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Dynamic rearrangements and packing regimes in randomly deposited two-dimensional
granular beds
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We study the structural properties of two-dimensional granular packings prepared by random deposition
from a source line. We consider a class of random ballistic deposition models based on single-particle relax-
ation rules controlled by a critical angle, and we show that these local rules can be formulated as rolling
friction in the framework of dynamic methods for the simulation of granular materials. We find that a packing
prepared by random deposition models is generically unstable, and undergoes dynamic rearrangements. As a
result, the dynamic method leads systematically to a higher solid fraction than the geometrical model for the
same critical angle. We characterize the structure of the packings generated by both methods in terms of solid
fraction, contact connectivity, and anisotropy. Our analysis provides evidence for four packing regimes as a
function of solid fraction, the mechanisms of packing growth being different in each regime.
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I. INTRODUCTION

Random ballistic deposition~RBD! is a well-known
method for layer-by-layer construction of random packin
of hard particles such as granular beds and colloidal ag
gates@1,2#. This method is based on a simple and intuiti
procedure. The particles~mainly monodisperse spheres
disks! are allowed to fall sequentially along randomly po
tioned vertical lines over a horizontal substrate. Upon con
with the substrate or the first~already deposited! particle, the
particle either sticks or is further moved to a more favora
position according to a relaxation~or restructuring! rule. The
RBD method can be efficiently implemented in a compu
code for generating very large two- and three-dimensio
packings. Elaborate large-scale simulations based on this
proach have been used to investigate the geometrical p
erties of random packings~packing regimes, distribution
functions, growth, etc.! @3,4#.

It is obvious that the random deposition of particles c
also be simulated by means of dynamic methods, such
molecular dynamics@5,6# and contact dynamics@6–9#, in the
spirit of a real experiment where the grains are poured in
box. Such simulations require, however, substantially m
computation time@10#. This difficulty has been inhibiting
enough to discourage for a long time systematic invest
tion of deposited beds following dynamic methods. But,
situation is far better today due to the fast increase of av
able computer power and memory during the last deca
There is now a considerable scope for dynamic simulati
that can be exploited in order to study a number of hig
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interesting issues in the field of random packings.
The objective of the present paper is to apply a cont

dynamics algorithm to investigate randomly deposited gra
lar beds in a two-dimensional~2D! geometry. The geometri
cal texture~coordination number, solid fraction,. . . ) of a
granular bed depends on several physical parameters~par-
ticle properties, contact interactions, inertia of deposited p
ticles! which can be tuned in a dynamic simulation in ord
to characterize the impact of each parameter on the text
We propose here an approach that allows to bring out so
interesting features of granular beds in comparison to R
models. We consider a generalized RBD model in which
relaxation of the falling particle upon contact with the su
strate is controlled by the direction of the contact normalu ~a
single angle in 2D! @11#. Depending on whetheru is below
or above a critical angleuc , the particle either simply sticks
or is allowed to rotate until it reaches a local minimum p
sition or forms a new contact belowuc . Hereafter, we refer
to this model as the critical angle~CA! model. The central
feature of this model is that it allows to control the sol
fraction r by varying the critical angle@11#. The approach
we propose consists in performing dynamic simulations
random ballistic depositionas closely as possible to the C
model.

This requires that we transcribe the above geometr
relaxation rule into a contact law that is reduced to the g
metrical rule for the random deposition process. We fi
show that this requirement is met if the particles inter
through arolling friction law ~similar to the Coulomb sliding
friction! in which a contact torque is mobilized to resist rel
tive rotation of two particles. We implement this law within
contact dynamics~CD! algorithm. Then, we perform two se
ries of simulations both with the CA model and the C
method. In the first series, we use the granular beds prep

ks
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according to the CA procedure as initial configuration fo
CD simulation. We show that, although local stability~stick-
ing due to rolling friction or, alternatively, particles sup
ported by two underlying contacts! is fulfilled for each par-
ticle added to the bed, the latter still undergoes collect
rearrangements leading to a higher solid fraction. This
plies that a granular packing prepared by geometrical rule
globally unstable. We study the extent of dynamic rearran
ments and the structural properties of the CA and CD pa
ings as a function of the critical angle.

