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We study the structural properties of two-dimensional granular packings prepared by random deposition
from a source line. We consider a class of random ballistic deposition models based on single-particle relax-
ation rules controlled by a critical angle, and we show that these local rules can be formulated as rolling
friction in the framework of dynamic methods for the simulation of granular materials. We find that a packing
prepared by random deposition models is generically unstable, and undergoes dynamic rearrangements. As a
result, the dynamic method leads systematically to a higher solid fraction than the geometrical model for the
same critical angle. We characterize the structure of the packings generated by both methods in terms of solid
fraction, contact connectivity, and anisotropy. Our analysis provides evidence for four packing regimes as a
function of solid fraction, the mechanisms of packing growth being different in each regime.
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[. INTRODUCTION interesting issues in the field of random packings.
The objective of the present paper is to apply a contact
Random ballistic depositionfRBD) is a well-known dynamics algorithm to investigate randomly deposited granu-
method for layer-by-layer construction of random packingslar beds in a two-dimension§2D) geometry. The geometri-
of hard particles such as granular beds and colloidal aggrezal texture(coordination number, solid fraction,..) of a
gates[1,2]. This method is based on a simple and intuitivegranular bed depends on several physical paramépers
procedure. The particleémainly monodisperse spheres or ticle properties, contact interactions, inertia of deposited par-
disks are allowed to fall sequentially along randomly posi- ticles) which can be tuned in a dynamic simulation in order
tioned vertical lines over a horizontal substrate. Upon contacto characterize the impact of each parameter on the texture.
with the substrate or the firgalready depositedparticle, the We propose here an approach that allows to bring out some
particle either sticks or is further moved to a more favorablenteresting features of granular beds in comparison to RBD
position according to a relaxatidor restructuringrule. The  models. We consider a generalized RBD model in which the
RBD method can be efficiently implemented in a computerrelaxation of the falling particle upon contact with the sub-
code for generating very large two- and three-dimensionastrate is controlled by the direction of the contact norméh
packings. Elaborate large-scale simulations based on this apingle angle in 2p[11]. Depending on whethef is below
proach have been used to investigate the geometrical propr above a critical anglé,, the particle either simply sticks
erties of random packinggpacking regimes, distribution or is allowed to rotate until it reaches a local minimum po-
functions, growth, et¢.[3,4]. sition or forms a new contact belo# . Hereafter, we refer
It is obvious that the random deposition of particles canto this model as the critical angl€€A) model. The central
also be simulated by means of dynamic methods, such &eature of this model is that it allows to control the solid
molecular dynamicf5,6] and contact dynamid$—9], in the  fraction p by varying the critical angl¢11]. The approach
spirit of a real experiment where the grains are poured into &e propose consists in performing dynamic simulations of
box. Such simulations require, however, substantially moreandom ballistic depositioas closely as possible to the CA
computation time[10]. This difficulty has been inhibiting model
enough to discourage for a long time systematic investiga- This requires that we transcribe the above geometrical
tion of deposited beds following dynamic methods. But, therelaxation rule into a contact law that is reduced to the geo-
situation is far better today due to the fast increase of availmetrical rule for the random deposition process. We first
able computer power and memory during the last decadeshow that this requirement is met if the particles interact
There is now a considerable scope for dynamic simulationghrough arolling friction law (similar to the Coulomb sliding
that can be exploited in order to study a number of highlyfriction) in which a contact torque is mobilized to resist rela-
tive rotation of two particles. We implement this law within a
contact dynamic$¢CD) algorithm. Then, we perform two se-
*Present address: Fysisk Institutt, Universitetet i Oslo, Postboksies of simulations both with the CA model and the CD
1048 Blindern, N-0316 Oslo, Norway. method. In the first series, we use the granular beds prepared
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FIG. 1. Geometry of a contact formed by a falling particleith c

a particlej from the substrate. The contact anglg is measured
from the vertical. FIG. 2. Solid fractionp as a function of critical anglé, (in
degreesfor the CA model.

