environ-
in the mathematical literature, it has not been applied to sorpment. If a chemical potential is introduced into a medium
tion. A large part of the Brownian dynamics simulation work containing bacteria, receptors on the microbe surface can de-
analyzing hydrodynamic interactions between particles angect the change up to a saturation point at which all receptors
walls is based on an algorithm by Ermak and McCammorare activated. In a large population of bacteria, a statistical
[32] (see also Bafalugt al.[33]). average can be made for the concentration in the presence of
The Brownian dynamics computation presented here ina one-dimensional gradient. This homogenization performed
corporates the effect of reversible adhesion through the use Rivero et al. [22] leads in one dimension to a classical
of sticky Brownian motion. The focus is on the single poreconvective-dispersion equatig@DE) and if there is no gra-
scale. This task also involves processes at two additionalient in chemical potential then the CDE reduces to a clas-
length scales, that is, a diffusive layer extending a few mi-sical diffusion equation with the diffusion coefficient repre-
crons from the substrate surface and an sorptive or interagentative of the random run and tumbling.
tion layer of submicron thickness. No model for these two If we think of the concentration of microbe§(x,t), as a
smaller scales is presented. Instead, a stochastic processpi®bability densityp(t,x), we can write the CDE as
hypothetically formulated that is consistent with the transport
properties observed in experiments and what is known in <9_p:i
theory and practice about the processes involved at those Jt  Ix

D. Brownian dynamics simulations

op|l 4
DOt | = 2 IVOOPL (@)
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which corresponds to a forward-Kolmogorov or Fokker- Brownian motion. In this model, the rate of sorption and
Planck equation. Herd&/(x,t) is some convective flow field desorption happen relatively quickly and what is important is
bacteria reside in. We may now associate a stochastic proces® ratio of the rates of sorption when the microbe is near the
X;, with p as its transition density. Another way of describ- boundary and attachment time once on the boundary. This
ing the behavior is to think of it as the solution of a stochas-assumption, while rather restrictive, leads to numerical
tic differential equationSDE) which is the continuous time schemes which have the appropriate limiting behavior for
version of a random walk. The SDE that it satisfies can bdast reactions, and which can themselves be modified in case
written of slower reactions. Moreover, in the above mathematical
model, the “local time” satisfies the equation

dX,= VD (X¢, ) dW,+ V(X t)dt (2)
t
with initial datax,. Here,W, is a Brownian motion. We take K= fo Lo<dx(s),r)<€(S)ds, (5

Eg. (2) in the Ito sense.

If we consider a higher-dimensional domain as a set Of/vhered(X(s),F) is the distance fronX to the boundary.
one-dimensional tubes, then this equation is generalized to

ap(t,x) 1 52 A. Reversible sorption

_ PO
=35 &Xiaxj[Dijp(t,x)]— ax, Vi UPl,

For reversible sorption, it is assumed that the expected
(3)  time on the boundary and its variance are both finite. A typi-

) . ] ) ] ) cal assumption is that the time at the boundary is exponen-
whereD; is a dispersion matrix and; is an advection vec- tally distributed. If the time on the boundary does not have
tor. Up to this point, we have assumed that the motion of thgjnite mean and variance, the boundary behavior corresponds
bacteria is not Conﬁned, that is there has been no bounda% deposition and a Sca|e up or homogenization Wou|d |ead to
effects. To study the movement in a capillary tube or micro+ransport with decay. The appropriate boundary conditions
flow cell we need to augment Eq8) or (5) by some bound-  for the Fokker-Planck Eq(1) are known in one dimension
ary conditions. In the random walk, we want to |mp05€(see Borodin and Sa|m|ne[r36]) and can be |mmed|ate|y

physically meaningful boundary conditions which captureextended to more dimensions. Equatidh can be rewritten
the attachment and detachment behavior of microbes. Thigg

boundary behavior is crucial in understanding the transport
of microflora in porous media. In Boyd and Chakrabarty ap(t,x)
[34], the attachment/detachment process is shown to occur at =Lp(t.x), ©)
regularly. At each poinkeI" of the boundary we assign a
measure of “stickiness,p(x). This measure ranges from 0, whereL is a linear operator. We require that at the boundary
reflecting, through infinity, at which point a microbe is p(t,x) satisfies
sorbed to the surface irreversibly. A similar model has been
proposed for the flow of a chemical pushed by an inert gas ap ap
through a tube with liquid state on the bound&Bp]. On a n TP
domain E, with a boundaryI', the stochastic differential
equations representing the motion of a sticky bacteria areheredp/dn is the normal derivative op and the value of
given by pdpldt is taken to be the limit as one approaches the bound-
ary from inside. This is a form of mass balance. Since no
dKi=1p(X)dK¢, Xo=X, X € E, (48  concentration is permanently sorbed, the outflow at the
t boundarydp/dn is determined by the loss with respect to
I time of the concentration near the boundaryp/dt. The
(NLN (t jop(XS)dKS>' (4b) usual no flow conditions correspond po=0, which says
nothing is even temporarily stored at the boundary.
dX= VD (X)) AN+ V(X[ dt—p(X)d K]+ ¥(Xp) dK, Formally, we can also write Eq7) as
(40)

0, ()

p

whereX; is the microbe’s position, =1 if x is onT" (mi- %erLp:O. ®)
crobe in sorbed phageand 1-=0 otherwise(microbe in

aqueous phageK; is a measure of the time the bacteria is The Fokker-Planck equation with these boundary condi-
near to, but not on the boundaty, is a random directional tions seems not to be well studied, but there is some work for
motion which only changes wheX is not on the boundary, the SDE approach. One of the most fundamentally useful
v is a directional vector which keeps the microbe inside thaesults concerning the sticky boundary conditions is the re-
domain, and the bracket proce@$N) is a measure of the lationship between solutions of SDE which are the same ex-
amount of time a particle has spent inside the domain up taept for the boundary stickiness. Specifically, GraH&%|
time t. With these interpretations, Eda) says thai; only ~ showed Theorem 1.7that if one has two measurpsp, and
increases whekl; is near(at) the boundary and the last equa- one is subordinate to the other, that is, one pas, then
tion states that inside the domaiX, acts as a classical solving the SDE fop immediately gives a solution fqr, but
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run with a different “clock” or “time change.” More pre- 0-49
cisely, the theorem states that K(,K,,p) is the solution of