In a second series of simulations, we characterize
packings in terms of the average coordination number, st
tural anisotropy, and contact connectivity as a function of
solid fraction. We show that the trends are globally simi
for the CD method and the CA model~the same packing
regimes are observed!. We distinguish several packing re
gimes where different mechanisms~screening, chaining
branching, piling, jamming, and ordering! are active and
control the packing fraction.

II. NUMERICAL APPROACH

A. Critical-angle model

Figure 1 shows the geometry of a contact formed b
falling particle i with a particlej of the substrate. The two
particle centers define a line inclined at an angleu i j to the
vertical. For disks,u i j is also the direction of the contac
normalni j , unit vector directed from the center of particlej
to the center of particlei. For brevity, we will refer tou i j as
the ‘‘contact direction.’’

The CA model is defined as follows@11#. If uu i j u is below
a critical angleuc , defined in the range between 0~vertical
direction! andp/2 ~horizontal direction!, the particlei simply
freezes by sticking to particlej. On the other hand, ifuu i j u
exceedsuc , particle i is allowed to rotate around particlej
until a second contact is formed with another particlek of the
substrate. Then, there are three possible alternatives:~1! If
uu iku,uc , particlei freezes as in the first case;~2! if the new
position of particlei is a local minimum position, again pa

FIG. 1. Geometry of a contact formed by a falling particlei with
a particlej from the substrate. The contact angleu i j is measured
from the vertical.
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ticle i freezes;~3! if neither of the two latter conditions is
fulfilled, particlei is again allowed to rotate around particlek
until a new contact is formed with another particle of the b
and the three alternatives are examined again with this
contact. This procedure is iterated until particlei is stabilized
either by sticking or by reaching a local minimum positio

Two limits are of particular interest. Whenuc590°, all
particles stick irreversibly to the substrate wherever th
land. This limit corresponds to the random sequential adso
tion model@12–15#. Whenuc50°, all particles relax and the
model is reduced to the steepest descent model@1,16#. In
Ref. @12#, the solid fraction was found to bermin50.3568
60.0001 in the no-restructuring limit. The solid fraction fo
the steepest descent model is expected to come clos
rmax50.906 corresponding to a triangular packing. Ho
ever, to achieve a structure with long-range ordering,
initial conditions are very important. In practice, the botto
line must initially be covered by an array of contiguo
disks. Otherwise, simulations using the steepest descen
gorithm have shown that the solid fraction will not exce
r50.82, which is the characteristic density of 2D monod
perse random close packing where long-range order is
ken by defects in the packing@12–17#.

In the CA model, the solid fractionr of the granular bed
is a function of the critical angleuc as shown in Fig. 2. In
this figure, the solid fraction for each of the anglesuc
50°,1°,2°, . . . ,90° is an average over 30 independent ru
The bottom line was covered by a layer of 32 contiguo
particles and 1000 particles were deposited in each run
order to avoid wall effects, periodic boundary conditio
were implemented in the horizontal direction. Let us no
that CA simulations are possible at much larger scales. N
ertheless, we restrict here the size and the number of
simulations to those reasonably accessible to dynamic si
lations since the results will be compared between these
methods below. Figure 2 shows that the solid fraction
creases monotonously fromrmax to rmin as uc is increased
from 0 to 90°. One can distinguish several regimes on t

FIG. 2. Solid fractionr as a function of critical angleuc ~in
degrees! for the CA model.
3-2
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DYNAMIC REARRANGEMENTS AND PACKING REGIMES . . . PHYSICAL REVIEW E 66, 031303 ~2002!
curve, which will be discussed below in connection w
dynamic simulations.

