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Effects of macromolecular crowding on protein folding and aggregation studied by density
functional theory: Statics
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Proteins are neither purified nor diluted inside the living cell. Thus it is indispensable to take into account
various interactions between the protein of interest and other macromolecules for understanding the properties
of proteins in physiological conditions. Here we focus on excluded volume interactions which are omnipresent
in dense or crowded solutions of proteins and macromolecules or “crowding agents.” A protein solution with
macromolecular crowding agents is modeled by means of a density functional theory. Effects of macromo-
lecular crowding on protein aggregation and stability are investigated in particular. Phase diagrams are ob-
tained in various parameter spaces by solving the equation of state. Two generic features are found: the
addition of the crowding agerifl) enhances the aggregation of the denatured proteins(2argfabilizes the
native protein unless the aggregation occurs. The present theory is qualitatively in good agreement with
experimental observations and unifies previous theories regarding the crowding effects on protein stability and

aggregation.
DOI: 10.1103/PhysRevE.66.031911 PACS nunier87.15.Nn, 87.15.Aa
[. INTRODUCTION Although thorough, most previous theoretical works are

based on the theories of uniform fluid so that they cannot
Typically, physical and chemical properties of proteinstreat inherently nonuniform phenomena such as the morphol-
have been studied under highly idealized solvent conditionsegy of aggregation. Protein aggregation had been in many
in which proteins are purified and diluted so that the perturcases regarded as a nuisance factor in experimental studies.
bations to them are minimized. However, inside, the livingHowever, its fundamental importance has recently been rec-
cell is inherently crowded with many kinds of proteins andognized regarding its relevance to inclusion bodies, amyloi-
other macromolecules which occupy in general 20—30%doses, and other protein deposition diseakby. Some
of the space in the celll]. Such crowded conditions are simulation studies have been also performed to track protein
expected to impose significant effects on a wide spectrum aiiggregatiof15—17. Although these simulations can provide
properties including protein stability, association, enzymatialetailed pictures of protein conformational changes upon ag-
activity, diffusion, and so oi2-7]. There may be specific gregation and/or folding, the number of protein molecules
and/or nonspecific interactions between proteins and macrdhat can be handled in each simulation is limited. Since ag-
molecules. Among them, one particular class of nonspecifigregation typically involves quite a large number of mol-
interactions, the excluded volume effect, is recently gainingecules, other theoretical frameworks are needed to comple-
attention[5-7] because it is always present as long as macment detailed molecular simulations.
romolecules exist around the protein. Such molecules that In the present paper, we present a theoretical framework
exert the excluded volume effect on the target protein aréo describe nonuniform system of proteins in crowded media.
termed “crowding agents”[6]. In their prescient work, The theory presented in this paper is based on a static density
Asakura and Oosaw@] have already investigated how the functional theory which has been developed to treat nonuni-
volume exclusion by macromolecules affects the interactioriorm systems of infinite degree of freeddit8,19. Density
between colloidal particles and predicted that the osmotidunctional theories are especially suited to describe interfa-
pressure due to macromolecules can induce aggregation ofal phenomena such as phase separations of colloidal dis-
the particles. More recently, much of theoretical studies ofpersions and polymer blends, ef@0]. Thus, the present
macromolecular crowding were put forward by Mintf®].  theory provides a unified framework to treat protein stability
Corresponding experimenia vitro can be carried out by and aggregation in inhomogeneous crowded solutions. Our
adding crowding agents such as dextran or bovine serummodel views the crowded system from a coarse-grained
albumin to protein solutions. To date, crowding effects on,scale, and proteins and macromolecules are represented by
for example, protein foldind10,11], protein self-assembly the correspondinghumbej density fields in space. The pro-
[12], and amyloid formatioi13], have been investigated to tein is characterized by the intrinsic free energies of its native
support theoretical predictiori§—7]. and denatured states, and a native protein can transform to a
denatured protein and vice versa. Using the model devel-
oped, phase diagrams are obtained and the crowding effects
*Electronic address: akinjo@theory.chem.sci.kobe-u.ac.jp on protein stability and aggregation at equilibrium are exam-
TElectronic address: stakada@kobe-u.ac.jp ined.

