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Effects of macromolecular crowding on protein folding and aggregation studied by density
functional theory: Statics
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Proteins are neither purified nor diluted inside the living cell. Thus it is indispensable to take into account
various interactions between the protein of interest and other macromolecules for understanding the properties
of proteins in physiological conditions. Here we focus on excluded volume interactions which are omnipresent
in dense or crowded solutions of proteins and macromolecules or ‘‘crowding agents.’’ A protein solution with
macromolecular crowding agents is modeled by means of a density functional theory. Effects of macromo-
lecular crowding on protein aggregation and stability are investigated in particular. Phase diagrams are ob-
tained in various parameter spaces by solving the equation of state. Two generic features are found: the
addition of the crowding agent~1! enhances the aggregation of the denatured proteins, and~2! stabilizes the
native protein unless the aggregation occurs. The present theory is qualitatively in good agreement with
experimental observations and unifies previous theories regarding the crowding effects on protein stability and
aggregation.
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I. INTRODUCTION

Typically, physical and chemical properties of protei
have been studied under highly idealized solvent conditi
in which proteins are purified and diluted so that the pert
bations to them are minimized. However, inside, the livi
cell is inherently crowded with many kinds of proteins a
other macromolecules which occupy in general 20–30
of the space in the cell@1#. Such crowded conditions ar
expected to impose significant effects on a wide spectrum
properties including protein stability, association, enzyma
activity, diffusion, and so on@2–7#. There may be specific
and/or nonspecific interactions between proteins and ma
molecules. Among them, one particular class of nonspec
interactions, the excluded volume effect, is recently gain
attention@5–7# because it is always present as long as m
romolecules exist around the protein. Such molecules
exert the excluded volume effect on the target protein
termed ‘‘crowding agents’’@6#. In their prescient work,
Asakura and Oosawa@8# have already investigated how th
volume exclusion by macromolecules affects the interac
between colloidal particles and predicted that the osm
pressure due to macromolecules can induce aggregatio
the particles. More recently, much of theoretical studies
macromolecular crowding were put forward by Minton@9#.
Corresponding experimentsin vitro can be carried out by
adding crowding agents such as dextran or bovine se
albumin to protein solutions. To date, crowding effects o
for example, protein folding@10,11#, protein self-assembly
@12#, and amyloid formation@13#, have been investigated t
support theoretical predictions@5–7#.

*Electronic address: akinjo@theory.chem.sci.kobe-u.ac.jp
†Electronic address: stakada@kobe-u.ac.jp
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Although thorough, most previous theoretical works a
based on the theories of uniform fluid so that they can
treat inherently nonuniform phenomena such as the morp
ogy of aggregation. Protein aggregation had been in m
cases regarded as a nuisance factor in experimental stu
However, its fundamental importance has recently been
ognized regarding its relevance to inclusion bodies, amy
doses, and other protein deposition diseases@14#. Some
simulation studies have been also performed to track pro
aggregation@15–17#. Although these simulations can provid
detailed pictures of protein conformational changes upon
gregation and/or folding, the number of protein molecu
that can be handled in each simulation is limited. Since
gregation typically involves quite a large number of mo
ecules, other theoretical frameworks are needed to com
ment detailed molecular simulations.

In the present paper, we present a theoretical framew
to describe nonuniform system of proteins in crowded med
The theory presented in this paper is based on a static de
functional theory which has been developed to treat nonu
form systems of infinite degree of freedom@18,19#. Density
functional theories are especially suited to describe inte
cial phenomena such as phase separations of colloidal
persions and polymer blends, etc.@20#. Thus, the presen
theory provides a unified framework to treat protein stabil
and aggregation in inhomogeneous crowded solutions.
model views the crowded system from a coarse-grai
scale, and proteins and macromolecules are represente
the corresponding~number! density fields in space. The pro
tein is characterized by the intrinsic free energies of its na
and denatured states, and a native protein can transform
denatured protein and vice versa. Using the model de
oped, phase diagrams are obtained and the crowding ef
on protein stability and aggregation at equilibrium are exa
ined.
©2002 The American Physical Society11-1
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The paper is organized as follows. In Sec. II, we form
late the free energy functional of the crowded system c
sisting of proteins and crowding agents, and derive equat
for the equilibrium state. Some analytical results for the u
form phase are also presented. Then we apply these e
tions to obtain phase diagrams in Sec. III. In Sec. IV,
compare our results with experimental observations
other theories, and check the validity of the model. Sec
concludes the present study.

