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Theory of polar biaxial nematic phases
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A theoretical model is proposed for describing the polar biaxial and uniaxial nematic phases observed in
thermotropic liquid crystals formed from rodlike polyester molecules. The polarity and biaxiality are shown to
result from the same molecular mechanism, i.e., they are associated with the same critical order parameter
which consists of two vectors determining the average molecular orientations in the biaxial and uniaxial
phases. The model allows us to determine the critical behavior and electric or magnetic field effects that
characterize polar nematic phases and to analyze, at the phenomenological and molecular levels, remarkable
properties that have been disclosed experimentally.
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Recently, the coexistence of biaxiality and spontane
macroscopic polarization has been observed experimen
by Watanabe, Takezoe, and co-workers@1–5# in the nematic
phase of a thermotropic liquid crystal formed from rodli
aromatic polyester molecules. The two above-mentio
properties—biaxiality and polarity—have been vainly soug
independently for many year in thermotropic nematic phas
On the one hand, only centrosymmetric biaxial nema
phases of lyotropic system were previously known@6#, since
their discovery by Yu and Saupe@7#. On the other hand
although ferroelectricity is known to exist for more tha
twenty years@8# as a secondary~improper! effect in thermo-
tropic smectic phases, the onset of a spontaneous pola
tion as a primary mechanism~order parameter! in liquid
crystals, was only found recently@9,10# in a uniaxial choles-
teric phase formed by a lyotropic mixture of polypepti
polymer and benzyl.

The aim of the present work is to describe theoretica
the formation of polar biaxial nematic phases from the i
tropic liquid, and to show that the predictions of the theo
in which the molecular symmetry plays an essential role,
consistent with the experimental observations reported
Refs. @1–5#. The polarity and biaxiality are shown to resu
from the same molecular mechanism, i.e., they are assoc
with the same critical order parameter, corresponding to
vector representation of the isotropic liquid symmetry gro
However, in contrast to the usual theory of polar liquids@11#
two vectors are required to stabilize the biaxial phase. T
allows us to analyze, at the phenomenological and molec
levels, the remarkable behaviors disclosed experimental

The polar biaxial phase found by Watanabeet al. @1# is
formed from a copolyester based on hydroxybenzoic a
~HBA! and hydroxynaphtoic acid~HNA!. The intrinsic sym-
metry of the polymer molecule, represented in Fig. 1,
monoclinic CS with the polarity along the rigid polyme
chain direction, the molecular plane containing the arom
groups. The nematic phase appears on heating above
crystal phase at about 280 °C and was identified by opt
microscopy and x-ray diffraction. Its polar character w
verified by second-harmonic generation~SHG! activity
which reveals a monoclinic polar structure corresponding
the same~macroscopic! symmetryCS as the constituent mol
1063-651X/2002/66~3!/031701~5!/$20.00 66 0317
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ecules, with polarization components along—and perp
dicular to—the chain direction, i.e., the nematic phase is
axial.

In a standard nematic phase formed from rodlike m
ecules of optically uniaxial symmetry, the order parameter
the transition from the isotropic liquid, of O~3! symmetry, is
a second rank tensor@12,13#. In the uniaxial nematic phas
there is only one effective nonzero component of the or
parameter,S1 , which is defined from the probability distri
bution to find the molecular axis in the spherical~u, f! di-
rection,

P~u,f!5
1

4p H 11
S1

2
~123 cos2 u!J , ~1!

the S1 term in Eq.~1! describes the uniaxial nematic sym
metry. Thus, one hasS155^123 cos2 u& where ^ & denotes
the average on theP distribution. For a biaxial phase@13,14#,
there are two effective nonzero order-parameter compone
which are:S155^123 cos2 u& andS25^sin2 u cos 2f&. Note
that Eq. ~1! holds close to the isotropic-liquid to uniaxia
nematic transition temperature and that the correspond
~primary! order parameter transforms as the spherical h
monic Y0

25 1
2 (123 cos2 u). At lower temperatures othe

spherical harmonicsY0
2L(u,f) compatible with the uniaxial

symmetry become significant. However, they are not symm
try breaking quantities and therefore coincide with second
order parameters, having no influence on the phase diag
and critical behavior of the system.