according to the CA procedure as initial configuration for a

CD simulation. We show that, although local stabiligfick- ticle i freezes;(3) if neither of the two latter conditions is
ing due to rolling friction or, alternatively, particles sup- fyifilled, particlei is again allowed to rotate around parti&le
ported by two underlying contadtss fulfilled for each par-  ynijl a new contact is formed with another particle of the bed

ticle added to the bed, the latter still undergoes collectiveynq the three alternatives are examined again with this new
rearrangements leading to a higher solid fraction. This im-

lies th | ki db wal rul ‘contact. This procedure is iterated until particle stabilized
plies that a granular packing prepared by geometrical rules ig;y, o by sticking or by reaching a local minimum position.

globally unstable. We study the extent of dynamic rearrange- Two limits are of particular interest. Whefi,=90°, all

ments and the structural properties of the CA and CD pack- _ .. s .
ings as a function of the critical angle. particles stick irreversibly to the substrate wherever they

In a second series of simulations, we characterize thc{eand'This limit corresponds to tohe rando_m sequential adsorp-
packings in terms of the average coordination number, stru 1on mo_del[12—15_]. When6,=0°, all particles relax and the
tural anisotropy, and contact connectivity as a function of th(gofdellés :ﬁducelq d t]? thfe steepefst d%si:ent mb]_i%%égng

fS oIidhfraction. Whe ghowdthr? tthe trenéjgjhare globally iimilar+% .0[00]1’ in ?hzonlo-r:‘t:rll%r:u\:\ilr?s Ii?nuitn Thoe Z%rﬂlc? ;ra.ction for

or the CD method and the CA mo e same packing ; '

regimes are observedWe distinguish several packing re- the s_teepest descent ”?Ode' IS ex.pected to come close to
gimes where different mechanisni{screening, chaining, Pmax=0.906 corresponding to a triangular packing. How-

branching, piling, jamming, and orderingre active and ever, o aqhieve a structure with Iong-range ordering, the
control the packing fraction initial conditions are very important. In practice, the bottom

line must initially be covered by an array of contiguous
disks. Otherwise, simulations using the steepest descent al-
Il. NUMERICAL APPROACH gorithm have shown that the solid fraction will not exceed
p=0.82, which is the characteristic density of 2D monodis-
perse random close packing where long-range order is bro-
Figure 1 shows the geometry of a contact formed by &en by defects in the packird.2-17.
falling particlei with a particlej of the substrate. The two In the CA model, the solid fractiop of the granular bed
particle centers define a line inclined at an angleto the is a function of the critical angl®, as shown in Fig. 2. In
vertical. For disks,f;; is also the direction of the contact this figure, the solid fraction for each of the anglés

A. Critical-angle model

normaln;; , unit vector directed from the center of partigle =0°,1°,2°, ...,90° is an average over 30 independent runs.
to the center of particle For brevity, we will refer tog;; as  The bottom line was covered by a layer of 32 contiguous
the “contact direction.” particles and 1000 particles were deposited in each run. In

The CA model is defined as follow41]. If |6;;] is below  order to avoid wall effects, periodic boundary conditions
a critical angled., defined in the range between(@ertical ~ were implemented in the horizontal direction. Let us note
direction and /2 (horizontal directio, the particle simply  that CA simulations are possible at much larger scales. Nev-
freezes by sticking to particle On the other hand, if¢;| ertheless, we restrict here the size and the number of CA
exceedsf., particlei is allowed to rotate around partice  simulations to those reasonably accessible to dynamic simu-
until a second contact is formed with another particté the  lations since the results will be compared between these two
substrate. Then, there are three possible alternat{igdf methods below. Figure 2 shows that the solid fraction de-
|6, | < 6., particlei freezes as in the first cas@) if the new  creases monotonously fropy,ay t0 pmin @s 6. is increased
position of particle is a local minimum position, again par- from 0 to 90°. One can distinguish several regimes on this
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(a) (b) FIG. 4. The graphs representif@ sliding friction law and(b)

rolling friction law; see text.
FIG. 3. The two local stability conditions in the CA modé&h)

local minimum position(b) sticking. Njj =m;g cosé, 3)
curve, which will be discussed below in connection with Tij=migsiné, (4)
dynamic simulations.