1063-651X/2002/663)/0319119)/$20.00 66 031911-1 ©2002 The American Physical Society



AKIRA R. KINJO AND SHOJI TAKADA PHYSICAL REVIEW E 66, 031911 (2002

The paper is organized as follows. In Sec. I, we formu-
late the free energy functional of the crowded system con- Fi[{¢“(r)}]=f dr
sisting of proteins and crowding agents, and derive equations
for the equilibrium state. Some analytical results for the uni-
form phase are also presented. Then we apply these equa- +T¢%In ¢°
tions to obtain phase diagrams in Sec. Ill. In Sec. IV, we

compare our results with experimental observations anehe first term(here and below, summation is always taken
other theories, and check the validity of the model. Sec. Voyer ¢ or B=N,D, andC) comes from the intrinsic free

g na¢“+T§ $%In ¢*

. (©)]

concludes the present study. energy, and the second and third terms represent the entropy
of mixing. If only up to two-body correlation is taken into
Il. THEORY AND MODELING account, the nonideal part of the free energy is given by

A. Free energy functional and equation of state

1
. . . . @ =— @ B
We consider a system which consists of one protein spe- Fal{¢“(r)}] 2 ;ﬁ f f dridrag®(ry) ¢7(rz)
cies (P) and one crowding agent speci€S) . The protein
can be in one of the two states: natiid) or denaturedD). quffﬁ(|rl—r2|). (4)
In the limit of dilute solution, state of the protein is charac- o . o _ .
terized by the intrinsic free energy of the native statg)  Here,ug g(|r1—r5|) is the effective interaction given 1]
and of the denatured stateyf). In principle, they can be off
. . . = —@a Ya ( )/T

further decomposed into energetic and entropic parts. How- “a,ﬁ(|r|)_T(1 e tepllDT) (5
ever, since the temperature is flxgd in the folIo_wmg caIcuIa—We assume that all the effective interactions are short ranged
tions, decomposition of the intrinsic free energies is not nec-

R ! compared to the system size, the nonideal part of the free
essary. The intrinsic free energy of the crowding agent doegnergy functional can be rearranged as follows. First, we
not play any role in the present theory, so we sgt=0 for ' '

convenience. Next, we assume that the bare interactioHanSform the variables, andr; using

(u,,p) between two molecules is the hard-core square-well e,

potential, that is, withr being intermolecular distance, 5 (6)
0 (I‘$Ra+Rﬁ), S=I’1—I’2. (7)
Uy p(1) =1 €ap [RatRe<r<c(R,+Rpl, (1) Sinceuiffﬁ(|s|) is of short range, it is meaningful for small
0 [r>c(R,+Ry)] |gl. Thus¢“(r,) and¢?(r,) in Eq. (4) can be approximated
o A as follows:

whereR, andR; are the radii of molecular species and 1
B(=N,D,C), andc is a constant factor greater than unity. Ar Vo T e U
The excluded volume interaction is represented by the upper- ¢ (r)=~¢ (r)+2 S Vi), ®
most line in Eq.(1). Other longer ranged interactions are
represented by, ;. Since we are mainly concerned with the 1
excluded vqumeBinteractiomu,ﬁ is set to 0 except foep p . PP (1)~ pA(r) 25 VAN, ©
Because of exposed hydrophobic residues, isolated hydrogen
bond donors and acceptors, denatured proteins are expectetiere the gradient operatoV{ is applied with respect to.
to attract each other. Thereforg; p is usually set negative With the above expansioff,, becomes
in the following. The length scale in the present theory is set L
to ~10 nm, which is taken as the unit length. Therefore the _ « o
radii of the protein and crowding agent are of orderdd.1 F”_EJ’ dr[U. g (1) 7(1) =V gV $°(1)- V (1)),
unit length. We always set= 3 in this paper. (10

The system is represented by the number density fields of ) o ]
the native protein, denatured protein, and crowding agemlﬂere we have defined a set of effective interaction param-
HN(r), ¢°(r) and ¢S(r), respectively. The density field €ters:
of solvent, ¢(r), is indirectly defined by ¢S(r)=po
-2 ,¢%(r), where the summation is over=N,D,C. Here, Ua,ﬂzf dwiffﬁqsl), (11)
po is the total bulk density of the system treated. The density
functional (free energy functionalis given by

1
- 2, eff
Vo= gq | ddsucts), 12
Fl{o“(N}1=Fi+Fy, ) _ o - ,
whered is the spatial dimensiofi.e., d=3). Thus defined
whereF; is the ideal part, an&,, is the nonideal part repre- U, zis (two timeg the excluded volume parame{@?2], and

senting intermolecular interactions. The ideal part is its positive or negative values correspond to repulsive or
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attractive interaction, respectively. The param#tgy; in Eq.
(12) corresponds tdnegative surface tension of the fluid.
Mixing or separation of two species and B is preferred
whenV, ; is positive or negative, respectively.