The CA model is a geometrical model that meets the
overlap condition between hard particles but involves a nu
ber of physical approximations about the stability of t
packing and its growth. By nature, this model neglects ine
effects. The substrate is frozen and the relaxation step
volves only the deposited particle. Moreover, the two sta
ity criteria ~local minimum position and sticking condition!
for the deposited particle have alocal nature. In other words
the model assumes that the whole packing remains in s
equilibrium as long as all particles are sequentially stabiliz
by either of these conditions.

In order to examine the validity of these assumptions,
approach followed in this paper is to perform dynamic sim
lations as closely as possible to the CA model and to co
pare the resulting packings. This implies that the partic
should be released sequentially and they should hit
granular bed with negligibly small inertia. Moreover, upo
contact with the substrate, the falling particle should dyna
cally stick or roll down depending on the value of the cont
angle with respect to the critical angle, until one of the tw
stability conditions is fulfilled. There is no difficulty in tun
ing the inertia in a dynamic simulation. But, we need
define a dynamic version of the relaxation rule.

B. Rolling friction

The dynamic content of stability due to a local minimu
position is clear. The weight of a particle can obviously
balanced by the reaction forces exerted by two underly
particles; see Fig. 3~a!. But the sticking condition require
both a contact forceF i j and a ‘‘contact torque’’Mi j so as to
counterbalance, respectively, the weightmig of the deposited
particle and its moment with respect to the contact po
Figure 3~b! illustrates this condition. The balance equatio
are

F i j 1mig50, ~1!

migrisinu1Mi j 50, ~2!

wherer i is the particle radius andg is the gravity.
Let Ni j and Ti j be the components of the reaction for

F i j along and perpendicular to the contact normalni j . From
Eq. ~2! one gets

FIG. 3. The two local stability conditions in the CA model:~a!
local minimum position,~b! sticking.
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Ni j 5mig cosu, ~3!

Ti j 5mig sinu, ~4!

Mi j 5r iNi j tanu. ~5!

The normal forceNi j is positive ~as it should! as long as
2p/2,u,p/2 ~the angles are measured from the vertica!.
On the other hand, the relative sliding is inhibited
uTi j u/Ni j ,ms , wherems is the coefficient of~sliding! fric-
tion ~or equivalently,u,us , whereus5tan21ms is the angle
of friction!.

Now, if we require that particlei rolls only if u>u r , then
from Eq. ~5! we arrive at the following no-rolling condition

uMi j u
r iNi j

,tanu r5m r , ~6!

wherem r is a coefficient ofrolling friction. Let us further
assume thatMi j remains equal to its threshold valu
6m r r iNi j when rolling occurs. This condition is similar t
the sliding conditionTi j 56msNi j .

The rolling friction law, as defined here, and the mo
familiar Coulomb~sliding! friction law are shown in Fig. 4
in the form of graphs@8,18#. The rolling friction law relates
the relative rotation velocityv i j 5v i2v j of the two par-
ticles to the contact torqueMi j , whereas the sliding friction
law relates the sliding velocityv i j

s to the tangential forceTi j .
In fact, although for the sake of clarity we derived the co
dition ~6! by considering the particular case of a deposi
particle touching a particle of the bed, the application
rolling friction to a contact between two arbitrary particles
a packing is rather straightforward when formulated in t
form of the graphs shown in Fig. 4. The torque transmit
through a contact to a particle in static equilibrium, for e
ample, is the torque necessary to balance the sum of all f
moments and other contact torques acting on the particl
the same way as the mobilized torqueM in Eq. ~6! counter-
balances the momentrmg sinu of the particle weight.

