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Rheological behavior of microemulsions
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We study the stationary and transient behaviors of a microemulsion phase subjected to a shear flow. The
system is described by a diffusion-convective equation that generalizes the usual Cahn-Hilliard equation.
Nonlinear terms are treated in a self-consistent approximation. Shear, first and second normal stresses are
calculated as momenta of the structure factor. Shear thinning is observed in stationary conditions. After a
Newtonian regime at small values of the shear rate, the excess viscosity decreases when the shear rate becomes
of the order of the inverse of the relaxation time of the system without flow. In transient regimes, when the flow
is applied starting from a quiescent state, we find that the shear stress reaches a maximum before decreasing to
a constant value.
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[. INTRODUCTION where ¢ plays the role of the usual correlation length in
disordered phased,is related to the size of coherent regions

The rheological behavior of complex fluids such as poly-of oil or water domains, and typical values of the radic
mer solutions, polymer melts, emulsions is of considerableyre in the interval 2—4.
interest both in technology and in basic resedith While The behavior of the stress in the microemulsion phase
the behavior of the stress response to applied flows is Qfyas first considered in Ref7] and then in Ref[8] where
fundamental importance in many applications, it also reflectg|so the two-time correlation functions were studied. Here
th existence of mesoscopic.str'uctures in the fluid and ig,e complete the analysis of the steady state of F8fand
intimately related to its constitution. For example, when acqngjder also the transient behavior. Our approach is based

shear flow is applied to a polymer solution, the stress firsg, 16 yse of a continuum free-energy functional and is simi-
ree_lches a maximum and then re_Iax_es to a constant {Alue lar to that of Onuki and Kawasak®], applied also to evalu-
This phenomenon, at small strain, is related to the entangle

ment of the polymer network which is distorted by the flow ate the PfﬁeCtS of a shear f'OVY on copolymer mEli8-12,
: L on the disorder-lamellar transitidi3,14], and on the phase
with a resulting increase of the stress. At larger values of the . . .
Separation of binary mixturdd5].

strain, however, the disentanglement of the system is favore Wi id Cahn-Hilliard i lized by th
and the stress is observed to decrease. In general, non mono- N cons:c er a Lahn-Hilliard equation ge”‘?fal'zeﬁ y the
tonic relaxational properties of the stress are typical of comPresence of a convective term. Hydrodynamical effects are

plex fluids which are also characterized, in stationary condin€dlected; moreover, the surfactant is assumed to relaxe
tions, by non-Newtonian behavior. The effective viscosityfaster than the other components of the mixture so that its
depends on the applied shear flow, and different behaviordegrees of freedom are not explicity considered. Nonlinear
can be observefi]. terms, which become relevant close to transition lines, will
In this paper we consider the rheological behavior of thebe treated self-consistently. A renormalization procedure is
microemulsion phase in both stationary and transient condintroduced and the system is studied in terms of the physical
tions. In ternary self-assembling systems, the surfactantariablesé,d of the case without flow.
forms interfaces between oil-like and waterlike domains. Our main result for the stationary regime is the behavior
These interfaces, in the microemulsion phase, constitute aof the constitutive curve. Shear thinning, which is the de-
intertwined bicontinuous structure disordered on large scalesrease of the effective viscosity when the shear rate is in-
but with mesoscopic order on distances of the order of 500 Areased, is observed in two different ranges of the shear rate.
[3]. The observed structure factor is given by It first occurs at a value of the shear rate of the order of the
inverse of the relaxation time of microemulsions without
shear. The morphological changes occurring, when the shear
~— (1) rate is increased, can be deduced by the patterns exhibited by
a+gq*+cq’ the structure factor. In the transient behavior after the appli-
cation of the flow, at sufficiently high shear rates, we observe

which, for g<0, has a maximum ag=[g[/2c [4—6]. In @ maximum in the shear stress followed by a relaxation to a

real space, this corresponds to the two-point correlation funceonstant value, analogous to what is observed in other sys-
tion tems. We have also studied the behavior of the stress tensor

when, starting from a stationary state with shear, the flow is
switched off.

