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Protein design depends on the size of the amino acid alphabet
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We consider the design of proteins to be simultaneously thermodynamically stable in multiple independent
and correlated conformations. We first show that a protein can be trained to fold to multiple independent
conformations and calculate its capacity. The number of configurations that it can remember is proportional to
the logarithm of the number of amino acid speciesA, independent of chain length. Next we investigate the
recognition of correlated conformations, which we apply to funnel design around a single configuration. The
maximum basin of attraction, as parametrized in our model, also depends on the number of amino acid species
as lnA. We argue that the extent to which the protein energy landscape can be manipulated is fixed, effecting
a trade off between well breadth, well depth, and well number. This emerging picture motivates a clearer
understanding of the scope and limits of protein and heteropolymer function.
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I. INTRODUCTION

It is believed that a stable, fast-folding protein requires
energy landscape in which the native conformation is bot
deep global minimum and lies at the bottom of a basin
attraction sloping towards it@1#. These conditions are know
as thermodynamic stability and kinetic accessibility, resp
tively. The former guarantees that, at equilibrium, a sign
cant fraction of molecules are in the target state. The la
ensures that the protein folds in a time scale short comp
to the time necessary to sample all configurations.

Not surprisingly, any practically useful method of desig
ing artificial proteins or heteropolymers must select for s
bility and accessibility as well. The first satisfactory meth
of protein design was introduced by Shakhnovich in 19
@2,3#: a random sequence is embedded in the target con
mation and optimized over sequence space to a deep~though
generally not global! minimum. At finite temperature the re
sulting sequence spontaneously folds to the target confor
tion. This strategy relies on the correlation between stab
and accessibility; stable sequences are found to fold m
quickly as well.

In Ref. @4#, we showed that a protein can be designed
fold to multiple independent conformations, analogous to
associative memory. In this paper we generalize the notio
training to a weighted set of conformations, which prov
useful in our analysis of funnel design below. In the spec
case of equal weights we recover the capacity result obta
in Ref. @4#.

Our approach to designing multiply conforming protei
is to train to a superposition of contact maps as thoug

*Electronic address: r.c.ball@warwick.ac.uk
URL: http://www.phys.warwick.ac.uk/theory/

†Electronic address: fink@lps.ens.fr
URL: http://www.tcm.phy.cam.ac.uk/˜ tmf20/
1063-651X/2002/66~3!/031902~7!/$20.00 66 0319
n
a
f

-
-
er
ed

-
-

4
r-

a-
y
re

o
n
to
s
l

ed

it

were a single map, minimizing over sequence space in
usual way@5#. We find that the number of conformations th
a protein can remember is independent of the length of
protein and proportional to the logarithm of the number
amino acid speciesA.

While stability may be readily achieved by suppressi
the energy of the sequence arranged in the target confo
tion, constructing a broad funnel leading towards the tar
has remained elusive. We next investigate the introduction
a folding funnel above the target conformation in the prot
energy landscape. Our method of design rests on the t
nique of training to multiple targets described above. Unl
the independent configurations considered previously, h
our patterns are correlated to a single target conformatio

Our approach to funnel design is to turn off all the mon
mer interactions~equivalent to an interacting system at in
nite temperature! and to consider the dynamics by which
protein would then spontaneouslyunfoldfrom the target state
into a random ensemble. By the principle of detailed bala
in equilibrium statistical mechanics, the ensemble of unfo
ing trajectories from the target state to random conformati
is equivalent to the ensemble of folding trajectories fro
random configurations to the target—but of course
former ensemble is much more easily sampled. Theref
observations of unfolding will tell us how the molecu
would with least dynamical constraint fold.

We provide estimates of the unfolding contact map ba
on a blob model of unfolding. This is motivated by therm
dynamic tractability and its basis in established polym
physics, despite its at times distorted representation of ki
ics. It leads to a definite proposal as to how different sta
in the unfolding contact map should be weighted in traini
so as to create an optimal funnel.