The prescription of rolling friction in a dynamic metho
follows the same steps as the sliding friction. The relat
between the contact torque and the relative rotation velo
@Fig. 4~a!# cannot be represented as a monovalued funct
Hence, in the framework of the molecular dynamics meth
based on explicit integration of the equations of motion, t
friction law has to be replaced by an approximatefunction
@8,10,19#. This ‘‘regularization’’ of the friction law is not

FIG. 4. The graphs representing~a! sliding friction law and~b!
rolling friction law; see text.
3-3
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FIG. 5. ~a! An example of a
CA packing. ~b! The static pack-
ing obtained by the CD method
starting with the CA packing in~a!
as initial condition,~c! CD pack-
ing obtained by using the same s
quence of falling particles as in
~a!.
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necessary within the contact dynamics method that was
ployed for the present investigation@7–9#.

Using either of these dynamic methods, the sticking c
dition can be achieved ifms is set to infinity~no sliding for
no contact direction! and the angle of rolling frictionu r is
interpreted as the critical angleuc . This was implemented in
our contact dynamics simulations. Alternatively, one may
m r to infinity ~no rolling for no contact direction! using the
angle of sliding frictionus as the critical angle. It is also
possible to use a combination of these two conditions. Th
conditions are not equivalent, but we will not discuss t
differences in this paper. In all cases, the condition of sti
ing upon collision requires also a zero coefficient of resti
tion.

To summarize, the following conditions allow to perfor
a dynamic simulation of random particle deposition in clo
analogy with the CA model:~1! u r5uc , ~2! no sliding (us
590°), ~3! weak inertia,~4! zero coefficient of restitution
The important difference is that, while in the CA model a
degrees of freedom in the substrate are kinematically froz
in our dynamic simulations only contact sliding is frozen
settingus590°. All other degrees of freedom are active a
the rolling friction governs all contacts: the contact betwe
the deposited particle and the bed, as well as all contac
the bed. Since the particles are not frozen in the granular
sequential particle deposition may thus lead to rearran
ments in the granular bed.

C. Simulation parameters

The CD simulations involve a number of parameters t
should be adjusted so as to minimize inertia effects with
losing numerical efficiency. The largest inertia effects a
produced by the largest head-on velocityvmax between col-
liding particles. LetDt be the time step. The contact forc
due to inertia produced by a collision ismvmax/Dt. This
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force should be compared to the weightmg of one particle.
Hence, the dimensionless parameter characterizing the
of inertia to weights is

a5
vmax

gDt
. ~7!

The influence ofa on the solid fraction and restructurin
is an interesting subject in itself, but it will not be invest
gated in this paper. As emphasized previously, the focus h
is put on those effects~equilibrium states, rearrangement!
that arise from thegeometrical configuration. Hence, we
should use a low value ofa. However, lower values ofa
mean slower simulations. Hopefully, the framework of t
CD method allows for large time stepsDt up to the limita-
tions related to the procedure of contact detection. On
other hand, the value ofvmax can be imposed for the falling
particles, but further relaxation inside the packing may p
duce large impact velocities. In particular, at low solid fra
tions, where large voids exist in the bed, the free fall o
particle over distances compared to the system heighH
.60r can give rise to impact forces far larger than t
weight of a column of particles of the same height.

In order to avoid such strong uncontrolled inertia, w
implemented a ‘‘velocity barrier’’ trick that limits the particle
velocities tovmax50 –3 ms21. With this choice, we can use
a time step as large asDt50.003 s. Then, settingg
5100 ms22, we geta51. This means that the largest im
pact force is just equal to the weight of a single particle. T
choice is both reasonable and compatible with numer
efficiency.