In the case of a molecular symmetryCS , the orientation
in space of the molecules cannot be described with the~u, f!
coordinates, and requires use of the three Euler angles~a, b,

FIG. 1. The HBA-HNA polymer molecule represented within i

mirror plane.pW is the molecular polarization.iW, jW, andkW are unit
vectors in the molecular-vector space.
©2002 The American Physical Society01-1
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g!. In this case the probability distributionP(a,b,g) has to
be expanded into spherical functionsDmm8

L (2L<m,m8
<L) instead of spherical harmonics, giving rise to a wid
variety of molecular configurations than those associa
with molecular units having a cylindrical symmetry. For th
latter symmetry, when going from the isotropic liquid to
polar nematic phase, a single vector can appear inP(u,f)
since there exist only three functionsYm

1 (21<m<1) trans-
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forming as the components of a vector. In contrast, for n
cylindrical molecules there are nine functionsDmm8

1 in the
distribution P(a,b,g), which transform as the componen
of three vectors. The number of allowed vectors depends
the actual molecular symmetry. For molecules with mon
clinic symmetryCS the corresponding probability distribu
tion, restricted to the primary order parameters, reads@16,17#
P~a,b,g!51/8p2$11@Ux~cosa cosb cosg2sina sing!1Uy~cosa cosb sing1sina cosg!2Uz sinb cosa

2Vx~cosb sina cosg1cosa sing!2Vy~cosb sina sing2cosa cosg!1Vz sinb sina#%. ~2!
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(Ux ,Uy ,Uz) and (Vx ,Vy ,Vz) are the components of tw
vectorsUW andVW representing the six-dimensional order p
rameter associated with the transition from the isotropic
uid to a polar-biaxial nematic phase ofCS symmetry. Aver-
aging on P(a,b,g), one gets Ux53^cosa cosb cosg
2sina sing&, etc. These expressions provide the average
entation of the molecules in the biaxial nematic phase, wh
is given by

^ iW~a,b,g!&5
UW

3
, ^ jW~a,b,g!&52

VW

3
, ^kW~a,b,g!&50W .

~3!

iW and jW are the unit vectors belonging to the molecular mir
plane, which are, respectively, parallel to the molecular
larization and normal to it, andkW5 iW3 jW ~Fig. 1!. Since the
relative directions of the vectorsUW andVW can be expresse
by their moduliU, V and by the angleF between them, the
order parameter decomposes into three effective (U,V,F)
and three Goldstone components. These latter compon
describe the orientation of the (UW ,VW ) plane which coincides
with the macroscopic mirror plane of the biaxial state. Th
the free energy associated with the isotropic liquid-po
uniaxial-polar biaxial sequence of phase transitions depe
only on the effective components (U,V,F). Taking into ac-
count the transformation properties of these components
the isotropic group O~3! yields the invariant monomials:I 1

5UW •UW 5U2, I 25VW •VW 5V2, and I 35UW •VW 5UV cosF,
which give the following order-parameter~Landau! expan-
sion:

F1~ I 1 ,I 2 ,I 3!5a1I 11a2I 1
21¯1b1I 21b2I 2

21¯

1c1I 31c2I 3
21¯1d12I 1I 21¯ . ~4!

Minimization of F1 with respect toU, V, and F leads to
three possible stable states.

~i! The isotropic liquid forU5V50.
~ii ! A uniaxial polar nematic phaseof C`v symmetry, for

UÞ0, VÞ0, andF50, p. In this phaseUW andVW are parallel
-
-
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h

r
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,
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and one haŝiW&5(UW /V)^ jW&5UW /3, ^kW &50W . It means that al-

thoughiW and jW are perpendicular at the molecular level, the
average values are parallel in the uniaxial phase.

~iii ! A biaxial polar nematic phase of symmetryCS for
UÞ0, VÞ0, andFÞ0,p.

A polar uniaxial nematic phase withC`v symmetry was
observed by Watanabeet al. @1–3# in another polymer
formed by HBA, HNA, and meta-hydroxy benzoic acid~m-
HBA! as a third comonomer. In this phase the SHG activ
shows that the polarity perpendicular to the molecular ch
is cancelled. Using 4-hydroxy 4-biphenil carboxylic ac
~HBCA! instead of HBA. Furukawaet al. @3# could also ob-
serve a crossover from biaxial to uniaxial regime in a cr
talline film of HBCA-HNA by changing the molar ratio o
HBCA with respect to HNA.