The paper is arranged as follows. In Sec. Il we specify the
model and solve formally the dynamical equation for the

I(q)

d ., [2m
G(r)zme fsmT, 2)
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structure factor. Results for the Stationary regime and for the—_‘/|gr|/2C_ Moreover, the characteristic |engt5$ndd ap-

transien_ts are, respectivelly, described in Secs. Il and IV. Seﬁbearing in the real space two-point correlation functi@h
V contains some conclusions.

are given by
Il. THE MODEL [1/a 1’2+ 1(gr> 12 ®
Our study of rheological properties of microemulsions is 2lc 4\c ’
based on a functional Landau-Ginzburg approach with one 1 w2 2
scalar order parameteds(i) representing the concentration d=2ml= an) _(%) 9
difference between oil and water. We consider the Hamil- 2\c 4\c
tonian

Therefore, equilibrium properties can be expressed in terms
1 . of renormalized parameters and, by E@.and(9), through
H[¢]=f d3xr§[az¢2+(go+ 920%)(V)?+c(V2¢)?] the physical lenghtg andd (once the parameteds, ¢, g,
and the cutoffA are given.
\ ¢4} The dynamics of the order parameter in the presence of

+ 7 (3 convective motior{16] is described by the equation
that has been largely demonstrated to well describe equilib- @+J.V*¢=rv2<ﬁ +7 (10)
rium properties of ternary mixturd8]. Here we briefly dis- ot 5 ¢

cuss the properties of this Hamiltonian relevant for the mi-

croemulsion phase. The expressi@ndiffers in the gradient whereH is the Hamiltonian of Eq(3). The velocity field is
terms from the usual Landau-Ginzburg Hamiltonian used ta planar Couette shear flow

study binary mixtures. A negative value of the function

9(#) =0+ 9,02 (g,>0) favors the appearing of interfaces. U= YYe,, (12)
In particular, the value of, can be related to the amount of

surfactant present in the system. The term proportional to herevy is the shear rate arg} is the unit vector in the flow
>0 assures stability at large momenta and weights the cugirection; 7, is a white Gaussian noise representing thermal

vature of interfaces. fluctuations with momenta given by

The presence of the quartic tern® and ¢2(V )2,
which also in a disordered phase could have a role in the <77¢(>Z,t)>:o, (12
proximity of a transition line, makes impossible an exact
determination of the two point correlation functions. How- (X)) 7y(X' 1)) = —2TT V283 (x—x') S(t—t")
ever, following Ref[7], it is possible to use a renormaliza- LR (13

tion procedure based on a self-consistent approximation to

find an expression for the equilibrium scattering function and(- - -) means the ensemble averages required by the

for the two-point correlation function in real space. For thefluctuation-dissipation theorem that holds in the absence of

first, defined asp(k) the Fourier transform ofp(x), it is  flow. The functional derivativeédH/ 8¢ represents the differ-

found that ence in chemical potentials between oil and watéris a
mobility coefficient, andT is the temperature of the heat
bath. By assuming Eq10) as the evolution equation fap,

(40 we are neglecting hydrodynamic fluctuations as well as the

motion of the surfactant.

We will study the evolution equation for the dynamical
structure factor

S<k>z<¢<ﬁ>¢<—ﬁ>>=m,

wherek=|Kk|, the renormalized parameters are given by

&, =a,+ \Sy+ S, (5 S(k,H)=(d(k,1) (— k1)) (14)

9r=9o+ 9250, (6) in the same self-consistent approximation used in equilib-
rium to write Eqgs.(5) and (6). The convection-diffusion

and the loop integrals are defined as equation can be formally linearized E&7]

>

d3k
= p i . -
% flﬂq(zw)fﬂk k) @ 40T =T V(2 + ASy(t) + 525() 16~ [0
(p=0,2) with A being a high momentum phenomenological +0280(1) V2 p+ AP} + 74, (15

cutoff. The regiong,<0 and 4arc—gr2>0, as discussed in N ) _
the Introduction, can be identified with the microemulsionWhere the quantities,(t) are given by expressions analo-
phase with the functionS(k) having a peak atk=ky gous to those of Eq(7) but now with S(k,t) of Eq. (14)
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self-consistently calculated with E¢L5). A standard proce-
dure gives from Eq(15) the dynamical equation de(lZ,t),

d d .
i vk —— 4+ 2I'k?K g(k) { S(k,t)=2TT'k?,

r (16)

where Kr(k)=a,+g,k?*+ck* is the renormalized vertex
function and the parameteas andg, can be obtained as in
Egs.(5) and(6) usingSy(t).

A formal solution of Eq.(16) may be obtained by the
method of characteristics,

S(k,t) =Ao[ K(1)1Z4(1) + 2TT Zy(1), (17)

where we have defined the functions

Il(t)zexp{ —21“ftdslcz(s)[ar+gr K2(s)+ck*(s)]t,
0
(18

t
(1) = fodu/@(um(u), (19

and K(u)=K+ ykeue,; Ag(k) is the structure factor at the
initial time t=0. Since the quantities, andg, contain the

momenta ofS(IZ,t), Eq. (17) is actually a nonlinear integral

equation forS(IZ,t). This equation can be solved numerically

for all times by iterative methods.