Local chemical potentighk ,(r) is defined as a functional
derivative of the free energly with respect tog*(r):

= OoF
o r =
o sge(r)
=7,+TIn & +W,(r),
—; BP(r)

(13
where the last ternw,(r)== 4(U,, s+V, zV?) ##(r) may

be regarded as the potential of mean force for the species
The chemical potential is spatially uniform at equilibrium.

PHYSICAL REVIEW &6, 031911 (2002
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FIG. 1. Graphical solution of the self-consistent equation for the
uniform case. The vertical axis indicates the value of the left-hand

Let uj, be the equilibrium chemical potentlal Then the equi-sige of Eq.(15) in units of T (temperature The horizontal axis is

librium condition is given byu ,(r)= ,ua This equation can
be rearranged by the use of Ed3) to obtain a set of self-
consistent equations of state:

po X — {775+ W, (1) — uO}/T]

1+§B‘, ex —{ 75+ Wp(r)— u2}/T]

$(r)= (19

Note that each protein can be either native or denatured,

requiring thatu§ =3 which we denote by.3. In the fol-
lowing, we solve this set of equations of stgld) to obtain
phase diagrams.

B. Some analytical results for the uniform case

In order to grasp the qualitative behavior of the model

the fraction of the native proteifdimensionless Stable solutions
for Eq. (15) are indicated by arrows. There can be ¢s@id curve

or two (dashed curvesolutions depending on the strength of the
interactions.

+)_(2UN,D_UN,N_UD,D)

pc=
¢ Upc—Unc N

Xppfy— 7o+ 7n—(Upp—Unp)pp|, (18

with

o 1+\/1 T 19
NT27 V4 (2Unp—Unn—Upplpp

presented above, we derive some analytical relations for the
spatially uniform system. Namely, we describe the solutionFigure 1 illustrates these two cases. When the latter condition

of the self-consistent equatlc(ﬂl4) for ¢ with fixed values

of N+ ¢P(=pp) and ¢(=pc). Settinguny=pup, substi-
tuting ¢°=pp— ¢N and definingfy= ¢/ pp, we have

Tin

fu
fN) (ZUND UNN UDD)PPfN

+(Unp—Upp)ppt (Unc—Upclpc

+on—7p=0. (15

This equation can be graphically solved fog (Fig. 1).
Graphical analysis with some algebra shows that @&§)
has one solution when

pp(2UNp—Unn—Up p)<4T, (16)
and two solutions when
pp(2Unp—Unn—Upp)>4T and pé<pc<pc .
(17

Herep¢ are defined by

in Eq. (17) does not hold, there is again only one stable
solution. From Eq(15) and Fig. 1, we can see that the in-
crease inp¢ results in the increase ify provided that the
denatured protein has larger excluded volume than the native
one Up c>Uy c), which is the physically appropriate case.
The increase irpp leads to the decrease N when the
denatured proteins attract each other strongly enough that
Up p<Uy,p. Which, again, is usually the case due to the
exposed hydrophobic residues and isolated hydrogen-
bonding groups in the denatured protein.

C. Numerics

Before going into the details of the calculation, we sum-
marize the physical scales of the system treated. First, the
unit of energy is defined as the folding temperature which is
~3 kJ/mol. Most of the calculations are carried out at the
folding temperature in dilute solution, henegg= 7y holds,
and we setyy= 7p=0. These values are always used below
otherwise stated. The unit length is taken as approximately
10 nm, so that the radii of the molecules aréd.1 unit
length. The experimentally measured radius of gyration of
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the native state of the IgG binding domain of streptococcal TABLE I. Parameter sets of the phase diagrams.
proteinL (62 amino acid residugss 1.65 nm and that of the
denatured statédenatured by GdmGlis ~2.6 nm [23]. Plane pp 7N €p.D Rc Rob

HenceRp~ 1.5Ry. Depending on the protein, the radius of
the denatured protein can be larger than that of the native
protein by 100%.

