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Theory of bent-core liquid-crystal phases and phase transitions
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We study phases and phase transitions that can take place in the recently discovered bow-shaped or bent-core
liquid-crystal molecules. We show that to completely characterize phases exhibited by such bent-core mol-
ecules a third-rank tensdri* order parameter is necessary in addition to the vector and the neisetiand-
rank) tensor order parameters. We present an exhaustive list of possible liquid phases, characterizing them by
their space-symmetry group and order parameters, and catalog the universality classes of the corresponding
phase transitions that we expect to take place in such bent-core molecular liquid crystals. In addition to the
conventional liquid-crystal phases such as the nematic phase, we predict the existence of other liquid phases,
including the spontaneously chiral nematN(+2)* and chiral polar Y1+ 2)* phases, the orientationally
ordered but optically isotropic tetrahedraliphase, and a nematfi¢; phase withD ,4 symmetry that is neither
uniaxial nor biaxial. Interestingly, the isotropic-tetrahedratic transitiocoigtinuousin mean-field theory, but
is likely driven first order by thermal fluctuations. We conclude with a discussion of smectic analogs of these
phases and their experimental signatures.
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[. INTRODUCTION less exhibit ferroelectricity and are therefore of interest to the
liquid-crystal display technology.

Liquid crystals are extraordinary systems in that they con- While the study of banana-shaped liquid crystals has seen
tinue to have a revolutionary technological impact and tosubstantial experimental stridgs—3,8, there has been rela-
consistently pose new theoretical challenges of fundamentaively little basic theoretical work on this fascinating new
interest. They exhibit a rich variety of phases with symme-class of materials. Branelt al. [9] presented an exhaustive,
tries intermediate between those of the highest symmetryhodel-independent classification of the symmetry-allowed
homogeneous isotropic liquid and the lowest-symmetrysmectic phases, and Reyal.[10] introduced a phenomeno-
three-dimensional periodic crystal. In contrast to their magiogical Landau model that produces many of the banana-
netic and ferroelectrisolid stateanalogs, whose ordering is shaped smectic phases. There are also a number of numerical
driven by energy-entropy competition, liquid-crystal phasesjmylations[11-15 on systems of model bent-core mol-
transitions are of predominantly entropic origin. Not unre-gqjes that produce nematic phases as well as some of the
lated to this is the fact that, with one exception of the Chira'possible smectic phases. Because so far, experimental ex-
smecticC* phase[1], commonly observed liquid-crystal 55165 of orientationally ordered but spatially homogeneous
phases are nonpolar. It is, therefore, not surprising that Bhasesjiquid phaseq16] are rare, most of the efforts have
recent experimental discovery by Niet al. [2] of ferroelec- focused on themecticphases of t;ent-core molecules. Here
tricity in the liquid-crystal phase ofachiral bent-core - ) ' ’

we will instead focus on spatially homogeneous phases,

(banana-shapednolecules has captured the attention of the

liquid-crystal community. Subsequent light microscopy stud-WhiCh we will refer to asliquid phases, the understanding

ies by Link et al. [3] elucidated the molecular organization @"d classifying of whose phase behavior is in many ways a
of the newly discovered phase. They convincingly demonPrerequisite to the study of more orderéelg., smectic
strated thatwhat came to be known athe B, phase[4] is phases, which in addition break translational symmetry. We
an antiferroelectric smectic-phase in which layersponta-  Will take advantage of the formal developments and analysis
neously break chiral symmetry(with chirality alternating presented in this paper for the liquid phases in our studies of
from layer to layer and exhibit polar order in achiral mol- Smectic phases, which we defer to a future publicafibr.
ecules. Eight distinct phases of bent-core molecules, tenta- The first primary conclusion of our work, which forms the
tively labeledB; to Bg have been identifiedl5,6], though  starting point of all further analysis presented here, is that a
most have not been fully characterized. Two of the most welthird-rank traceless symmetric tensor order paranietérin
studied,B, and B, are smectic phases consisting of stacksaddition to the usual nematf@" and vectomp' order param-

of fluid layers with some internal tilt order, and are specialeters, is necessary in order to capture the orientational order
because they can be switched with an electric field. A mateobserved in experiments on banana-shaped molecules. With-
rial composed ofchiral nematogens having a ground state out introducing such an angular momenturs 3 order pa-

that is ferroelectric andiomogeneouslghiral has also re- rameter, only structures which hae¢ least G and mirror
cently been discovered7]. This experimental discovery symmetry, such as, e.g., the biaxial nematic can be captured,
opens up a vast new class of achiral molecules that neverth&ereby precluding a first-principles order parameter descrip-
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TABLE |. Anisotropic liquid phases of banana-shaped mol- o
ecules, their symmetries in the Schoenflies notation, and their non- &
vanishing order parameters. The notatm, etc., is explained in Q
the text. Some of the phases, such asNReV phase can be char- 3
acterized by other sets of symmetry equivalent order parameters,
involving, for example, linear combinations @f; and p, rather o
thanp, alone. d
Phase Symmetry Order parameters o
\Y, C..p ps, S, T, q
N D.., S A
N+2 D2h S, él,Z Q
N + 3 D 3h Sx -|22,3 g:=|-||7
T T Te NOBOW: X — 152°C — B4 — 155°C — B2 — 173°C — |
NT D2d S, T6,7
(Nt+2)* D, S, By, Tg, Ty FIG. 1. Chemically accurate model of a bent-cqbanana-
V+2 C,, ps, S By, T, Tg shaped NOBOW molecule studied in Refg2] and[3] that displays
or p;, S By, T, T, isotropic, B,, B4, and crystal(X) phases. Instantaneously, a mol-
V+3 Ca, D s T. T ecule can be found in a chiral nonplanar configuratasshown on
" o = b 28 . the righd, but fluctuates equally between positive and negative
(V1+2) C, ps, S By, Ti, Tg, Ty Cs : .
chiralities, on average is planar and therefore achiral.
or pg, S! Blr T21 T41 T5
N+V Cin P, P3, S Bi, Qg

three order parameters in Sec. IV and analyze the nature of
the complicated web of phase transitions that it predicts in
Sec. V, finding full consistency with our general group-
tion of, for example, the most interesting spontaneously ortheoretic analysis. In Sec. VI, we briefly discuss possible
deredchiral phases. smectic phases that could result when smectic ordering de-
As we will demonstrate in great detail, once this higher-velops in the various liquid phases we identify. We conclude
order order parameté’[jjk is introduced, acomp|ex Wduis_ with Sec. VII by SUmmariZing our results and diSCUSSing
played in Fig. 7 of possible liquid phases emerges and, astheir relevance to future studies of smectic phases and to
sociated with them, a very rich phase behavior. Many ofeXxperiments.
these phases exhibit exotic symmetries summarized in Table

Ty, T2 T4 Te

[, including D,y, D,, andC, symmetrieq18], which have II. SIMPLE MODEL OF BANANA-SHAPED LIQUID

not to our knowledge been previously identified in spatially CRYSTALS: ORDER PARAMETERS

uniform (i.e., liquid) states. These anisotropic liquid phases

are distinguished by the nature of th&it¥ ordering. The As is clear from a chemically and geometrically accurate

diversity in phase diagram topologies originates from a largénodel of a bent-core molecule, shown in Fig. 1, the most
number of symmetry-allowed transition sequences betweenotable characteristic of banana-shaped molecules is their
many of the phases that exhibit some nontrivial combinatiori V" shape with bent,(on averagg planar and therefore
of the p', Q', and/or T'X order parameters. Some of the achiral cores. This shape earned such molecules a name
orientationally ordered liquid states that we predict are thébow” shaped. The molecule is characterized By, sym-
spontaneously chiral nematidN¢+2)* and chiral polar metry, defined by a nonpolar directiaqg (the “string” of the
(Vr+2)* phases, an optically isotropic tetrahedrafic ~bow), pointing from one endpoint of theV” to the other
phase, and a nemath; phase, withD,4 symmetry, that is and an orthogonal polar axig (the bow's “arrow”), point-
neither uniaxial nor biaxial, but rather exhibits a fourfold ing to the vertex of the V,” as illustrated in Fig. 2.
improper §,) rotational symmetry about its nematic axis. We can, therefore, expect the molecule to be characterized
The paper is organized as follows. In Sec. Il, we present &y both even- and odd-rank symmetric, traceless tensors with
model of a banana-shaped liquid-crystal molecule. By conthe preferred axis of odd-rank tensors along the moleaylar
sidering mass moments of molecules with this shape, we ar@xis. We can capture these molecular features by a simple
naturally led to introduce the three important order paramthree-atom rigid bond model of the banana-shaped molecule
eters,p’, QY, and T'¥, that are necessary to fully describe illustrated in Fig. 2.
anisotropic liquid states into which such molecules can mac- As just discussed, associated with each banana-shaped
roscopically order. In Sec. Il we then catalog all thermody-moleculea is a body-fixed orthonormal coordinate system
namically distinct liquid phases characterizable by thesavith unit vectors ¢,,, v,,, v,3). MolecularC,, sym-
three order parameters. We organize these phases accordimgtry implies invariance under the reflection operations
to symmetry groups under which they are invariant andv,;——v,3 and v,,——w»,, and the m-rotation (about
present an exhaustive list of phase transition sequences at ;) operationv,,——v,,, v,3——V,3, but not under
lowed by symmetry. We construct a Landau theory of thethe reflectionv, ;— —w», ;. In this body-fixed frame, the
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3
la— 21 mﬂri,/l,ria,/l, (24)
=

and a third-rank symmetric, traceless tensor

3
cg';zz m, [, bk, (2.5

Z

1.2 ij K Ky i Kip
< —5r5 (&g &%, 46 DI
(2.6)

FIG. 2. A simple three-atom model of a banana-shaped molrpoqo 1ass moment tensors can be expanded in terms of

ecule and a body-fixed orthonormal coordinate system, Captu”n%omplete sets of tensors of the appropriate rank formed from
the molecule’s characteristic, achi@b, symmetry.
the vectorsy, ;, v,,, andwv, 3,

three atoms’ coordinates are given by i a:Cﬂ/ia L (2.73
Ra1=(acosp)va s, (213 CY = C2sQl 3+ C QL1 —QlL o), (2.70
Ra2=—(asinB)v,s, (2.1b CY¥ =gy TN + ¢TI, (2.79
R.3=(asinB)v,s, (2.19  Where

where 28~120° is the opening angle of thev” [15], as Q'i A= ,,a a,,a a— 55'1 a=1,2,3, (2.9

shown in Fig. 2, and with the origin located on thg; axis, 3

half way betweem masses. As is the case for standard nem- 1

atogens where transitions are driven by.entrop|c interactions, Tl]k v lVJa 1V|; - _( Sy 1+ 5jkylayl+ 5kiVL’l),

we expect that the dominant ordering mechanisms of

banana-shaped liquid crystals will be associated with the (2.99
shape of the molecule and not with electric dipoles. We, ik _ J Dk Pk
therefore, focus on the mass-moment tensors as the impor- Tao= Va 3Va, 3Va 1T Ve 3V0,1Va 3T Va,1Va 3V a3

tant order parameters for this problem. That is, throughout 1

the paper we will assume that the liquid-crystal ordering is ——(4 Vﬁ 1+ 5ikyia 1t 5“1/{1 1), (2.9b
driven by steric interactions and, therefore, that it is the S ’ ' '

massmoment tensors, rather than charge moments, that are. |

the primary critical order parameters.