We find, however, that the extent of the optimal foldin
funnel ~in terms of a relaxation length scale! is smaller than
the conformational space and depends on the numbe
amino acid species available as lnA @6,7#. Remarkably, the
©2002 The American Physical Society02-1
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bound on funnel size~kinetic capacity! is identical to the
thermodynamic capacity derived for independent conform
tions. Taken together, our results suggest that the exten
which the protein energy landscape can be manipulate
whether it be by the introduction of multiple independe
minima, well depth or well breadth~or a combination
thereof!—is limited and proportional to the logarithm of th
number of amino acid species.

II. TRAINING TO MULTIPLE CONTACT MAPS

We consider model proteins in the form of self-avoidi
walks on a three-dimensional cubic lattice with neare
neighbor interactions~lattice proteins!. A protein chain con-
sists ofN amino acids~sometimes referred to as monomer!,
each of which is chosen from an alphabet ofA amino acid
species. Monomer speciesa andb interact according to the
A3A pair potentialUab . The species of thekth monomer of
sequenceS is denoted bySk . For convenience of notation w
also introduce the extendedN3N pair potentialŨ i j , where
Ũ i j is the interaction energy between monomersi and j, that
is, Ũ i j 5USiSj

.
Throughout our analysis we assume that the pair poten

U has zero mean, as was found by approximating real am
acids in Ref.@8#. Otherwise, as discussed in Ref.@9#, the
molecule is liable to suffer the indiscriminate globular co
lapse characteristic of homopolymers with an attractive
teraction. Our concern in this paper is the more delicate c
petition between the energy minima we can design and
typical deepest energy minimum found in a random copo
mer.

We denote protein conformations by the contact mapC,
which is anN3N matrix in which Ci j 51 if Si and Sj are
nearest neighbors in the lattice andCi j 50 otherwise@10#.
We exclude contacts between monomers adjacent along
protein chain because these are fixed and cannot influ
the folding dynamics. Accordingly, for compact conform
tions, each interior monomer is surrounded by its ch
neighbors plus effective coordination numberz85z22 oth-
ers, wherez is the lattice coordination number.

With this notation the energy of a sequence in the con
mation corresponding to contact mapC can be expressed a

E5
1

2 (
i j 51

N

Ci j Ũ i j . ~1!

In this section we consider training a sequence to
weighted superposition of contact maps. This is achieved
suppressing the Hamiltonian@11# of the protein in the super
imposed~total! contact map in the usual way, that is, b
minimizing over sequence space. We expect conformat
associated with higher weights to have deeper wells.
derivation of the precise dependence follows.

The total contact map is defined by summing over
individual maps with suitable weights,

Ctoti j
5 (

m51

p

wmCm i j
, ~2!
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wherewm is the weight associated with conformationGm .
The minimum Hamiltonian associated with the tot
weighted contact map is

H tot
min5

1

2 (
i j 51

N

Ctoti j
Ũ i j* 5

1

2 (
i j 51

N

(
m51

p

wmCm i j
Ũ i j* , ~3!

whereŨ* minimizesH tot .
We reexpress the right-hand side of Eq.~3! as a sum over

the local HamiltonianH toti
, each minimized by the choice o

amino acidSi ,

H tot
min5(

i 51

N

min
Si

@H toti
#, ~4!

whereH toti
is the sum over connections to monomeri,

H toti
5

1

2 (
j 51

N

(
m51

p

wmCm i j
Ũ i j . ~5!

The quantityH toti
is simply a weighted sum of the indepen

dent local conformational energies,

H toti
5 (

m51

p

wmEm i
. ~6!

Alternatively, eachH toti
may be considered as a weighte

sum of z8p/2 independent random interaction energ
sampled from the pair potential. Recalling that the distrib
tion of bond energiesUab has zero mean and calling it
standard deviations, we approximate the distribution o
H toti

by its central limit form; it is a Gaussian with zero mea
and variance

s toti
2 5

z8

2
s2 (

m51

p

wm
2 . ~7!

This estimation is valid out touH toti
u;(z8/2)s(m51

p wm .

We now considerH toti
in Eq. ~6! as a sum of two terms,

H toti
5wmEm i

1 (
n51,nÞm

p

wnEn i
5Hm i

1Hothi
. ~8!