In most of the calculations below, we set the radius of the
native protein to 0.4 unit length and that of the denatured pcRe
protin to 0.6. In order to keep the volume fraction of the pc-Ro
denatured protein in a unit volume less than unity, we set
po=1. In the following numerical calculations, the linear
system size is set to 128 unit length.

pc-€op 0.1 0 04 0.6
pc-pp 0 -0058 04 06
pe-Tn 0.1 -0058 04 06
0.1 0 —0.058 0.6
0.1 ~0.058 04

o

quantity (¢*) is the spatial average of the density field
¢*(r) defined by

1. Discretization scheme

The system is discretized into a simple cubic lattice sys- (%) =V 1J ¢*(r)dr, (22)
tem with 32< 32X 32 lattice sites. Differential operators are
discretized using central finite difference operators. For exwhereV is the volume of the system. Then the bulk chemical
ample, denoting = (x,y,z), the partial derivative of an ar- potentials are updated as

bitrary functionf(x,y,z) with respect tax is defined as
pp—up+ TIN[pp/((¢")+(H")], (23

] 1
(D= lf(x+hizy,z)—f(x=hi2y,z)], (20 wE—ul+TIn[pc {$%)]. (24)

whereh is the lattice constarii= 128/32=4. The discretized The overall nested functional iteration method proceeds as

Laplacian operator includes up to next-next-nearest neigh®llows. o _
bors: (1) Give the initial distribution of¢“(r) and initial bulk

chemical potentiala.% and x2. Calculate the potential of
1 mean forcew,(r).
VA (r)—— wy D, f(r)+w, > f(r)) (2) KeepingW,(r) fixed and using the curreni and
ol iem Jena wd, calculate(temporary ¢“(r) through Eq.(14), hence
(¢%). Updateu? and u2 using Eqs.(23) and(24). Neither
+W3.§ f(rp—zf(ry |, 21 $9(r) nor W,(r) are updated at this stage.
he (3) Repeat step 2 untjl? and w2 converge.
where n;, n,, and ng stand for nearest neighbors, next-  (4) Using the currenW,(r), andup and x2 obtained in
nearest neighbors, and next-next-nearest neighbars oé-  the previous step, updatg®(r) through Eq.(14). Then up-
spectively. The weighting factons;, (i=1,2,3) are chosen dateW,(r) using the newp“(r).
to make the system isotropic. We use the values given by van (5) Repeat step&)—(4) until ¢(r) converge.
Vlimmeren and Fraaijg24], that is, w;=0.294726, w,
=0.235425,w3;=0.175818, and=6. 11l. NUMERICAL RESULTS

2. Calculation of equilibrium states A. General remarks

All the equilibrium properties are calculated from the den-  Preliminary calculations of equilibrium states were con-
sity fields ¢“(r) at equilibrium which are obtained by solv- ducted with various parameter values j&¥, pc, €p.p as
ing the self-consistent equatiori4). Given the value of well as different initial condmons. It was found that there are
€. and the radii of molecules, the interaction parameterdWo different phases. One is the uniform pha&e gghas¢.
U, andV, z are calculated by numerical integration of The other is the .phase in which there_ are aggregates of the
u(;ffﬂ according to Eqs(11) and(12), respectively. In all the depatured proteins and the remaining region is mostly
cases below, alk, 5 but ep , are set to 0. The periodic uniform. In the_latter phase, the lowest _free energy state
boundary condition is imposed in all directions throughout?@S ©ne spherical aggregate. We call it thg phase.
this study. The phase .boundary between thg U ahd .phases can