The CA model is a geometrical model that meets the no- Mjj=riN;jtan6. 6)

overlap condition between hard particles but involves a num-
ber of physical approximations about the stability of theThe normal forceN;; is positive (as it should as long as
packing and its growth. By nature, this model neglects inertia- 7/2< §< /2 (the angles are measured from the verjical
effects. The substrate is frozen and the relaxation step inon the other hand, the relative sliding is inhibited if
volves only the deposited particle. Moreover, the two stabil—|Tij |IN;j<ms, Where us is the coefficient of(sliding) fric-
ity criteria (local minimum position and sticking conditidn  tion (or equivalently,§< 6, wheref;=tan *us is the angle
for the deposited particle have@cal nature. In other words, of friction).
the model assumes that the whole packing remains in static Now, if we require that particlerolls only if =6, , then
equilibrium as long as all particles are sequentially stabilizedrom Eq. (5) we arrive at the following no-rolling condition:
by either of these conditions.

In order to examine the validity of these assumptions, the M
approach followed in this paper is to perform dynamic simu- TN ante= (6)
lations as closely as possible to the CA model and to com- v
pare the resulting packings. This implies that the particle§yhere 4, is a coefficient ofrolling friction. Let us further
should be released sequentially and they should hit thgsgme thatM,; remains equal to its threshold value
granular bed with negligibly small inertia. Moreover, upon -, riN;; when JroIIing occurs. This condition is similar to
contact' with the substrate, the'falllng particle should dynamiy,q sliding conditioniT ;= + ueN;; .
cally stick or roll down depending on the value of the contact 1o rolling friction law, as defined here, and the more

angle with respect to the critical angle, until one of the tWog, pijiar Coulomb(sliding) friction law are shown in Fig. 4
;tabll|ty pond_mo_ns is fqu|IIe<_j. T_here is no difficulty in tun- ;1 the form of graph$8,18). The rolling friction law relates
|ng.the inertia in a dynamlc S|mulat|op. But, we need tOha relative rotation velocityw;; = ;— w; of the two par-
define a dynamic version of the relaxation rule. ticles to the contact torqui;;, whereas the sliding friction
law relates the sliding velocity} to the tangential forc@j; .
In fact, although for the sake of clarity we derived the con-
The dynamic content of stability due to a local minimum dition (6) by considering the particular case of a deposited
position is clear. The weight of a particle can obviously beparticle touching a particle of the bed, the application of
balanced by the reaction forces exerted by two underlyingolling friction to a contact between two arbitrary particles in
particles; see Fig. (8. But the sticking condition requires @ packing is rather straightforward when formulated in the
both a contact forc€;; and a “contact torque™;; so as to  form of the graphs shown in Fig. 4. The torque transmitted
counterbalance, respectively, the weight of the deposited through a contact to a particle in static equilibrium, for ex-
particle and its moment with respect to the contact pointample, is the torque necessary to balance the sum of all force
Figure 3b) illustrates this condition. The balance equationsmoments and other contact torques acting on the particle in
are the same way as the mobilized torgMein Eq. (6) counter-
balances the momeningsin é of the particle weight.
Fij+mig=0, 1) The prescription of rolling friction in a dynamic method
follows the same steps as the sliding friction. The relation
m;grisin 6+ M;; =0, (2 between the contact torque and the relative rotation velocity
[Fig. 4(@)] cannot be represented as a monovalued function.
wherer; is the particle radius and is the gravity. Hence, in the framework of the molecular dynamics method,
Let N;; and T;; be the components of the reaction force based on explicit integration of the equations of motion, this
Fi; along and perpendicular to the contact normal From  friction law has to be replaced by an approximéiaction
Eq. (2) one gets [8,10,19. This “regularization” of the friction law is not