II. THEORY AND MODELING

A. Free energy functional and equation of state

We consider a system which consists of one protein s
cies ~P! and one crowding agent species~C! . The protein
can be in one of the two states: native~N! or denatured~D!.
In the limit of dilute solution, state of the protein is chara
terized by the intrinsic free energy of the native state (hN)
and of the denatured state (hD). In principle, they can be
further decomposed into energetic and entropic parts. H
ever, since the temperature is fixed in the following calcu
tions, decomposition of the intrinsic free energies is not n
essary. The intrinsic free energy of the crowding agent d
not play any role in the present theory, so we sethC50 for
convenience. Next, we assume that the bare interac
(ua,b) between two molecules is the hard-core square-w
potential, that is, withr being intermolecular distance,

ua,b~r !5H ` ~r<Ra1Rb!,

ea,b @Ra1Rb,r<c~Ra1Rb!#,

0 @r .c~Ra1Rb!#,

~1!

whereRa and Rb are the radii of molecular speciesa and
b(5N,D,C), andc is a constant factor greater than unit
The excluded volume interaction is represented by the up
most line in Eq.~1!. Other longer ranged interactions a
represented byea,b . Since we are mainly concerned with th
excluded volume interaction,ea,b is set to 0 except foreD,D .
Because of exposed hydrophobic residues, isolated hydro
bond donors and acceptors, denatured proteins are exp
to attract each other. Therefore,eD,D is usually set negative
in the following. The length scale in the present theory is
to ;10 nm, which is taken as the unit length. Therefore
radii of the protein and crowding agent are of order of;0.1
unit length. We always setc53 in this paper.

The system is represented by the number density field
the native protein, denatured protein, and crowding ag
fN(r ), fD(r ) and fC(r ), respectively. The density field
of solvent, fS(r ), is indirectly defined by fS(r )5r0
2(afa(r ), where the summation is overa5N,D,C. Here,
r0 is the total bulk density of the system treated. The den
functional ~free energy functional! is given by

F@$fa~r !%#5Fi1Fn , ~2!

whereFi is the ideal part, andFn is the nonideal part repre
senting intermolecular interactions. The ideal part is
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Fi@$f
a~r !%#5E dr F(

a
hafa1T(

a
fa ln fa

1TfS ln fSG . ~3!

The first term~here and below, summation is always tak
over a or b5N,D, andC) comes from the intrinsic free
energy, and the second and third terms represent the ent
of mixing. If only up to two-body correlation is taken int
account, the nonideal part of the free energy is given by

Fn@$fa~r !%#5
1

2 (
a,b

E E dr1dr2fa~r1!fb~r2!

3ua,b
eff ~ ur12r2u!. ~4!

Here,ua,b
eff (ur12r2u) is the effective interaction given by@21#

ua,b
eff ~ ur u!5T~12e2ua,b(ur u)/T!. ~5!

We assume that all the effective interactions are short ran
compared to the system size, the nonideal part of the
energy functional can be rearranged as follows. First,
transform the variablesr1 and r2 using

r5
r11r2

2
, ~6!

s5r12r2 . ~7!

Sinceua,b
eff (usu) is of short range, it is meaningful for sma

usu. Thusfa(r1) andfb(r2) in Eq. ~4! can be approximated
as follows:

fa~r1!'fa~r !1
1

2
s•¹fa~r !, ~8!

fb~r2!'fb~r !2
1

2
s•¹fb~r !, ~9!

where the gradient operator (“) is applied with respect tor .
With the above expansion,Fn becomes

Fn5
1

2E dr @Ua,bfa~r !fb~r !2Va,b“fa~r !•“fb~r !#.

~10!

Here we have defined a set of effective interaction para
eters:

Ua,b5E dsua,b
eff ~ usu!, ~11!