The most representative theoretical phase diagrams a
ciated with the Landau free-energyF1 are shown in Fig. 2. A
fourth-degree expansion ofF1 in U andV is assumed in the
phase diagram of Fig. 2~a!. It shows a sequence of tw
second-order transitions isotropic→uniaxial nematic
→biaxial nematic. A sixth degree expansion is conside
for the phase diagram of Fig. 2~b! which exhibits a direct
first-order isotropic→biaxial nematic transition. The biaxia
phase separates two regions of stability for the uniax
phase. It has to be stressed that the second-order char

FIG. 2. Theoretical phase diagrams in the (a1 ,b1) plane corre-
sponding to the Landau expansion defined by Eq.~4!, and truncated
either at the fourth degree~a!, or at the sixth degree~b!. Dashed and
full lines are, respectively, second-order and first-order transi
lines. In ~b! N1 and N2 are three-phase points;Tr1 and Tr2 are
tricritical points.
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predicted in the two phase diagrams for the isotropic liq
→polar uniaxial nematic is in contrast with the situatio
found for the isotropic liquid→centrosymmetric uniaxia
nematic transition@6,13#. This latter transition is always firs
order due to the existence of a cubic invariant of the co
sponding tensor order parameter, which is absent for the
tor order parameter used in our approach. In the polym
mixtures investigated in Refs.@1–5# the nematic-isotropic
transition could not be observed below the decomposi
temperature~350 °C!.

From Eqs.~2! and ~3!, one can deduce a qualitative pi
ture of the molecular structure in the uniaxial and biax
polar nematic phases, which are shown in Fig. 3~a! and 3~b!,
respectively. In the uniaxial phase@Fig. 3~a!# the molecular
plane is parallel to the optical axis and turns around it. T
molecular polarization lies within the molecular plane, at
angleC with the optical axis, given by tanC52V/U. For
V50, the molecular polarization is parallel to the optic
axis, whereas it is normal to it forU50. Due to the continu-
ous rotations the molecules acquire the effectiveC`v sym-
metry identical to to the macroscopic symmetry of the ph
@18#. In the biaxial phase@Fig. 3~b!#, the rotation of the mo-
lecular plane around the optical axis is anisotropic and
comes frozen at low temperature, so that the effective m
lecular symmetry is alsoCS . Moreover, the angle betwee
the rotation axis and the polarization varies during the ro
tion process. Such picture is consistent with the SHG profi
obtained for the biaxial and unixial phases in the HBA-HN
and HBA–HNA–m-HBA polymer systems@1,3#.

A number of physical properties of the polar biaxial a
uniaxial phases can be determined by considering the
pling of the order parametersUW andVW to the optical second
rank traceless tensorQ, whereQ represents either the con
ventional nematic order parameter or the anisotropic p
« i j 2(1/3)(Tr«)d i j of the dielectric tensor«. The coupling
invariant, linear in the componentsQi j of Q, allowed by the
O~3! symmetry areI 45S i , jUiU jQi j , I 55S i , jViVjQi j , and
I 65S i , jUiVjQi j , with (i , j )P(x,y,z). It yields the Landau
free-energy,

FIG. 3. Schematic representation of the molecular structur
the uniaxial~a! and biaxial~b! polar nematic phases. In both cas
the molecular plane rotates about an axis parallel to the plane.

molecular vectorsiW ~parallel topW ! and jW ~normal topW ! are within
this plane. In the uniaxial phase~a! pW processes isotropically, the

^ iW&5UW /3, ^ jW&52VW /3, and the single optical axis is parallel to th
rotation axis. In the biaxial phase~b! the rotation is anisotropic

then ^ iW&, ^ jW&, and the two optical axes are not parallel to the ro
tion axis.
03170
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F2~ I 1 ,I 2 ,...,I 6 ,Qi j !5F1~ I 1 ,I 2 ,I 3!1e1I 41e2I 5

1e3I 61 f(
i , j

Qi j Qi j ,

which provides by minimization the general form of the o
tical tensor components,

Qi j 5
1

2 f H 2e1S UiU j2
1

3
U2d i j D2e2S ViVj2

1

3
V2d i j D

2e3F1

2
~UiVj1U jVi !2

1

3
UW •VW d i j G J . ~5!

Since there are three Goldstone order-parameter compon
which can be fixed arbitrarily,UW can be oriented along thez
axis @UW 5(0,0,U)#, andVW can be taken in thex-z plane@VW
5(V sinF,0,V cosF)# without loss of generality. Accord-
ingly, one has in the biaxial phase:Q125Q2350 and Q13
5(1/3f )(e3U2e2V cosF)sinF. One eigenvector ofQ is
normal to the mirror plane~x,y!, whereas the two remaining
eigenvectors are parallel to this plane but in directions n
ther parallel toUW nor to VW . In the uniaxial phase one get
Q135Q125Q2350, and Q115Q22522Q33522(e1U2