B. Rolling friction
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FIG. 5. (a) An example of a
CA packing.(b) The static pack-
ing obtained by the CD method
starting with the CA packing ifa)
as initial condition,(c) CD pack-
ing obtained by using the same se-
quence of falling particles as in

(a).

necessary within the contact dynamics method that was enferce should be compared to the weighg of one particle.

ployed for the present investigatip@—9]. Hence, the dimensionless parameter characterizing the ratio
Using either of these dynamic methods, the sticking conof inertia to weights is

dition can be achieved if is set to infinity(no sliding for

no contact directionand the angle of rolling frictiorg, is o= Jmax )

interpreted as the critical anglg . This was implemented in gAt

our contact dynamics simulations. Alternatively, one may set

# 1o infinity (no rolling for no contact directidnusing the is an interesting subject in itself, but it will not be investi-

angle of sliding frictionég as the critical angle. It is also %ated in this paper. As emphasized previously, the focus here

possible to use a combination of these two conditions. Thes o
" . . ) IS put on those effectgequilibrium states, rearrangements
conditions are not equivalent, but we will not discuss the ; . . .
) S - . that arise from thegeometrical configurationHence, we
differences in this paper. In all cases, the condition of stick-

. - ; - .~ “should use a low value ok. However, lower values of
ing upon collision requires also a zero coefficient of restitu- ; :
tion mean slower simulations. Hopefully, the framework of the

To summarize, the following conditions allow to perform CD method allows for large time stept up to the limita-

a dynamic simulation of random particle deposition in closet'ons related to the procedure of contact detection. On the

. - other hand, the value af,,,, can be imposed for the falling
analogy with the CA model(1) 6,= 6., (2) no sliding (6 . max ==t .
=90°§]y(3) weak inertia,(4) (zzzror coecffiéie)nt of resti(\t:]ugic?n. particles, but further relaxation inside the packing may pro-

The important difference is that, while in the CA model all Quce large impact vellocmes.. In particular, at low solid frac-
; . . tions, where large voids exist in the bed, the free fall of a
degrees of freedom in the substrate are kinematically frozen

in our dynamic simulations only contact sliding is frozen by particle over distances compared to the system hekght

setting 6s=90°. All other degrees of freedom are active and;(gorhtcc?fna%gﬁ”gzeofto ;ms@g Offo {rclgsS;?nrel?]rg]ieLtthan the
the rolling friction governs all contacts: the contact between 9 ' orp gnt.
In order to avoid such strong uncontrolled inertia, we

the deposited particle and the bed, as well as all contacts in o . L e ’
the bed. Since the particles are not frozen in the granular begnple_rr_]ented a"velocity bzir1r|er .tr|ck_that I|m|ts the particle
sequential particle deposition may thus lead to rearrange\{élc.)Cltles 100 may=0-3 mS ~. With this choice, we can use
ments in the granular bed a time step as large aat=0.003 s. Then, settingy

' =100 ms 2, we geta=1. This means that the largest im-
pact force is just equal to the weight of a single particle. This
choice is both reasonable and compatible with numerical

) ) ) efficiency.
The CD simulations involve a number of parameters that

should be adjusted so as to minimize inertia effects without . DYNAMIC REARRANGEMENTS
losing numerical efficiency. The largest inertia effects are
produced by the largest head-on veloaity,, between col-

liding particles. LetAt be the time step. The contact force  How stable are the granular beds prepared by means of
due to inertia produced by a collision v, /At. This  the CA model? We have seen that the CD method, equipped

The influence ofx on the solid fraction and restructuring

C. Simulation parameters

A. Stability of CA packings
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FIG. 6. Solid fraction as a function of critical angdi@ degrees FIG. 8. Anisotropiesa as a function of critical angl¢in de-
for the CD and CA models. grees.