Va,b5
1

4dE dsusu2ua,b
eff ~ usu!, ~12!

whered is the spatial dimension~i.e., d53). Thus defined
Ua,b is ~two times! the excluded volume parameter@22#, and
its positive or negative values correspond to repulsive
1-2
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EFFECTS OF MACROMOLECULAR CROWDING ON . . . PHYSICAL REVIEW E66, 031911 ~2002!
attractive interaction, respectively. The parameterVa,b in Eq.
~12! corresponds to~negative! surface tension of the fluid
Mixing or separation of two speciesa and b is preferred
whenVa,b is positive or negative, respectively.

Local chemical potentialma(r ) is defined as a functiona
derivative of the free energyF with respect tofa(r ):

ma~r !5
dF

dfa~r !

5ha1T lnS fa~r !

r02(
b

fb~r !D 1Wa~r !,

~13!

where the last termWa(r )[(b(Ua,b1Va,b“
2)fb(r ) may

be regarded as the potential of mean force for the speciea.
The chemical potential is spatially uniform at equilibrium
Let ma

0 be the equilibrium chemical potential. Then the eq
librium condition is given byma(r )5ma

0 . This equation can
be rearranged by the use of Eq.~13! to obtain a set of self-
consistent equations of state:

fa~r !5
r0 exp@2$ha1Wa~r !2ma

0%/T#

11(
b

exp@2$hb1Wb~r !2mb
0%/T#

. ~14!

Note that each protein can be either native or denatu
requiring thatmN

0 5mD
0 which we denote bymP

0 . In the fol-
lowing, we solve this set of equations of state~14! to obtain
phase diagrams.

B. Some analytical results for the uniform case

In order to grasp the qualitative behavior of the mod
presented above, we derive some analytical relations for
spatially uniform system. Namely, we describe the solut
of the self-consistent equation~14! for fN with fixed values
of fN1fD(5rP) andfC(5rC). SettingmN5mD , substi-
tuting fD5rP2fN and definingf N5fN/rP , we have

T lnS f N

12 f N
D2~2UN,D2UN,N2UD,D!rPf N

1~UN,D2UD,D!rP1~UN,C2UD,C!rC

1hN2hD50. ~15!

This equation can be graphically solved forf N ~Fig. 1!.
Graphical analysis with some algebra shows that Eq.~15!
has one solution when

rP~2UN,D2UN,N2UD,D!<4T, ~16!

and two solutions when

rP~2UN,D2UN,N2UD,D!.4T and rC
1,rC,rC

2 .

~17!

HererC
6 are defined by
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UD,C2UN,C
FT lnS f N

6

12 f N
6D 2~2UN,D2UN,N2UD,D!

3rPf N
62hD1hN2~UD,D2UN,D!rPG , ~18!

with

f N
65

1

2
6A1

4
2

T

~2UN,D2UN,N2UD,D!rP
. ~19!

Figure 1 illustrates these two cases. When the latter condi
in Eq. ~17! does not hold, there is again only one stab
solution. From Eq.~15! and Fig. 1, we can see that the in
crease inrC results in the increase inf N provided that the
denatured protein has larger excluded volume than the na
one (UD,C.UN,C), which is the physically appropriate cas
The increase inrP leads to the decrease infN when the
denatured proteins attract each other strongly enough
UD,D,UN,D , which, again, is usually the case due to t
exposed hydrophobic residues and isolated hydrog
bonding groups in the denatured protein.

C. Numerics

Before going into the details of the calculation, we su
marize the physical scales of the system treated. First,
unit of energy is defined as the folding temperature which
;3 kJ/mol. Most of the calculations are carried out at t
folding temperature in dilute solution, hencehN5hD holds,
and we sethN5hD50. These values are always used belo
otherwise stated. The unit length is taken as approxima
10 nm, so that the radii of the molecules are;0.1 unit
length. The experimentally measured radius of gyration

FIG. 1. Graphical solution of the self-consistent equation for
uniform case. The vertical axis indicates the value of the left-ha
side of Eq.~15! in units of T ~temperature!. The horizontal axis is
the fraction of the native protein~dimensionless!. Stable solutions
for Eq. ~15! are indicated by arrows. There can be one~solid curve!
or two ~dashed curve! solutions depending on the strength of th
interactions.
1-3
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the native state of the IgG binding domain of streptococ
proteinL ~62 amino acid residues! is 1.65 nm and that of the
denatured state~denatured by GdmCl! is ;2.6 nm @23#.
HenceRD;1.5RN . Depending on the protein, the radius
the denatured protein can be larger than that of the na
protein by 100%.