Eq. (4) and we letA=t+ [§(p— p)(Xs)dK, be an increas- p(x)
ing function with inverseAt_1 then Xt:XA;1 and K; o,
= KAt—l solves the SDE fop. A particular example is taken

by letting p=0 which is subordinate to any measure of
stickiness. Practically, this means that solving the reflecting o
boundary condition and keeping track of the local time al-

lows one to study the sticky boundary problem. This “time
change” is important also from a numerical point of view in 0.
that it says to approximate the SDE with a random walk

model one needs to generate a reflected random walk bu

with a random insertion of time when it hits the boundary.

The reflecting boundary condition has been numerically o
studied in the case of the half plane by LepinB&] where

an Euler scheme with a good convergence rate is given. We
generalize to other domains this scheme by considering them F|G. 1. Symmetric stable densities€1,8=0,.=0) for «
as approximately polygonal. The distribution for the inserted=0.75, 1.1, 1.25, 1.50, and 1.7Bighest to lowest peak Repro-
time can be freely set, but necessarily depends on the timguced with the authors permission frd#as).

step involved due to the rapidly fluctuating behavior of a

Brownian motion(the local time is not differentiable Preliminarily, we model waiting times at the boundary as

In particular, the complexexperimentally observecdbe-  an qo-stable proces§39] represented by the characteristic
havior remarked upon by McCaulat al. [28] can be pro-  fynction

duced if the inserted time is a mixture of a highly probable
small time and a less likely large tin{bimodal time distri- o(s)=exp —o?|s|?), (9)
bution). This separation of two characteristic time scales

might be reflected in the related characteristic length scaleg, oa anda are parameters argis the frequencydual to
discussed previously. The small time scale may be associat§fe) The inverse-Laplace transform of this characteristic

to the micran-size diffusive Igyer and the large time Scalefunction is the density. This is a particular case ofastable
may correspond to Fhe _subm|cron dpuble layer for_ces scal rocess as presented in Hd). We have chosen this distri-
This type of behavior is homogenized at large times an ution for several reasons. Among these are: It is renormal-

using an average or exp(_acted residence time Is necessgiypie and so it is easily upscaled to homogenized porous
when upscaling. Another important characteristic of sticki-

is that it d q | . d i hat b ystems; it can have either finite of infinite momefde-
ness Is that it depends on location and time so that by mo sending ona); it has heavy tails consistent with experiment;
eling it as depending on local chemistry one can produce

; - ) e o nd in special cases it can mimic the common exponential
behavior for"mlcrobeg which mimics active attachment Or yiqpipy tion. Figure 1 shows a set of distributions with char-
d_etachment, Some_th.".‘g npt prev_lously recov_ergble. A POSHcteristic function(9) for different values ofa and o=1.0.
S|ble_model for an initial distribution of the stlcklness,_ as a,g o decreases, extreme events have higher probability. Con-
function on the boundary, could be a random function in

. . ) . X . . sequently, in Fig. 1 the area under the curves in this interval
which a covariance structure is provided. This then gives ”Sf—5 5] decreases witlr and corresponds to heavier tails of
to a stochastic partial differential equation for evolutive g "/ ec Heavy-tailethlso referred as power-lavdistri-
problems. The situation which first interested us was model '

ing of bacterial attachment through a flow chamber, the uprtionS have found physically meaning applications in mul-
per part of which is formed by a treated slipcoy88], and tiple disciplined40] including material fatigue, network traf-

. . fic, finance, signal processing, and geosciences. The physical
the lower by a microscope slide. motivation is an observation of a process in which scales
involved vary on several orders of magnitude as we have
described is the case for sorption of bacteria in porous media.

Irreversible sorption or deposition is modeled by using aThere exist observations and modeling of sorption with
distribution for time at the boundary with infinite moments. heavy-tail distributions. Drazeet al. [41] and Drazer and
One of the objectives of the experimental efforts of ourZanette[42] conducted a series of experiments in which
group is to measure single-cell attachment and detachmermower-law trapping times explained observed ion transport
the transfer of genetic information during attachment, and ton activated carbon porous samples. Vledal. [43] pre-
develop a probabilistic model that describes these processeented a thermodynamical theory consistent with Drazer’s
in aggregated scalefDarcy scale and largerIn theory, [41] observations. While research on bacteria sorption is not
deposition implies permanent attachment. Experimentally, eveloped enough to provide a full description of processes,
particle that does not return to the aqueous phase after gehysical and chemical heterogeneities suggest that power-
taching to a solid surface for the duration of the experimentaw scaling for long times is a reasonable assumption. The
might be considered deposited. dynamical description we present explains observed long-