with rolling friction together with suitable values of the pa- ~ Our simulation data confirm rather the second alternative
rameters reducing inertia effects, meets tiegle-particle  for nearly all values of the critical angle. One example is
stability criteria of the CA model in the course of deposition, Shown in Figs. &) and §b) for a packing of 500 particles
namely(1) the sticking condition as a function of the rolling With 6.=40°. The rearrangements occur in the whole bed,
friction angled, (identified with the critical angl®,) and(2) ~ but they are much more hindered in the bulk than in the
the local minimum position where the weight of a particle isVicinity of the free surface. For this reason, the displace-
balanced by the reaction forces at the two underlying conMents appear mostly in the uppermost layers. The relaxed
tacts. Now, if we start a CD simulation using a packing Con_f:onf!guratmn has a larger papklng fract_|on. The solid fraction
structed according to the CA model as the initial configuraiS Still larger when the CD simulation is performed by ran-
tion, then one of the two following alternatives may occur. If 40m deposition of the same sequence of partitesin the

the single-particle stability criteria used in the course ofCA simulation for the same value ob. (and the same
deposition provide a sufficient condition for tigobal sta- ~ Poundary conditions instead of using the CA configuration
bility of the packing when the deposition is over, then the@S the initial _condltlon. The res_ultlng_ packing is shown in
packing will remain in static equilibrium and the calculated Fig- 5(c). In this latter case, the hindering effect related to the
forces will exactly balance all particles. Otherwise, the packPulk density, which was active in the cas&g. 5(b)], disap-

ing will be unstable and the CD simulations allow to calcu-Pears since the CD rearrangements occur naturally in the

late the particle rearrangements until a relaxed stable corfourse of deposition for each deposited particle. This means
figuration is obtained. that the degree of instability of the CA packing shown in Fig.

5(a) is more keenly reflected in the increa&e of the solid
fraction from Figs. Ba) to 5(c) than from Figs. &) to 5(b).

6 T CA Figure 6 displays the solid fractiom as a function ofé.
5.5¢ + CD

5,
4.5¢

N4}

3.5
3l
2.5

20 10 20 30 40 50 £0 70 80 90
¢ FIG. 9. Polar diagram of the distributiqe( 6) of contact angles

FIG. 7. Coordination numbersas a function of critical angle in a CD packing with.=0. The zero angle refers to the vertical
(in degrees direction. The angles are in degrees.
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FIG. 10. The major principal directiorg of the fabric tensor as FIG. 12. Anisotropiesa as a function of solid fraction.
a function of critical angle. The angles are in degrees.

B. Influence on the packing structure
for packings prepared by CD sequential random deposition. The coordination numbez (average number of contact
The solid fraction for each value @ is an average over 10 particles around a partigleshown in Fig. 7 as a function of

independent CD runs. The CD simulations were performed,, follows the same trends as the solid fraction. It is sys-
for 40 different angles. The curve @f as a function ofé,

tematically larger in a CD packing than in the corresponding
corresponds thus to 410 CD simulations of 1000 particlesCA packing (for the same value of;) except in thed.=0

Figure 6 shows that, as expected, the solid fraction is everylimit. A coordination number close to 2 reflects the predomi-
where larger for the CD method than for the CA model,nance of particle “chains” in a highly porous packing. The
except atd.=0 where a dynamic method requires an excep-coordination number increases from 2 to 3 due to “branch-
tionally high precision to reach a perfect triangular packing.ing,” and from 3 to 4 due to a growing interplay of chains.
Indeed, in this limit, tiny fluctuations in particle positions The increase aof beyond 4 requires long-range orderirad].

around a particle due to numerical overlaps are exponentiallfhis transition occurs only in the CA packing where the
amplified in space as a result of long-range or&). Dis-

numerical precision is less stringent than in dynamic simula-
regarding this pathological limit, the differende is negli-  tions.
gibly small for .<20° and#.>80°. The largest variation Due to dynamic rearrangements in CD random deposi-
Ap of the solid fraction, representing the largest dynamiction, the CA and CD packings show also very different as-
rearrangements in the packing, occurs9gt=50°, wherep

pects as to the directional order of the contact network. The
increases from 0.45 for the CA packing to 0.6 for the CDnonuniform distribution of contact directions can be charac-
packing.