The lowest order mass moment is just the center of mass 2mmya® cosB(—m;+2mcos 28)
given, in terms of the body-fixed coordinate system, by C1= (2m+m,)? , (2.109
1
Rém= 2 MuRa, (2.29 Coz=2ma’siff— ——— o 2 cogB,
M 2m+m, 23 2m+m;,
(2.10bh
“2m+ mlaCOS'B) Val: (2.2 Cop= 2m+mla 2cogp, (2.100
It is natural to define mass moments relative to the center of 2mmy(m2+ 4m?)
mass coordinatdR,. Positions of atomu relative to the Car=— +1 +—a°cos B, (2.100
center of mass are then ,=R, ,—R¢y,. The second mass- (2m-+my)
moment tensor relative to the center of mass can be decom- Am2m
posed into a scalafproportional toé") and a symmetric, Cao= 2m+ml a®sir? 8 cosp. (2.10e

traceless tensor
There are only two independent symmetric-traceless molecu-

i 1o lar ters in the s, , b th let -
cl = [l _ 2 i parameters in the s, , because the completeness re
E M| 1l Srewd|. 2.3 lation,
. ) 3
The third mass-moment tensor can be decomposed into a > vil=4i, 2.19)
vector part, a=1
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implies the constraint Jizj: @(mimj_w)’ (2.14b
3 . - A
S Qi —0 (212 JU=/1/2(n'mi +m'nl), (2.149
= R ' '
I = J12n'li+1nl), (2.149

For arbitrary orientation of the axaes, ,, a given molecule
will in general exhibit five independent symmetric-traceless Ji= JI2(mil +1imi), (2.148
tensor mass moments. However, because we have chosen
these axes to be symmetry axes of the molecule, there aegd
only two independent tensors. Similarly, a given molecule
will in general be characterized by seven independent th|rd
rank mgass moment tensors. By u){lllzmg three F;otatlonal de ‘/_2[ ninf- 5”nk+ dn'+8nl) |, (2.153
grees of freedonte.g., Euler's anglesit is always possible
to choose the axes, , so that there are only four indepen- i 1 i
dent such tensors. Our model of a bent-core molecule is sufl3" =5 (m'm/m=mPFE=m T =m),
ficiently simple, that, with our convenient choice of basis (2.150
vectorsv, ,, each molecule is characterized by only two
nonvanishing third-rank tensors. _ _ o
The potential energy of interacting bent-core molecules !4 :—(l k= 1Tmim* = P m*ml = 1*m'm)), (2.159
can be expressed in terms of the generalized temﬂpgs
QY ., andTU* and higher-rank tensors. In the phenomeno- . o o .
logical treatment we will pursue, it is convenient to introduce 4° \/5/12{ m'nin“+m/n“n' + m“n'n’
coarse-grained field versions of these tensors,

1 o )
A 1 . — —(m &K+ mi K+ mKks'l } 2.15
p'(x)=;2 vl 18(X—X,), (2.133 5 ) (2159
y 1 ) gk=\/5/12{I‘njnk+Iinkn‘+lknini
2<x>=;2 QU L8(x—X,), (2.13
1 )
1 ——(|'5Jk+|15'k+|k5”)} (2.150
ik oy — ijk o 5
T 0= > T S(x—X,), (2.13¢9

wherex, is the position in the lab frame of the center of 'gk:_e[nl(m]mk_Illk)“LnJ(mlmk_lllk)

mass of moleculer andp is the molecular number density.

Thus, a theory for our model bent-core molecules that in- +nk(mimi=1111)7], (2.15H

cludes all tensor order parameters up to those of third rank

would include a single vector order parameter derived from 1 . o o

the third-rank mass-moment tensor, two second-rank tensord}=—=(n'mi*+n'lim*+m'lIn*+m'ni|®

and two third-rank tensors. To simplify our discussion, we

will consider phenomenological theories with only one + 1 nimK+1'mink). (2.159

second-rank tensor, which we den@®, and one third-rank

tensor, which we denof&'¥. This, however, is not a restric- These tensors are normalized so that

tion on our model, because if the original theory had all four

second- ari1d thirdjr:;\nk tensors, we could, for example, inte- S gigl =5, (2.163

grate outQJ andT{" order parameters to obtain our model ]

as an effective theory, depending only pn Q'=QY, and

Tik=TU¥ order parameters. . _ S jiikgik_ 5 (2.160
Each of these tensors can be expressed in terms of its koMo Hott

components relative to a space-fixed orthonormal basis

(ny,n,,ng)=(m,l,n), with mxI=n. To this end, we intro- We can now express our order parameters fields(E¢3,

duce second- and third-rank symmetric-traceless orthonofn terms of these bases

mal basis tensors]" andlIJk that transform, respectively,

underL=2 andL= 3 representations of the rotation group in pi:E pMniﬂ, (2.173

three dimensions,

"—\/_Z(n ni— 5'1) (2.143 Q=2 Q,JI, (2.17b
I
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N ) Tk, Some of the phases, however, particularly those of
Tik=2 T, Ik (2.179  |ower symmetry, require two or more of these order param-
. eters for their full description. Furthermore, these order pa-
The space-fixed orthonormal basis,(,n) can be rotated rameters are coupled by rotationally invariant contributions
. . i i ik eani n O ijikljkl ijkTijk
to diagonalize the tensop®, Q'/, andT'X. In general, there to the free energy like'p’Q", QT™ T, or p'Q'*T"*, and
is no reason why the rotated bases of these three order pthe existence of one kind of order induces another. Thus, for
rameters should coincide. We should, therefore, in gener@xample, a model based ai alone would miss the fact
introduce three basesn(,l,n,) whereAec{p,Q,T}. Any that the lower-rank tens®'! is automatically induced by,
of these bases are fully specified by three angles, and we cander.
choose them to eliminate up to three components of the ten- Table | lists the phases we consider, their symmetries, and
sorsQ'l and T, In particular, we can choose the two inde- the nonvanishing order parameters that characterize them.
pendent angles ing to eliminateQz andQ,. This leads to  This list includes phases with all symmetries that can be
constructed from the order parametefs Q', and Tk ex-

Q”=S(niQng—1 ii)+31(mime_|iQ|J§) cept for the lowest-symmetry phase with; symmetry
3 [33,34], which we do not consider. All other point-group
+Bz(miQ|J§+|iQqu)_ (2.18 symmetries including cubic, icosahedral, simple tetrahedral

(T), and even lower symmetries such &s, C;, and C,,
The independent angle defining the direction of the paicannot be characterized without the introduction of fourth- or
(mg.lg) can be used to eliminate eithBy or B,. A similar  higher-rank tensor order parameters. As is customary, we de-
line of arguments allows us to choose the basis (1,n;)  note the isotropic phase dyand the nematic phase by.
so thatT;=T,=Ts;=0. We can parametrize the four remain- The N phase ha®., symmetry, and it is completely char-
ing components of /¥ in terms of an amplitud@ and three  acterized within the space @f, Q'l, andT'¥ by the single
angles,f,, 6,, and#; and write uniaxial order parameted. In general, theN phase will also
. N . . have nonvanishing components of all even rank tenjsots
TK=T(coso, 1+ sin 6, cosd,l 3* +sin gy sin g, cosbz1  plicitly induced through TrQ"T,,) coupling, but we will
. . : ik ignore them, focusing on the nontrivial order parameters of
+siné;sinf,sin6317"), (2.19 rank 3 or less that actually drive the ordering transitions.
There is a phase with vector or, equivalen@y,, symmetry,
which we denote by. The predominant order parameter of
this phase is the vectqr, which we take to be along (i.e.,
nonzerops). Onceps orders, it explicitly induceS and T,
order parameters, through thép/p*T' and p'p'Q" cou-
plings, respectively.
p=pn, . (2.20 There are a number of phases in which anisotropy devel-
P ops in the plane perpendicular toor p. As we will find in
In what follows, we will, unless otherwise specified, expressS€c- V; phases that break uniaxial symméisptropy of the
all quantities in the basisnfq,lo,ng)=(m,l,n) that diago- transverse plar)eW|II'exh|b.|t Q(Z) invariance correspond-
nalizesQ'l with B,=0. We will then have to worry about the INg to internal rotation within pairs of order parameters.
possibility of seven independent componentsTof and ~ For convenience, we will coIIchver refer to thesg pairs
three independent componentspfin this basis rather than as: p; ;=(pP1,P2), B12=(B1.,By), T23=(T2,T3), Tss

in the basis ft,l+,n). There are other representations of
the general tensof'* involving other sets of four of the
tensors /¥ and a different set of three angles. The represen
tation of Eq.(2.19 is the most useful for our purposes. Fi-
nally, we can choose the basis so that

the angles of thel and p bases relative to those of thg  =(T,,Ts), f6’7E(T6,T7)_ Also, following Toner[19], we

basis. WherQ'! is zero, we can of course choose ther the  denote the phases withfold anisotropy (or equivalently

T basis. r-atic ordej in the plane perpendicular to by N+r and
those with similar anisotropy perpendicular to the vector axis

IIl. PHASES AND THEIR SYMMETRIES p by V+r. There is the standard biaxial nematic Mt 2

We have just seen that phases of banana-shaped mdiiase WithDZh, symmetry ands andB, , ord.er. .There Is an
ecules can be characterized by vector and second- and thirbl+ 3 Phase witlD 3, symmetry and nonvanishirgandT 5
rank tensor order parameters. Before developing a Landa@fder. TheV+2 (equivalent to theN+1 phas¢ andV+3
field theory for these order parameters and analyzing it iPhases haveC,, and Cs, symmetry, respectively. Th¥/
mean-field theory, we summarize in this section the various™ 3 Phase develops from ti+ 3 phase by developing vec-
phases and their symmetries that can arise from these ordél" order along the axis. It, therefore, hap; and T, order
parameters, and we review possible phase sequences pro-addition to theS and T, ; order of theN+ 3 phase. The
duced by the simplest version of the Landau theory. V+2 phase has one twofold axis and two perpendicular re-

Before cataloging the possible phases of our model anélection planes. Which order parameters describe this phase
their symmetries, we observe that many of these phases caepends on whether the vector orgelies alongn (which
be successfully described in terms of effective theories thatliagonalize®") or perpendicular tm, within them-| plane.
are functions of only one of the order parametgrsQ", or  If p is parallel ton, the V+2 phase is characterized by
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FIG. 3. Schematic representations of teN+2, N+ 3, V, and
V+2 phases. Three versions), (b), and(c), of the N phases are
depicted with respective predominant alignmentgf »;, and v,
along n, specifying the direction of the principal axis @ with
the largest eigenvalue. THé+2 phases(d), (e), and(f), are ob-
tained, respectively, from the phasega), (b), and(c) by restricting
rotations in the plane perpendicularrtdo have twofold symmetry,
whereas theN+ 3 phases(g) and (h), are obtained by restricting

these rotations to have a threefold symmetry. In the uniaXial

phase(i), the moleculamw, aligns on average along]|n, sampling
equally all orientations about the axis. TheV+2 phase can be
produced either by introducing biaxial order perpendiculgy tind
n into the V phase(j) or by introducing vector order into thd
+2 phase by aligning alongm (k).

nonvanishingps, S By, T1, and Tg or by a symmetry
equivalent set such a3, S B,, T4, and T,, where it is
understood here that; is zero if By is nonzero andlg is

zero if B, is nonzero(otherwise spontaneous chirality devel-

ops, as discussed belivif p is perpendicular tm, then it is
characterized by nonvanishir@lyz, S By, T,, and T, or
symmetry-equivalent order parameters.

Schematic representations of tNeN+2, N+3, V, and

PHYSICAL REVIEW E66, 031704 (2002

is impossible to produc¥ + 3 symmetry if the moleculap;
axis is rigidly aligned along. To produce such threefold
symmetry, it is necessary for the moleculer axis to be
tilted away from the the axis and for its projection onto the
plane perpendicular tp to have threefold symmetry.

A comment about hovf2,3 order describedl+3 (andV
+3) symmetry is usefult-atic order is generally described
by an order parameter of the for(e'"?), where ¢ is the
angle between a molecular axis in thel plane and them
axis. To represenfz,g order in this way, we introduce the
circular basis vectors,

1 .
ei—ﬁ(m_ll), (3.1
(i=-1) satisfying
e.-e_.=1, e,-e,=0, e_-e_=0, (3.2

and reexpressi® and14* as

. 1 . - R .
=T, =t @y

72 2

Then Tl UK+ Tl k=T 1%+ T_1'k  where

1 . i Al ok Tijk
Ti=—2(T21|T3)=eteJieiT” : (3.9

v

If vy is aligned alongn, thenT. =(e*'3¢), where¢ is the
angle betweemw; andm. Whenw; is not aligned along, the
situation is similar, though more complicated. Thus, nonzero

f2,3 describedriadic order in the plane perpendicular to
We will also briefly encounter even lower symmetry phases,
in which, in contrast to th&l+r andV+r phases discussed
above, the additional order develops in a plane thatat
perpendicular to the established nematic or vector axis. One
prominent example is a phase in which the nematic and polar
orders are neither parallel nor perpendicular. We will refer to
this C1-symmetry phase ad+V, emphasizing its distinc-
tion from theN+1 (=V+2) phase, discussed above. Al-
thoughN+V phase(and itsN+r +V analog$ is quite un-
likely to develop in the liquid state, such order can quite
naturally appear in the smecti@-environment, where the
additional axis is defined by the smectic layer-noriNal

There is only one phase in W_hiéIHJk has a nonvanishing
component and in whictboth g and Q" are zero. This
phase, which we denote Byand call tetrahedratic, has tet-
rahedral symmetry and is invariant under all 24 operations of
the tetrahedral groujpy [18]. It is characterized by an arbi-
trary nonvanishing linear combination @f andT-, i.e., by
the 'Iz6,7 order parameter, and is illustrated in Figga)dand
5(a).