In most of the calculations below, we set the radius of
native protein to 0.4 unit length and that of the denatu
protin to 0.6. In order to keep the volume fraction of t
denatured protein in a unit volume less than unity, we
r051. In the following numerical calculations, the line
system size is set to 128 unit length.

1. Discretization scheme

The system is discretized into a simple cubic lattice s
tem with 32332332 lattice sites. Differential operators a
discretized using central finite difference operators. For
ample, denotingr5(x,y,z), the partial derivative of an ar
bitrary function f (x,y,z) with respect tox is defined as

]

]x
f ~r !→1

h
@ f ~x1h/2,y,z!2 f ~x2h/2,y,z!#, ~20!

whereh is the lattice constanth5128/3254. The discretized
Laplacian operator includes up to next-next-nearest ne
bors:

“

2f ~r i !→
1

h2 Fw1 (
j Pn1

f ~r j !1w2 (
j Pn2

f ~r j !

1w3 (
j Pn3

f ~r j !2z f~r i !G , ~21!

where n1 , n2, and n3 stand for nearest neighbors, nex
nearest neighbors, and next-next-nearest neighbors ofr i , re-
spectively. The weighting factorswi , (i 51,2,3) are chosen
to make the system isotropic. We use the values given by
Vlimmeren and Fraaije@24#, that is, w150.294 726, w2
50.235 425,w350.175 818, andz56.

2. Calculation of equilibrium states

All the equilibrium properties are calculated from the de
sity fieldsfa(r ) at equilibrium which are obtained by solv
ing the self-consistent equations~14!. Given the value of
ea,b and the radii of molecules, the interaction paramet
Ua,b and Va,b are calculated by numerical integration
ua,b

eff according to Eqs.~11! and ~12!, respectively. In all the
cases below, allea,b but eD,D are set to 0. The periodic
boundary condition is imposed in all directions througho
this study.

In order to solve Eq.~14! with predefined values of bulk
densities of protein (rP) and crowding agent (rC), we use a
nested functional iteration method. Note that the conser
bulk densities are those of protein, and crowding agent,
those of native protein, denatured protein and crowd
agent. Thus we have to adjust two bulk chemical potenti
mP

0 (5mN
0 5mD

0 ) and mC
0 , instead of three, so that the co

straintsrP5^fN&1^fD& and rC5^fC& are satisfied. The
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quantity ^fa& is the spatial average of the density fie
fa(r ) defined by

^fa&5V21E fa~r !dr , ~22!

whereV is the volume of the system. Then the bulk chemic
potentials are updated as

mP
0←mP

0 1T ln@rP /~^fN&1^fD&!#, ~23!

mC
0 ←mC

0 1T ln@rC /^fC&#. ~24!

The overall nested functional iteration method proceeds
follows.

~1! Give the initial distribution offa(r ) and initial bulk
chemical potentialsmP

0 and mC
0 . Calculate the potential o

mean forceWa(r ).
~2! Keeping Wa(r ) fixed and using the currentmP

0 and
mC

0 , calculate~temporary! fa(r ) through Eq.~14!, hence
^fa&. UpdatemP

0 andmC
0 using Eqs.~23! and ~24!. Neither

fa(r ) nor Wa(r ) are updated at this stage.
~3! Repeat step 2 untilmP

0 andmC
0 converge.

~4! Using the currentWa(r ), andmP
0 andmC

0 obtained in
the previous step, updatefa(r ) through Eq.~14!. Then up-
dateWa(r ) using the newfa(r ).

~5! Repeat steps~2!–~4! until fa(r ) converge.

