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Protein design depends on the size of the amino acid alphabet
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We consider the design of proteins to be simultaneously thermodynamically stable in multiple independent
and correlated conformations. We first show that a protein can be trained to fold to multiple independent
conformations and calculate its capacity. The number of configurations that it can remember is proportional to
the logarithm of the number of amino acid speciesindependent of chain length. Next we investigate the
recognition of correlated conformations, which we apply to funnel design around a single configuration. The
maximum basin of attraction, as parametrized in our model, also depends on the number of amino acid species
as InA. We argue that the extent to which the protein energy landscape can be manipulated is fixed, effecting
a trade off between well breadth, well depth, and well number. This emerging picture motivates a clearer
understanding of the scope and limits of protein and heteropolymer function.
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[. INTRODUCTION were a single map, minimizing over sequence space in the
usual way[5]. We find that the number of conformations that
It is believed that a stable, fast-folding protein requires ara protein can remember is independent of the length of the
energy landscape in which the native conformation is both g@rotein and proportional to the logarithm of the number of
deep global minimum and lies at the bottom of a basin ofamino acid species.
attraction sloping towards ftL]. These conditions are known  While stability may be readily achieved by suppressing
as thermodynamic stability and kinetic accessibility, respecthe energy of the sequence arranged in the target conforma-
tively. The former guarantees that, at equilibrium, a signifi-tion, constructing a broad funnel leading towards the target
cant fraction of molecules are in the target state. The lattehas remained elusive. We next investigate the introduction of
ensures that the protein folds in a time scale short compareal folding funnel above the target conformation in the protein
to the time necessary to sample all configurations. energy landscape. Our method of design rests on the tech-
Not surprisingly, any practically useful method of design-nique of training to multiple targets described above. Unlike
ing artificial proteins or heteropolymers must select for stathe independent configurations considered previously, here
bility and accessibility as well. The first satisfactory methodour patterns are correlated to a single target conformation.
of protein design was introduced by Shakhnovich in 1994 Our approach to funnel design is to turn off all the mono-
[2,3]: a random sequence is embedded in the target confomer interactiongequivalent to an interacting system at infi-
mation and optimized over sequence space to a (tkepgh  nite temperatureand to consider the dynamics by which a
generally not globalminimum. At finite temperature the re- protein would then spontaneouslpfold from the target state
sulting sequence spontaneously folds to the target conforméato a random ensemble. By the principle of detailed balance
tion. This strategy relies on the correlation between stabilityin equilibrium statistical mechanics, the ensemble of unfold-
and accessibility; stable sequences are found to fold moriag trajectories from the target state to random conformations
quickly as well. is equivalent to the ensemble of folding trajectories from
In Ref.[4], we showed that a protein can be designed taandom configurations to the target—but of course the
fold to multiple independent conformations, analogous to arformer ensemble is much more easily sampled. Therefore,
associative memory. In this paper we generalize the notion tobservations of unfolding will tell us how the molecule
training to a weighted set of conformations, which proveswould with least dynamical constraint fold.
useful in our analysis of funnel design below. In the special We provide estimates of the unfolding contact map based
case of equal weights we recover the capacity result obtaineah a blob model of unfolding. This is motivated by thermo-
in Ref.[4]. dynamic tractability and its basis in established polymer
Our approach to designing multiply conforming proteins physics, despite its at times distorted representation of kinet-
is to train to a superposition of contact maps as though iics. It leads to a definite proposal as to how different stages
in the unfolding contact map should be weighted in training
S0 as to create an optimal funnel.