SinceHm i
andHothi

are independently Gaussianly distribute
with variances

sm i

2 5
z8s2

2
wm

2

and

sothi

2 5
z8s2

2 (
n51,nÞm

p

wn
2 , ~9!

the distribution ofHm i
for fixed Hm i

1Hothi
5H toti

min reduces to
2-2
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f ~Hm i
uH toti

min!.c expF2
s toti

2

2sm i

2 sothi

2 S Hm i
2

sm i

2

s toti
2

H toti
minD 2G ,

~10!

wherec is a normalizing constant ands toti
2 5sm i

2 1sothi

2 . The

value ofHm i
of maximum likelihood from Eq.~10! is given

by

Hm i

min.
sm i

2

s toti
2

H toti
min , ~11!

which reduces to

Hm i

min5wmEm i

min.
wm

2

(
m51

p

wm
2

H toti
min . ~12!

The minimum local HamiltonianH toti
min corresponds to the

smallest ofA samples from the distribution ofH toti
. What is

the minimum ofM samples of a Gaussianly distributed ra
dom variable with mean 0 and standard deviationsX? For
reasonably largeM, it can be approximated@4# as

xmin.2A2sXAln M . ~13!

With M5A andsX5s toti
, this yields

H toti
min.2A2s toti

Aln A. ~14!

Substituting Eq.~14! into the right-hand side of Eq.~12! and
summing overi, we find

Em
min.2Az8NsAln A

wm

S (
m51

p

wm
2 D 1/2. ~15!

This establishes how the minimized Hamiltonian distribu
over the individual weighted configurations. For the spec
case of equal weights it reduces to

Em
min.2Az8

p
NsAln A, ~16!

which is the result derived in Ref.@4#.

III. HOW MANY CONFORMATIONS CAN A PROTEIN
REMEMBER?

For a protein to fold to a target conformationGm , it is
necessary that the energy of the sequence in that confo
tion, Em

min , be below the energy of the same sequence
conformations elsewhere. Since the target conformatio
not correlated to conformations far away, distant fluctuatio
in the energy landscape are statistically identical to those
random protein sequence, or copolymer. Therefore, we
quire that the target well be deeper than the global minim
03190
s
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fluctuations of a random copolymer, that is,

Em
min,Ecp

min . ~17!

In order for a protein to fold to multiple conformations, it
necessary that all of the target wells lie belowEcp

min .
The left-hand side of Eq.~17! is given by Eq.~16!. Here

we estimate the typical minimum copolymer energyEcp
min .

The energy of a fixed random sequenceScp folded to its
ground state conformation is

Ecp
min5min

C
F1

2 (
i j 51

N

Ci j Ũcpi j G5
1

2 (
i j 51

N

Ci j* Ũcpi j
, ~18!

where minimization is over allC corresponding to valid con
formations andC* minimizesEcp.

Since each row or column of the contact mapC hasz8
bonds, the quantityEcp from Eq. ~18! ~before minimization!
is the sum ofz8N/2 bonds. These contact energies are unc
related and may be considered as random since the exte
pair potentialŨ of the copolymer from Eq.~18! is untrained.
We therefore approximate the distribution ofEcp as a Gauss-
ian f (Ecp) with scp

2 5(z8N/2)s2, in accordance with the cen
tral limit theorem. This estimation is valid out touEcpu of
order (z8N/2)s. Since the number of compact conformatio
of an N-mer grows askN, wherek.1.85 on a cubic lattice
@12#, the ground state energyEcp

min is the minimum ofkN

samples of f (Ecp). ~A broader treatment of Hamiltonian
walks, including the possibility of anomalousN dependence
for less coordinated lattices, can be found in Ref.@13#.! Sub-
stituting scp

2 5(z8N/2)s2 for sX and kN for M in Eq. ~13!,
we find

Ecp
min.2Az8NsAln k. ~19!

Inserting Eqs.~16! and~19! into the condition for folding Eq.
~17!, the bound on the number of targetsp that a protein can
remember is found to be

pmax.
ln A

ln k
. ~20!

The capacity may also be derived by information theore
considerations. Imagine the transmission of a conforma
encoded as a sequence. The conformation is decoded by
structing the sequence and allowing it to fold, eitherin vivo
or via computer simulation.