III. NUMERICAL RESULTS

A. General remarks

Preliminary calculations of equilibrium states were co
ducted with various parameter values forrP , rC , eD,D as
well as different initial conditions. It was found that there a
two different phases. One is the uniform phase (U phase!.
The other is the phase in which there are aggregates of
denatured proteins and the remaining region is mo
uniform. In the latter phase, the lowest free energy st
has one spherical aggregate. We call it theAD phase.
The phase boundary between the U andAD phases can
be determined by the relative spatial deviatio

DN@5AŠ(fN2^fN&)2
‹/^fN&#, of the native protein density

field fN(r ). The system is in the uniform phase whenD N
,1028 and in theAD phase otherwise. The stability of th
native protein can be monitored by the fraction of the nat
protein f N5^fN&/rP .

In the following phase diagrams, we always setT51,
hD50, andRN50.4, andea,b50 except foreD,D . Other

TABLE I. Parameter sets of the phase diagrams.

Plane rP hN eD,D RC RD

rC-eD,D 0.1 0 0.4 0.6
rC-rP 0 20.058 0.4 0.6
rC-hN 0.1 20.058 0.4 0.6
rC-RC 0.1 0 20.058 0.6
rC-RD 0.1 0 20.058 0.4
1-4



n
t

ti
is

s

al
s the
,
e
r
in-
ase
gre-
set

tein

-
i-
ulk

ted
red
the

r of

th
d

:

as
l

EFFECTS OF MACROMOLECULAR CROWDING ON . . . PHYSICAL REVIEW E66, 031911 ~2002!
parameters are summarized in Table I.
In most of the phase diagrams below, the bulk~number!

density of the crowding agent (rC) is varied from 0 to 0.8.
WhenRC50.4 andrC50.8, the bulk volume fraction of the
crowding agent is equal to 0.215. WhenRN50.4, RD
50.6, andrP50.1, the bulk volume fraction of the protei
resides in the range between 0.0268 and 0.0905. Thus
total volume fraction of molecules in the systems inves
gated roughly corresponds to that of the living cell, which
0.2–0.3.

We first drew the phase diagram on therC-eD,D plane
~Fig. 2! to determine the range ofrC andeD,D that can cause
the aggregation of the denatured protein. From Fig. 2, we
that the system crosses the phase boundary wheneD,D5

FIG. 2. Phase diagram on therC-eD,D plane withrP50.1. The
thick solid line indicates the phase boundary. The contour of
fraction of the native protein,f n , is shown as dashed and dotte
lines with its values.U indicates the uniform phase andAD the
phase where the denatured proteins form an aggregate. UnitsrC

andrP in @1/(RN/0.4)3#; eD,D in @T#.

FIG. 3. Phase diagram on therC-rP plane with the contour of
f N . Units of rC andrP are @1/(RN/0.4)3#.
03191
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20.07 to 20.05. This phase diagram exhibits two typic
behaviors of the system. First, aggregation is enhanced a
bulk density of the crowding agent (rC) increases. Second
the native protein is stabilized asrC increases as long as th
system is in the uniform~U! phase, which is the behavio
predicted in the preceding section. In the following, we
vestigate these effects due to crowding in detail. The ph
boundary in Fig. 2 suggests that, in order to study the ag
gation of the denatured proteins, it is convenient to
eD,D;20.06 and we use the valueeD,D520.058 below.

B. Crowding effects on aggregation and native stability

Although some essential features of the crowded pro
solution can be grasped in therC-eD,D phase diagram~Fig.
2!, it is experimentally difficult to manipulate the phenom
enological parametereD,D . Therefore we choose other var
ables for phase diagrams. One natural choice is the b
density of the protein,rP . The rC-rP phase diagram is
shown in Fig. 3. Here we again see the two features poin
out above: asrC increases, the aggregation of the denatu
protein is enhanced and the native protein is stabilized in
uniform phase. When the protein densityrP is sufficiently
low, the aggregation is no longer observed. The contou
the relative fraction of the native protein (f N) in the uniform

e

FIG. 4. Free energy and chemical potential of the protein
functions ofrC at differentrP . Units: free energy and chemica
potential in@T#; rC and rP in @1/(RN/0.4)3#.