B. Irreversible sorption
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tailed macroscopic behaviaf44] and references thergin called Skorohod problem in the case of a random walk
and provides motivation and ideas to devise pore scale exBrownian motion is determined by the infimum of the pro-
periments. cess which in turn is given as an exponential random vari-
able of the type discussed. In a half space, each component
IIl. NUMERICAL CONSIDERATIONS has a covariance matrix for the dispersion, but this does not
) . change the scheme much. A way of simulating flow through
Here we discuss how random walk models are imple two-dimensional tube with reflecting boundaries is to make
mented in the presence of sticky boundaries. In the homoghe time step small enough so that one cannot during that
enized version where the boundaries are not visible, this ig\terval hit both boundaries, then treat the problem only lo-
essentially a convection-diffusion-reacti¢8DR) equation. cally, that is, one can keep track of a separate local time at
Traditionally, this is solved by a particle-tracking schemeggch boundary and adijust the random walk accordingly. An
which ir_1 each instant calculates probapilities of 'sorption Olobvious problem with this scheme is that it cannot be readily
desorption, measures the amount of tifnendom in each  gxtended to other types of bounded domains in two dimen-
phase(sorbed or desorbedand then performs the random gjons, much less to a circular capillary in three dimensions.
walk only on that portion of time in the desorbed phase. Forrhis however is not a problem here as we are working in a
fast reactions, the constant generation of random variablegit domain.
(for small time stepsbecomes prohibitive and it is common  The simulation of a sticky process follows the above
to assume that on any fraction of time a fixed proportion iSscheme except that the sets of points making up the trajec-
spent in either phase and then perform a random walk on th@yries for one realization t(X,) are replaced with[t
relative portion in the desorbed phase. Unfortunately, this has fBP(Xs)sz,Xs]- If one is interested in the position of a
the unwanted effect of numerically retarding the flow, that is'particle at a particular time- it can be had by finding the
changing its clock. A more uniform approach suggested byjne t for which A,= 7. One usually knows in advance the

the above analysis of sticky diffusion as a basis for CDRyinag of interest and can simply calculate the tinvehen it
suggests not only should a random dlsplacerr_lent take plaggq surpasses. First passage times are especially easy since
at each step, but also a random amount of time should b§ae knows the position the particle is at when the time is
inserted into the clock. ) reached and hence one need only keep track; of

There is not a'lot (.)f work for random walks with nqr)ab- An alternative to this approach is “time marching” that
sorbgnt boundaries in general and the added conqun cU(ses a strict discretization of time to construct a simple ran-
wanting to keep track of the local time for a reflecting 4,1, \yalk. Upon hitting the boundary, the particle sticks and
boundary(to be used for the rz_mdom time insertjdraves then desorbs from the boundary with a probability say
even fewer. In a paper of Leplng.IeE§.7], an Euler schemg However, to capture the boundary behavior of continuous
for reflected SDE is proposed .Wh'Ch IS no'g based.o.n prOJect- iffusions(which have infinite variationwith a discrete pro-
ing an escaped particle back into a domain, but it is msteaaeSS requires a dependencesai the time step. We show in
based on generating a random variable with the same diStrJ&ppendix B that the appropriate order fetakes the form of
bution as the local time of the process and using these extra
variables to keep the process inside according to &j&nd 6 o
(4c) above. —_— =

The basic scheme of approximating the reflecting SDE on (1+e)® At
(0, ) with a continuous random walk, is

(12

A disadvantage is that ast—0, e—1, so that a large effort
dX,= \/B(Xt)dWﬁV(Xt)deKu X e (02) (10) is made in calculating almost certain events. Moreover, it is
well known that a Poisson random variable is the limit of
or in a half space appropriately scaled binomial random variables and so the
first exit from a wall is given by the distribution of th@n-
Xo=Xo, (118 teparrival times of a Poisson which has an exponentially
decaying distribution. This means that upon averaging, the
Yerar=V(X)At+YD(X) Wi, (11D two approaches are equivalent.
In passing, we make a few comments for circular capil-
VD(X0)2Z+Y2-Y, laries. For a circular domain with no drift one can write the
2 ' Laplacian in polar coordinates, that is, the rectangular La-
(110 grangian procesk;,Y; can be thought of as the product of a
radial proces$®R; and angular procedd,. This corresponds
Xirar= X+ Yeoart v(Kisar— Ky). (110  to a skew product decomposition of Brownian motion where
the radial process satisfies the stochastic differential equation
Here,W,, is a Gaussian random variable with mean zero and

varianceAt andZ is distributed as an exponential with mean
2At. The reason that this scheme approximates correctly a
reflected diffusion is that reflection in a line is a simple mat-
ter of taking any continuous function and adding anothettogether with reflection on the boundary. While the angular
function which together always stays positi&¥]. This so- process of interest satisfies

Kirar=Ki+ ma><< 0,— Xi+

1
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FIG. 2. Mean-square displaceme(X?) (m?) and pg for
sorptive time with exponential distribution with parameter 0.5
and various values of ket number Pevb/Dg.

1
3d®t:$dBt, (mOd 2’77),
t

whereW, is a Brownian motion on the lin@ne-dimensional

random wall, and B; is a Brownian motion on the unit

circle. One can now apply Lepingle’s ideas to the radial pro
cess without much trouble. The angular process can b
thought of as taking place on the real number line and then:
mapped onto the circle. The coefficient of its dispersion,
1/Rt2, can be integrated approximately by taking the averag§

of 1/R? and 1R?, ,,.

In more complicated polygonal-like domains, one can
perform a decomposition of the domain into overlapping

(14

PHYSICAL REVIEW E 66, 031915 (2002

wherev denotes the cross-sectional average veloCiy,is

the diffusive (motility) coefficient, andb is the half width

separation between walls. The mean-square displacement

(AX?) is computed as
(AXZ)=(X?)—(X)?, (16)

where the first momen{X)=uvt. The numerical algorithm

produced Taylor dispersion with relative errors under 1%.