PHYSICAL REVIEW E56, 031506 (2002

Finally, once the structure factor is known, we may evalu-
ate the stresses that can be obtained as momenta of the struc-
ture factor[7]. The shear, first, and second normal stresses
are, respectively, given by

t——f ilzkk +2ck?)S(k,t), (22
ny( )= HZ\<A(27T)3 xy(gr ck)S(k,t), (22

_ dglz 2 2 2 "
Ny (1) = — Lﬁlq(%)s(kx—ky><g,+2ck Sk,

(23)
3k
N,(t)= —f (k2—K2)(g,+2ck?) S(k, ).
K<A(27)3 Y
(24)
In addition, the excess viscosity is defined as
An(n)="2, (29

which represents the contribution of interfaces to the full
viscosity of the fluid(that is, evaluating the viscosity of the
fluid by means of Eq(25) we are neglecting the hydrody-
namical contribution to the viscosity itsglf

Ill. STATIONARY REGIME

In this section we present results for the steady states

Our results will first concern steady state properties. Thgeached under the action of the shear flow with the structure

stationary solution can be readily obtained from the
— +oo limit of Eq. (17), observing that in this limit the first

term of the solution tends to zer@xcept for thek=0

mode. Therefore we write the stationary structure factor as

S(K; 7). =2TT Zy(), (20

where
Ty(w)= j:dz ICZ(z)exp{ -2r fozds K2(s)[a,+g,KL2(s)

+CIC4(S)]).

factor given by Eqg.(20). We have studied this expression
numerically for several values of, d, and y. The other
parameters have been fixed@s=1c=1A=05A=3.

The effects of the flow on the structure factor can be seen
in Fig. 1 where the projections on the plarigs=0 andk,
=0 are shown for differeny andé=2,d=6. Similar results
have been obtained for other choiceséoandd [8]. [At k,
=0, the shape of the structure factor is the same as that of
the case without flow, see E(L6).] At y=0.5 the structure
factor remains almost isotropic and its pattern for each Car-
tesian plane is close to that of a circular volcano. The pat-
terns are progressively distorted when the shear rate is in-
creased. On the plank,=0, at y=2, the edge of the
volcano has assumed an elliptical shape and four peaks are
visible. These peaks initially appear on the coordinate axes;

We will also study transient behaviors with the fluid then, wheny is increased, the ones locatedkgt=0 become

evolving from a quiescent state towards the stationary statg0mparatively more important while the two others rotate
with shear, or with the system relaxing, after interruption of¢lockwise and decrease their amplitude linearly witintil

the flow, from the sheared stationary state into the quiescertf®Y disappear. Indeed, in the limyt—, since terms pro-

state. For the latter case we use the solution of(E). with

y=0,
S(lz; YiDrelax= S(E, ‘)’)goeizrszR(k)

J’_

t
Kr(k) kexﬁ{  2TK2Kg(K)

(21)

portional to powers ofyk, damp the exponential term on the

right-hand side of Eq(20), only the maxima ol’C(IZ) with
ky=0 andk,= *ky survive. On the other plarig=0, two
peaks atk,=0k,==*ky, are also observed to become
sharper and sharper asis increased.

The above results can be related to the orientation of the
interfaces in the mixture, as also observed in IR&f.A peak
of C(k) defines a characteristic length proportional to the
inverse of its position and, since the system is not isotropic,
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FIG. 1. Projections of the structure factor in the stationary state on the gkgres (right column andk,=0 (left column) for £=2,
d=6. The shear rate is, from the top to the bottops; 0.5, y=2, andy=100; k, ,k, ,k, vary between—3 and 3 in adimensional units.
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FIG. 4. Absolute value of the second normal strégs for
FIG. 2. The stationary shear stresg, versus the shear rate £=2 andd=6.
for £=2 andd=6.

The behavior of the stress tensor as a function of the shear
to each maximum one associates three lengths, one for eaghte is reported in Figs. 2—4. At small valuesypthe shear
space direction. Due to the symmeEry» —K, only the peaks stress is a linear function of so that the viscosity is constant
not related by reflection around the origin can be consideredand the fluid is Newtonian. Shear thinning occurs fobe-

At very large shear rate the existence of a single couple afiween 1 and 2, when the slope of the curve of the stress
maxima atk,=0 signals that interfaces are preferentially changes significantly. At this point the original volcano shape
aligned along the flow with symmetry recovered in the trans-of the structure factor has also appreciably changed. In terms
verse directions and the characteristic lengths being the same

as without shear. For intermediate valuesyahe additional ~ , ;52

peaks atk,,ky k,) reveal the presence of interfaces oriented o , 0.004
with an anglea=arctan¢-k,/k) with respect to the flow, i -~
besides those aligned along thelirection. These additional Oy ’,r" o,

peaks are better seen in a region of parameters closer to tr
microemulsion-lamellar transition line corresponding to a i

<
..