A uniaxial distortion along one of the three twofold tetra-

V+2 phases derived from bent-core molecules are shown iReédral axes reduces thg; symmetry of the tetrahedratic

Fig. 3. The distribution of molecular angles in thét+3

phase down td,4 symmetry. We denote the resultimgn-

phase is difficult to depict in the format of Fig. 3. Because ofPolar phase with this symmetry b}y . Itis characterized by

the symmetry of the bent-core molecule unagr — w3, it

nonvanishing nemati& and f6,7 order parameters, but it is
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FIG. 4. (a) A tetrahedron that exhibits symmetry identical to that
of the tetrahedratid@ phase, with all three axes of the culbem,|
equivalent. TheT phase can be visualized as being composed of
banana-shaped molecule tetrahedral complexes on average decorat
ing edges of randomly positioned but orientationally ordered tetra-
hedra as shown in Fig.(8. (b) A tetrahedron uniaxially distorted b
along then axis, exhibiting symmetry of thél; phase, that is ( )
distinguished from thel phase by the nonzero nematic order pa-
rameterS A depiction of this phase in terms of banana-shaped
molecules is shown in Fig.(B)

FIG. 5. Schematic representation in terms of banana-shaped
molecules of(a) the T phase,(b) the Ny phase, andc) the (Nt
+2)* phase. In thd phase, bent-core molecules align locally with

. o o ) = ) their v; axes aligned on average along the six edges of a tetrahedron
neither a uniaxial nor a biaxial nematic, wiify ; breaking  and theiry, axes aligned parallel to the normatam, 1, and+n
the isotropy of the plane transverse itp as illustrated in  to these edges. Opposite edges @ay with normals along and
Figs. 4b), 5(b), and Ga). —n) orthogonal so that molecules aligned along opposite edges

The V+2 phase withC,, symmetry naturally emerges have perpendicular, axes. TheN; phase is obtained from tHe
from the Nt phase through the development of longitudinal phase by a uniaxial distortion along one of the cubic axes as shown
polar orderp=p3n along the existing nematic axis. As we in Fig. 4 to favor one pair of crossed bent-core molecules over the

will see in Sec. V, oncg; develops in the presence 73&7, other two orthogonal pairs. Note the invariance of tte phase

biaxial orderd ith princioal llel to th f under the fourfold improper rotatiols,:m—I,|——m,n——n.
a Diaxial orders, , with principal axésparallel to those o The chiral nonpolarN++2)* phase is obtained from thé; phase

Ten' is explicitly induced. Our final two phases, which we py rotating the two molecular planes away from 90° to an angle
denote by Ny+2)* and (V;+2)*, respectively, hav, 0< §< /2 to remove thes, symmetry element, as also illustrated
and C, symmetry. They are unique in that they are spontain Fig. 6.

neouslychiral phases. Th@onpolar chiral(N;+2)* phase . .
; P : (Nt+2)* and (V++2)* phases are chiral, their ground-state
depicted in Figs. &) and @b) is formed from the nonpolar configurations will exhibit spatial modulations like those of

achiral Ny phase by the development of biax@l , order  cpojesteric and blue phases of chiral mesogens.

(butin contrast to the polar achirgl+2 phasgwith princi- Given theachirality of the bent-core molecules, the tran-
pal axegotated exacthby 7/4 relative to those of th@%n' sitions from Ny to (Ny+2)* andV+2 to (V+2)* are
order parameter, which characterizes e phase. More ones in which chiral symmetry is brokepontaneouslyand
concretely, for the choice of the basis|, such thatN; is  they are, therefore, relevant to the physics of chiral banana-
exclusivelydescribed by nonvanishirgandT, order param-  shaped phasé8]. Figure 7 summarizes the phases we treat
eters, the polar achira/+2 and the nonpolar chiralN;  @nd the symmetry-lowering transitions among them tzat
+2)* phases emerge wheBy, and B;, respectively, order; take place, i.e., allowed by symmet(gis opposed to ener-
equivalently, if it is the nonzer§andTg that areexclusively ~ 9€ti0 considerations. The fact thdl,, is a subgroup of

used to describe thi; phase, then the roles &, andB,  C=v (C20CC.,) implies that there can be & —V+2
are reversed and transitions ¥0+2 and (Ny+2)* take symmetry-lowering transition. The subgroup structure

place whenB, and B,, respectively, become nonzero. The D,CD24CTqCO(3) and G, C DgrCO(3), where O(3) is

polar chiral (/7+2)* phase emerges from the nonpolar chi- the full orthogonal group including inversions in three di-

! mensions, imply, respectively, that the—T—N;— (Nt
ral (Ny+2)* phase via development of polar ordey along +2)* andl—-N+3—V+2 phase sequences are possible.

the existing nematia axis. _ Other phase sequences shown in Fig. 7 follow from similar
Alternatively, a transition to it can also take place from groyp-theoretic arguments, and are supported by the detailed
the polar achiraV +2 phase by spontaneously breaking chi-analysis of the Landau mean-field theory given in Sec. V.

ral symmetry via development of biaxieﬁlz order with
principal axesrotated exactlyby #/4 from those of T 'g,k7ni
order parameter. Not surprisingly, in all the polar phases the Having identified the possible spatially homogeneous but
T, order parameter is also explicitly induced. Since both theanisotropic phaseg20] of systems described by first-,

IV. CONSTRUCTION OF A LANDAU FIELD THEORY

031704-7
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N+3:Dy,, NrD,y,;

B(S)

>

i . x
T A é v+2:Cy, |B & | v#3:0y, | [Vr+2*D,

puTpTy s 2
7 pS’BZ’ Tl’ T6
01810374, Tg

N+V:Cy, (Vr+2%:C,

bottom:

+ +

FIG. 7. A flowchart of phase transitions between liquid-crystal
phases illustrated in Fig. 3. Order parameters, which become non-
zero at each of the transitions and their symmetry groups are indi-
cated. For transitions that we have studied in detail, we have also
indicated the secondafegxplicitly induced by nonlinear couplings

4& I % % order parameters by placing them in parentheses.
The purely second-rank tensor part fofs the well-known
_ _ _ Landau energy for isotropic-nematic transiti@1,22, given

FIG. 6. Various representations of the achiNg (a) and the by

chiral (Nt+2)* (b) phases. The two phases are distinguished by

their opening anglé. In the achiralN; phase, 6= w/2, whereas in N . N i A ik~Ki
the chiral N;+2)* phase, & 6< /2. fo=3Ka(dQ" 3Q") +3roQ" Q" —wpQ" Q™ Q

+ug(Q1Q1)2, 4.3

front: side: front: side:

second-, and third-rank tensor order parameters, we now turn
to the study of phase transitions among them. To this end we
begin by constructing a Landau free energy that will describe
transitions from the isotropic phase. The appropriate Landau . ik o ik 2 1o Tiikerijk ki, 2
free energy functional is a rotationally invariant power-series fr=2Ke(@ TR T + o1 THTH A un(THTH)
expansion in the order parametefs QY, andT'X. The most +p TiiziaTidlaisTizial6Tiaisis, (4.9
general Landau free-energy density is produced by sums of

scalars formed from the tensops, Q'/, and T'X. It can be
decomposed as

nd the purely third-rank-tensor part fois given by

In the above expressions we have suppressed the position
dependence of order parameters, have used an Einstein con-
vention for the repeated indices, and have left out the dipo-
f=fptfotfrtfootfprtfortfoortfoerz, (4.1  larlike (“space-spin” coupling gradient tgrmsﬁiQ'ijQJk,

and g; T'v*9; T'2¥, that couple internal indices @" and

wheref,, fq, fr are, respectively, the Landau energiesTijk to that of the spatial coordinate Although this last

for independent vector, second-rank, and third-rank tenso?implification. might moqlify the'asymptotic hature O.f the
order parameters and the other energies are couplings b hase transitions, it obviously witiot affect our mean-field

tween these order parameters. The vector enéydy given !scussions, valid outside of (&pically) narrow critical re-

by the standard O=3) model, gion. The parameters,~T—T,, ro~T—Tg, andr~T
— Ty vanish at the temperatur@s, Tg, andT+, which are
determined predominantly by the interaction potential be-

fo=3Kp(9;p)(d;p") +3r,p'p'+up(p'ph2 (4.2 tween molecules, that characterize mean-field limits of meta-

031704-8
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stability. In writing down quartic nonlinearities ity andf+, tion from each of the phases in Fig. 7. Thus, we will first
we have used the nonobvious relatigualid in three dimen-  discuss transitions from tHephase to th&/, N, N+ 3, andT
siong phases. We will then study transitions from each of these
. phases, that is, from thé N, N+ 3, andT phases into lower-
L AiiAIN2— (i AikAKl Al 4 symmetry phases and so on until the lowest-symmstry
Z(Q QY7=QIQTRTQ, (4.53 +3, (V1+2)*, andN+V phases are reached.

In our discussion of transitions out of various partially
ordered phases, it will be useful to display explicitly the part
of the free energy functiondlthat couples the order param-
o etersp', QY, and T'%, which identify our phases. This cou-
+Thi2sThlalsTi2l4l6T!slsle, (4.5 pling energy part, which we collectively cdi}, arises from

3 4 4
to reduce the number of quartic couplingsfig from two to the Q% and Q parts offo, from tr(lgT 2:3?( OffTitZr;d
Q212 -

(1)
one and inf; from three to two. The lowest-order contribu- from foo. for. Tor. foor. fozre, foore, )
tions to the coupling energies are termines those order parameters that are coupled at harmonic

order when long-range order has been established in a subset

%(TijkTiik)ZZ LS UELSE IPLYS IPLE

foo=—Wyop'p'Q, (4.69  of order parameters, and it is, therefore, essential in estab-
o lishing the nature of the phases and phase diagrams for our
for=—w,rp'p! pkTK, (4.6b  system.
fQT= _WQTQilizTiljkTizjk, (46@
A. Transitions from the isotropic phase
_ i yikTijk
foQT=—Wprp' Q™ T, (4.60 The isotropic phase is the phase with the high€xt3)]
itk symmetry. A symmetry-lowering transition to thé phase
fQZTZ_ —w,QEQET T2, (468 \ith vector symmetry takes place with the developmeng of
@) T order and one to théN phase with the development of
fozr2= —W,Q11Q 22T T 212k, (4.6)  uniaxial Q" order. As Figs. 7 and 12 indicate, the develop-
S ment of T’ order in the isotropic phaske can lead to two
szTz— —wzQ'r2QlulzTiakTial2k, (460  distinct phases: the tetrahedral phasaith T ; order and

the N+3 phase with uniaxiaQ'/ order in addition toT
(n) 2,3
where we have decomposégzrz asSp_ifqzr2. The term e Ay long length scales, small fluctuations within the

p'Q*T deserves special attention. If the proné'fT”k isotropic phase are described by a harmonic free energy
nonzero this term will induce vectgp' order. Thus, it is density

possible to have a transition from thiephase that appears to

be driven byT'% but which nonetheless dgvelops vector or- TH= %(rppipur rQQiiQiJ +rTHkTiiKY (5.1)

der. In other words, a model expressed in termQ8fand

Tk, only, would miss the development of vector order,

which by itself is unlikely to order in a realistic liquid crys- Thus, which of the fieldp', Q', or THX first becomes un-

tal. stable is determined by which of the set of parametgrs
As usual, the average properties are computed by integrat={r,,,ro,r 1} first passes through zero. Some of the transi-

ing over order parameter configurations with a Boltzmanrtions from thel phase are, however, first order, and which of

weight with an effective Hamiltoniaf{= [d>xf, the possible transitions actually takes place depends on

higher-order terms in the free energy. We will thus consider

each transition separately.

ijk

<0>: %J DpIDQIJDTIIkO(pI,QIJ ’Tijk)e—H/kBT,
(4.7) 1. -V transition

where(’)(p QY, Ty is a function of the order parameters
p', Q, andTIJk and Z is the partition function.