The two main parameters controlling the dynamics of the
problem are the time,=b?/D, referred hereafter as the
cross-channel motility time, and the ratio of convective to
motility fluxes which is called the Peclet number Pe
=vb/Dy. We define the dimensionless tinlg=t/t,, the
average time spent in the aqueous phgsethe total simu-
lation time t,,, and the average time spent in the sorbed
phasets=ty,—t, and let prs=(AX*)rayior/ (AX)gim. We
compare the mean-square displacement of Taylor dispersion
[Eq. (15)], (AX2>Tay|0r, to the mean-square displacement
with sorption(exponential ora-stable waiting times as indi-
cated (AX?)gm. If we consider long timeg,>1, then
<AX2>Taylor: Dert, and <AX2>Sim: D;ﬁtl and prs
=D/Degts 7. In a log,o-logy, plot prs versust, the slope
is 1-—vy and the intercept with the axig¢,=0 s
log;o(De /D) (slope and intercept of a tangent at agy.

If the slope of this curve is positive then we call the event
subdispersive ¥<1) and if it is negative we call it superd-
ispersive y>1). If the intercept with the, axis is negative
we haveD <DZ;, although this is only a relevant compari-
son for y~1.

Next, we analyze an exponential waiting time for which
the solution is known. X has an exponential distribution
with parametei, then its density i (x) =\ exp(—\x) and
its expected value is 4/ Here, the same relationshii5)
pplies with reduced velocity,=v/Ry and reduced diffu-
sion coefficienD,=Dgy/Ry, whereR, is a constant known
s the retardation factor. Figure 2 givesX?) and prg for
=0.5, velocity v=10"° m/s and widthb=10°m and
varying diffusion coefficienD (this implies botht, and Pe
change. For short times t, <2) subdispersion is observed

wedges(cones, keep track of the particles position relative (¥<1) that converges to Taylor dispersion whgn>2 as
to the decomposition and near the boundary reflect the angi€ expect. After Taylor dispersion is established, the time

lar part alone.

scaling of the mean-square displacement is lingarl, yet

A discussion of thea-stable deviate generator can be the effective dispersiod s depends oD, which dictates

found in Appendix A.

IV. RESULTS

the collision frequency of the particles with the walls.

A. a-stable waiting times

As a reference, and in order to check the correctness of \yie examine the effects of amstable waiting time distri-

the procedure and algorithms, we tested the case of Tayl
dispersion in a reflecting slit capillafBrenner and Edwards
[46]) with known asymptotic solution for the mean-square

displacement

1 .
2Dt + §v2t2+0(t3) if t<b?/Dg
<AX2>TayI0r: v2b2
—_— if t>b?%D,,
<2D0+ 2D, t+O(t) 0
(15)

Yution on transport as a function of the parametgys

=b?/D, and Pe=vb/D,. Both « and o control the sorption
process. We serr=1 and focus onx (Table ) which de-
scribes the frequency and magnitude of extreme eveeps
resented by the heaviness of the tail of the distribytioh
times spent at the boundary. A large number of partichs (
=5000) were released uniformly from a line transverse to
the main direction of flow. To understand the dynamics, let
us summarize some basic results of the simulations. The
scaling in time of mean position and mean average displace-
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TABLE |. Parameter range investigated.

Parameter Values Units
v 1076, 4.0<10°5, 1.6x10°%, 6.4x10° 5, 2.56x10 * m/s
Do 107 10718 10712 10711 m?/s
b 1075, 4.0x10°°, 1.6X10° %, 6.4x10°* m

0.4,0.8,1.2,1.6, 2.0 dimensionless

ment is key to understand transport. Closely related to thi{ohger sorption times upon collision against a surface and
scaling is the average number of collisions with the Wl this agrees with the behavior efstable distributions.

; o ; Comparing the ratid,/t,, as a function oft, between
that as we will see shortly depends et it is velocit . a’tm ) b e
invariant y cep any y a-stable[Fig. 3(@)] and an exponentialnot shown it is

For fixed total simulation time,,, we study the depen- found that both are diffusive in shape. To illustrate how ex-

dence oft, (average time in aqueous phasadt, (average treme events influence this behavior, Figh)3shows the
T a 9 q IS p s 9 ratio between average time in the aqueous phase and the sum
time in sorbed phasen « andt,,. Figure 3a) showst,/t,,

, t,+ts;. Figure 3c) is a plot of ¢, +1tg;)/ty, versust,. When
and ts/ty, for t,=86400s(one day. In Figs. 3b)-3(d),  nis fraction is zerd(as a function ofe andt,) we are in a
extreme events have been identified by separating the avelieposition regime. Wherm<0.5, complete deposition is
age time in the sorbed phase into nonextreme events deﬁ”%ssible and it occurs for low values of; e.g., for a
by time ts,, and extreme events defined by such thatt;  — g 4, deposition occurs fap,< 100. Fora>0.5, total depo-
=t t1ts. An extreme sorption event of duratidp is de-  sjtion does not occuii(t,+t<;)/t,, never reaches zefoFig-
fined to be whert,>t; wheret; is a cutoff time. Various yre 3d) shows the fraction of the simulation time these ex-
cutoffs used are presented in Table II. Details of the separareme events take,,/t,,, as a function oty . If the cross-
tion of ts into nonextreme and extreme events are given irchannel relative motility of the bacteriat# D, /b? is small
Appendix C. One can think of a combination of reversible enough(or correspondingly the characteristic cross-channel
(quantified byts;) and irreversible ts;) events taking place. motility time t,=b?/Dy is large enough collision frequency
For the same bacterial motility relative to the pore size, thafs low and sorption is limited. Consequently, a larger fraction
is, for a fixed value ot,, bacteria will spend a greater frac- of time is spent in the aqueous phase. For large relative mo-
tion of time in the aqueous phase with greaterSmaller tijity, D,/b?, t’ becomes a constafplateau to the left of
values ofa induce both a greater range of sorbed times anqhetb axis in Fig. 3d)]. The constant is the fraction of simu-

oo — il e
08 ——-——O—E; V/ / 0.8 /)//
074+— —<0=12 Z/ }{ 07 // / /
06 .. *0=16 // 08 / /
gosf—e0 ) ] Fos A7 7
S o /7 A — 5o P/ -
0 AL ] / Fos 7/
7] 47 o 7
7/ / 7,
0.0 W o e//& 00 /ﬂ/ i
T e @ o og) | ®
08 / — 08 o——eﬁs\ \\\
&F_\‘O.G / / // jo_s \ \\
N — // / ) — \\ I\
02 / 02
— 7 SN e
1 0 1 lzoglo(tba) 4 © - 0 1 fogw(tb; 4 5 (d)s