III. DYNAMIC REARRANGEMENTS

A. Stability of CA packings

How stable are the granular beds prepared by mean
the CA model? We have seen that the CD method, equip
3-4
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DYNAMIC REARRANGEMENTS AND PACKING REGIMES . . . PHYSICAL REVIEW E 66, 031303 ~2002!
with rolling friction together with suitable values of the p
rameters reducing inertia effects, meets thesingle-particle
stability criteria of the CA model in the course of depositio
namely~1! the sticking condition as a function of the rollin
friction angleu r ~identified with the critical angleuc) and~2!
the local minimum position where the weight of a particle
balanced by the reaction forces at the two underlying c
tacts. Now, if we start a CD simulation using a packing co
structed according to the CA model as the initial configu
tion, then one of the two following alternatives may occur.
the single-particle stability criteria used in the course
deposition provide a sufficient condition for theglobal sta-
bility of the packing when the deposition is over, then t
packing will remain in static equilibrium and the calculat
forces will exactly balance all particles. Otherwise, the pa
ing will be unstable and the CD simulations allow to calc
late the particle rearrangements until a relaxed stable c
figuration is obtained.

FIG. 6. Solid fraction as a function of critical angle~in degrees!
for the CD and CA models.

FIG. 7. Coordination numbersz as a function of critical angle
~in degrees!.
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Our simulation data confirm rather the second alterna
for nearly all values of the critical angle. One example
shown in Figs. 5~a! and 5~b! for a packing of 500 particles
with uc540°. The rearrangements occur in the whole b
but they are much more hindered in the bulk than in
vicinity of the free surface. For this reason, the displa
ments appear mostly in the uppermost layers. The rela
configuration has a larger packing fraction. The solid fract
is still larger when the CD simulation is performed by ra
dom deposition of the same sequence of particles~as in the
CA simulation! for the same value ofuc ~and the same
boundary conditions!, instead of using the CA configuratio
as the initial condition. The resulting packing is shown
Fig. 5~c!. In this latter case, the hindering effect related to t
bulk density, which was active in the case@Fig. 5~b!#, disap-
pears since the CD rearrangements occur naturally in
course of deposition for each deposited particle. This me
that the degree of instability of the CA packing shown in F
5~a! is more keenly reflected in the increaseDr of the solid
fraction from Figs. 5~a! to 5~c! than from Figs. 5~a! to 5~b!.

Figure 6 displays the solid fractionr as a function ofuc

FIG. 8. Anisotropiesa as a function of critical angle~in de-
grees!.

FIG. 9. Polar diagram of the distributionp(u) of contact angles
in a CD packing withuc50. The zero angle refers to the vertic
direction. The angles are in degrees.
3-5
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for packings prepared by CD sequential random deposit
The solid fraction for each value ofuc is an average over 10
independent CD runs. The CD simulations were perform
for 40 different angles. The curve ofr as a function ofuc
corresponds thus to 410 CD simulations of 1000 partic
Figure 6 shows that, as expected, the solid fraction is ev
where larger for the CD method than for the CA mod
except atuc50 where a dynamic method requires an exc
tionally high precision to reach a perfect triangular packin
Indeed, in this limit, tiny fluctuations in particle position
around a particle due to numerical overlaps are exponent
amplified in space as a result of long-range order@20#. Dis-
regarding this pathological limit, the differenceDr is negli-
gibly small for uc,20° anduc.80°. The largest variation
Dr of the solid fraction, representing the largest dynam
rearrangements in the packing, occurs atuc.50°, wherer
increases from 0.45 for the CA packing to 0.6 for the C
packing.

FIG. 10. The major principal directionsu f of the fabric tensor as
a function of critical angle. The angles are in degrees.

FIG. 11. Coordination numbers as a function of solid fractionr.
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B. Influence on the packing structure

The coordination numberz ~average number of contac
particles around a particle!, shown in Fig. 7 as a function o
uc , follows the same trends as the solid fraction. It is s
tematically larger in a CD packing than in the correspond
CA packing~for the same value ofuc) except in theuc50
limit. A coordination number close to 2 reflects the predom
nance of particle ‘‘chains’’ in a highly porous packing. Th
coordination number increases from 2 to 3 due to ‘‘bran
ing,’’ and from 3 to 4 due to a growing interplay of chain
The increase ofzbeyond 4 requires long-range ordering@21#.
This transition occurs only in the CA packing where t
numerical precision is less stringent than in dynamic simu
tions.