*Electronic address: r.c.ball@warwick.ac.uk We find, however, that the extent of the optimal folding
URL: http://www.phys.warwick.ac.uk/theory/ funnel (in terms of a relaxation length scalis smaller than

"Electronic address: fink@Ips.ens.fr the conformational space and depends on the number of
URL: http://www.tcm.phy.cam.ac.ukimf20/ amino acid species available asAlif6,7]. Remarkably, the
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bound on funnel sizdkinetic capacity is identical to the wherew,, is the weight associated with conformati®y, .
thermodynamic capacity derived for independent conformaThe minimum Hamiltonian associated with the total
tions. Taken together, our results suggest that the extent tweighted contact map is

which the protein energy landscape can be manipulated—

whether it be by the introduction of multiple independent N _ 1 -

minima, well depth or well breadti{or a combination H{B{“=§,E Cmqu?}jE > w,C, Ui,
thereoj—is limited and proportional to the logarithm of the =t

number of amino acid species. S
whereU* minimizesH ;.

We reexpress the right-hand side of E8). as a sum over
the local HamiltoniarHtoti, each minimized by the choice of

We consider model proteins in the form of self-avoiding amino acidS;,
walks on a three-dimensional cubic lattice with nearest-
neighbor interactionglattice proteing A protein chain con- min )
sists ofN amino acidgsometimes referred to as monomers Hiot :izl mMin[Hig ], 4
each of which is chosen from an alphabetfomino acid S
species. Monomer speciesandb interact according to the
AX A pair potentiall ,,,. The species of thketh monomer of
sequencé&is denoted bys, . For convenience of notation we LN
glsq mtroc?uce the_ extendédix N pair potentlaI_Uij , Yvhere Hioy = - 2 2 w,C, U;. (5)
Ujj is the interaction energy between monomieasd], that =1 p=1 .
S,U”:US%.
Throughout our analysis we assume that the pair potenti
U has zero mean, as was found by approximating real amin
acids in Ref.[8]. Otherwise, as discussed in R¢®], the p
molecule is liable to suffer the indiscriminate globular col- Hiot = > w,E, - (6)
lapse characteristic of homopolymers with an attractive in- p=1
teraction. Our concern in this paper is the more delicate com- ) . .
petition between the energy minima we can design and théltermatively, eachH,, may be considered as a weighted
typical deepest energy minimum found in a random copolysum of z'p/2 independent random interaction energies
mer. sampled from the pair potential. Recalling that the distribu-
We denote protein conformations by the contact iap tion of bond energied),, has zero mean and calling its
which is anNx N matrix in whichC;;=1 if S andS; are standard deviatiornr, we approximate the distribution of
nearest neighbors in the lattice afg=0 otherwise[10]. Htoti by its central limit form; it is a Gaussian with zero mean
We exclude contacts between monomers adjacent along thend variance
protein chain because these are fixed and cannot influence , p
the folding dynamics. Accordingly, for compact conforma- o2 = 2_022 w2 @
tions, each interior monomer is surrounded by its chain 27 = e
neighbors plus effective coordination numizer=z—2 oth-
ers, wherez is the lattice coordination number. This estimation is valid out t¢i_|toti|~(2,/2)0'22:1WM-

With this notation the energy of a sequence in the confor- \yie now consideH,, in Eq. (6) as a sum of two terms
mation corresponding to contact m@pcan be expressed as %

II. TRAINING TO MULTIPLE CONTACT MAPS

N

Wherequ is the sum over connections to mononner

Jhe quantityHtoti is simply a weighted sum of the indepen-
gent local conformational energies,

1 U %
EZE.,; ¢,y @ Hio, =W,E,, + W,E,=H, +Hon. (8

v=1v#u

In this section we consider training a sequence to aSmceHMi andHy, are independently Gaussianly distributed

weighted superposition of contact maps. This is achieved byith variances
suppressing the Hamiltonidd1] of the protein in the super-

imposed (total) contact map in the usual way, that is, by o2 = Z'o W2
minimizing over sequence space. We expect conformations i 2 »
associated with higher weights to have deeper wells. The
derivation of the precise dependence follows. and

The total contact map is defined by summing over the
individual maps with suitable weights, 7' o

= D W, ©
p v=1v#pu
Ciot. = w,C, , 2 o ) i
% ,Zl M @ the distribution ofH ,, for fixed H , +H o = Hygy' reduces to
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2 2 2
Ttog T min
T 202 g2 | w2 o) s

=cex >
ZU#iaom

f(H,, [HEN =

(10)
wherec is a normalizing constant anef, =, + o5y, The
value ofHMi of maximum likelihood from Eq(10) is given
by

o
Hi"= — =i, (11)
Otoy,
which reduces to
2
min min__ WM min
I Ho; (12)
> w
u=1

The minimum local Hamiltoniarh-l{gL“ corresponds to the

smallest ofA samples from the distribution cHImq What is
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fluctuations of a random copolymer, that is,

EL"<Egp . (17)
In order for a protein to fold to multiple conformations, it is
necessary that all of the target wells lie bel .