FIG. 3. Average time in agueous,j and sorbedt¢) phase aftet,,=86 400 s.ty, in secondgs).
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TABLE Il. Cutoff values for extreme sorbed times. TABLE lll. Fraction of extreme sorption events to simulation
time, for high-relative cell motility.
a 0.4 0.8 1.2 1.6 2.0
ts cutoff 120.18 33.65 13.215 6.653 4021 « 0.4 0.8 1.2 1.6 2.0
P(ITI<t;) 0.90 0.96 0975 0.9975  0.999 t; cutoff 120.18 33.65 13.215  6.653  4.021

maxtg;) 0.993 0.897 0.515 0.199 0.0175

lation time bacteria stick to the boundary due to events of
duration greater than the cutoffs in Table Il. This fraction, B. Moments

tabulated in Table Ill, depends on both and the selected  The number of collisions, mean number of particles in the
cutoff t; . These values illustrate how deposition increases a§queous and sorbed phases, and mean time spent in each
the value ofa decreases. For instance, far=0.8 [second phase are dependent only on the parameteesidt,, and
curve from right to left in Fig. &)], a few long-time(strong jndependent of the mean velocity This is in contrast with
sorption events account for nearly 90% of the simulationysty the mean position and mean-square displacement which
time while for «=1.2 these extreme events that may repre-4re velocity dependent. The average position of an ensemble
sent deposition account for only 50% of the simulation time.of 2000 particles is shown in Fig(® for the same values of

Figure 4 shows the average number of collisidfs, asa  , andt, used in Figs. &8)—5(d). Figure @b) gives the flow
function oft, . The average number of collisions dictates theretardationR(,:(X) I{X)sim=0t, IV*t? which is the ratio
- . . . v e
probability of attaching to a surface. Smgll (high-relative | otween the mean displacement of a nonsorptive species
motility) gives rise to collision saturation. The saturation

| tical ity £ hich tional with average velocity to that of a simulated sorptive spe-
(P ateal)_ occurs at a critical motility for which any additional gieq - Retardation converges to a constant value onlyafor
energy invested by the bacteria for motility does not accel->1

erate sorption kinetics :

Three transport or sorption regimes are apparent in Fig. 4

."(1) High-motil_ity (s_mal_l to) regin}e: Frerzlque;nt CO"‘_f‘;’F‘S previous two plots. The reader should note that the mean-
will cause sorption kinetics to be fast, that is, equili UM gquare  displacement is  defined by AX2)=([X(t)

will be approached quickily. Depending on the valueagf X(t))]2) where in ;
) X o : . genera( X(t))#vt with v the mean
this means rapid deposition1) or a decrease in the time ve<locity>. V\>/e caII(AX2> super{dispezrsive if it scales with

fraction in the agueous phasal'él).. . N where y>1, Taylor dispersive ify=1, and subdispersive
(2) Low—mc_)tlhty_ (Iargetb_) regime: Slow sorption Kinetics - iaryise. It should be noted that this terminology applies
andggr_lgater_t_lme IS _SpehtT'r? the aq_qeoubs phase. h when talking about the rate of growth in tinfproportional
. (3) _ran§|t|ondre_g|r_rl1e. N ér_?rns!tlonf etween the two re-, v for any given timeg yet the total mean-square displace-
glmehs IS shape St;m' afr to a II u.3|orr11 ront. ment for a superdispersive situation may still be bound by
. N e mean number of particles In the aqueous pHass, Taylor dispersive mean-square displacement, that s,
is a _k|net|c quantity. This klne_t|c parameter is |gnored_ When(AX2> = D*A7<Dot=(AXP1,,10r IS POSSible withy>1.
looking at time averages as in Fig(th We study th? time For aiupzeb d(iegpersign scales aglngay[cEq. (15)] while «
dependence ofK,) and(Kg) (Np=(Ka)+(Ky)) in Fig. 5. <2.0 are superdispersive. As pointed out earlier, when

t':ri'g[?orﬁz i?]aiﬁg(g) Sggnvstgﬁ degglrgte'%n 'Q;ggse fgfr g‘;eiﬁgge\gl 31, slow deposition regimes develop and are noticeable for
q P %f» 1. This renderg,,= 1 day insufficient to observe long-

of ty, and different values of with t,,=24 h. The value of, time dispersive effects, so we sef,=100 days-8.64

for these plots was selected so tiiat=(K,)/N, is close to )
0.5. Figure %) corresponds tar=0.4 andt,~ 1.56x 10", X 10° s for the smaller values of. Figures 8a) and §c)

According to Table I, about one in ten collisions has a stick- S
ing time greater than two minutes; € 120 s). Yet it can be ]

seen that aftet,,=24 h equilibrium has not been reached “—‘\o\\ —a 0=0.4
and bacteria are still slowly depositing on the walls. Thisis ¢ ——0=0.8
an example of slow kinetic sorption where most events of ‘e\\ —-o=12
reversible sorption last under two minutes, yet rare deposi —-o=16
tion events dominate the long-term kinetics. From Figs. =20
5(a)-5(d) and other simulations, it is possible to conclude 24 _ —
that the resulting regimes include both irreversible deposition o j\‘\\
and reversible sorption. lik<<1 deposition occurs. Aa11 .