Due to dynamic rearrangements in CD random depo
tion, the CA and CD packings show also very different a
pects as to the directional order of the contact network. T
nonuniform distribution of contact directions can be char

FIG. 12. Anisotropiesa as a function of solid fraction.

FIG. 13. The major principal directionsu f ~in degrees! of the
fabric tensor as a function of solid fraction.
3-6



DYNAMIC REARRANGEMENTS AND PACKING REGIMES . . . PHYSICAL REVIEW E 66, 031303 ~2002!
FIG. 14. The connectivity
numbersP1 , . . . ,P6 as a function
of solid fraction.
t

cu-
terized by means of the fabric tensorf defined from contact
normalsnk5(sinuk,cosuk) by @22,23#

fab5
1

Nc
(
k51

Nc

na
k nb

k , ~8!
03130
where Nc is the total number of contacts, andna
k ~respec-

tively nb
k ) is thea ~respectivelyb) component of the contac

normalk. When the probability distribution functionp(u) of
contact directions is known, the fabric tensor can be cal
lated from the integral
3-7
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fab5E
2p/2

p/2

nanbp~u! du. ~9!

By construction, we havef11f25tr(f)51, wheref1
and f2 are the eigenvalues. The mean contact direction
the packing is given by the major principal directionu f of f.
The structural anisotropy of the packing is represented
a52(f12f2). The factor 2 is introduced in order to iden
tify this value of a with that appearing naturally in a sinu
soidal distributionp(u)5(1/p)$11a cos 2(u2uf)% @24#.

Figure 8 shows the anisotropy of our granular beds a
function ofuc . We see that the anisotropy of CD packings
systematically below that of CA packings. This is main
because collective rearrangements tend to destroy colum
structures in a CD packing. In both cases, the anisotr
comes very close to zero foruc50. This effect is mainly
related to the presence of a great number of particles w
five and six contacts. In fact, using Eq.~8!, it can be shown
that the anisotropy for the set of six contacts around a p
ticle is zero, and for a set of five contacts around a part
cannot exceed a threshold imposed by steric exclusions

The largest anisotropy in the CD packings is reached
uc590°, whereas the anisotropy of the CA packing pas
through a maximum atuc.50°. The anisotropy can be est
mated analytically atuc590°, where the packing growth i
governed by sticking. Since the particles are released at
dom horizontal positions, the probability that a particle stic
at a contact angleu ~with respect to the vertical! is p(u)
5 1

2 cosu. Note that the latter is a normalized probability de
sity function over the range@2p/2,p/2#. Using Eq.~9! with
this expression forp(u), we finda(uc590°)52/3, which is
consistent with both CD and CA results atuc590° shown in
Fig. 8.

Sincep(u) is an even function ofu „p(u)5p(2u)…, the
major principal direction of the fabric tensor is vertical (u f
50). However, this is only a consequence of symmetry a
it does not imply that the distributionp(u) is peaked onu
50. In fact, within each of the half intervals@2p/2,0# and
@0,p/2#, the contacts have preferred directions. This can
seen in one example ofp(u) for uc50 shown in Fig. 9. We
observe a local maximum atu50, but there are loca
maxima also in each of the half intervals. In order to extr
the useful information about the direction of contacts, o
can calculate the fabric tensorf by restricting the definition
to one of the above two half intervals.

The major principal directionu f for the interval@0,p/2#
as a function ofuc is displayed in Fig. 10. Atuc50 and
uc590° both methods give the same direction, but eve
where else the contacts are more biased to the horizo
direction in CD simulations compared to CA simulation
This is an indication that the collective rearrangements re
ganize contact directions. As for the anisotropy, the value
u f can be calculated analytically in the limituc590° over
the interval@0,p/2# from the fabric tensor. The distributio
function normalized over this interval is given byp(u)
5cosu and the integral in Eq.~9! is calculated over the sam
interval. We findu f(uc590).32°, in agreement with the
simulation result shown in Fig. 10.
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FIG. 15. The connectivity diagram of CA and CD packings
three different values of solid fraction:~a! r50.5, ~b! r50.7, and
~c! r50.8.
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The existence of a local minimum in the evolution ofu f
for the CA model atuc.30° or the changing of behavior i
the CD curve at the same point can be understood as a
sequence of competition between sticking and rolling. Asuc
is increased from zero, an increasing number of partic
stick to the substrate at an angle in the interval@0,uc#. These
include both the ones sticking to the bed upon the first c
lision ~whose number increases as*0