65
6 < ﬁwg&q%
4 CA fh«l %11

5.5 . CD 60 Fi %

# <

5f " *-"‘**s., p
55; %
4.5’ “ -— A CA M q“
a* D * <
an * CD L, o
N 4t ;1* L * :

>0 !
> :Z:*:f
3. ﬁ 45' * « <
2.5/ /"MM .
‘ . . . 8.2 04 0.6 0.8 1
8.2 04 0.6 0.8 1 p
p
FIG. 13. The major principal directiong; (in degree of the
FIG. 11. Coordination numbers as a function of solid fracpon

fabric tensor as a function of solid fraction.
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terized by means of the fabric tensgrdefined from contact where N, is the total number of contacts, amd, (respec-

normalsn*= (sin &,cos#) by [22,23

1 N
_ = k -k
qsanNC kzl nan[;,

tively n';) is thea (respectivelyB) component of the contact

normalk. When the probability distribution functiop( ) of
) contact directions is known, the fabric tensor can be calcu-

lated from the integral
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2 ( a)
¢aﬁ: f_ lznanﬁp( 0) de. (9) 0.7 T T

By construction, we haveb,+ ¢,=tr(¢)=1, where¢,
and ¢, are the eigenvalues. The mean contact direction in
the packing is given by the major principal directiénof ¢.

The structural anisotropy of the packing is represented by
a=2(¢1— ¢,). The factor 2 is introduced in order to iden-
tify this value ofa with that appearing naturally in a sinu-
soidal distributionp( 6) = (1/7){1+a cos 26— 6;)} [24].

Figure 8 shows the anisotropy of our granular beds as a
function of 6. . We see that the anisotropy of CD packings is
systematically below that of CA packings. This is mainly
because collective rearrangements tend to destroy columnar
structures in a CD packing. In both cases, the anisotropy
comes very close to zero fa#,=0. This effect is mainly
related to the presence of a great number of particles with q
five and six contacts. In fact, using E@®), it can be shown
that the anisotropy for the set of six contacts around a par-
ticle is zero, and for a set of five contacts around a particle (b)
cannot exceed a threshold imposed by steric exclusions. 0.7 ‘

The largest anisotropy in the CD packings is reached for
0.=90°, whereas the anisotropy of the CA packing passes
through a maximum a#.=50°. The anisotropy can be esti-
mated analytically ab.=90°, where the packing growth is
governed by sticking. Since the particles are released at ran-
dom horizontal positions, the probability that a particle sticks
at a contact angl® (with respect to the verticalis p(0)
= 3cosé. Note that the latter is a normalized probability den-
sity function over the range— #/2,7/2]. Using Eq.(9) with
this expression fop(6), we finda(6.=90°)=2/3, which is
consistent with both CD and CA results&t=90° shown in
Fig. 8.

Sincep(6) is an even function of) (p(#)=p(—0)), the
major principal direction of the fabric tensor is vertica; (
=0). However, this is only a consequence of symmetry and
it does not imply that the distributiop(#) is peaked org
=0. In fact, within each of the half intervals- 7/2,0] and
[0,7/2], the contacts have preferred directions. This can be (c)
seen in one example @ #) for 6.=0 shown in Fig. 9. We 0.7
observe a local maximum af#=0, but there are local Il CD
maxima also in each of the half intervals. In order to extract 0.6l.— CA
the useful information about the direction of contacts, one
can calculate the fabric tensgr by restricting the definition 0.5}
to one of the above two half intervals.