How much information is transmitted? Since a prote
sequence is simply anN digit number in baseA, the infor-
mation sent~in bits! is log2 of the number of possible se
quences, that is,

I trans5N log2A. ~21!

The A3A pair potentialU is part of the decoding apparatu
~encoded by the laws of physics or included in the foldi
algorithm! and need not be transmitted each time a conf
mation is sent.
2-3
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The information received can be similarly calculated.
we label the conformations 1,2, . . . ,kN, then decoding a
single conformation amounts to receiving log2k

N bits. Since
the target conformations are~by assumption! independent,
the information contained in thep lowest-energy conforma
tions grows linearly withp, that is,

I rec5pN log2k. ~22!

The information received must be less than or equal to
information transmitted, that is,I rec<I trans. Accordingly,
pN log2k<N log2A, from which it follows that

pmax.
ln A

ln k
, ~23!

in agreement with Eq.~20!. We discuss the implications o
our capacity result in Sec. VI. In what follows we focus o
the design of a broad kinetic folding funnel.

IV. BLOB MODEL OF UNFOLDING

It is a well known trend in polymer physics that the larg
scale features of molecular conformations have system
cally longer relaxation times. For example, for nonintera
ing chains with simple kink-jump dynamics, a subsection
g monomer units has relaxation timet(g) proportional tog2

@14#. On this basis we assume that after timet, a spontane-
ously unfolding polymer will have equilibrated locally up t
scaleg, such thatt(g)5t, but still reflect the folded confor-
mation on larger scales.

This blob view of proteins, that time scales relate u
formly to length scales, is of course a particular and sim
fied outlook, motivated by its tractability. Complications th
we do not address here include spatially localized nuclea
events and specific configurational bottlenecks. Neverthe
it allows us to make some quantitative predictions about
limits of the basin of attraction, which has long proved to
evasive.

The folded protein, which we assume to be compact
associate withg51, consists ofN single monomer blobs
The contact mapC(1) hasz8 nonzero entries in each row
and column,z8N nonzero entries in total.

For the state unfolded up to length scaleg, the protein
may be thought of as a chain ofN/g blobs, folded to its
coarse-grained original conformation. Accordingly, the co
tact mapC(g) hasN/g intrablob blocks along the diagona
and z8N/g interblob blocks corresponding to neare
neighbor blobs~not along the backbone!. Scaling theories for
polymer configurations with excluded volume would imp
that the average total number of contacts between two ne
boring blobs be of order unity. Averaging over an ensem
of conformations at constantg, this requires that each of th
g2 entries for each blob be of order 1/g2.

The total number of conformations~compact or other-
wise! available to a protein grows as;k̃N @14# ~not to be
confused withk.1.85 for compact structures only!; this be-
comesk̃N/g for a chain ofN/g blobs. Since the product o
the internal and external conformational freedoms of a p
03190
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tially relaxed protein must equalk̃N, a protein relaxed to
length scaleg can be estimated to take onk̃ [N2(N/g)] con-
figurations. It follows that the entropy gained in folding fro
a denatured configuration down to a conformation relaxed
length scaleg is

S~g!52kB

N

g
ln k̃. ~24!

V. HOW BIG IS THE OPTIMAL FOLDING FUNNEL?

While an energy minimum significantly below the min
mum copolymer energy ensures thermodynamic stability
the target conformation, rapid convergence requires a fun
of kinetic pathways sloping towards the target. The wid
possible funnel is that which least constrains the dynam
which we propose is given by the conformations sampled
unfolding via the blob model. We thus consider combini
the contact maps from different times~and values ofg) of a
noninteracting, spontaneously unfolding compact conform
tion with weightsw(g),

Ctoti j
5 (

ln g51

ln N

w~g!Ci j ~g!. ~25!

The minimum Hamiltonian associated with the total cont
map then appears as

H tot
min5

1

2 (
i j 51

N

(
ln g51

ln N

w~g!Ci j ~g!Ũ i j* , ~26!

analogous to Eq.~3!. The total Hamiltonian associated wit
monomeri is the sum of the individual local Hamiltonian
evaluated at different values ofg,

H toti
min5 (

ln g51

ln N

Hi
min~g!, ~27!

where H(g)5w(g)E(g). In accordance with our previou
calculation, we requires toti

2 . We first estimate the variance i

the choice ofH(g) available to a single monomer as

sgi

2 .
z8g

2 S w~g!

g2 D 2

s2, ~28!

wherez8g/2 is the number of contacts available to a giv
monomer equilibrated to scaleg andw(g)/g2 is the overall
weighting for each one. The variance of the local energy
monomer integrated over allg is then

s toti
2 . (

ln g51

ln N

sgi

2 .
z8s2

2 E
e

Ndg

g
g

w2~g!

g4 . ~29!