V. PHASE TRANSITIONS 3D:

In the preceding two sections, we defined order param-
eters, identified possible rotationally anisotropic, but spa-
tially homogeneous thermodynamic phases of bent-core mol-
ecules, and constructed a Landau theory to describe phase
transitions among these phases. In this section, we will show
how each of the phase transition sequences depicted in Fig. 7
arises in mean-field theory. We will organize our discussion
by considering sequentially each symmetry-lowering transi-  FIG. 8. A schematic representation of the:V transition.

|

fop:

O(?
ONv
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The | -V transition is driven by the development pf  sibility of two distinct transitions, theé —T and thel —=N
order. Sincep is a vector, this transition is in the well-known + 3 transition[27]. Since it is fluctuations i that drive
O(3) universality class; it can be described in terms of arnthese transitions, the noncritical degrees of freedpmand
effective theory involvingp only (Fig. 8. Below this Q' can safely be integrated out to produce an effective
second-order transition, we can tajgeo point along the 3 theory involving only T whose free energy is identical in
direction with form to Eq.(4.4). This is the energy that we will use to study

~r =1 o 5.2 transitions from the phase involvingT'* order. We will,
Pa~ITp™ Fpe ' ' however, have cause to return to the more general theory in
and Bo(3)~0.366, where . is the value of , at the critical our d|scus_,S|on of thé— N+ 3 transition. Ther_e are two im-
point. Oncep develops, it drives botS andT, order via the ~Portant things to note about the free enefgyin Eq. (4.4).
i i First, in contrast td o, this energy has no odd-order invari-
interactions Q } ,
ants because none can be formed with a third-rank tensor,

2 ) Tk, Second, there are two fourth order invariaf®y],
foo= —§Wpr3S, (53 which as we shall see, compete in the determination of the
symmetry of the order parameter that develops from the iso-
2 tropic phase. In the limit of vanishing; coupling, f; is
for \[gprTpng, (5.4  invariant under the operations of the group7(, as can be

seen by reexpressing with v1=0 as
so that in mean-field theory24]

S~|r,—ry?Po), (5.59 1 .
P Tpe f?(7)=ErT|T|2+uT|T|4, (5.6

Ty~ rp=rpc 300, (5.5b

for r,<rpc in the V phase. . _ _ _
whereT is a seven-dimensional vector with componehts
2. 1—N transition defined by Eq.(2.179. Because the underlying O(3) sym-

metry of our system is lower than(®), with T'* forming its
seven-dimensional irreducible representation, it is not sur-
prising that the full free energy isot O(7) invariant. The ¢
quartic term, explicitly breaks the O(7) symmetry and deter-

3D: - . mines which of the seve, irreducible components aF'

‘v order at the transition from the isotropic phase.
To determine which components order, it is convenient to
use the alternative representationTd¥ given by Eq.(2.19.
In this representation we have

top: _
1 2 4
fTZErTT +UTT +fl)-|—l (57)
FIG. 9. A schematic representation of the:N transition.

Thel—N transition is driven by the development@f  with
order from the isotropic phase. There are no couplings that
explicitly drive eitherp' or T'¥ order onceQ'! order devel-
ops (Fig. 9. Consequently, this well-studied transition vrT?
[21,22, which is described completely by ttig part of the f,.= 150
free energy density, is generically first order and in mean-
field theory takes place ab=wé/12uQ. A direct transition
from the isotropic to the biaxial nematidN(+2) phase is
also possible. Since it is fairly complicated and has been
treated in detai[23], we will not consider it further here.

15
9codh,+ 75“’]2201(1-!-2 cos 2,)

+25sirf 6, sin“az}, (5.9

breaking the O(7) invariance & . fUT (and thusft) has an
3. Transitions from I driven by 1% O(2) invariance, which, through our choice of parametriza-

Transitions from thé phase involving the development of tion of T/, Eq.(2.19, is manifested by, 's being indepen-
third-rank tensoi{26,27] order are more complex than the dent of 6;. Thus, finding the minimum-energy state requires

other transitions from thé phase we have considered. The the minimization off{(#,,6,) over two rather than three
many degrees of freedom in tiH&* tensor lead to the pos- angles.
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a. |-=N+3 transition

FIG. 10. A schematic representation of the N+ 3 transition.

Following standard analysis, fary>0 we find that the
global minimum ofoT(al,ez) at fixed T is given by

. T
o=, (5.93

gTn=0, (5.9b

which corresponds to a state with

PHYCAL REVIEW E 66, 031704 (2002

0""=arccos\5/8, (5.133
- o
05"=. (5.13b
It corresponds to a state
ih_ L ijk ijk
T—7§6u+ﬁuL (5.14

which is equivalent tari =T1J% | Eq.(5.10 aftern andm

are interchanged. Clearly then this solution also represents
the N+ 3 phase, but with the nematic axis alongrather
thann, and the triadic order in the-I plane.

b. | =T transition

FIG. 11. A schematic representation of the T transition.

Whenv <0 the global minimum ofUT( 0,,0,) at fixedT
is given by

Tii=Tal 3%, (5.10
i.e., a state with a planar triadic ordesee Eqgs.(3.1) to gTin:z, (5.153
(3.4)], here chosen to lie in then—1 plane(Fig. 10. A ro- 2
tation within this plane shows that for a more general choice
[than that defined by the representation choice,(E4.9] of T
m and| axes relative to the molecular body axes, such triadic 951”':5, (5.15h
planar order is described by an arbitrary linear combination
of thelg" andlgk tensors, corresponding to nonvanishing . )
. A which corresponds to the state with
andT; order parameters, i.e., a nonvanishingg.
Since this triadic order defines a plane that brings with it iik ik
a normal invariant under reflection, it necessarily induces Tmin=Tels (5.1

uniaxial nematic ordeiQ' = S(n'n! — £ §') with n along the
normal. To lowest order, the development ®fis brought
about by thef 41 coupling of Eq.(4.60,

1

which leads to the expected uniaxial nematic order with

S T2
__TQ' (5.12

Hence the state fov>0 is theN+3 phase in which the

which is invariant under the operations of the tetrahedral
groupT4. As can be seen in Fig. 4, the grolip has three
C, axes coinciding with the axes of the cube, f@ly axes
coinciding with the body diagonals of the cube, six reflection
planes passing through each edge and bisecting the opposite
edge of the tetrahedron, and foB8f improper rotation axes
corresponding to the axes bisectiffgur) sets of two oppo-
site edges of the tetrahedron. Because this state laeks
—n symmetry, no nematic or any other order is induced by
the coupling free energf., Eq. (4.6). Because of its tetra-
hedral symmetry and because only fecomponent off'/

is nonzero, we identify this state with tAephase illustrated

nematic and triadic order, transverse to the nematic axis, cchematically in Fig. &). Sincef,_is independent o3, an
exist. From the point of view of symmetry it is equivalent to arbitrary linear combination offg and T, rather thanTg
a liquid of orientationally ordered equilateral triangles with alone, will in general become nonzero at the T transition
aligned normals. (Fig. 12).

Another solution that minimizes the enerdy(6,,6,) For v;<0 we also find another solution that minimizes
and that is degenerate with the state described by the solutiaghe energyf; and is degenerate with the state in Eg15. It
in Eq. (5.9 is is given by

031704-11



T. C. LUBENSKY AND LEO RADZIHOVSKY

Vr
N+3
0 Isotropic
AN T
Tetrahedratic
N

PHYSICAL REVIEW E66, 031704 (2002

This is analogous to the similar phenomena known in mag-
netic systems in which cubic crystal fields drive the O(3)
transition of hypothetical isotropic magnets first order
[32,35.

B. Transitions from the N phase

As illustrated in the flowchart of Fig. 7, there are five
symmetry-reducing transitions from the nematic phase.
These are th&l—V, N-N+2, N—-N+3, N—-V+2, and
N— Ny transitions, all of which we will discuss in detail
below. To determine which transitions will occur for a given
set of phenomenological parameters, we focus on the part of

the full free energy density™), describing harmonic fluc-
tuations about the nematic phase with nonvanist8nghis

free energyf™), is determined by the harmonic parts of the

energied,, fo, andfy, and by the coupling termf,. The

FIG. 12. A portion of a phase diagram for a banana-shape%0St im

liquid crystal, illustrating two possible transitions out of the isotro- f
pic phase. Fov+>0, the transition i$ —N+ 3, and foro <0 it is

portant contributions td. come fromf,5, and

poT, Which can be easily evaluated. The harmonic free en-

s N . .
thel —T transition. Although in mean-field theory these transitions €19y f(V can be expressed as a sum of five independent
are continuous, we expect thermal fluctuations to drive them firsParts,

order. Lowering temperature along a finely tuned=0 curve, we

: N . : FN) _F(N) FN) L FN) L F(N) F(N)
expect a continuous transition in the O(7) universality class. f oot it i, (620
67""=arccosy/5/9, (5.173  Where
and corresponds to a state with 7 o
P T =37 (B+BY), (5.21b
T
ijk_—_° ijk ijk ~
T = I+ 21, (.18 T = 4700 (124 73), (5.219
However, it can easily be shown that this solution is equiva- (N) 2Ny 2 2y 1=(N) (T2 12
ij ij . . f =3T +p3)+3Ty (Ta+T
lent to TIX =TIJ%, after a rotation around thieaxis, ProTas 2 oy PIT P2 2T, (Tat T5)
~(N)
n—+/1/3n+ /2/3r.n, (5193 +apl,2’T4,5( p1T4+ p2T5)1 (521d
m— —\/2/3n+ \1/3m. (5.199 T =T (Te+T9), (5.21¢

It, thus, also corresponds to tfigohase with purd g order in
a rotated coordinate system. The corresponding phase dia-
gram that graphically summarizes phase transitions outlined
above is given in Fig. 12.

Forvr=0, it is clear from Eqs(5.7) and (5.8) that the
transition from thel phase is in the O(7) universality class,
and it is to a state thapontaneousipreaks O(7) symmetry
by picking out a particular direction in the O(7) symmetric
space(a point on a seven-dimensional sphei@ the vector
T, to point in. Clearly, as we have seen above, thecou-
pling is relevant in the ordered phase and drives the resulting
state towardN+ 3 phase forv+>0 and towardT for vy
<0 [28].

We have also investigated the stability of the O(7) sym-
metric transition (with v1=0) to a finite value of thev
symmetry breaking interactioh29]. In a renormalization
group calculation, just below the upper-critical dimenstbn
=4, we find that in the presence of thermal fluctuations the
vt coupling always drives this transition first-ord&0,31.

031704-12
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T1~|A(N) A(N)C |B|s|ng (524b

= (N) P3: Ty

Xp1oTas
\/—5 growing forAg’;‘le<AE)“3‘)’$l. Oncep; and T, become non-
TN =1 —2(2w; —w3) S?, (5.22  zero, they danot force the development of any other order,
6.7 and theV phase is completely characterizedgy, S, andT;

Within mean-field theory, thél phase becomes unstable to Order parameters, as illustrated in Figs. 3 and 7.
the development of biaxial ordécharacterized by a linear

combination ofB; andB,), of triaxial order(characterized

by a linear combination off, and T3), and of Ny order

(characterized by a linear combinationBf andT), when

T8, [36], r(N), andr(N), respectively, pass through zero.
The N phase becomes unstable to longitudinal vector order
(characterized by coupleds-T, order parametefsand to 3D:
transverse vector ordécharacterized by coupleg,-T, or-
der parametejswhen the determinants,

—=WpotS,

2. N—N+3 transition

(N) —~(N)~(N)_ (N) 2
AR T, =To T, — (@1 (5.233
(N) _ (N) (N) (N) 2 :
S VL I T S (5.230 top

respectively, pass through zero. The nature of transitions out
of the N phase will be determined by which member of the  FiG. 14. A schematic representation of fke> N+ 3 transition.