The left-hand side of Eq17) is given by Eq.(16). Here
we estimate the typical minimum copolymer eneifg)"
The energy of a fixed random sequerfsg folded to its
ground state conformation is

Em'”— mm

N N
.
2: Cp”} ijzl Cij UCHJ-’ (18)

where minimization is over alC corresponding to valid con-
formations andC* minimizesEc,.

Since each row or column of the contact m@phasz’
bonds, the quantit§, from Eq. (18) (before minimizatio
is the sum oz’ N/2 bonds. These contact energies are uncor-
related and may be considered as random since the extended

pair potentialU of the copolymer from Eq(18) is untrained.

the minimum ofM samples of a Gaussianly distributed ran- We therefore apprOX|mate the distributiontef, as a Gauss-

dom variable with mean 0 and standard deviatiof? For
reasonably larg®, it can be approximatef] as

XM~ — 2oy INM. (13)
With M=A and o= o4, this yields
H{g;”: —\20,\INA. (14)

Substituting Eq(14) into the right-hand side of E¢12) and
summing overi, we find

w
\/Z—'NO'\/mAﬁ.
pu=1

EMin=— (15)

ian f(E¢p with 0' =(z'N/2)o?, in accordance with the cen-
tral limit theorem This estimation is valid out {&,| of
order (Z'N/2)o. Since the number of compact conformations
of an N-mer grows ascM, wherex=1.85 on a cubic lattice
[12], the ground state energﬁm'” is the minimum of kN
samples off(Ecy. (A broader treatment of Hamiltonian
walks, including the possibility of anomalodsdependence
for less coordinated lattices, can be found in R&8].) Sub-
stituting o3,= (z'N/2)a? for oy and «N for M in Eg. (13),

we find

Eggnz— JZ—’NU\/ln K.

Inserting Eqs(16) and(19) into the condition for folding Eq.
(17), the bound on the number of targgtshat a protein can
remember is found to be

(19

This establishes how the minimized Hamiltonian distributes

over the individual weighted configurations. For the special

case of equal weights it reduces to

. z'
E[”L"”z - \/%NO’\/“’I A,

which is the result derived in Ref4].

(16)

Ill. HOW MANY CONFORMATIONS CAN A PROTEIN
REMEMBER?

For a protein to fold to a target conformatidth it is

InA

e (20)

Prmax=

The capacity may also be derived by information theoretic
considerations. Imagine the transmission of a conformation
encoded as a sequence. The conformation is decoded by con-
structing the sequence and allowing it to fold, eithrerivo
or via computer simulation.

How much information is transmitted? Since a protein
sequence is simply aN digit number in basé, the infor-
mation sent(in bits) is log, of the number of possible se-
quences, that is,

necessary that the energy of the sequence in that conforma-

min
tion, E# ,

be below the energy of the same sequence in

ltrans= N 10g,A. (21)

conformations elsewhere. Since the target conformation is

not correlated to conformations far away, distant fluctuationd’he AX A pair potentialU is part of the decoding apparatus
in the energy landscape are statistically identical to those of éencoded by the laws of physics or included in the folding
random protein sequence, or copolymer. Therefore, we realgorithm and need not be transmitted each time a confor-
quire that the target well be deeper than the global minimunmation is sent.
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The information received can be Similarly calculated. |ft|a||y relaxed protein must equé}N, a protein relaxed to
we label the conformations 1,2..,«N, then decoding a length scaleg can be estimated to take 6dN~-(V9) con-
single conformation amounts to receiving J&f bits. Since figurations. It follows that the entropy gained in folding from

the target cpnformatl_ons g(@y assumptioh independent, a denatured configuration down to a conformation relaxed to
the information contained in the lowest-energy conforma- length scaley is

tions grows linearly withp, that is,

l'ec=PNlOg; x. (22) S(g)z—kBEm;. (29
g

The information received must be less than or equal to the
information transmitted, that isl,.=<luans. Accordingly,