the deposition occurs in a slower fashifffigs. 5a), 5(b);
Fig. 5(b) corresponds tar=0.8 andt,=4.94x 10?]. For a
>1, reversible sorption takes place. Asincreases above

Figures Ta)—7(b) show the mean-square displacement
nd p+s for the same selected values @fandt, as in the

A

log;o(N,

one, the kinetic effects have shorter duration and equilibrium 210g (t ;

between sorbed and aqueous phases is reached gLiodsy 10t

5(c), wherea=1.2 andt,=49.4, and &) wherea=1.6 and FIG. 4. Number of collisiondN, for various values ofx after
t,=15.6]. tm=286 400 s of total simulation time,, in secondqs).
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show the mean position and mean-square displacement fpected to transition between a “purého sorption Taylor

these longer simulations. FigureéoBand 8d) gives the re-

tardation factoRy and p15. On a logg-log;o scale

pendence ofX) and(AX?) ont, =t/t, appears linear when

, the de-

dispersion {, <10) to apparent anomalous dispersidg (
>10) resulting from sorption.

We posit(X)=V*t? and perform regressions to estimate

t,>10. Smallt, corresponds to a lower total number of wall V% and 6. Figure 9a) shows# for «=0.6 (top curve and

collisions (slow sorption kinetics and therefore it is ex-
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shown in Fig. 9b) for both values ofa=0.4 anda=
Below a threshold,<T,,, 6=« (here,T,, depends om).

0.6. For the mean-square displacement, we also gadsk?)

=Dj4t) Figures 9c) and 9d) show y and D% for «=0.6

Fort,>T,,, 6—1 and the mean displacement appears lin{circles in Fig. 9d)] and «=0.4[triangles in Fig. &)]. For
ear.V; is not to be confused with the effective velocity, as it «=0.6, the regime appears superdispersive>() and
is clearly larger than the maximum velocity. The true effec-evolves fromy=2a towardsy=2 ast, increases. Fowr

tive velocity isVes=Vt{ * and it is always bounded
maximum fluid velocity.

1.0

by the =0.4, the regime appears subdispersivetfer T,, and then
asy increases it appears superdispersdg; increases with
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in (M), t, is dimensionless.

t, and does not depend an Sincey increases monotoni-
cally as well, we draw the conclusion thatstable sorption
enhances dispersion by several orders of magnifrelative
to Taylor dispersion of a nonsorptive spegiés values of

We next analyze the sensitivity of estimation in the pa-
rametersd, Vi, v, and D% and further elucidate on our
discussion of short versus long-term dispersion. The good-
ness of fit parameter for all regressionsR$>0.99. Figure

«>0.5. Maximal dispersion occurs for the greater values ofl0(@ shows(AX?) for a=0.6 andt,=10°. It suggests that
t,,. Figures 108)—10(e) compare Taylor dispersion of a non- Short timet, <6 behavior may not be described accurately

sorbing to ana-stable sorbing species with=0.6 Figure
10(a) exhibits a distinct behavior for early timés<6 very

by the fractional law withD*;=3.33x 10" and y=1.97,
even if R?=0.994. We separate short-and long-time mo-

close to Taylor dispersion and then transitions to apparedf€nts and estimate parameters in each subrange.ty~or
superdispersion. This can be explained by noting that the= 10°, the short-time range correspondst{o<6. An analo-
sorbing boundary creates retardation after sufficient time anélous procedure is employed for the selection of the threshold

consequently enhances dispersion. Fge10°, collisions

for other values of,,.

are infrequent and this effect is observable at the time scale Figures 11a)-11(d) display the coefficients in(Ax?)

analyzed in the simulations presented. For valuestyof

=Dgt) as a function oft, for short times(triangles, long

<10, we observe a well-established long-time regime fortimes (diamonds, and over the entire rangerosses for «
both the nonsorptive and sorptive cases. We conclude that0.4 [Figs. 11a) and 11b)] and «=0.6 [Figs. 11c) and
our analysis is centered on long-term dispersion for the sorpt1(d)]. Fora=0.4, y andD % [Figs. 1Xa) and 11b)] behave
tive case and it is characterized by retardation in the meaoonsistently. Fot,<10®, y~3a/2 is constant with respect
to t, while for long timesy~2«. The values ofy are very

position and superdispersion.
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FIG. 11. Coefficients in fractional regression for mean-square displacefiext)=D%tY, as functions oft, and «. Estimation
performed with simulation,,= 100 days long considering all time ran@g®ossey short timegtriangles, and long timegdiamonds. (a) y
for «=0.4, (b) D3 for «=0.4,(c) y «=0.6, and(d) D% for «=0.6.t,, in secondqs).
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close fort,<10® using the short- and long-time evolution of in Fig. 12b) we expect that for large, >10°, the particles
(Ax?). Fort,>10°, apparent subdispersive behavior evolveswill be mostly in the sorbed phase with infrequent excursions
into superdispersive spreading. The coeffici®f; [Fig. into the aqueous phase resulting in subdispersive behavior.
11(b)] remains unchanged even with the fluctuationsyof However, while there are numerous particles in the aqueous
The consistency of the estimated values fJoand D%, sug-  phaset, <10? they take more frequent excursions to sample
gests the scaling can be defined universally for long times.the velocity field. Being the sorption times asestable dis-

For «=0.6, y [Fig. 11(c)] behaves monotonically except tributed, this sampling occurs in such a fashion that the over-
att,=10° for the short-time estimator where a sudden de-all result is superdispersion. This corresponds well to the
crease iny occurs. As we discussed previously, this is due tocase of strong sorbers studied by Bychuk and Oshaughessy
a change in dispersion regime which is controlled by the walf47], its scaling being that of a Levy walk. As for the first
collision frequency. Sincey>1 for all ty, the dispersion moment(X), it scales like (X)=V*t? with 6=a for t,

regimes fora>0.5 appear superdispersive. The behavior of. 109 Fort, <5, it scales like flow with average velocity
v for long times is always monotonic suggesting universal