uccosu du5sinuc) and a
number of the relaxed particles. On average, this subse
contacts tends to decreaseu f as long asuc is not too large.
This explains the decrease ofu f from 45° atuc50 to .28°
at uc.30°. But, the inclination of the contacts to the vertic
increases at the same time following the increase ofuc . This
trend dominates clearly the evolution ofu f beyond uc
530°.

IV. PACKING REGIMES

The results presented in the preceding section show
for a given value of the critical angleuc , the solid fraction
and the structure of the packing differ considerably from
CA model to the CD approach~excepted in the two limits of
very loose and very dense packings!. We attributed these
differences to dynamic restructuring in CD packings as
particles are added to the substrate. However, in this sec
we will show that the structure of a CA packing is qui
similar to that of a CD packing if they are compared at t
same solid fractionr ~and thus, for different critical angles!.
This means that the structural properties of CA packings
quite realistic~close to CD packings! when they are consid
ered as a function of the solid fraction rather than the criti
angle.

A. Fabric

Figure 11 shows the coordination numberz as a function
of solid fractionr for CA and CD packings. In both cases,z
increases withr. The two curves almost collapse forr
,0.6. For 0.6,r,0.8, the CD packings show only
slightly larger coordination number than the CA packing
For 0.8,r, the CD packings show a slightly lower coord
nation number than the CA packings. The solid fractionr
50.8 corresponds toz.4 in both methods.

The anisotropya of the packings as a function ofr is
displayed in Fig. 12. The anisotropy decreases as a func
of r for both methods except in the loosest CA packin
where it increases a bit withr and passes through a pea
before decreasing. The relatively low rate of decrease in
ranger,0.6 suggests that sticking is the dominant mec
nism of growth in this regime, whereas rolling~or relaxation!
is far more efficient in the subsequent range.

Figure 13 shows the major principal directionu f of the
fabric tensor restricted to the interval@0,p/2# ~as defined in
the preceding section! as a function ofr. In CD packings,
the directionu f , representing the average direction of co
tact normals in the interval@0,p/2#, increases quite slowly
for r,0.6 and much faster beyond 0.6. In CA packings,
anisotropy decreases forr,0.6, passes through a minimu
at r.0.6 and increases in the subsequent range. Howe
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let us remark that, as for the anisotropy, the difference in
value of u f between the two methods as a function ofr is
quite small as compared to the differences as a function
the critical angle~see Fig. 10!.

B. Connectivity

The coordination numberz is an average over all particle
in a packing. But, the number of contact neighborsq varies
in a packing from particle to particle. In a monodisperse p
q can vary from 1 to 6. This ‘‘connectivity disorder’’ charac
terizes the disposition of the particles as ‘‘nodes’’ of the co
tact network. The connectivity of a packing is given by t
fraction Pq of particles havingq contact neighbors.P1 cor-
responds to the ‘‘dead ends’’ of particle chains. The larg
P1, the stronger is the ‘‘screening’’~the dead ends did no
grow because they were screened by faster growing st
tures!. P2 and P3 are related to chaining and branching, r
spectively.P4 corresponds to ‘‘piling,’’ i.e., a natural situa
tion where a particle is supported by two underlying partic
and supports two others.P5 and P6 define ‘‘jammed’’ and
ordered configurations.