. . ?
DN 0g,x=NIog,A, from which it follows that V. HOW BIG IS THE OPTIMAL FOLDING FUNNEL

While an energy minimum significantly below the mini-

I”_A (23) mum copolymer energy ensures thermodynamic stability of
Ink’ the target conformation, rapid convergence requires a funnel
. ] . o of kinetic pathways sloping towards the target. The widest
in agreement with Eq(20). We discuss the implications of possible funnel is that which least constrains the dynamics,
our capacity result in Sec. VI. In what follows we focus on yhich we propose is given by the conformations sampled in

Pmax=

the design of a broad kinetic folding funnel. unfolding via the blob model. We thus consider combining
the contact maps from different timéand values ofj) of a
IV. BLOB MODEL OF UNFOLDING noninteracting, spontaneously unfolding compact conforma-

tion with weightsw(g),
It is a well known trend in polymer physics that the larger
scale features of molecular conformations have systemati-
cally longer relaxation times. For example, for noninteract- Croy, = 2 w(9)Cii(9). (25
ing chains with simple kink-jump dynamics, a subsection of no=t
g monomer units has relaxation timég) proportional tog?
[14]. On this basis we assume that after tima spontane-
ously unfolding polymer will have equilibrated locally up to
scaleg, such thatr(g) =t, but still reflect the folded confor- L
mation on larger scales. min_ — et
This blob view of proteins, that time scales relate uni- Hot =3 ij2:1 |ngE:1 w(@)Cij(9)Uj. (26)
formly to length scales, is of course a particular and simpli-
fied outlook, motivated by its tractability. Complications that analogous to Eq(3). The total Hamiltonian associated with
we do not address here include spatially localized nucleatiomonomeri is the sum of the individual local Hamiltonians
events and specific configurational bottlenecks. Neverthelessyaluated at different values gf
it allows us to make some quantitative predictions about the
limits of the basin of attraction, which has long proved to be min N min
evasive. Hiot :ln21 H™(9), (27)
The folded protein, which we assume to be compact and o
associate withg=1, consists ofN single monomer blobs.
The contact mapC(1) hasz’ nonzero entries in each row
and columnz’N nonzero entries in total. i i ]
For the state unfolded up to length scaethe protein  the choice ofH(g) available to a single monomer as
may be thought of as a chain ®f/g blobs, folded to its 5
»_ 29 (w(g)) »

InN

The minimum Hamiltonian associated with the total contact
map then appears as

where H(g) =w(g)E(g). In accordance with our previous
calculation, we requirefoti. We first estimate the variance in

coarse-grained original conformation. Accordingly, the con- o2 = . 29)

tact mapC(g) hasN/g intrablob blocks along the diagonal % 2 _gr ’

and z'N/g interblob blocks corresponding to nearest-

neighbor blobgnot along the backboneScaling theories for wherez’g/2 is the number of contacts available to a given
polymer configurations with excluded volume would imply monomer equilibrated to scaggandw(g)/g? is the overall
that the average total number of contacts between two neighweighting for each one. The variance of the local energy per
boring blobs be of order unity. Averaging over an ensemblegnonomer integrated over ajlis then

of conformations at constan this requires that each of the

g? entries for each blob be of orderg?/ 5 nN , Z'0%(Ndg wA(g)
The total number of conformation&ompact or other- Utoq:mgzzl Ugi—TL EQT- (29

wise) available to a protein grows as«" [14] (not to be

confused withx=1.85 for compact structures opjjthis be-  Again we wish to establish how the minimized Hamiltonian
comesk''9 for a chain ofN/g blobs. Since the product of distributes over weighted configurations unfolded to length
the internal and external conformational freedoms of a parscaleg. Applying the general resultl1) yields
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2
g
] ] g ;
H™(9) =w(g)E™(9)= ——H{-
Ooy,