FIG. 5. Phase diagram on therC-hN plane with the contour of
f N . Units: hN in @T#; rC in @1/(RN/0.4)3#.
1-5
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phase are almost straight lines. This is a result derived in
preceding section. That is, Eq.~15! shows that, withf N fixed,
rP is a linear function ofrC . The contour of the relative
native fraction (f N) is distorted in the upper right corner o
the rC-rP phase diagram~Fig. 3!. The reason for this dis
torted f N contour seems to be an artifact due to the small s
of the lattice system~i.e., the isotropy of the system is no
completely preserved because of the large mesh size!. Nev-
ertheless, the free energy of the system as a function orC

changes continuously and smoothly, and it is also concav
@Fig. 4~a!# for rP50.05, 0.1, and 0.2, indicating that th
equation of state, Eq.~14!, is successfully solved. When th
system crosses the phase boundary, a cusp is observed
chemical potential of the protein,mP

0 , as a function ofrC

@Fig. 4~b!#, which is expected for a phase transition. T
value of mP

0 increases asrC increases, and the rate of i
increase becomes more stringent for largerC .

The intrinsic free energyhN of the native protein is also
chosen as a variable which can be experimentally man
lated by mutations. TherC-hN phase diagram~Fig. 5! again
reveals the general tendency of the crowding effects: enh
ing aggregation, and stabilizing the native protein in the u
form phase. When the native protein is highly destabiliz
intrinsically (hN.1), the phase boundary on therC-hN
plane becomes nearly vertical. This indicates that the crit
value ofrC for the aggregation becomes almost independ
of hN when the native protein is highly unstable. Note th
when rC,0.2 andhN.1, the majority of the proteins is
denatured (f N,0.2). In this case, the system is alrea
a solution of denatured proteins and crowding agents,
they are dispersed. The free energy changes continuo

FIG. 6. Free energy and chemical potential of the protein
functions of rC at different hN . Units: free energy, chemica
potential, andhN in @T#; rC in @1/(RN/0.4)3#.
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@Fig. 6~a!#. The chemical potential of the protein,mP
0 , with

different hN @Fig. 6~b!# exhibits the same tendency as Fi
4~b!.

C. Dependence of protein stability and aggregation on
molecular size

So far the radii of molecules have been fixed such t
RN5RC50.4 andRD50.6. Here we study how crowding
effects vary for different sizes of the crowding agents a
denatured proteins. Experimentally, the size of the crowd
agent can be readily manipulated by changing the crowd
agent to a different one. In the case when the crowding ag
is a polysaccharide, the average degree of polymeriza
may also be manipulated. In the calculation, the radius of
crowding agentRC was varied from 0.1 to 0.45. TherC-RC
phase diagram@Fig. 7~a!# shows that, with the number den
sity rC fixed, larger crowding agent enhances the aggre
tion of the denatured proteins and stabilizes the native p
teins in the uniform phase more significantly. That is, t
increase inRC imposes effects similar to the increase in t
number densityrC , which is as expected since a larg
crowding agent occupies more space at a constant num
densityrC . In order to exclude this apparent dependence,
redraw the phase diagram with the volume fraction of
crowding agent,r̃C5(4p/3)RC

3 rC , as a variable@Fig. 7~b!#.
If the phase boundary is dependent solely on the volu
excluded by the crowding agent, it would appear as a vert
line on the r̃C-RC plane, but this was not found to be th
case. Within the range ofRC studied, we see that, at a con
stant volume fractionr̃C , smaller crowding agents hav
stronger effects both on the native protein stabilization in
uniform phase and on the aggregation. The increase inRC at
fixed r̃C reduces the native protein stability in the unifor
phase, and tends to prevent aggregation. Thus, the crow
effects on protein stabilization and aggregation are dep
dent not only on the volume excluded by the crowding age
but also on the size of the crowding agent. ForRC.0.45, the
nested functional iterations did not converge to yield relia
solutions of the self-consistent equations of state.

Next we investigate how the size of the denatured prote
RD , affects the crowding effects. For this purpose, we dep
therC-RD phase diagram~Fig. 8!. We can see the increase
rC enhances the aggregation whenRD is large (RD.0.5).
For RD.RN50.4, the increase inrC stabilizes the native

s

e

.