(N) (N) #(N) =(N) A (N) ;
set, Sy={4; Pa.T, rBerTZSrT67Ap1,2’T4,5}’ first passes

through zero on lowering the temperature. The N+3 phase develops out of tH¢ phase with the
appearance of a linear combinationTof and T5 order (Fig.
1. N—V transition 14). As discussed in Eq$3.1) to (3.4), T, andT5 define a

two-dimensional representation of the group of rotations per-
pendicular ton and describe triadic order in the plane per-
pendicular tan. Since theN phase is invariant with respect to
arbitrary rotations about, the free energy of th#l phase is

a function only of the rotationally invariant combinations
T3+ T3=|T,4% Thus, theN—N+3 transition is in the
well-known XY universality class. Within mean-field theory,
this transition occurs When(TN) is the first in the setSy to

3D:

pass through zero on coolm@m order drives no other or-
der, and thé\ + 3 phase is completely characterized®gnd

top: T, .3 with

|

ob |
O

Toor T~ [P0 =T |Pxy, (5.29

FIG. 13. A schematic representation of tRe-V transition. -

for T, <t D
The N—V transition is signaled by the development of

vector order along the unique directiarof theN phase, i.e., 3. N=N+1 (=V+2) transition

by the development gf; and T, order. Thus, this transition

occurs ifA(Y+ is the first of the sefy to become zero. The

relative sign ofp; and T, is fixed by the eigenfunction as-
sociated with the smallest eigenvalue of the matrix defined 3D:

by TV . The overall sign is, however, arbitratfig. 13

pale . i i 3y 3y i i . .
along or antiparallel tm) that is broken, th&l— V transition 7

Since it is the associated, symmetry (with V pointing
is in the well-studied Ising universality class with coupled

order parameters top:

~IAMN)_ _ ANC | By
P3 |Ap3»T1 Apa~T1| " (5.243 FIG. 15. A schematic representation of tle-N+ 1 transition.
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TheV+2 phase is distinguished from tiNephase by the The development of nonvanishing biaxial order parameter
existence of a vector order described foyn the planeper- §1,2:(81:BZ) converts the uniaxiaN phase to theN+2
pendicularto n. We can arbitrarily choosgto be alongnso  phase(Fig. 16. The biaxial order parameter is a rank-2
thatp, is nonzero. Since there is already uniaxial order in thesymmetric-traceless tensor, which, because of its confine-
N phase,T, order has the same symmetry in tNephase as  ment to the two-dimensional plane perpendicular to the
doesp, order, and not surprisingly,; andT, (as are generi- unjaxial axisn, is equivalent to a complex order parameter
cally p, andTs) are coupled if ™), Eq.(5.21d. The invari-  forming an irreducibleL=2 representation of the U(1)
ance of theN phase with respect to arbitrary rotations aboutgroup. TheN— N+ 2 transition is thus in th&XY universal-

n implies that the energy of thd phase must be a function ity class. In mean-field theory, it takes place wli@n is the

of rotationally invariant comblnatlonpl+ p2—|p1 42, 2 first of the setSy to pass through zero and more generlcally,
+T2=|T44? andp; T4+ p,Ts=py o Tasas is the harmonlc in the presence of thermal fluctuations, we expect,

F(N) i iti - ~
free energyfplyz,T‘h5 in Eqg. (5.21d. TheN—V+ 2 transition B,xB,~ |r|(3hi)2_ rg\i)zcwxy’ (5.28
is thus in theXY universality class. It occurs in mean-field ' ’

theory whemg“l‘)zyusis the first of the sefy, to pass through for r(N) <r(N) Biaxial order forces n@' or T'¥ order, so

zero upon cooling. The order parametpgsand T, (andp,  the N+2 phase is fully characterized by nematic order pa-
and Ts related to them by a rotation in the-l plane will rameterS and an arbitrary linear combination 8f, andB,
drive the N—V+2 transition, both growing continuously piaxjal order parameters, i.e., 18 .

from zero as

5. N—Nj transition

P Ty~ |A§)T),T4_ E)T)c4|5><v (5.26

for ARV <A{DT . Once these order parameters become
nonzero, however, they pick out a direction in the plane per-
pendicular ton that drives the development of a nonvanish-

ing biaxial orderB, via thef,q andfqor coupling free ener- 3D:
gies, as |s clear from Fig. 15. In mean-field thedy,~ pl
and T,~ pl. Below the critical dimensiord.=4, however,
potentials in the coupling energies are relevant, @425
Bi~p;? To~p;°, (5.27 top:

where o,=n+x,n(n—1) with x,, only weakly dependent
onn.

To emphasize the secondary role tlgat and T, order
parameters play at tHe— V+ 2 transition, in Fig. 7B, and
T, are placed in parentheses along the-V+ 2 line. There-
fore, theV+2 phase is reached from tiNephase(character-

FIG. 17. A schematic representation of the- Nt transition.

Finally, theN; phase is distinguished from tiephase by
the development of an arbitrary linear combination of e

ized by a finite value 08) via the well-studied, second-order @1dT7, i.€., Of theT 7 order (Fig. 17). Since such an order
XY transition upon the development pf, By, T,, andT, parameter picks out a single direction within tisetropic

order parameters or a set that can be obtained from this orfd@ne perpendicular to, this transition, like theN—N+2,
by an XY rotation. N—N+3, andN—V+ 2 transitions, is in th&XY universal-

ity class. In order for this transition to occur, in mean-field
4. N—N+2 transition theoryT Fr,, must pass through zero before any of the other
members of the sefy . If we restrict the interaction energies
tofpo, forandfyor, r(N) will never be the smallest in
the set. However, higher- order terms of the fofger2 can

favor the formation off¢-T, order over the others and make
this transition possible, with

TexT7~ |T(TN6,)7_T(TN6,)7C|BXY’ 529

top:
for r(N)<r(N) Because theélg-T, order drives no other

order, theNT phase is characterized by nonvanishgand
FIG. 16. A schematic representation of tie-N+ 2 transition. T6,7 order.
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C. Transitions from the V phase As Fig. 7 indicates, there are symmetry-lowering transitions

In the VV phase, three order parameteps, S, andT, are  [TOm the V phase fo thev+2, V+3, andN+V phases.
nonzero. Harmonic fluctuations of the other order parameter¢/Nich one occurs is determined by which the s&f

. . . . —FV) A (V) (\%]
in this phase are described by the free energy density —{rszgvABLZ,TGJvAplvz,Q3,4,T4,5}’ where
V) —FW)=MN) _ (=) 2
FTV_FV) +TV LFW) (5.30 ABl,Z'TBJ - P (aBl,Z’TGJ (5.33
Bi2Te7 T2z P12:Q34:Tys’ '
(and A%Z?Z,Q“’T“ unenlightenly complicatedfirst reaches
where its critical value. The nature of the transition out of tWe
v . B WP phase will be determined by which of these three mean-field
fél)z,Te = 1 )2(31+ B2)+ zf(T6)7(Te+ T7) reduced temperatures first reaches the respective critical tem-
perature.

1,
+@(” 1 (B1Te+B,To),
1. V—>V+3 transition
T8 =37 (T3+ T2, (5.30)

2,3

FV — 1%(V) (24 02y 4 2% (V) (024 2
félv)z,Q&A,TAvs_ %rél?z( p1tpz)+ %F(QJA(Q3+ Q)
T 3 . — BN

AT TE T +EL o, (P1QatPaQu) 3D:

+5‘§3\i)2,T415( P1T4+P2Ts)

+”618/3)’4:4’5(QsT4+ Q4Ts),
top: _—
where

T(B\?z:T(B'\i)Z— %(2W1+W3)T%, FIG. 18. A schematic representation of tie+V+ 3 transition.
(V) i iti iF V) its criti
f(T\é)er(T':)7+(4UT—§UT)Tf, (V;I'h|s tran5|('i|/§)n occurs (I\I]:Tz,s reaches its critical value
[P beforeA By 5. Te.7 andApl,lewT‘k5 reach their respective
~ W) \/5 critical values, both zero in mean-field theotfig. 18.
B12:Te7 \/TSWQTTl_ 3WpQtPs: Since there is rotational invariance in the space defineti,by

and Tj, this transition is in theXY universality class and
TV =FM + (4ur+ Sy T2, corresponds to development of triaxial ord’é@ in the plane
23 perpendicular to the vector order axis. Since no other
v N , 6 order is driven by this development of tﬁ@yg order, this
Tﬁ;ﬁfﬂﬁj 4upps+ EWprSTlv order parameter, together with, S, andT, (already present
in the V phase completely characterizes thé+ 3 phase.
’FSQAZI’Q_WQS'FEUQSZ_%(4W1+2W2_W3)T§, N
' 2. V=V +2 transition

~(V) _~=(N 6 2
r(TA?S—r(T4?5+(4uT+ o) TS,

1
v 1
apl,z'QsA_ \/EWpr3+ \/EWPQTTli
3 3D: - .
~ (V) —~(N) _ et 2
X175 ¥P12.Tas 2 \[5WPTp3*

~ (V) _ 2 T Z\F N
a’Q314,T4'5___5\/§WQT 1~ 15Ps top: \

2 NS
— ——(wW;+ 6w, +4w3)ST;. (5.32
15\/§ FIG. 19. A schematic representation of tie-V+ 2 transition.

031704-15



T. C. LUBENSKY AND LEO RADZIHOVSKY PHYSICAL REVIEW E66, 031704 (2002

(V) . . . . . _ - - -
It ABY, 7, .|s the first |r1_the setSy to reach its critical fg:TTZl)'TGZ%rgsuz)pg_‘_%r(Trju)T;lz_’_%r(Tr:u)Tg
value, there will be a transition from théto theV+ 2 phase
signaled by the development of biaxial order in the plane +a-(|—N1’+-|—i)T1T6+ag’:}zl)pg-rl+ag:}?p3-r6,

perpendicular tan characterized by a specific linear combi-
nation ofB, , andTg ; (Fig. 19. Rotational invariance in this

plane .implies that the; transition. will al§0 be in tb(e( upi- FINC2)_ _1p(N+2) 2, 1m (N 202 1p(N+ D)2
versality class in which an arbitrary linear combination of Tp, 7, 1,=2fp, ~P1t2ly, “1atary, Iy
(B1,Tg) and B,,T7) will spontaneously order.

(5.353

+ & AT, Ta+as PP T+ &l Ppi Ty,

3. V=N++V transition

(5.35hH
F(N+2)_ 1~(N+2)72
fNra= s aTs, (5.350
where
3D: F(N+2) _(N)
P3 p3
T =T - 82wyt wy)BY,
top: e = TRA=TE - (2w, +2wy+wg) BE,
FIG. 20. A schemati tation of ¥ “"l.\‘l—i-Vt iti '&‘N”):iw B —i(Zw +3w,—Ws3)SB,
. 20. A schematic representation of te» ransition. T, Te \/1—5 o1B1 3\/?5 1 2— W3 ,
If Ap,.0,,.7,51S the firstin the se8, to reach its critical

X ... i ~(N+2)_~(N)

value, there will be a transition from thé phase to one in ~ %ps. T, ~ %ps. Ty
which vector 0, and third-rank tensorT(,s order de-

velop in the plane perpendicular to the already existing vec-_ N+2) \F

tor order,p5 (Fig. 20. Without loss of generality we repre- %p;.Tg — §WpQT51*
sent this transverse vector ordering by nonzerocand T,.

This set of order parameters is invariant under only one NON-(N+2) _
trivial operation: reflection fromy to —y. Thus the new P1
phase ha€,, symmetry and is th&l +V phase. Once these Ni2) (N )
order parameters have been established, they will dive f(Tz )=r(T2)3—2(W1+W2)Bl,

T,, andTg nonzero via higher-order terms such fag and

for. Since theV—N+V transition is controlled by the de- NN 2w By + [ (45— 7By) +W,o(4S—By)
velopment of vector order in a plane, we expect it to be in 4 45

the XY universality class. —2W4(25+B,)]B;,

=(N) _
rplv2 2WpeB1,

D. Transitions from the N+2 phase

~(N+2) _ 2 2
The N+2 phase is the standard biaxial nematic phasea(Tz’U)_\/Tr,WQTBl_ ﬁ:—,[zwler 3w2(25-By)

with nonvanishingS and an arbitrary linear combination of

biaxial B; andB, order parameters; without loss of general- +w3(2S—-3B;)]B4,

ity, for convenience, we choose our coordinate system

(m,l,n) so that the biaxial order is described By. As the aé”*TZ): —W,o1B1,

flow chart of Fig. 7 indicates, thAl+2 phase can undergo ' 2

symmetry-lowering transitions to thé+2 and (N;+2)*

phases. Harmonic fluctuations about the 2 phase, which =(N+2) _=(N) +iw B

determine the nature of transitions out of te 2 phase, are PrTa TPiaTas’ 15 PRTOL

described by

~ ~ ~ ~ ~ FIN+2) _¢(N) _ 2 — 2
f(N+2):fE’§'+Tzl),Ts+fg\llTT?,Tﬁfg;TTi).Ts"'f(TBJrZ)' £ Fro,~ 3(2W1—w3)B1, (5.36
(5.34 FN+2) ; T(N+2) .
and fpszast is obtained fromf,"5’; by replacements:
where P1—P2, To—Ts, T4—Ts, By;——By.
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Following our earlier analysis of other transitions, we in- 2. N+2—(N;+2)* transition

troduce the determinants) /7 , AQVS2). | andA {2,

of the matrices, respectively, defined by the coefficients in
the free energy densitigd\ 2 F(Nt2) and~f(§}?’T5.