(30

Substituting Egs(14) and (28) into Eq. (30) and summing

over i, the minimum energy associated with matching the

conformation at scalg can then be estimated as

wig)
Utogg

EMN(g)=— —Na’z In A

V2

31)

In order that the training reverse the unfolding dynamics,

the required funnel must have sufficient slope, thaFig)
=E(g) —TYg)<0. Equating the two expressiois< (24)
and(31) gives

\/EKBT"]T( O-tOTi
2
W(g)~ —— ¢?
Z o

InA 32

and thusw(g) «g?. Unfortunately, this form fow is incon-
sistent with a convergent\( independentevaluation Offftot,.

in Eq. (29). Our assumption that the training energy could
reverse the unfolding dynamics does not hold for all value

of g.

We consequently introduce the cutoff scag.,, up to
which our funnel extends. Substituting E§2) into Eq.(29)
and reducing the domain of integration yields

(kgT)?In%k fgmax
2 2
e TR dg, 33
7oy Z'd?nA o e g (33
from which it follows that
Z'd?ln A 34
Imax (kgT)2InZk”

The width of our funnel, as parametrized by, above,
increases strongly as folding temperattirdecreases. At too
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Energy

P=Pmax -1

Conformations

FIG. 1. Energy landscapes of sequences trained to be thermody-
namically stable in a one, two, ami,,,—1 target conformations.
As the number of targets increases, the depth to which the target
wells can be trained diminishes. At=p,.x, the wells are lost
among nearby fluctuations.

VI. DISCUSSION OF CAPACITIES

The number of conformations that a protein can remem-

%er (thermodynamic capacitywas derived first by energetic

arguments and second via information theory; in both cases
we found ppa=InAlln k. A homopolymer A=1) can be
trained to be thermodynamically stable in 0 conformations,
as expected. Binari-P models can typically be trained to
recognize 1 conformation, whereas for a protein constructed
from a 20 amino acid sei,5,=5. What happens to the pro-
tein energy landscape as the number of targets is increased?
As p— Pmax. the typical depth of the target wells diminishes
such that, ap=pnax, the wells become lost in fluctuations
elsewhergFig. 1); the targets cease to be global minima.
Insight into our thermodynamic capacity result may be
gleaned from associated neural netwaikbINs), whose ca-
pacities increase linearly with the number of neurorf&5].
In both ANNSs and proteins the information contained in each
memory—patterns and conformations—is proportionahto

low a temperature, however, the coil will collapse as a ranandN, respectively. Unlike proteins, which can be imagined

dom copolymer into what we presume to be a glassy states

locally connected networks, ANNs are globally

The gain in entropy resulting from collapse will be equiva- connected—each of theneurons is bonded to— 1 others.
lent to Eq.(24) evaluated ag=1 (the collapsed copolymer Since capacity is proportional to the total number of connec-
will be fully folded). The modest decrease in energy affordedtions divided by the information contained in each pattern,
by the minimum copolymer energy can overcome this enthe capacity of an associative memory grows linearly with

tropic loss only at low temperaturg,,. Equating the mini-
mum copolymer energi¢," from Eq.(19) and T, times the
change in entropy Eo[24)|g , leads to

VzZ''In k
kBTcp_ O——~<—, (35)
In x
and hence al=Tg,,
InA
Omax= mv (36)

which is identical to the form op,,, derived in Sec. Ill.

whereas proteins possess constant capacity. Perhaps more
surprising is that the answer is governed by the number of
amino acid specie# rather than the effective coordination
numberz’.