Figure 14 shows the connectivity numbersPq as a func-
tion of solid fraction forq varying from 1 to 6. The trends ar
globally similar in CA and CD packings and the differenc
for the two methods are quite small. All connectivity num
bers vary monotonously with solid fraction exceptP3 that
first increases to reach a maximum atr.0.7 and decrease
rapidly afterwards. In the ranger,0.6, P3 andP4 increase
at the expense ofP1 and P2 which decrease.P5 and P6
begin to increase significantly only atr.0.7 andr.0.8,
respectively.

The connectivity diagramPq is shown for three different
solid fractions in Fig. 15. The largest connectivity number
2 for r,0.6, 3 for 0.6,r,0.7, and 4 for 0.7,r. Interest-
ingly, the screening effect is more important in CD simu
tions ~the CD curve forP1 stands above the correspondin
CA curve!. Chaining (P2), branching (P3), and ordering
(P6) are slightly less important in CD simulations, whi
piling (P4) and jamming (P5) are enhanced.

The above data show that the morphology of a CA pa
ing is very close to that of a CD packing at the same so
fraction. Both methods suggest four packing regimes cha
terized by the properties of the packing structure as a fu
tion of solid fraction:

~a! r,0.6: This regime corresponds to loose rando
packings characterized by chaining~i.e., P2 is the largest
connectivity number!, branching (P3 increases as a functio
of r and becomes dominant atr50.6), and screening (P1 is
large!.

~b! 0.6,r,0.7: This is the regime of moderate rando
packings characterized by the largest value ofP3 ~branching!
at the expense of chaining (P2) that decreases rapidly as
function of r.

~c! 0.7,r,0.8: This regime corresponds to dense clo
packings where piling is the main mechanism of growth a
P4 is larger than other connectivity numbers.

~d! 0.8,r: This is the well-known dense ordered packin
regime@18# characterized byz.4.
3-9
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The transition densities (0.6, 0.7, and 0.8) appearing
this classification are approximate values. A more refin
evaluation of these specific densities requires a consider
more computation time and a deeper insight into the mec
nisms at play during the packing growth.

V. CONCLUSION

We investigated the structure of a class of randomly
posited granular packings whose density is controlled b
geometrical parameter, referred to as the critical angle.
used both a random ballistic deposition model with sim
relaxation rules~the CA model!, and a contact dynamics a
gorithm ~the CD method! that incorporates those relaxatio
rules through a rolling friction law. The CD approach nat
rally leads to stable packings following dynamic rearran
ments while in the CA model the packing is kinematica
frozen after each single-particle relaxation.

The following results were shown by means of extens
simulations:

~1! The packings prepared according to the CA model
generically unstable. When fed into the CD algorithm as i
tial configuration, the CA packings undergo dynamic re
rangements. As a consequence, the solid fraction is large
CD packings than in CA packings for the same critical an
~implemented as the angle of rolling friction in the fram
work of the contact dynamics method!.

~2! The structural properties~anisotropy, connectivity! are
quite comparable in CA and CD packings for the same s
fraction, even though significant differences were obser
in packing anisotropies.
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~3! Both methods reveal four packing regimes as a fu
tion of solid fraction, the prevailing mechanism of grow
being different in each regime.

An important outcome of this work is to show that th
dynamic rearrangements are quite weak in the very loose
very dense limits where the structural properties are ne
the same. This means that the random sequential adsor
model ~irreversible sticking without relaxation! leading to
very loose packings, and the steepest descent model~no
sticking! leading to very dense packings, can be used w
confidence in these two limits.

The CD simulations reported in this work were meant
keep as close as possible to the CA model in order to p
form comparable calculations with both methods. There
much more to be learned about the structure of particle pa
generated by the CD method~or equivalently, molecular dy-
namics method!. The influence of inertia and polydispersit
on the observed packing regimes is currently under inve
gation. The shear resistance of deposited beds~e.g., in a bi-
axial compression! as a function of solid fraction is anothe
important issue that we would like to address in near futu
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