Again we wish to establish how the minimized Hamiltonia
distributes over weighted configurations unfolded to len
scaleg. Applying the general result~11! yields
2-4
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Hi
min~g!5w~g!Ei

min~g!.
sgi

2

s toti
2

H toti
min . ~30!

Substituting Eqs.~14! and ~28! into Eq. ~30! and summing
over i, the minimum energy associated with matching t
conformation at scaleg can then be estimated as

Emin~g!.2
z8

A2
Ns2Aln A

w~g!

s toti
g3

. ~31!

In order that the training reverse the unfolding dynami
the required funnel must have sufficient slope, that is,F(g)
5E(g)2TS(g),0. Equating the two expressionsT3 ~24!
and ~31! gives

w~g!.
A2kBT ln k̃ s toti

z8s2Aln A
g2, ~32!

and thusw(g)}g2. Unfortunately, this form forw is incon-
sistent with a convergent (N independent! evaluation ofs toti
in Eq. ~29!. Our assumption that the training energy cou
reverse the unfolding dynamics does not hold for all valu
of g.

We consequently introduce the cutoff scalegmax, up to
which our funnel extends. Substituting Eq.~32! into Eq.~29!
and reducing the domain of integration yields

s toti
2 .

~kBT!2ln2k̃

z8s2ln A
s toti

2 E
e

gmax
dg, ~33!

from which it follows that

gmax.
z8s2ln A

~kBT!2ln2k̃
. ~34!

The width of our funnel, as parametrized bygmax above,
increases strongly as folding temperatureT decreases. At too
low a temperature, however, the coil will collapse as a r
dom copolymer into what we presume to be a glassy st
The gain in entropy resulting from collapse will be equiv
lent to Eq.~24! evaluated atg51 ~the collapsed copolyme
will be fully folded!. The modest decrease in energy afford
by the minimum copolymer energy can overcome this
tropic loss only at low temperatureTcp. Equating the mini-
mum copolymer energyEcp

min from Eq.~19! andTcp times the
change in entropy Eq.~24!ug51 leads to

kBTcp.s
Az8 ln k

ln k̃
, ~35!

and hence atT.Tcp,

gmax.
ln A

ln k
, ~36!

which is identical to the form ofpmax derived in Sec. III.
03190
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VI. DISCUSSION OF CAPACITIES

The number of conformations that a protein can reme
ber ~thermodynamic capacity! was derived first by energeti
arguments and second via information theory; in both ca
we found pmax.ln A/ln k. A homopolymer (A51) can be
trained to be thermodynamically stable in 0 conformatio
as expected. BinaryH-P models can typically be trained t
recognize 1 conformation, whereas for a protein construc
from a 20 amino acid setpmax.5. What happens to the pro
tein energy landscape as the number of targets is increa
As p→pmax, the typical depth of the target wells diminishe
such that, atp5pmax, the wells become lost in fluctuation
elsewhere~Fig. 1!; the targets cease to be global minima.

Insight into our thermodynamic capacity result may
gleaned from associated neural networks~ANNs!, whose ca-
pacities increase linearly with the number of neuronsn @15#.
In both ANNs and proteins the information contained in ea
memory—patterns and conformations—is proportional ton
andN, respectively. Unlike proteins, which can be imagin
as locally connected networks, ANNs are globa
connected—each of then neurons is bonded ton21 others.
Since capacity is proportional to the total number of conn
tions divided by the information contained in each patte
the capacity of an associative memory grows linearly withn
whereas proteins possess constant capacity. Perhaps
surprising is that the answer is governed by the numbe
amino acid speciesA rather than the effective coordinatio
numberz8.