That the bound on the folding funngl,,y is less tharN
implies that the extent of the achievable folding funtiat
netic capacity is less than the conformational space of the
protein. Folding at finite temperature cannot be made as di-
rect as unfolding at infinite temperature. The cutff,, is
the length scale of the structure below which the energy
landscape corresponding to the trained sequence is character-
ized by a funnel. Aboveay.y, the protein must organize
itself into the desiredcoarse-graingdconformation without
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Conformation Space

Tiarget

Energy

£=Lmax

FIG. 2. Folding in the presence of a funnel. The denatured pro-
tein wanders through conformation space until it matches the target Conformations
structure coarse grained to length saglg,, after which the funnel
quickly guides the protein towards the target.

FIG. 3. Energy landscapes of sequences trained to have increas-
ingly broad funnels. Maximizing stabilitytop) corresponds to a

S . . d Il. As the length hich the f | extend
the help of kinetic guidance, that is, it must traverse an ef- eep, narrow well. As the length scgjéo which the funnel extends

. . increases, the depth of the target well is reducedy=a , the
fectlv_e copolymer landscapeig. .2)' Wha_t happen_s to the slope of the funnepl is no Iongergsufficient to provicge 2??(Xee energy
protein energy landscape upon increasing the width of the inimum (bottom).
funnel? Asg— gmax, the slope of the funnel becomes suffi-
ciently shallow such that, @=g,.«, the decrease in energy bility and kinetic accessibility, while correlated over a sig-
no longer overcomes the loss of entrofijig. 3); the well  nificant region, are in conflict near the extremes of either;
ceases to be a free energy minimum. maximally stable sequences are not the fastest folding and

Consider the protein as a sequenceNdd, ., blobs, each  the .fa_stest follders are not the most statjl&/e pr_esented
of size gmax- The benefit of the funnel is realized once the Preliminary evidence to this end in R¢16]). Accordingly, a
chain of blobs folds to its coarse-grained target state. Assuniheérmodynamically oriented sequence design does not select
ing this statistical bottleneck to be the rate determining stepf0r the fastest-folding proteins and a reduction in stability
the time necessary for the protein to fold is reduced by th@dmns the pOSS|b|I|ty of increased aCCGSSIblllty. If nature has
factor k(1 Yma)N which is significant even for small val- designed proteins to fold as quickly as possible, we would
ues ofgmay. expect only marginal stability in the native conformation.
The preceding premise might be established by observation
of normal and mutated naturally occurring proteins.

Notably, the bound on manipulating the energy landscape
is independent of protein length; the diversity of protein

In both the thermodynamiddeep well3 and kinetic function grows with alphabet size only. The largelative to
(broad funnel contexts, the extent to which the protein en- ) amino acid alphabet found in nature is crucial to the va-
ergy landscape can be manipulated is limited byInk,  riety of protein function within the cell or in multicellular
whereA is the number of amino acid species ands the  organisms. To the extent that heteropolymer models are in-
compact conformational freedom per monomer. Like squeeztended to provide insight into proteins, their alphabet sizes
ing one end of a balloon at the expense of inflating the othershould reflect this. Elementary representations, such as the
further deformation of the energy landscape is counterbalfrequently studiedH-P models, are not able to effect the
anced by its relaxation elsewhere. thermodynamic and kinetic diversity possible with larger al-

The agreement between the bounds on protein memorphabets.
on the one hand, and the basin of attraction, on the other, was Perhaps most interesting is the increased scope for protein
unexpected. Taken together, these results suggest that the emd heteropolymer function. The discovery that prions fold
gineering of proteins and heteropolymers is constrained by o multiple conformationg17] has extended our notion of
fixed budget. The finite freedom in the sequence can be inheteropolymer behavior beyond familiar protein collapse. We
vested in various attributes: in well number, well breadth,have presented arguments that the energy landscape may,
and well depth. A reduction in expenditure in one allowswithin limits, be tailored to effect other important functions.
increased investment in another. Further discovery of protein mechanisms should prove fasci-

In particular, our results suggest that thermodynamic stanating.

VII. ABILITY TO MANIPULATE THE ENERGY
LANDSCAPE IS LIMITED
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