FIG. 7. Phase diagrams on th

rC-RC plane~a! and on ther̃C-RC

plane ~b!. r̃C is the volume
fraction of the crowding agent
The dotted region in~b! corre-
sponds to a subspace of~a!. The
contour of f N is also shown.
Units: RC in @RN/0.4#; rC in

@1/(RN/0.4)3#; r̃C ~dimension-
less!.
1-6
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EFFECTS OF MACROMOLECULAR CROWDING ON . . . PHYSICAL REVIEW E66, 031911 ~2002!
protein in the uniform phase as in the previous examp
These crowding effects on aggregation and native pro
stability are stronger for largerRD . Although unfolded pro-
teins are always more expanded than the native ones
may ask what would happen theoretically if it were not t
case. We calculated the phase diagram forRD,RN in which
the increase in the crowding agent density destabilized
native protein in the uniform phase~data not shown!. This
result clarifies that the effects of macromolecular crowd
observed here are caused by the fact that the denatured
teins are larger than the native ones.

IV. DISCUSSION

Regarding the crowding effect on protein stability, Minto
@25# proposed a statistical-thermodynamic model based
the McMillan-Mayer theory of multicomponent solution
@26#. He modeled the native protein as a hard sphere and
denatured protein as an ensemble of~convex hulls of! ran-
dom coils of varying compactness. The main result of Mi
on’s theory is that increasing the concentration of crowd
agent leads to the enhanced thermostability of native p
teins. The system treated in the Minton theory correspond
the uniform phase in our case. TherC-eD,D ~Fig. 2!, rC-rP
~Fig. 3!, andrC-hN ~Fig. 5! phase diagrams all show that,
the uniform phase and with sufficiently lowrP , the increase
of rC is accompanied by the increase of the fraction of nat
protein, thus our results are in agreement with the Min
theory. A qualitatively similar result was also obtained
Zhou and Hall @27# that the addition of crowding agen
whose size is comparable with the protein enhances the
bility of the native protein. They also modeled the nati
protein as a hard sphere, and the denatured protein was
eled as a chain-molecule by a thermodynamic perturba
theory. However, as pointed out by Minton@25#, the pertur-
bation theory of Zhou and Hall does not actually treat
chain connectivity of the denatured protein, and the deg
of native stabilization by the crowding agent measured
terms of the equilibrium constantf N /(12 f N) was predicted

FIG. 8. Phase diagram on therC-RD plane with the contour of
f N . Units: RD in @RN/0.4#; rC in @1/(RN/0.4)3#.
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to be unrealistically high (;109) @27#. In the present theory
the value off N /(12 f N) in the uniform phase can be calcu
lated from Eq.~15!. Using the same parameters as in t
rC-rP phase diagram~Table I! with rP50.05; as the bulk
density of the crowding agentrC changes from 0 to 0.9, the
equilibrium constantf N /(12 f N) monotonically increases
from 0.8 to 6.5. These values are of the order similar to t
obtained by Minton@25# who predicted the maximum in
crease to be;10–100. This partial agreement may be attr
uted to the treatment of the conformation of the denatu
protein: The convex hull of random coils as a model of t
denatured state introduced by Minton somewhat resem
the present hard-sphere model. Difference between the
sults in the present theory and those of the Minton the
may be due to the different size of the denatured prot
relative to the native protein, and due to the attraction
tween the denatured proteins in the present theory.

There is an experimental observation that the native
bility of G-actin was increased in the presence of polyeth
ene glycol 6000@28#. However, experimental investigation
to test the theoretical predictions regarding stability in ge
eral have been difficult because actual systems exhibit qu
irreversible aggregation of denatured proteins@25#. This dif-
ficulty was partly overcome by Eggers and Valentine@29#
who investigated thermal stability of four kinds of protein
~lysozyme,a-lactalbumin, metmyoglobin, and apomyoglo
bin! by the sol-gel method in which proteins are encap
lated in a silica glass matrix. The silica glass matrix confin
proteins inside its pores and thus exerts the molecular c
finement effect similar to macromolecular crowding effe
@5#. The sol-gel method is useful, in that encapsulating p
teins in different pores of the glass prevents aggregation
proteins. Eggers and Valentine@29# reported that three out o
four proteins they studied retained nativelike structures
exhibited increased thermostability. One exception w
apomyoglobin which was found to be totally unfolded insi
the pore. This was later shown to be due to the pertur
water structure inside the pores, hence weakened hydro
bic effect @30#. Recent molecular simulations of ab-hairpin
forming peptide confined in a pore also exhibited enhan
stability of compact native states@31#. Thus it appears tha
the theoretical prediction is validated by experiment as w
as by simulations in the majority of the cases, although
above experimental results suggest the limitation of
present theoretical model which does not include the hyd
tion effect explicitly.