In order to solve Eq(14) with predefined values of bulk P€ determined by the relative spatial ~deviation,
densities of proteindp) and crowding agentpc), we use a  Dy[ = V{(dN— (V) 2} {pN)], of the native protein density
nested functional iteration method. Note that the conservetleld ¢N(r). The system is in the uniform phase whén,
bulk densities are those of protein, and crowding agent, not 108 and in theAp phase otherwise. The stability of the
those of native protein, denatured protein and crowdingative protein can be monitored by the fraction of the native
agent. Thus we have to adjust two bulk chemical potentialsprotein fy=( ")/ pp .
wp(=up=mud) and ul, instead of three, so that the con- In the following phase diagrams, we always Jet 1,
straints pp=(¢") +(¢°) and pc=(¢°) are satisfied. The 7,=0, andRy=0.4, ande, ;=0 except forep . Other
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FIG. 4. Free energy and chemical potential of the protein as
functions of p at differentpp. Units: free energy and chemical

-0.08 | ns. |
potential in[T]; pc and pp in [1/(Ry/0.4)%].
Ap
-0.10 ' ' ' ' ' ' ' —0.07 to —0.05. This phase diagram exhibits two typical
0 01 02 03 04 05 06 07 08 behaviors of the system. First, aggregation is enhanced as the
Pc bulk density of the crowding agenp§) increases. Second,

FIG. 2. Phase diagram on the-ep o plane withpp=0.1. The the nati\{e protein is_stabilized % increase; as long as t.he
thick solid line indicates the phase boundary. The contour of thesysu?m |s.|n Lhe unn‘orrtr(U) phgse, Wh'ﬁh :cs”the.behawqr
fraction of the native proteinf,, is shown as dashed and dotted predicted in the preceding section. In the following, we in-
lines with its valuesU indicates the uniform phase an, the  Vestigate these effects due to crowding in detail. The phase
phase where the denatured proteins form an aggregate. \Jpits: Poundary in Fig. 2 suggests that, in order to study the aggre-
andpp in [1/(Ry/0.4)%]; €p p in [T]. gation of the denatured proteins, it is convenient to set

' ep.p~ —0.06 and we use the valug, = —0.058 below.

parameters are summarized in Table I.

In most of the phase diagrams below, the bikmbej
density of the crowding agenpg) is varied from 0 to 0.8. Although some essential features of the crowded protein
WhenR:=0.4 andp-=0.8, the bulk volume fraction of the solution can be grasped in thg-ep p phase diagraniFig.
crowding agent is equal to 0.215. Whdry=0.4, Rp 2), it is experimentally difficult to manipulate the phenom-
=0.6, andpp=0.1, the bulk volume fraction of the protein enological parametes, . Therefore we choose other vari-
resides in the range between 0.0268 and 0.0905. Thus ttebles for phase diagrams. One natural choice is the bulk
total volume fraction of molecules in the systems investi-density of the proteinpp. The pc-pp phase diagram is
gated roughly corresponds to that of the living cell, which isshown in Fig. 3. Here we again see the two features pointed
0.2-0.3. out above: ap¢ increases, the aggregation of the denatured

We first drew the phase diagram on thg-ep p plane  protein is enhanced and the native protein is stabilized in the
(Fig. 2) to determine the range of andep p that can cause uniform phase. When the protein densiiy is sufficiently
the aggregation of the denatured protein. From Fig. 2, we selew, the aggregation is no longer observed. The contour of
that the system crosses the phase boundary wdhes— the relative fraction of the native proteiy() in the uniform

B. Crowding effects on aggregation and native stability

0.2

0.15

< o1l =
0.05 / j
U | 0.8
ol L ¢ s L L L L
0 01 02 03 04 05 06 07 08
Pc
FIG. 3. Phase diagram on the-pp plane with the contour of FIG. 5. Phase diagram on the-»y plane with the contour of
fn . Units of pc andpp are[1/(Ry/0.4)%]. fn. Units: 7y in [T]; pe in [1/(Ry/0.4)%].
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[Fig. 6(@]. The chemical potential of the proteip3, with
different %y [Fig. 6(b)] exhibits the same tendency as Fig.
4(b).