1e2V26e3UV). In this phase, the single optical axis is pa
allel to UW and VW . Using the current formalism describin
nematic phases@6,14,15#, one takes: TrQ25r 2, and DetQ
5(2/9)r 3 cos 3u. B5r 3 sin 3u defines the optical biaxial co
efficient. Equation~5! shows thatB vanishes in the uniaxia
phase~for u5np/3! as

B5
1

16f&
C~h!@E1C~h!#1/2, ~6!

where the symmetry breaking quantityh5UV sinF varies
in the uniaxial phase as (T2TC)1/2. C(h)5(e3

2

24e1e2)h2, andE5e1I 41e2I 51e3I 6 . Equation~6! shows
that B varies linearly with (T2TC) in the vicinity of TC .
This behavior distinguishes the polar biaxial nematic ph
from standard biaxial nematic phases, in which the biax
coefficient varies as (T2TC)1/2 @14,15#. In the same way, the
r parameter characterizing the deviation from isotropy var
as (T2Ti) in the polar uniaxial nematic phase, whereTi is
the critical isotropic-uniaxial nematic transition temperatu
This is also at variance with the standard uniaxial nema
case in which one finds in the vicinity of the first-ord
isotropic-uniaxial nematic transition a (T2Ti)

1/2 tempera-
ture dependence forr @14,15#.

The specific critical behavior at the transitions to po
uniaxial and biaxial nematic phases may provide an expla
tion for the absence of electric field induced switching
ported by Watanabeet al. @1#, which was attributed by thes
authors to the high viscosity of the systems. Within our a
proach, the response of polar nematic phases to an ap
electric fieldEW , is strongly influenced by the presence of t
Goldstone variables. At low field intensity, the polarization
the uniaxial phase must align with the field, whereas in
biaxial phase the mirror plane must adapt its orientation so
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to be parallel toEW @Fig. 4~a!#. Therefore, considering a ho
mogeneous domain of the polar uniaxial phase where
polarization is directed along1eW z , application of an electric
field EeW z increases slightly the nematic polarization. Wh
the sense of the electric field is reversed (2EeW z), the polar-
ization remains oriented along thez axis but corresponds to
an unstable state, and not to a metastable state as in
ferroelectrics, since there is no energy barrier preventing
switching of the polarization. This is due, on the one hand
the isotropic symmetry of the parent liquid state with resp
to which the polarization can rotate as a whole witho
changing the internal free energy of the system and, on

FIG. 4. ~a! Configuration of the vector order parameter (UW ,VW )

under applied electric fieldEW . At low field intensity, the vectors
align in the direction of the field in the uniaxial phase and in t
biaxial phase they lie within the macroscopic mirror planes which

is parallel toEW . At higher field intensity, a triclinic phase may b
stabilized and the mirror plane disappears.~b! Shape of the equilib-

rium hysteresis curve in the polar nematic phases.EW z is the applied
electric field,Pz is the induced polarization, andP0 its spontaneous
value at zero field. At low field intensity the curve is reversible a
the polarization jumps fromP0 to 2P0 when Ez is reversed. At
higher field intensity the triclinic phase may be stabilized acros
first-order transition, giving rise to an irreversible hysteresis beh

ior around the corresponding critical fieldEW C . ~c! Configuration of
the vector order parameter under applied magnetic fieldB. At low
field intensity, in the uniaxial phase the vectors align either in
direction of the field or normal to it. In the former case the pha
remains uniaxial but becomes chiral, whereas in the latter case

phase remains achiral but becomes slightly biaxial, sinceUW andVW

do not remain parallel. In the biaxial phase the mirror planes is
normal toB at arbitrary low field intensity.
03170
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other hand, to the existence of the nonenergetic Goldst
variables which make possible such rotation. As a con
quence, the polarization is in a mechanically unstable eq
librium state as long as no transverse component of the e
tric field is applied to the system. The absence of polarizat
switching may therefore result from the fact that for beg
ning the switching process, a thermodynamic fluctuation
to generate a macroscopic transverse polarization durin
time scalet5n(puEW u)21, wherep is the molecular polariza-
tion and n the rotational viscosity. Sincet is much larger
then the molecular rotation time, such fluctuation is ve
unlikely, and the system persists in its mechanically unsta
state. At a high threshold fieldEW C the biaxial phase can un
dergo a first-order transition into the uniaxial state. T
metastability of both states around the corresponding thre
old fields6EW C yields a double hysteresis loop, in addition
the reversible switching jump atEW 50 @Fig. 4~b!#. At still
higher field intensities, nonlinear couplings may stabilize
polar nematic phase of symmetryC1 , in which the field is
not parallel to the (UW ,VW ) plane.