3:T1:Te? P T2:Ty? p
Which transition from theN+2 phase takes place is deter- 3D:
mined by the set )
_ =(N+2) (N+2) (N+2) (N+2)
SN+2_{rT7 !Ap3,T1,T6'Apl,TZ,T4’Ap2,T3,T5}'
top:

1. N+2—V+2 transition

-------- For our choice of then-l axes, for which the biaxial order
of the N+2 phase is characterized B4,+0 andB,=0,
another symmetry-reducing transition from tNe-2 phase

is signaled by the appearance of theorder. It corresponds
to the N+2—(N;+2)* and takes place when the reduced

T temperaturg’{"“) is the smallest in the sefy,. For a

top: == —— | &= different choice of axes, in whicB,#0 andB;=0 charac-
terize biaxial order, this transition would instead correspond
e to development off¢ order. And, more generally, in aN
FIG. 21. A schematic representation of fie-2—V+2 transi- T2 phase characte[ized by a particular linear combination of
tion. B, andB,, i.e., by By, a correspondingrthogonal linear
combination ofTg andT-, i.e., thefw order parameter, such
that By ,- Tg7=0 develops at thé\+2—(N;+2)* transi-

FIG. 22. A schematic representation of tNet 2— (Nt+2)*
é % transition.

Interestingly, there are three routes from the 2 phase
to a phase wittV+2 symmetry. In the first route, the nem- tion.
atic axis alongn, which in theN+2 phase is invariant under 1, \nderstand the nature of this transition it is helpful to
n——n, is converted to a vector axis with the developments; \isyalize theN+2 phase as a collection of orientation-
of ps, Ty, andTg order. The biaxial order of th+2 phase 41y ordered but positionally disordereglanar diamond
persists, resulting in th¥+2 phase with vector order along pits each consisting of two, leg-to-leg banana-shaped mol-
the twofold axisn. In mean-field theory, this transition to ecules, illustrated in Figs.(6), 5(c), and 22. One can choose
V+2 phase takes place whew})! ;?; is the first in the set the{n,m,I} triad such that the diamonds lie in them plane
S+ 2 to pass through zer@Fig. 21). and, therefore, that their biaxiality is characterized by non-
In the second route, vector order develops along the divanishingS and B, order parameters. Now the transition to
rectionm, corresponding to the maximum eigenvalue of thethe (N++2)* phase corresponds teounter out-of-plane
nematic order paramet€' in the plane perpendicular tn  twisting about then axis of the two diamond-forming
In this route, which, in mean-field theory occurs whenbanana-shaped molecules. It is signaled by the development

AP, s the first inSy .« » to go through zero, thpy, T, of the T, order parameter, with the twist ang®in the range

andT, order parameters become nonzero. 0= é=m/2 given by

In the third route,A{Y ) is the first inSy,, to go

through zero, and vector order develops alongl tagis per- tand=T-,/B;. (5.37
pendicular tam, defined by the eigenvector g with mini-
mum eigenvalue in the plane perpendiculantdt is thep,,

T4, andT5 order parameters that become nonzero at the tran/e note that the lower limit of this rangg&=0 corresponds
sition. to the planar diamonds of the achifdH2 phase and the
In all three versions of thé&N+2—V+2 transition the upper limit, 6= m/2 (reached only in the limifT;—o or
vectorp order develops along one of the three twofold sym-B;=0) corresponds to thBl; phase, which is also achiral,
metry axes defined by the biaxial order of tNe-2 phase, and lacks biaxial order. In contrast, all other values of the
the eigenvectors @'/, In each casep can develop either a twist angle Gs< < m/2, corresponding to a nonzero value of
positive or negative value along an axis already chosen by, describe aspontaneouslynduced chirality of the
the N+2 phase. Consequently, theber2—V+2 transi- +2)* phase. Since the sign of the twist angénd corre-
tions are in the Ising universality class, with well-known spondingly the sign ofT;) can be either positiveright
critical properties. handed or negative(left handeg, in mean-field theory the
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N+2—(Nt+2)* transition is clearly in the well-known
Ising universality clasgbut see beloyw

Finally, we observe that in a phase which spontaneouslyo

breaks chiral(mirror) symmetry, a tensor, totally antisym-
metric in all its indiceg(akin to the well-knowne;;,c tensoy

PHYSICAL REVIEW E66, 031704 (2002

of an Ising modelfor g, with strengthh, and if theN +2-to-
(Nt+2)* transition is second order, one can expgiT,h)
scale as

Qo(T,h)=|T=Tg|Paf(h/|[T—T¢%), (5.41)

must spontaneously emerge. It is easy to verify that in the

chiral (Nt+2)* phase, most generally characterized by fi-
nite S, By, By, Tg, andT; order parametersSjy, given by

1]

.
=
.

k:QisBjthtk+ stBkthti+QkSBitTStJ (5.383

1
S(B1T7—B,Te) €ijk »

G

(5.38h

is indeed such a fullantisymmetridensor, which develops

whereT, is the transition temperatura, is the external-field
gap exponent, angy is a critical exponent, which in mean-
field theory is the order-parameter expongnt 1/2.

E. Transitions from the N+ 3 phase

As we indicate in Fig. 7, thé&l+3 phase, described by
coexistence of the uniaxial order parame®and the trans-
verse (to the nematic axistriaxial order parameter‘f‘m
=(T,,T3), can undergo symmetry-lowering transitions to
theV+2, V+3, andN+V phases.

These transitions are all signaled by the development of

spontaneously from our theory, that is based solely on fullyector ordemp. They are distinguished by whether this vector

symmetrictensorsQ'l and Tk,

The existence of a fully antisymmetric third-rank tensor
allows for invariant couplings linear in spatial derivative. For
example, a term of the form

Eiij”Vij'~T7n-V><n (5.39

is permitted, where the right-hand side represents the dom
nant part near the transition whe8esand B, are effectively
constant,T- is small, andh is the Frank director. The elastic
energy of theN+2 phase includes the usual twist energy
K,[n-Vxn]2 There are other terms in the elastic free en-
ergy arising from the biaxial order of thd+2 phase, and

order isalong [N+3—V+3 transition, transverseto [N
+3—V+2 (=N+1) transitior, or at an arbitrary polar
angle 0= é=/2 to the uniaxialn axis, singled out in the
nematic phase. Although it is convenient to think of these
transitions as driven by the vector order more precisely
they are driven by specific linear combinations of the vector
and other order parameter, linearly couplecto

It is convenient to choose tha-I axes so that the triaxial
Iqrder of theN+3 phase, in the plane perpendicularrto
phase is described Bl,#0 andT;=0. For this choice, the
harmonic fluctuations about tié+ 3 phase are described by

e (5.42

Z(N+3)
pl,Bl,T4+f

FIN+3)_F(N+3), F
f fp3,T1 +f Q34:T67’

they may influence the nature of the ground state of thavhere
(Nt+2)* phase. The existence of terms such as that of Eq.

(5.39 that are linear in spatial gradients implies that the
ground state of theNt+2)* phase will be spatially inho-

mogeneous. The simplest chiral inhomogeneous phase we

can imagine is a cholesteridNg+2)* phase in whichn
rotates in a helical fashion as in the standard cholesteric wit
pitch P and pitch wave numbeg,=27/P which near the
transition to theN+2 phase at temperatufig scales as

Qo~T7/K,~|AT|Y2 (5.40

in mean-field theory wherdaT=T—T,. In a true critical
theory,q, will also scale to zero as a power|dT| provided

the transition remains second order. In the presence of fluc-

tuations, theT,n-V X n term is likely to modify the univer-

sality class of this transition to something other than the

naively expected Ising universality clagsossibly even driv-
ing the transition first orderbut we have not, however, ana-

lyzed the critical theory in detail. If molecules themselves are

chiral, or a chiral dopant is added, then tie-2 phase will
be a chiral N+ 2)* phase with a nonvanishirg,. Chirality
will act like an external ordering fielflike the magnetic field

Z(N+3 ~(N+3).2 | 1=(N+3)12 | ~ 3
fo =370 s+ 3T I+ Al PpaTy,
rd 3 ~ 3 2 2 ~ 3 2 2
;]E)T;B)lyz,u's: %"E)T;r U pi+p3)+ %"(B’\i; U B1+B3)
+ 30T+ T + a0 Y (P1B1—poBy)
~ 3
+ C“S:;T)ZLS( P1T4+pP2Ts)
+af, 3, (BiTa—BaTs),
TF(N+3) _ 1=(N+3 2 2 ~(N+3 2 2
FO =370 Q3+ QD + 3TN AA(TE+ D)
+a0" Y, (QaTe—QuTy), (5.43

with the coefficients
#(N+3) _=(N)
oy, 7 =Tp)

(N+3)

TEI=T0+ (4ur+ Eop) T3,
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~(N+3)_~(N)
Xpy. Ty P3. Ty’
=(N+3) _=(N)
rpl,z rpl,z’

~(N+3) _=(N) _ 2
B, =By, 2(w1+w,) T3,

~(N+3)_~(N 4 2
r(T4,5 )—r%—4?5+(4UT+§UT)T2,

~(N+3) _ _
¥pi 5By WpqQtT2,
Z(N+3)  _=(N)

P12:Tas “P12:Tas’

= (N+3) :iw T _i(w +3w,+w3)ST,
B12:Tys \/1—5 QT2 3\/1—5 ' ? ’ 8
T D=1 - WS+ §ugS -~ w3,
~(N+3) _=(N) 2
rT6,7 rT6,7+ 4UTT '

1 2
wiNt3) ___WQTTZ__(GWJ__W3)ST2.

¥Qz4.Te7 \/§ 3 \/§

(5.449

PHYCAL REVIEW E 66, 031704 (2002

2. N+3—-V+2 (=N++1) transition

3D:

top:

FIG. 24. A schematic representation of tNhe-3—N+1 tran-
sition.

V+2 order develops fronN+3 order by spontaneously
favoring one of the three equivalent directions in the plane
perpendicular ton and, thereby, converting transverse
axial order of N+ 3 into transversevector order of N+ 1,
equivalently described by +2 (Fig. 24). With p chosen to
be alongm, the transverse vector order is signaled by the
development of finitep; order parameter. As can be seen

from 782;38)1”45, Eq. (5.43, order parameterB; and T,

associated withp, and linearly coupled to it, are also simul-

Transitions out of theN+3 phase are controlled by the set taneously induced at tHé+ 3— V+ 2 transition. For a more

_ N+3 N+3 N+3 :
Sn+a={ANTD AN A, 3, } of determinants of

P3:Ty "= P12:B12:Tys’

the harmonic coefficients that can be read off fréfi*>

above.

1. N+3—V+3 transition

FIG. 23. A schematic representation of tHe-3—V+ 3 transi-

tion.

TheN+3—V+3 transition occurs whef, 1 is small-

generic choice of the orientation @h-l within the plane
perpendicular to, theV+ 2 phase is described by a specific
linear combination ofp; ,=(p1,p.), Bi.=(B;,B,), and
'F4,55(T4,T5), obtained from the basic sép,,B;,T4} by a
planar rotation about the nematic axis

The N+3—V+2 transition is the exit of choice out of

the N+3 phase, whem\(M*3) . is the smallest in the
1,2°"1,20 745

Snig Set. Since theN+3 phase is characterized by three
equivalent directiongin the plane perpendicular to the nem-
atic axisn) along which vector ordep can develop, we
expect this transition to be in the universality class of the
three-state Potts model, believed to be weakly first order in
three dimensions and continuous in two.