C. Dependence of protein stability and aggregation on
molecular size

Free Energy

So far the radii of molecules have been fixed such that
Ry=Rc=0.4 andRp=0.6. Here we study how crowding
. . ~ effects vary for different sizes of the crowding agents and

FIG. 6. Free energy and chemical potential of the protein agjenatured proteins. Experimentally, the size of the crowding
functions of pc at different »y. Units: free energy, chemical agant can be readily manipulated by changing the crowding
potential, andzy in [T]; pc in [1/(Ry/0.4)°]. agent to a different one. In the case when the crowding agent

is a polysaccharide, the average degree of polymerization

phase are almost straight lines. This is a result derived in thenay also be manipulated. In the calculation, the radius of the
preceding section. That is, E4.5) shows that, wittf fixed,  crowding agenR. was varied from 0.1 to 0.45. The--R¢
pp is a linear function ofpc. The contour of the relative phase diagraniFig. 7(a)] shows that, with the number den-
native fraction €) is distorted in the upper right corner of Sity pc fixed, larger crowding agent enhances the aggrega-
the pc-pp phase diagrantFig. 3. The reason for this dis- tion of the denatured proteins and stabilizes the native pro-
tortedfy contour seems to be an artifact due to the small sizd€ins in the uniform phase more significantly. That is, the
of the lattice systenti.e., the isotropy of the system is not Increase inRc imposes effects similar to the increase in the
completely preserved because of the large mesh. diey- number densitypc, which is as expected since a larger

ertheless, the free energy of the system as a functiga.of crowding agent occupies more space at a constant number

changes continuously and smoothly, and it is also concave uﬁgensnypc. In order to exclude this apparent dependence, we

[Fig. 4a)] for pp=0.05, 0.1, and 0.2, indicating that the edraw the phase diagram with the volume fraction of the
. p=VU. y .41, L, ) ~ 3 . .
equation of state, Eq14), is successfully solved. When the ¢rowding agentpc=(4m/3)Rcpc, as a variabl¢Fig. 7(b)].

system crosses the phase boundary, a cusp is observed in héhe phase boundary is dependent solely on the volume
chemical potential of the proteirp,g, as a function ofoc excluded by the crowding agent, it would appear as a vertical

[Fig. 4b)], which is expected for a phase transition. The!in® on thepc-Re plane, but this was not found to be the
value of,ug increases apc increases, and the rate of its 2S€: Within the range d®: studied, we see that, at a con-

increase becomes more Stringent for |am:e stant volume fractionf)c, smaller Crowding agents have
The intrinsic free energyyy of the native protein is also stronger effects both on the native protein stabilization in the
chosen as a variable which can be experimentally manipu4niform phase and on the aggregation. The increas.iat
lated by mutations. Thpc-7y phase diagraniFig. 5 again  fixed pc reduces the native protein stability in the uniform
reveals the general tendency of the crowding effects: enhanghase, and tends to prevent aggregation. Thus, the crowding
ing aggregation, and stabilizing the native protein in the uni-effects on protein stabilization and aggregation are depen-
form phase. When the native protein is highly destabilizeddent not only on the volume excluded by the crowding agent,
intrinsically (ny>1), the phase boundary on the--7y  but also on the size of the crowding agent. Rgr>0.45, the
plane becomes nearly vertical. This indicates that the criticahested functional iterations did not converge to yield reliable
value ofpc for the aggregation becomes almost independensolutions of the self-consistent equations of state.
of »y when the native protein is highly unstable. Note that Next we investigate how the size of the denatured protein,
when p-<0.2 and \>1, the majority of the proteins is Rp, affects the crowding effects. For this purpose, we depict
denatured {y<0.2). In this case, the system is alreadythepc-Rp phase diagrarfFig. 8). We can see the increase in
a solution of denatured proteins and crowding agents, byt: enhances the aggregation whieg is large Rp>0.5).
they are dispersed. The free energy changes continuoushor Rp>Ry=0.4, the increase ipc stabilizes the native

(b)

045 045

FIG. 7. Phase diagrams on the
pc-Re plane(a) and on thépe-Rc
plane (b). pc is the volume
fraction of the crowding agent.
The dotted region in(b) corre-
sponds to a subspace @f). The
contour of fy is also shown.
Units: R in [Ry/0.4]; pc in
N ot , , [1/(Ry/0.4)%]; pc  (dimension-
0 01 02 03 04 05 06 07 08 0.001 001 ol less.