The theory presented in this paper can treat not only
uniform phase but also the aggregation phase. Van den B
et al. @10# studied the effect of macromolecular crowding o
the refolding of oxidized as well as reduced lysozyme us
four kinds of crowding agents, namely, ficoll 70, dextran 7
bovine serum albumin, and ovalbumin. They reported t
the aggregation of the reduced lysozyme was enhanced
increased concentration of any crowding agent while refo
ing of oxidized lysozyme was hardly affected. In the reduc
lysozyme, the native disulphide bonds are broken and th
fore the protein structures at stages of refolding are expe
to be more expanded compared to the oxidized lysozy
The rC-RD phase diagram~Fig. 8! shows that the denature
1-7
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AKIRA R. KINJO AND SHOJI TAKADA PHYSICAL REVIEW E 66, 031911 ~2002!
protein with larger size is more liable to aggregation. Th
disregarding other complications, the present model with
above steric consideration alone can qualitatively desc
the difference between the refolding of oxidized and redu
lysozyme.

Recently, molecular simulation studies on the competit
between protein folding and aggregation have been
formed @15–17#. These studies with detailed representatio
of protein molecules revealed the sensitivity of the nat
and aggregate conformations@15,17#. Dima and Thirumalai
@17# also obtained a phase diagram of a system contain
two protein molecules. Simulations of a single peptide m
ecule confined in a pore have also been performed to ex
ine molecular confinement effects on protein folding@31#, in
which native as well as denatured conformations of the p
tide were analyzed in detail. However, with these detai
models, systems consisting of only two to eight@16# proteins
were treated, possibly because of computational limitat
The model presented in this paper, on the other hand,
treat systems containing infinite number of proteins toget
with crowding agents at the cost of microscopic deta
Therefore, the present model serves to study large s
properties of protein aggregation to complement molecu
simulation studies. We note that it is possible, at least
principle, to incorporate amino acid sequence information
the density functional formulation by combining the pa
integral and self-consistent field descriptions as is done
simulations of polymer solutions and melts@22,32#. How-
ever, the uniqueness of the native protein conformation c
plicates the use of such formulation.

In the present paper, we have considered only the
cluded volume interaction between proteins and crowd
agents, except for the attraction between the denatured
teins. It should be stressed that the term ‘‘excluded volum
is defined in this paper as the volume excluded by a ma
molecule ~protein or crowding agent! to other macromol-
ecules. The excluded volume of a protein in the pres
o-

is

.

.
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meaning should be distinguished from the partial molar v
ume. Although partial molar volume of proteins may d
crease upon unfolding due to the change of hydration st
ture, the excluded volume always increases upon unfold
because unfolded structures of protein cannot be more c
pact than its native structure. As discussed above, the pre
highly simplified picture of crowded protein solutions is
least qualitatively in good agreement with some experim
tal observations, and thus can elucidate the importance o
excluded volume effects in crowded environments. Furth
elaboration of the theory to include more realistic intera
tions such as electrostatic ones is straightforward if the in
actions are isotropic. Since macromolecules~proteins and
crowding agents! and solvent~water! molecules largely dif-
fer in their sizes, explicit treatment of hydration structur
may be difficult and is left for future studies.

V. CONCLUSION

We have proposed a density functional theory that
scribes crowded protein solutions. Neglecting solvent wa
molecules, the present theory can handle systems consi
of proteins and macromolecules of comparable sizes.
solving the self-consistent equations of state, it was sho
that uniform and nonuniform equilibrium states can be s
cessfully obtained for wide ranges of parameter sets. Vari
phase diagrams suggest that macromolecular crowding~1!
enhances aggregation of the denatured proteins,~2! stabilizes
the native protein as long as the system is uniform. T
present theoretical results agree qualitatively with some
perimental results. An extension of the present theory to t
dynamical phenomena will be given in a forthcoming pap
@33#.
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