: . N : o and is linear in time.
scaling. The behavior dDey [Fig. 11d)] is very similar to We now consider the case of reversible or weaker sorp-

the casex=0.4. tion, a>1. In Figs. 13a) and 13b) a=1.2, Pe<1. At low
Pe, this results in no coherent net deterministic displacement
C. Effect of Pe number (X) and diffusive motility dominates. We have pointed out
We consider now convective flux relative to the motility that different sorption regimes develop with We first con-
flux in the form of Pelet number, Pevb/D,. Figure 12a)  sider the case for smat},. The upper curve in Fig. 1B) is
shows(AX?)gm and Fig. 12b) shows the benchmark ratio for t,=0.11, that is, the particles collide very often with the
p1s={(AX)1ayior {AX?) i fOr @ simulation witha=0.4 and ~ surface. This regime is diffusion dominated and therefore not
constantt,=2x10*. Figures 12a) and 12Zb) shows that Vvery sensitive to velocity. It evolves from subdispersive
both y andD¥; depend on the Reet number in a nonlinear (Der<Dgq,y<1) for smallt, to a delayed Taylor dispersive
fashion. Dispersion is initially Taylor scaledy&1) fort,  (Deg<Dgg,y~1) regime for larget, . For t,=1000, the
<1 for all Pelet numbers. Ag, increases, for low Réet  lower-left curves in Fig. 1®) correspond to different values
numbers the transport is subdispersive. As Pe increasesf the velocity(keeping Pe1). Dispersion is Taylor scaled
(Pe=0.5) the transport turns superdispersive for small  (y=~1), yetitis a fraction(by a factor of 2 of the nonsorp-
reaches a Taylor scaled plateau, and then turns subdispersitree case D<DZ;). This is consistent with the fact that the
for larget, . Physically, we know deposition is taking place particles are mostly in the aqueous phase. In conclusion, for
(@=0.4<1) and since,=2x10" is constant for all curves «>1 and low Pelet numbers, the resulting dispersion will
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be a retarded flow that progresses from subdispersive to Tay-
lor dispersive for largé, . This transition depends on both

a and the value of,,, being fast for largd,, and slow for
smallty.

V. DISCUSSION

The work presented herein is motivated by the desire to
predict the evolution of genetic information in microbial
populations within natural porous media. This work repre-
sents an important step towards this goal. Our earliest experi-
ments on the propagation of antibiotic resistance and green
fluorescent protein transféwu [1]) have been conducted in
auger plates and microflow cells. In the microflow cell, the
transfer of genetic information takes place while the cells are
adsorbed on the flow cell wall. The length of time the cell is
adsorbed plays a direct role in the gene transfer process. We
are thus motivated to study the hydrodynamics of microbes
in microflow cells and their “stickiness” with respect to the
walls. Brownian dynamic simulations of self motility in a
convective field has been previously shown to adequately
describe the behavior of microbes. We have added a twist to
these simulations by considering sticky boundaries, where
upon hitting a boundary the microbe sticks for a random
length of time. This random length was governed by an
a-stable distribution. The use of this distribution was moti-
vated by four points(i) « stables are renormalizabl@i) «
stables can have finite or infinite momen(si,) « stables
have heavy tails that highlight extreme events, &nd «
stables are consistent with experiments.

The sensitivity has been studied in detail and the model
can account for a great many sorptive processes with just a
few parameters that may be estimated from direct measure-
ments in the spirit of Drazeet al. [41]. The numerical ex-
periments use Brownian dynamics in a convective flow be-
tween parallel plates withe-stable sorption waiting times.
The parameters found to control transport limited sorption
area and, as in classical dispersidg=b?/D, which is the
ratio of the square of the half width of the chanihefo the
diffusion coefficient of the bacteriB that represents bacte-
ria self motility. Thea-stable waiting times distribution gen-
erates anomalous dispersion. The time evolution is different
from that of a random walk with random stopping times as
treated by Comptet al.[48] since stopping times here occur
only upon collision with a wall instead of every diffusive
step. As in classical Taylor dispersion with nonsorbing spe-
cies, there exist a distinct behavior for short and long times.
In classical dispersion, the threshold between the two re-
gimes occurs dt, =t/t,~1. In the case ofx-stable sorptive
species, this transition threshold depends on hotndt,, .
When defining short and long times as limits for the process,
it is useful to look at the number of wall collisio. which
depends linearly on the average time spent in the aqueous
phaset,. Here, we have studied and reported in detail the
dependence df, ont, anda.

Universal scalinggwith respect to dimensionless time
t, =t/ty) for the mean positioiX) =V#t? and mean-square
displacement{Ax?) =D exist for long-time dispersion
and the coefficients were obtained. Their values are consis-
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tent and robust. The values of waiting time parametand
the characteristic cross-channel motility tintg, determine

PHYSICAL REVIEW E 66, 031915 (2002

(1) Generate a random variablé uniformly distributed
on(—a/2, w/2) and an independent exponential random vari-

the nature of dispersion. £<0.5, there exist a combination ableW

of apparent subdispersive/£1) and apparent superdisper-  (2) For a# 1, compute
sive (y>1) dispersion regimes whose transition depends on
the value oft,. For «>0.5, dispersion appears superdisper-
sive andy increases witlt, . Short- and long-time dispersion
regimes may be consistently described with the same coeffi-
cientsy and D7 for a wide range of conditions. Reversible

sifa(V+B, )] ( cogV—a(V+ Ba,B)]) (1-a)la

= Oa,B [Coiv)]l/a W

(A3)

and irreversible sorption can be modeled simultaneouslyvhere

with an appropriate choice far. Valuesae<1 allow deposi-

tion which occurs slower aa approaches one from below.
These results are important for interpreting experiments and
calibrating reactors where sorptive conditions widely vary in

space.
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APPENDIX A: a-STABLE DEVIATE GENERATOR

tanV— B log;q

a
5 + BV . (A6)

w2+ BV

The exponential deviates are computed by the inverse
transform method based on uniform deviates. The uniform

Stable deviates were generated with the Chambergleviates needed were generated with an algorithrfbby
Mallows-Stuck algorithm. Since historically there have been

inaccuracies in the literature surrounding this algorithm, we

summarize it after developments p49]. We do not include

details about the construction of this particular fast generator

of stable random variables as they can be foun##j and
[45] and citations therein.