These symmetry based expectations are born out by our
detailed computations, which show that the rotational degen-

eracy in them-I plane, which is present in the harmonic free
energyﬁ"g“l‘;fg)lﬂ”, Eq. (5.43 is lifted by energy contribu-

tions of the form

SFIN+3) = — @, C0S 3p— ap COS 60, (5.49

P12:B12:Tas

est in the setSy. 3. In this transition, vector order develops whereg is the angle between the developing transverse vec-
along the nematio axis to produce a linear combination of tor order parameterns, , (as well asB; ,andT, <) and them
ps and T, order, with the latter explicitly induced as a third axis defined by triaxial order of th+3 phase,

harmonic of thep; order. The discreteZ,, n— —n sym-
metry, characterizing the+ 3 phase is lost at this transition.
Consequently, th&l+3—V+ 3 transition is in the familiar

Ising universality classFig. 23.

ap=| 3w rp3 —ivTT3 T, (5.463
p 2WpTH12 5\/F:'> 45 )

031704-19



T. C. LUBENSKY AND LEO RADZIHOVSKY PHYSICAL REVIEW E66, 031704 (2002

aB=WQ3TzBi2T§, (5.46bH leads to a total of six free-energetically degenerattf states.
Integrating out thd ; order parameter and focusing Q3 4

and ST\ %) 1, arises from the following nonlinear cou- alone, shows that the six states correspond to alignment of
plings: mq along three vertices and three edge bisectors of the equi-
R lateral triangle defined by the+3 phase. Thus there is a
prz—prp'p'ka”k, (5.473  six-state clock symmetry described by a coupling propor-
S tional to T3Q$, and we expect the+3— N+ V transition to
fQare= —Wqar2Q'11Q'2/2Q"slsT 1213 T l2ls, be in the universality class of the six-state clock model,
(5.47D  which apart from irrelevant variables is in the universality
fram pTiiziaTitidisTiziieTisisis, (5.479 class of theXY model. OnceQ; andTg order is established,

T4, p1, and By order is driven by couplings of the form

3 2 :
The three degenerate minima of the free energy?3B1 and others. Thusp;~B;~T,~Q3. Then in mean-
SFN+3) . Eq. (5.45), for the vector order parameter to field theory,B; order will drive p; and T, order via cou-

P12:B12.T4s lings of the formB; Tgps. Thusps~T;~To~ Q3.
settle into, correspond precisely to the three equivalent states g 1'ePs Pa~T1~Te~ Qs

of the three-state Potts model, supporting our expectation N
that theN+3—V+2 transition is in the three-state Potts F. Transitions from the T phase

model universality class. The tetrahedrati@ phase withT, symmetry is character-
ized by a nonvanishing arbitrary linear combination Tof

and T,, which we collectively refer to a§'6'7. In this sec-
tion, without lost of generality, we will choose the orienta-
tion of them-Il axes so thal is the only nonvanishing order
parameter in thd phase. The harmonic free energy density
for fluctuations from thel phase can be expressed as

3. N+3—=N+V transition

St TO_FO LT FO
F =10+ 1)+ 1L, 054 (5.48
where
T _ 1%(M A2
top: f9)=375)Ql,
FM = 1M 2, 5.4
FIG. 25. A schematic representation of the-3— N+ V tran- Q@2 @ (549
sition.
(T _ 1w 2.A12.A2 2, .2, 2
3 féfzaqms— %rQ3,4,5(Q3+ Qz+Qs) +3rp(p1+p3+P3)

The transition that occurs whek{' *3) is the smallest
3,4'76,7

of the setSy. 3 is, as we shall see, to te+V phase, but the
development of all of the order parameters characterizing - ﬁWpQTTY(p1Q4+p2Q3+p3Q5)

this phase is complicated. At thiermoniclevel in f6,7 and

Qs4,  T™N*¥ possesses a rotational invariance in the plangyith the coefficients given by

perpendicular to the nematic axis However, because the

N+ 3 phase is characterized by threefold order in xhg

plane perpendicular to (aligned along the axis), this con-

tinuous symmetry will be reduced to a discrete clock sym-

metry (Fig. 25. _ TQ) =ro— (2w —wy) T, (5.50h
It is convenient to focus on ordering €i; and Tg. The

establishedN+3 order can be viewed as an equilateral tri- 5 ) 5

angle that favors alignment of towards one of its vertices. FQua5= T~ 3(2Wit2wo+ws) Ty, (5.509

Thus one might predict the symmetry of a three-state clock

model. However, the apoldnematic along axis) nature of

TG =rq—3(2wy—w3)T, (5.503

- . The structure off (¥ implies that there are three symmetry-
theN+3 state ensures that the free enetdy"¥(Qz,Te) IS  |owering transitions from th@ phase, driven, respectively,
invariant unden— —n. This, combined with transformation by fluctuations inQ;, Q,, and a linear combination of
properties of Qs and Tg under n——n, with Q3,Te—  pairsp; andQ,, p,, andQs, andp; andQs. Which of these
—Q3,—Te guarantees an additional Ising symmetry of thetransitions occurs is determined by the sef;
free energyf(N*3)(Qs,Tg)=TN*3)(—Q3,—Tg). This then ={'rgl> ;rgg, Agl)z Qaad
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2. T=(N;+2)* transition

parameters exhibit third-order invariants. Since they play an

important role in determining the nature of transitions from

the T phase, we display them here,

fQEZWQ

3 3
\[EQ1<Q§+ Qd)- ?\%Ql(Q%Jr Qh
003 Q) Qi =Q:0:Q
2\/5 2\N3 4 \/g 1 \/5 345 |

fpor=— \/EWpTT7plp2p3- (5.5)

We note the appearance of tgQ,Qs term in fs, which
can be paired with thp,p,p; product inf 3. There are of
course also third-order terms i@, whose coefficients are
proportional to powers of;, which, for smallT-, are sub-

FIG. 27. A schematic representation of thes(N;+2)* tran-
sition.

If, for a T phase characterized by the order parameter,
Q, (or equivalentlyB;) orders beforeQ; or the p;— Q3
combination, the transition from thEe phase is to the spon-
taneously chiral Kit+2)* phase(Fig. 27). If we focus on
them-| plane, T order displays biaxialityr'l’ +m'l"), with
principal axes atr/4 relative to the biaxiality of th@®, order

dominant tow, term that we displayed above. Because thesé&haracterized byr'm’—1'l!). SinceT; andB, are different
higher order terms do not qualitatively change our resultsOrder parameters, a simple rotation to define a new biaxial

with their effects accounted for by an effectiwg, coupling,
we will not consider them here.

1. T—N5 transition

FIG. 26. A schematic representation of the>N transition.

axis is impossible, and the result is that the reflection invari-
ance in them-| plane is spontaneously lost 8s develops.
The lack of reflection symmetry is the characteristic feature
of the chiral (N++2)* phase, discussed in Sec. VD 2. In
analogy to the development of biaxial order from the isotro-
pic phase, onc®, orders, thteQ§ coupling infqs drives

the development oS (or Q) order. Thus, the Ny+2)*
phase has nonvanishit® B, andT- (or equivalentlyS B,
andTg) order. Although thél — (N+2)* transition is con-
tinuous within mean-field theory, based on the experience
with the development of uniaxial and biaxial orders from the
isotropic phase, we expect that here too, The Nt transi-
tion will always preempt thd — (N1+2)* transition.

Within second-order mean-field theor,~|AT|Y2, S
~BZ~|AT|, and E;jx~T;B,S~|AT[*2 Since theT phase
has elastic energies resisting spatial variations ofrthen,
andl directions, the wave number of the cholesteric structure

As illustrated in Fig. 7, one of the three possible of the cholesteric i+ 2)* phase will scale ago~|AT|*2

symmetry-reducing transitions out of the tetrahedrafic
phase is th&d — Nt phase transition. Thi order develops

in mean-field theory.

3. T=V+3 transition

by favoring one of the three twofold axes of the tetrahedron

through the growth of uniaxia@'! order along that axis as

The ordering of linear combinations ofp{,Q.),

shown in Figs. 4, 5, and 26. In our parametrization, we focudP2.Qs), and (p3,Qs), which we will refer to asp—Q or-

on the twofold axes defined by-n. In this case, therT
— N5 transition is signaled by the development @f (or

equivalentlyS) order. Because of the existence of the third-faVOrsP1=

ordeer invariant, Eq.(5.5)), this transition is generically
first order. It occurs in mean-field theory whaiy)(T-)

=Wq(T7)/12uo(T7), where the third- and fourth-order cou-
plings Wo(T7) and Ug(T;) can in principle depend on
strength of theT order, characterized by, order parameter.

Because no other order parameter is explicitly induced at this

transition, and with the convenient choice of tirel axes
(that we have made herghe resultingN; phase is fully
characterized by th&, and S order parameters.

dering, leads to th& + 3 phase(Fig. 28. This can be seen
by observing that the third order potentiag 1 in Eq. (5.51)

+ p,= * p3 with relative signs determined by the
sign of w1 T7. Examination of Eq(5.51) shows that similar
considerations apply tQ5, Q4, andQs. Thus, the vectop

FIG. 28. A schematic representation of fhe»V+ 3 transition.
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will align along the (1,1,1) or a symmetry equivalent axes, The free energy ™ describingharmonicfluctuations in

i e., along a threefold axis of the tetrahedron CharaCterlZln%eN phase can be expressed as a sum of three |ndependent
theT phase. Thus, to discuss the phase transition signaled tbarts

the onset ofp-Q order, it is useful to transform to a new
coordinate system with’ along the (1,1,1) axis, which is f(NT)—f(NT)-}—féNT‘)g . +féNT)Q . 1, (559
most easily achieved by a rotation about the{1,0) axis. 72Tl TL2re34ri23 048

Under this rotation we find that our basis transforms accord:

where
ing to
F(NT) _ ~(N ) p2
: ( ) fBlT ? TB ’
1 ! 1 ’ !
m=3|1+—=|m -3\ 1-—|I"——=n’, (5.523
\/§ \/§ \/§ F(ND r(N) + 14 r(NT)Bz 1~(NT)-|—2
pS'Tl'BZ 2 p3
I__% l_i m"l‘% 1+i I’_in’, (T)pB+0[ TpTl—I—a( T) Ble,
V3 NETRNE]
(5.52 =Ny 7(N) 1~(N )
prL’Q3,4'T2,3’T45 pl 2(p1+ p2) T (Q3+Q4)
1 ~
=M+, (5.529 + TS+ TH+ATY, (T4 TD)
_ _ . _ . +01(NT)Q (P1Qa+p2Q3)
Straightforward algebraic manipulations then yield
N ¥V +aE)T?2,T4’5(p1T4+ P2Ts)
17 =51 =53 1150, (5.53
~(NT) Q
“gy 17| 3 \/— \/—
so that in the rotated coordinate system,
J5 +0Q ! T ! T )
5 al = lo=—7=la| |,
Ti=3Tr, (5.543 NI
5 +ag." 1, (QaTs+QqTa)
2
To=—3T7, (5.54h +~(NT) (T2Tat TsTs), (5.56
2 with
Th=— < T (5.540
To, =TE) — 52wy~ w3)TF,

In this rotated basis the polar order is described py

=psn’, also inducing the nematic ord& through thef N(NT) =T — 2 (2w, + 2w, +w3) T3,
coupling. Thus, the phase produced by syck) ordering B2
from the T phase has nonvanishimg, S', T;, T,, andT}
order, which describes polar order along the axis and
triaxial order in them'-1" plane perpendicular to it; a rota-
tion by 77/12 about the (1,1,1) axis can be used to rembye ~ (Np) \F
component of the triaxial order. Thus, the phase produced by ~ %p,.8,~ — 3WpQTT7’
p-Q ordering inside the tetrahedratic phase is indeed the

previously discussell +3 phase.

(Np)
r(TlT): r(TN1)+ (4ur—2up)T7,

4
~(NT) _
1T7— —=(2w;+ 3w, —~W3)ST;,
G. Transitions from the N; phase 8T \/—5 " 3\/1—5 ’
The Nt phase is characterized by nonvanishing nematic +(N
order parTarzeteS and an arbitrary Iin)éar combinatign of the E?3T) 2rg+3ugS 3 (2w + 2w+ W3)T7,
tetrahedratic order parameteig, and T,, which we collec-
tively call Tg ;. These define the directions of the orthonor- T(TNZZ) T +4uTT2,
mal triad (m,l,n), which we can for convenience always '
pick to haveTg vanish, with the tetrahedratic order com- T(NT):T(N)+(4U +Ap0)T2
pletely characterized by the value ©§. T Tas T 51T
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1 Development of biaxial ordeB, in the presence of,
'&E)NT)Q =——=WpoTl7, (with Tg=0) andSorder is quite similar to the development
1204 |3 of T, order in the presence d, order, discussed in Sec.
VD2, and corresponds to spontaneous chiral symmetry
?Y(BN,T)TFWQTT#%(W1—2W3)ST71 breaking of theN+— (Nt+ %)* transition (Fig. 29. As can
21 be seen from the structure 87, no other order parameters
are induced at this transition and, as discussed above, the
~(Np) 4 resulting N1+ 2)* phase is charactgri;ed by nonz&®,,
QaaTas ﬁwzsﬂi and T, order parameters. Because it is the underlyi&yg-
—B;, 2, symmetry of theN; phase, that is broken when
B, orders, theN— (N;+2)* transition is in the Ising uni-
~(N) 2 T2 - \Lersglit_y class if the linear gradier!t coupling propprtional t.o
AT,3 a5 \/1—5”T 7 (5.57 Eijx is ignored. The latter term, aside from potentially modi-

fying the critical properties of this transition, leads to a pitch
wave number in the cholesteritN¢g+2)* phase that scales

3 in mean-field theory ago~B;~|AT|? just below theN;
As can be seen from the structureféi™ above, there are —(Nt+2)* transition.

three possible symmetry-reducing transitions that can take
place out of theN; phase. In contrast to the nematic phase
with D.,;, symmetry in which fluctuations in the biaxial fields
B, andB, are degenerate, thé; phase with nonvanishing

'Izev7 order breaks the degeneracy of fluctuation8Binand
B,. For our choice ofn-l axes, withTg=0, the tetrahedratic
order parameter, couples the biaxial order paramefy to
the vector order along, described byps and its third har-
monic T,. Hence two(of the threg transitions are the order-
ing of B4, and the ordering of a linear combination jof,
B,, andT;. A third possible transition out of thd; phase is
the development of vector ordBansversdo nematic axis
described by an arbitrary linear combinationpgfandp,. In
the Nt phase with nonzerd;, harmonic fluctuations ip;
are coupled to those &, andT,, and harmonic fluctuations
in p, are coupled to those dP; and T5. As a result, the
development of transverse vector order from lephase is

apcompanied by a speciiic linear combination of these TheN;—V + 2 transition takes place via the development
h|g\51vehr.—or:defrtﬁrdertpr)]ararrgetergt.. tak | first is det of vector ordemp= psn along the nematically orderedaxis.