04 04 -

035 | 035 [+

03 | 03 -

Rc
Rc

025 + 025 t-

02 02

0.15 | 0.15

0.1
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0.5 04 03 to be unrealistically high£10%) [27]. In the present theory,

06 R ' : the value off/(1—fy) in the uniform phase can be calcu-
058 lated from Eg.(15). Using the same parameters as in the
056 | pc-pp phase diagraniTable ) with pp=0.05; as the bulk
0.54 density of the crowding agepiz changes from 0 to 0.9, the

’ \ equilibrium constantfy/(1—fy) monotonically increases
0.52 1 from 0.8 to 6.5. These values are of the order similar to that

& 05} “\ 05 . obtained by Minton[25] v_vho pr_edicted the maximum in_—
04s | . | crease to be-10-100. This partial agreement may be attrib-

’ . uted to the treatment of the conformation of the denatured
046 U N ] protein: The convex hull of random coils as a model of the
044 | I | denatured state introduced by Minton somewhat resembles

T— the present hard-sphere model. Difference between the re-

042 1 1 sults in the present theory and those of the Minton theory
04 . . . . . . . may be due to the different size of the denatured protein
0 01 02 03 04 05 06 07 08 relative to the native protein, and due to the attraction be-

Pc tween the denatured proteins in the present theory.
. , There is an experimental observation that the native sta-

FIG. 8. Phase diagram on the-Rp plane with the contour of ity of G-actin was increased in the presence of polyethyl-
fiv. Units: Rp in [Ry/0.4]; pc in [1/(Ry/0.4)7]. ene glycol 6000 28]. However, experimental investigations
protein in the uniform phase as in the previous exampledio test the theoretical predictions regarding stability in gen-
These crowding effects on aggregation and native proteif'al have been difficult because actual systems exhibit quasi-
stability are stronger for largeR;, . Although unfolded pro- |_rreverS|bIe aggregation of denatured protdi@S]. This dif-
teins are always more expanded than the native ones, wfi€ulty was partly overcome by Eggers and Valent(29]
may ask what would happen theoretically if it were not thewho investigated therrr_lal stability of fqur kinds of proteins
case. We calculated the phase diagramRigr=Ry, in which  (Iysozyme, a-lactalbumin, metmyoglobin, and apomyoglo-
the increase in the crowding agent density destabilized thBin) by the sol-gel method in which proteins are encapsu-
native protein in the uniform phaseata not shown This lated ina S|I_|ca glass matrix. The silica glass matrix confines
result clarifies that the effects of macromolecular crowdingProteins inside its pores and thus exerts the molecular con-
observed here are caused by the fact that the denatured prg2ement effect similar to macromolecular crowding effect

teins are larger than the native ones. [5]. The sol-gel method is useful, in that encapsulating pro-
teins in different pores of the glass prevents aggregation of
IV DISCUSSION proteins. Eggers and Valentif29] reported that three out of