The magnetic field action on the polar biaxial and uniax
nematic phases is different due to its axial symmetry. At l
field intensity in the biaxial phase, the mirror plane orienta
perpendicularly to the field, i.e., the magnetic field enforc
the biaxiality of the phase, which keeps itsCS symmetry. On
the contrary, application of a magnetic field lowers the sy
metry of the uniaxial phase toC` if the polarization is along
the field direction, or to the biaxial symmetryCS , if UW andVW
are normal to the field@Fig. 4~c!#.

In Refs. @1,2# the dependence of the SHG intensity as
function of the degree of polymerization was measured us
samples of increasing molecular weight. The SHG sig
vanishes below a critical degree of polymerization. It ind
cates that below a critical length of the polymer molecul
the biaxial nematic state become nonpolar. Such beha
was predicted theoretically by Terentjevet al. @19# and Lee
and Lee@20# for uniaxial polar nematic phase of liquid crys
talline polymers. The two studies differ in their approach
but both find that the polar ordering should appear beyon
given dipole strength of the rigid polymer chains. In o
approach, the onset of a nonpolar nematic state, belo
biaxial or uniaxial polar state, reflects the vanishing of theUW

and VW vectors: the second-rankQ tensor becomes the sym
metry breaking order parameter at the observed critical
gree of polymerization. In a more general way the seque
of isotropic liquid-polar nematic-centrosymmetric nema
phase transitions requires to take into account two prim
~critical! order parameters:Q andUW ~VW becoming a second
ary noncritical order parameter, since it cannot break
symmetry further thanQ andUW alone!. The free energyF3
associated with the preceding sequence of phases depen
six invariant monomials:I 1 , I 4 , I 75Tr Q2, I 85DetQ,

I 95S i , j ,kQi j QjkUiUk ,

and

I 105S i , j ,k,l ,mQi j QjkQklQlmUiUm .
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Minimization of F3 with respect to theQ andUW components
yields six possible stable nematic phases below the isotr
liquid, with the symmetriesD`h , C`v , D2h , C2v , CS , and
C1 . The corresponding phase diagram shows, in particula
second-order transition between the nonpolar (D`h) and po-
lar (C`v) uniaxial nematic phases, while the transition b
tween the biaxialD2h andCS phases is first order. Accord
ingly, the nonpolar phase observed below a critical length
the polymers molecules may result from the activation o
different symmetry breaking mechanism, associated with
Q tensor order parameter. The phase should displa
uniaxial D`h or biaxial D2h symmetry.

Polar nematic phases of thermotropic liquid crystals m
have interesting technological applications, but are also
fundamental interest, since they constitute the first exam
of a true free vector field in condensed matter physics. O
may expect for such phases, a rich variety of unusual
tures and defects. The remarkable critical behavior
uniaxial and biaxial polar nematic phases, established in
present work, and especially the second-order characte
the isotropic→uniaxial polar nematic transition@21#, reveals
that these phases do not form a banal subclass of nematic
particular, the two-vector order parameter used in our
proach is independent of the current nematic tensor, an
adapted to the low molecular symmetry (CS) of the polymer
subunits. More symmetric molecules would cancel the vec
VW and would forbid the stabilization of a biaxial polar nem
atic state. A molecular group of lowerC1 symmetry should,
t.
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on the contrary, require to introduce a third vector order

rameter (WW ), which would allow stabilization of a uniaxia
polar state of triclinicC1 symmetry.

Although the existence of biaxial and uniaxial polar ne
atic phases requires further experimental confirmation
other liquid crystal systems, the fact that such phases h
been evidenced for the first time in a system displaying
molecular symmetryCS is not surprising. Our analysis
shows that only for the low molecular symmetriesC1 andCS

the coexistence of polarity and biaxiality is permitted as
result of a single~irreducible! symmetry-breaking mecha
nism. A number of theoretical studies have focused on
possibility of realizing polar uniaxial nematic phases@22–
25# because of their potential technological interest. Ho
ever, polar uniaxial nematics can be predicted using m
different theoretical approaches based on dipolar interact
of molecules with cylindrical symmetry, which lead to triv
ally ordered nematic configurations. The originality of th
present study is that the existence of uniaxial and bia
polar phases is deduced from the sole molecular symme
independent of the specific nature of the molecular inter
tions.
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