That the bound on the folding funnelgmax is less thanN
implies that the extent of the achievable folding funnel~ki-
netic capacity! is less than the conformational space of t
protein. Folding at finite temperature cannot be made as
rect as unfolding at infinite temperature. The cutoffgmax is
the length scale of the structure below which the ene
landscape corresponding to the trained sequence is chara
ized by a funnel. Abovegmax, the protein must organize
itself into the desired~coarse-grained! conformation without

FIG. 1. Energy landscapes of sequences trained to be therm
namically stable in a one, two, andpmax21 target conformations.
As the number of targets increases, the depth to which the ta
wells can be trained diminishes. Atp5pmax, the wells are lost
among nearby fluctuations.
2-5
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the help of kinetic guidance, that is, it must traverse an
fective copolymer landscape~Fig. 2!. What happens to the
protein energy landscape upon increasing the width of
funnel? Asg→gmax, the slope of the funnel becomes suf
ciently shallow such that, atg5gmax, the decrease in energ
no longer overcomes the loss of entropy~Fig. 3!; the well
ceases to be a free energy minimum.

Consider the protein as a sequence ofN/gmax blobs, each
of size gmax. The benefit of the funnel is realized once t
chain of blobs folds to its coarse-grained target state. Ass
ing this statistical bottleneck to be the rate determining s
the time necessary for the protein to fold is reduced by
factor k2(121/gmax)N, which is significant even for small val
ues ofgmax.

VII. ABILITY TO MANIPULATE THE ENERGY
LANDSCAPE IS LIMITED

In both the thermodynamic~deep wells! and kinetic
~broad funnel! contexts, the extent to which the protein e
ergy landscape can be manipulated is limited by lnA/ln k,
whereA is the number of amino acid species andk is the
compact conformational freedom per monomer. Like sque
ing one end of a balloon at the expense of inflating the ot
further deformation of the energy landscape is counter
anced by its relaxation elsewhere.

The agreement between the bounds on protein mem
on the one hand, and the basin of attraction, on the other,
unexpected. Taken together, these results suggest that th
gineering of proteins and heteropolymers is constrained b
fixed budget. The finite freedom in the sequence can be
vested in various attributes: in well number, well bread
and well depth. A reduction in expenditure in one allow
increased investment in another.

In particular, our results suggest that thermodynamic

FIG. 2. Folding in the presence of a funnel. The denatured p
tein wanders through conformation space until it matches the ta
structure coarse grained to length scalegmax, after which the funnel
quickly guides the protein towards the target.
03190
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bility and kinetic accessibility, while correlated over a si
nificant region, are in conflict near the extremes of eith
maximally stable sequences are not the fastest folding
the fastest folders are not the most stable.~We presented
preliminary evidence to this end in Ref.@16#!. Accordingly, a
thermodynamically oriented sequence design does not s
for the fastest-folding proteins and a reduction in stabil
admits the possibility of increased accessibility. If nature h
designed proteins to fold as quickly as possible, we wo
expect only marginal stability in the native conformatio
The preceding premise might be established by observa
of normal and mutated naturally occurring proteins.

Notably, the bound on manipulating the energy landsc
is independent of protein length; the diversity of prote
function grows with alphabet size only. The large~relative to
k) amino acid alphabet found in nature is crucial to the v
riety of protein function within the cell or in multicellula
organisms. To the extent that heteropolymer models are
tended to provide insight into proteins, their alphabet si
should reflect this. Elementary representations, such as
frequently studiedH-P models, are not able to effect th
thermodynamic and kinetic diversity possible with larger
phabets.

Perhaps most interesting is the increased scope for pro
and heteropolymer function. The discovery that prions fo
to multiple conformations@17# has extended our notion o
heteropolymer behavior beyond familiar protein collapse.
have presented arguments that the energy landscape
within limits, be tailored to effect other important function
Further discovery of protein mechanisms should prove fa
nating.

-
et

FIG. 3. Energy landscapes of sequences trained to have inc
ingly broad funnels. Maximizing stability~top! corresponds to a
deep, narrow well. As the length scaleg to which the funnel extends
increases, the depth of the target well is reduced; atg5gmax, the
slope of the funnel is no longer sufficient to provide a free ene
minimum ~bottom!.
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