four proteins they studied retained nativelike structures and

Regarding the crowding effect on protein stability, Minton exhibited increased thermostability. One exception was
[25] proposed a statistical-thermodynamic model based oapomyoglobin which was found to be totally unfolded inside
the McMillan-Mayer theory of multicomponent solutions the pore. This was later shown to be due to the perturbed
[26]. He modeled the native protein as a hard sphere and theater structure inside the pores, hence weakened hydropho-
denatured protein as an ensemble(@dnvex hulls of ran-  bic effect[30]. Recent molecular simulations of@&hairpin
dom coils of varying compactness. The main result of Mint-forming peptide confined in a pore also exhibited enhanced
on’s theory is that increasing the concentration of crowdingstability of compact native stat¢81]. Thus it appears that
agent leads to the enhanced thermostability of native prothe theoretical prediction is validated by experiment as well
teins. The system treated in the Minton theory corresponds tas by simulations in the majority of the cases, although the
the uniform phase in our case. Tpg-ep p (Fig. 2, pc-pp above experimental results suggest the limitation of the
(Fig. 3), andpc-7y (Fig. 5 phase diagrams all show that, in present theoretical model which does not include the hydra-
the uniform phase and with sufficiently lows, the increase tion effect explicitly.
of pc is accompanied by the increase of the fraction of native The theory presented in this paper can treat not only the
protein, thus our results are in agreement with the Mintoruniform phase but also the aggregation phase. Van den Berg
theory. A qualitatively similar result was also obtained by et al.[10] studied the effect of macromolecular crowding on
Zhou and Hall[27] that the addition of crowding agent the refolding of oxidized as well as reduced lysozyme using
whose size is comparable with the protein enhances the stéur kinds of crowding agents, namely, ficoll 70, dextran 70,
bility of the native protein. They also modeled the nativebovine serum albumin, and ovalbumin. They reported that
protein as a hard sphere, and the denatured protein was matie aggregation of the reduced lysozyme was enhanced with
eled as a chain-molecule by a thermodynamic perturbatioincreased concentration of any crowding agent while refold-
theory. However, as pointed out by MintB5], the pertur-  ing of oxidized lysozyme was hardly affected. In the reduced
bation theory of Zhou and Hall does not actually treat thelysozyme, the native disulphide bonds are broken and there-
chain connectivity of the denatured protein, and the degreéore the protein structures at stages of refolding are expected
of native stabilization by the crowding agent measured irto be more expanded compared to the oxidized lysozyme.
terms of the equilibrium constarfit,/(1—f,) was predicted The pc-Rp phase diagraniFig. 8) shows that the denatured
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protein with larger size is more liable to aggregation. Thusmeaning should be distinguished from the partial molar vol-
disregarding other complications, the present model with theime. Although partial molar volume of proteins may de-
above steric consideration alone can qualitatively describerease upon unfolding due to the change of hydration struc-
the difference between the refolding of oxidized and reducedure, the excluded volume always increases upon unfolding
lysozyme. because unfolded structures of protein cannot be more com-
Recently, molecular simulation studies on the competitiorpact than its native structure. As discussed above, the present
between protein folding and aggregation have been pemighly simplified picture of crowded protein solutions is at
formed[15-17. These studies with detailed representationdeast qualitatively in good agreement with some experimen-
of protein molecules revealed the sensitivity of the nativetal observations, and thus can elucidate the importance of the
and aggregate conformatiofis5,17]. Dima and Thirumalai excluded volume effects in crowded environments. Further,
[17] also obtained a phase diagram of a system containinglaboration of the theory to include more realistic interac-
two protein molecules. Simulations of a single peptide mol-tions such as electrostatic ones is straightforward if the inter-
ecule confined in a pore have also been performed to exanactions are isotropic. Since macromoleculesoteins and
ine molecular confinement effects on protein foldj8d], in  crowding agentsand solventwatep molecules largely dif-
which native as well as denatured conformations of the pepfer in their sizes, explicit treatment of hydration structures
tide were analyzed in detail. However, with these detailedmay be difficult and is left for future studies.
models, systems consisting of only two to eifh®] proteins
were treated, possibly because of computational limitation. V. CONCLUSION
The model presented in this paper, on the other hand, can . .
treat systems containing infinite number of proteins together We have proposed_a denslty funct|ona! theory that de-
with crowding agents at the cost of microscopic Oletails_scrlbes crowded protein solutions. Neglecting solvent water
Therefore, the present model serves to study large Sca[nolecules, the present theory can handle systems consisting

properies of prten aggregaon o complement molecua PSS 21 Dicremolecus o comperane ses B
simulation studies. We note that it is possible, at least i 9 q '

o . ) . . X r"that uniform and nonuniform equilibrium states can be suc-
principle, to incorporate amino acid sequence information to q

the density functional formulation by combining the path cessfully_ obtained for wide ranges of parameter sets. Various
integral and self-consistent field descriptions as is done "H)hase diagrams suggest that macromolecular crowting

simulations of polymer solutions and mel[2,37. How- enhances aggregation of the denatured protéstabilizes

ever, the unigueness of the native protein conformation comt-rlisgﬁtt“{ﬁeggﬁgl ?:slﬁtr;gaarseéheuztséﬁyelIsvb:?r:fzror?ﬁeTgi
plicates the use of such formulation. pres 9 4 y
Xpenmental results. An extension of the present theory to treat

In the present paper, we have considered only the ex namical phenomena will be given in a forthcoming paper
cluded volume interaction between proteins and crowdinfy P 9 g pap

agents, except for the attraction between the denatured pr 331

teins. It should be stressed that the term “excluded volume”

is defined in this paper as the volume excluded by a macro-

molecule (protein or crowding agehtto other macromol- The authors thank Professor Yuji Goto for helpful discus-
ecules. The excluded volume of a protein in the presension and for providing some references.
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