T —

larger value of¢ [8]. As y is increased, the tilt angle and 0.05 0.002
the relative abundance of lamellas oriented at this angle di-
minish as suggested by the behavior of the maxima ¥jth
#0 previously discussed.
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S R S FIG. 5. Time evolution of the stress,,, for various values of the
10 1 100 7y 10 shear ratey with £=2 andd=6. Results are shown for=0.5(top
left), y=2 (top right, y=20 (bottom lef), and y=100 (bottom
FIG. 3. The first normal streds, for £=2 andd=6. right).
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FIG. 7. Time evolution of the second normal stréés with

FIG. 6. Time evolution of the first normal strels; the param- e &V
parameters as in Fig. 5.

eters are the same as in Fig. 5.
of interfaces we expect that, when shear thinning is ob- Shear thinning is observed againat 10° when, as we

served, the bicontinuous network of interfaces, which is onlyhave seen, peaks with,=0 largely prevail. We expect that
distorted in the Newtonian regime, is affected by many rup-at these values of the shear rate the original bicontinuous
tures with a significant dicrease of connectivity. We can sayinterface network has changed significantly its topology, be-

that a strong shear regime is entered. Indeed, we can corseming more similar to a stack of lamellas. At very large
the excess viscosity is found to decreasejas with s

final stress regime the lamellae are expected to become more
and more aligned with the flow with fluctuations very inhib-
ited. We observe that the shear stress corresponding to a

completely ordered lamellar phase is zero.
The other stress componemts,N, behave similarly. At

pare the shear temporal scaje® with the relaxation time
7w Of microemulsions in equilibrium. The relaxation time of =1.87, which is close to the analytical linst=2 [7]. In this
a mode with wave vectdk is given by

- 1
(k)= .
® I'k?(a, +g,k?>+ck?)
Following Ref.[7], we choosek=k,, corresponding to the Small ¥, Ni,N,~* while they decrease ag™* when y
—o (see Figs. 3 and)4

(26)

peak of microemulsions, so that
IV. TRANSIENTS

1 £2d2 @7
™= .
M 8IC 477 (272 d)2— 1/¢2] , ,

We have studied the evolution of the system under the

The corresponding Deborah number is given by action of the shear flow from the initial equilibrium configu-
ration of Eq.(4) towards the steady state of the preceding

T section, as described by E@.7). The behavior of the stress

De= s’ (28) components for different values ofis shown in Figs. 5-7.

Wheny is large enough that Del, a nonmonotonic behav-

wherers=1/y. If we takey=2 we get De-1.9 for the case ior of the stress is observed with,,,N;,|N,| exhibiting a

of Fig. 2. This indicates that shear thinning becomes evidennaximum before relaxing to a constant value. A similar be-
when the shear rate is of the order of the inverse of typicahavior has been measured in polymer solutif®s In our
structural times of the system without shear. We checked focase we can think that at initial times the surfactant interfaces
other values of,d that the Deborah number at shear thin-are stretched by the flow with a consequent increase of the
ning is always of order 1. stress. When the maximum stress is reached, the interface
031506-6
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FIG. 9. Relaxation of the stress,, for £&=2, d=6, y=2 (top left), y=20 (top right, andy= 100 (bottom).

structure starts to break and the stress relaxes to a lower
value. The temporal evolution of the structure factor for
=100 is shown in Fig. 8. The largest distortion observed
corresponds to the maximum stress. In the cgse€, when 1.21°
the relaxation of the stress is monotonic, a prolate patterr .
like that in the middle of Fig. 8 at,=0 is not observed. I
We have also considered the opposite situation with ther
system, initially in a stationary state with shear, evolving

without flow as described by E¢21). In this case the be- 0.6l
havior is exponentially monotonic after an initial faster de- *
cay, as can be seen in Fig. 9. The time constanf the 0.4¢
exponential part of the relaxation decreases wittas shown .
in Fig. 10. 0.2t .. . . . .
V. CONCLUSIONS 20 40 60 80 100
Y

We have used a generalized Cahn-Hilliard equation with a
convective term to study the rheological behavior of the FIG. 10. Relaxation time as a function of the shear raje
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microemulsion phase. The steady state constitutive curvphase diagram, including the disorder and the Lifshitz lines
shows shear thinning, first occurring at a shear rate of thg3—6], is changed by the presence of the flow. Moreover,
order of the inverse of the equilibrium relaxation time. We hydrodynamic fluctuations should be taken into account for a
have also obtained analytical expressions for the tempordull description of the system.

behavior of the structure factor. From this we derive a non-
monotonic evolution of the stress. This is similar to what is
observed in other systems that relax into the steady state with
a shear flow. We believe that these predictions are useful for We thank Antonio Lamura and Federico Corberi for help-
future experiments. From the theoretical point of view, thisful discussions. G.G. acknowledges support by PRA-HOP
analysis can be completed by studying how the equilibriuni1999 INFM.
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