. dlc bo ese three :jar;5| lons ? es pa;ﬁe Irs g ®®Since in the presence df; and S such longitudinal vector
mine ('3‘/) mmm;n'\L‘Jr)n eterminant in _ € SEON:  orderis coupled t®, andT,, theN;—V+2 is also accom-
={8, A0 8, 1,080, 0 Qs 7,41, s OF determinants of the  panied by the development Bf, and theT, order parameter.
harmonic coefficients, that can be read off fréfi™) above. Because the free energy of thiy p_has_e is invariant under
n— —n, the development gb; longitudinal order can be of
either sign and the transition is in the Ising universality class

(Fig. 30.

2. Ny—V+2 transition

3D:

top:

FIG. 30. A schematic representation of tNe—V+2 transi-
tion.

1. Ny—=(N;+2)* transition

3. N;—=N+V transition

A third possible transition out of the; phase takes place
whentransversevector orderf)lyz develops. As can be seen

7 (N7) B i
from the form off P12 Q34 T23.Tas’ the development gf, , is

accompanied by biaxial ord@3,4 and a linear combination

of T,3andT, 5 order parameters. The resulting phase has a
C,n, symmetry, and we therefore identify it with the previ-
ously discussetll +V phase. At the harmonic level, the free
energy appears to be O(2) invariant, with respect to rotation

of 512. However, in the presence d@f;, nonlinearities in

51'2, break this rotational invariance. A lowest order such
symmetry breaking nonlinearity is given by

top:

FIG. 29. A schematic representation of the— (N+2)* tran-
sition.
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N — it ioTi1. 1K1 Ti2.02.Kk0mi 1K1 i 2K VI. NEW SMECTIC PHASES

fSmim. breaking Q' 2T kT2 2. keplipkiplapke,
— 1S Tp2p2 (5.58 . Our primary interest in.this paper h.as been i.n fl(sga-

g 17P1P2.- : tially homogeneousbut anisotropic liquid-crystalline phases

of bent-core molecules, particularly in phases with exotic

It introduces into the O(2) symmetry harmonic free energys_ymmetnes not encountered in systems of rodlike or P'@t_e'
- i : i ) like mesogens. Our work, however, suggests the possibility
of p;, a well-studied cubic symmetry breaking anisotropy.

; of smectic or layered analogs of these exotic fluid phases. In
Based on these studi¢82], we therefore expect th&lr  hese putative phases, which we will explore in more detail

—N+V transition to be driven first order by thermal fluc- j, 5 separate publicatiofL7] the smectic layer norma
tuations[33]. provides an additional direction that may or may not coin-
cide with a symmetry direction of the fluid phase. Most of
N the banana-shaped smectic phases classified to date are based
H. Transitions from the V+2 phase uponV+ 2 order embedded in smectic layers either in iden-

As can be seen from the flow-chart, Fig. 7, the biaxialtical configurationgas in the SnCsPr phase in the notation
vector V+2 phase, characterized, for example, by finite[4] of Ref.[3]) in neighboring layers or in alternating con-
ps, S, By, Ty, Tg order parameters and bg,, f|gurat|ons(§s in the SnCAPA.phasezm neighboring layers.
symmetry, can further lower its symmetry in two ways. It canEach layer is then characterized by the m_olecular <_j|rect|ons
undergo a transition to thid+V phase via the development N, M, andl and byN. Though theV+2 fluid phase is not
of polar order, characterized tﬁ/lz, (334, andf45, order chiral, each layer of smectic phases derived from it can be

parameters along one of the biaxial axis perpendicular to thghlral if, for example,m lies in the smectic layer and is

: - . tilted relative toN as is the case in the globally chiral
V(p3) order. Alternatively, it can undergo a transition to the .
(V++2)* phase via the development &f order. Both the SMCaP, and SmCsPe phases, and in the SByP, and

V+2-N+V and theV+2— (V;+2)* are expected to be SmC,Pr phases where chirality alternates in adjacent layers

in the Ising universality class because in both cases His [

symmetry that is being broken. New types of smectics can arise from layering Nf,

(Ny+2)*, and (V++2)* fluid phases. In the simplest of

. V+3—=N+V transition (a)

The threefold symmetry in the plane transverse to the vec-
tor (p3) axis of theV+ 3 phase can be spontaneously broken
with, e.g., biaxial order in this plane driving the transition
and other parametetfisted in Table } also condensing. We
therefore expect th&/+3—N+V transition to be in the
three-state Potts model universality class.

J. (Ng+2)*—=(V+2)* transition

FIG. 31. A schematic representation of theN{2)*
—(V1+2)* transition.

The final transition that we will comment on is polar or-
dering transition from the nonpol&;+2* phase. Because
of the present nematic order i+ 2* state, polar order

breaksZ, symmetry and we expectNg+2)* — (V+2)* FIG. 32. A schematic representation of smectic pha@s
transition to be in the Ising universality cladsig. 31). SmAy., (b) SmA (Nr+2), () SmAT (N7+2).
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these phases, which we label ng and depict in Fig. like the transition from the isotropic to the cholesteric phase,

32(a), each layer hasl; symmetry withn parallel toN and the transitions to theNt+2)* phase(from the biaxiaIN

m along a common direction in each layer. This phase hag 2 Phase, the tetrahedraficphase, and thély phase with

D, point group symmetry. Many variants of it are imagin- Dyg symmetry_ are second order, _at least in mean-field
able. For example, the axis could rotate byr/2 from layer theo:y. The pitch of the cholesteric structure of thér(

to layer, or then axis could tilt relative toN to produce a +2)* phase diverges as these second-order transitions are
SmC*(N;) phase, which like the S@* phase would be approached and thus changes rapidly with temperature. Since
chiral. Layered phases formed from th&l+2)* fluid the (N;+2)* phase spontaneously breaks chiral symmetry,
phase are chiral. In one such phase theAﬁl(rNTwLZ) the state initially formed upon cooling from the higher-
phase, a layer of which is depicted in Fié].(B)z then axisis ~ >YMmetry phase W”.I consist of dpmains of opposite chira!ity
parallel toN, and the biaxiaim axis rotates from layer to separated by domain wall that will coarsen over time. Chiral

layer like thec director in the SnC* phase. If the pitch of dopants(or distortions of bent-core mesogens to make them

the twist structure is very long, this phase would appear to bghlral) render all phases chiral and, in particular, induce a

a biaxial smectic. The recently identified biaxial 3nphase c’f\llciezs)tf ”(':I'E 't(;r;]gl;\f}, pa;:'iﬁleagfg)on#h:n%hgal ;ﬁ(;esrelzlons
: H _ H [l l [l [l [l T .
E?;] u;orrr;ziu:)ensd oIOb?Q:n\e;es;ha?:: _a?tghrog%&mf ;())gen hus chiral dopants act like an external field in an Ising
hgse An aIF;ernative version )éf a sgr]nzctlkl: &2“)* Thase ferromagnet, favoring a particular sign of chiralitgather
Fhe SrﬁA*(N +2) phase has in the plane I)f the Iart)yers és than a particular sign of spinand the transitions from the
3l T * * * * H
depicted for a single layer in Fig. 83. Since this phase is (N+2)", T*, andNy phases to theNr+2)” phase will be

chiral, n will rotate in a helical fashion from layer to layer. A analogous to the Ising transition in an external magnetic
’ . : Ye YEr.- A field. In principle, for sufficiently large chirality, blue phases,
more complex N1+ 2) smectic-C like phase, with making

. : with two orthogonal twist axes can also appear Ny (
zirgéngle other than O ar/2 with respect toN is also pos- +2)*. In addition to these properties of the nonpolai(

+2)* phase, the chirgpolar (V1+2)* phase will exhibit
spontaneous ferroelectricity, a liquid state that has been a
VIl. SUMMARY AND CONCLUSIONS holy grail in liquid-crystal research dating back to Louis Pas-

In this paper, we have presented a comprehensive study &Ur- Light scattering, circular dichroism, and switching with
liquid phases of achiral bent-core liquid-crystal molecules@ Weak electric field would be natural experimental probes
Using symmetry we enumerated all possible orientationallyfor these spontaneously chiral states. _
ordered liquid phases, classified them by subgroups of the These chiral phases are particularly interesting because
rotation group @) under which they are invariant, and con- their smectic analogs, the chiral SIaP,, SmCsP,,
structed Landau mean-field theory describing these phasé¥NCaPr, and SnCsPe (the fourB, phasep[3,4,7 have
and transitions between them. One primary conclusion of ouP€en realized in banana-shaped liquid-crystal molecules,
work is that in addition to the vectomp{) and second-rank 9enerating S|gn|flcant excitement in the ferroelectrlq I|qU|d_—
nematic Q') order parameters, a third-rank tensor order pa€rystal community. Our work suggests that smectic posi-
rameterT'K representing third-mass moment, is necessar)uonad order is not necessary and that spatially homogeneous
to characterize the liquid-crystal phases of banana-shapegPontaneously chiral liquid-crystal phases are generically
molecules, such as, for example, thg phase withD,,  PosSsible. .
symmetry, the tetrahedratit phase, and the spontaneously  Although, most[16] experimental systems of banana-
chiral nematic N+2)* and its chiral polar analog\ shaped moIecu'I'es stpdled o] f_ar, appear to undergo direct
+2)*. In these phases the chiral symmetry is spontaneousl%s"'orqer _trangltlons into smectic phases, our work sugge_sts
broken by “condensation” of the biaxia. - and tetrahe- at this situation doe_s not have to b_e the case,_z_and a rich

T ) 12 < phase structure and hierarchy of continuous transitions stud-
dratic Te; order parameters with a nonvanishing angle Ojeq here is possible. We hope that the results presented here
<6< m/2 between their respective principal axesl [see | stimulate searches in experiments and simulations for

Fig. 6(b)]. _ . o o _ banana-shaped materials that exhibit orientationally-ordered
The Nt phase is neither uniaxial nor biaxial but mstead"quid phases predicted here.

exhibits an invariance with respect to a fourfold improper
rotation consisting of a rotation through’2 about thez-axis
followed by an reflectiore— —z. The T phase is invariant

under theTy symmetry group of a tetrahedron. Like the iso- | eo Radzihovsky was supported by the National Science
tropic phase, its second-rank dielectric tensor is isotropiCFoundation through MRSEC Program at the University of
making it optically isotropic, but unlike the isotropic phase, Colorado at Boulder under Grant No. DMR-9809555, and by
it has a nonvanishing second-order nonlinear susceptibilitthe A.P, Sloan and David and Lucille Packard Foundations,
x{~T% such that there is a second-order contribution toand acknowledges hospitality of Harvard’s Department of
the polarizatiorP{?)= y(})E; E, whereE; is the electric field.  Physics, where this work was completed. Tom Lubensky was

The chiral nematic Nt+2)* phase, like the traditional supported by the NSF through Grant No. DMR00-96531.
chiral cholesteric and blue phases, will exhibit periodic spa-The authors thank Noel Clark and Darren Link for numerous
tial modulations of the direction of molecular alignment. Un- discussions.
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