A random variableY is « stable if and only if its charac-
teristic function is given by

logo &(s)
To .
—o?s|® 1—iﬁsgr(s)tan7 +ius If a#1l
B _ 2 -
—ols| 1+|ﬁsgr(s);Ioglo|s| +ius if a=1,
(A1)

wherea e (0,2] is the characteristic exponemge[ —1,1] is
the skewnessg>0 is a scale parameter, ande R is a
location parameter. We writ¥ ~S,(o,8,1). Wheno=1

APPENDIX B: LIMITING BEHAVIOR OF RANDOM
WALKS

We collect here some analytic results which are useful in
determining how to parametrize as well as some of the
limiting behavior of random walks.

We first show that for a time discretized process that to
have a positive amount of time on the boundary that

< _p
(1-e? At

wheree is the probability of staying on the boundary. From
the central limit theorem or the basic properties of Brownian
motion the time scale versus displacement scaleBis
=/sB;. This means that if one discretizes the random walk
in time and space and time steps are divided\ashen the
corresponding space discretization should be on the order of
JAt, so for example, if dividing time into intervals of length
0.01, one should divide space into intervals of length 0.1.

(B1)

and =0 the distribution is called standard stable. ComputeNow if a random walk on the point®, VAt, 2./At . .. is at

generation of a stable random variable follows
oX+pu if a#l

Y= 2 . A2
0'X+;,80'Iogloo+,u if a=1, (A2)

where X is a standard stable random variable, thatXs,

zero at time zero and stays at zero with probabiéitgnd if

not at zero goes up or dowgiAt amount with probability
0.5, then one can ask how much time is the random walk at
zero on the time intervaj0,At,2At,...,n/AtAt} that is on
[0,n] wheren is some large time.

The first question of interest is what is the distribution of

the time that it takes for a bacteria executing a Brownian
motion to first attach to a flow tube’s boundary. If we assume

~S,(1,8,0). Now, to generate a standard stable deviate, folthat the flow is slow relative to the length of the flow tube

low the steps:

then the answer is given by integrating the transition density.
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That is, if we letP(7>t) denote the probability that a mi- takes place when microbes come into contact, a process most
crobe entering a flow cell has not hit the wall by titpehen  likely to occur on boundaries. Witfr representing the
with D as the cross-sectional area of the flow cell one has amount of time on the boundary we want

P(r>t)=f p(t,O,y)dy=J > e Mg (0)¢y(y)dy P(T>t|7>0)“P(KT>; *P<K<|engtm<v>>;)-
D Dn=1
’ (B4)
:nzl e—knt¢n(o)fD bn(y)dy= nzl c,e Mt This last quantity is finally calculatddising Eq.(20)] as

the square root of an exponential distribution.

whereg,, are Bessel functiona,,, are zeroes of Bessel func-
tions, andc, are the integrals of the Bessel functions, all of
which have been well tabulated. Notice that the long-time To study reversible or irreversible sorption, we differenti-
asymptotics are determined by the leading-order term in  ate between adhesion events as follows. We decide which
If we do not assume that the velocity is slow relative toeventsj are extreme for particleby defining a cutoff value
the length of the flow cell then there is a chance that a mifor attachment timé;, such that the duratloﬂs’ is consid-
crobe might never hit the boundary before exiting. The probered an extreme value |f|l>tf Table Il shows a set
ability of this event happening is approximately giv@gain  of cutoff values for different values of selected for the
letting D be the cross section following analysis. The third line in Table Il is the total
mass (probabilityy under the sorption time probability
P(r>t)=P(7p>t of 7eng<t)~P(7p>1)+P(7eng<t). density function up to the cutoff timé¢ [51]. The value
(B2)  P(||T||<ty) is the probability of occurrence of a nonextreme
The first of these is calculated as before and the latter caorption time evenj for particle i of duration td;, and
be approximated by a volume-averaged one-dimensional std-— P([[ T|[<t;) is the probability of occurrence of an extreme
chastic process. sorption time event upon collisiofdurationt',). Average
Another question of interest is the expected amount ofimestg, andtg, are computed as
time a microbe spends on the wall. This is given by

APPENDIX C: EXTREME EVENTS TREATMENT

1M N

{Twal) ={pK;) the local time of the process sl—N—p;1 20 tdTI(td), (C1a

|90
=p(Kp=~p [Q] (T 1 Np Neo -
o SZ:N_Z ZO tip1-m(td)], (C1b
Q)| length B
=p(K)~p a1 (B3) . . . . . _

|| <U> wherei andj are counting variables for particles and colli-

sions, respectivelyN, is the number of particles\ is the
average number of collisions against the wall, ih@i ) is
an indicator function for the occurrence of an extreme event

Here, T is the time inside the flow cell.

The final question we are interested in is what is the dis-
tribution of the time on the wall for a microbe in a flow
chamber given that it starts on a wall. This is an important

e gl
guestion, since if one is interested in introducing genetic in- H(tij): 1if i<ty (C2)
formation into a microbial community the transfer of genes s 0 otherwise.
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