The major principal directiord; for the interval[ 0,7/2] 0.4}
as a function ofé. is displayed in Fig. 10. A¥.=0 and a’®
0.=90° both methods give the same direction, but every- 0.3}
where else the contacts are more biased to the horizontal
direction in CD simulations compared to CA simulations. 0.2}
This is an indication that the collective rearrangements reor-
ganize contact directions. As for the anisotropy, the value of 0.1t
0; can be calculated analytically in the limit,=90° over
the interval[ 0,77/2] from the fabric tensor. The distribution
function normalized over this interval is given by(6)

= cosd and the integral in Eq9) is calculated over the same o _

interval. We find 6;(6,=90)=32°, in agreement with the FIG. 15. The connectivity diagram of CA and CD packings at

simulation result shown in Fig. 10 three different values of solid fractiofa) p=0.5, (b) p=0.7, and
T (c) p=0.8.

0.6 — CA
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The existence of a local minimum in the evolution&f let us remark that, as for the anisotropy, the difference in the
for the CA model atl.=30° or the changing of behavior in value of §; between the two methods as a functionpofs
the CD curve at the same point can be understood as a coguite small as compared to the differences as a function of
sequence of competition between sticking and rolling#As the critical angle(see Fig. 10
is increased from zero, an increasing number of particles
stick to the substrate at an angle in the intef\ab.]. These
include both the ones sticking to the bed upon the first col-
lision (whose number increases ﬁf’;ccosa do=sing;) and a
number of the relaxed particles. On average, this subset
contacts tends to decreadeas long asd. is not too large.
This explains the decrease 6f from 45° atf.=0 to =28°
at 6.=30°. But, the inclination of the contacts to the vertica

B. Connectivity

The coordination numberis an average over all particles
61'[,1 a packing. But, the number of contact neighbqrgaries
In a packing from particle to particle. In a monodisperse pile,
g can vary from 1 to 6. This “connectivity disorder” charac-
| terizes the disposition of the particles as “nodes” of the con-

increases at the same time following the increase.ofThis tact network. The connectivity of a packing is given by the

: : fraction P, of particles havingy contact neighbors?, cor-
q
t;esn; dominates clearly the evolution di; beyond 0, responds to the “dead ends” of particle chains. The larger

P,, the stronger is the “screeningthe dead ends did not
grow because they were screened by faster growing struc-
IV. PACKING REGIMES tures. P, and P5 are related to chaining and branching, re-

The results presented in the preceding section show thagPectively.P4 corresponds to “piling,” i.e., a natural situa-
for a given value of the critical angle;, the solid fraction 0N where a particle is supported by two underlying particles
and the structure of the packing differ considerably from the?nd Supports two other®s and Pg define “jammed” and
CA model to the CD approactexcepted in the two limits of Ordered configurations. o
very loose and very dense packihgsVe attributed these _ Figure 14 shows the connectivity numbétg as a func-
differences to dynamic restructuring in CD packings as theion of solid fraction forg varying from 1 to 6. The trends are
particles are added to the substrate. However, in this sectiog/oPally similar in CA and CD packings and the differences
we will show that the structure of a CA packing is quite for the two methods are qg|te small. AII.connectlwty num-
similar to that of a CD packing if they are compared at theP€rs vary monotonously with solid fraction excepj that
same solid fractiop (and thus, for different critical angles ~ firSt increases to reach a maximumgat 0.7 and decreases
This means that the structural properties of CA packings aréaPidly afterwards. In the range<0.6, P; andP, increase
quite realistic(close to CD packingswhen they are consid- at the expense oP, and P, which decreasePs and Pg

ered as a function of the solid fraction rather than the criticaP®9din to increase significantly only at=0.7 andp=0.8,
angle. respectively.

The connectivity diagran®, is shown for three different
solid fractions in Fig. 15. The largest connectivity number is
2 for p<0.6, 3 for 0.6<p<<0.7, and 4 for 0.%p. Interest-

Figure 11 shows the coordination numizess a function ingly, the screening effect is more important in CD simula-
of solid fractionp for CA and CD packings. In both cases, tions (the CD curve forP, stands above the corresponding
increases withp. The two curves almost collapse fgr ~ CA curve. Chaining P,), branching P3), and ordering
<0.6. For 0.6<p<0.8, the CD packings show only a (Pg) are slightly less important in CD simulations, while
slightly larger coordination number than the CA packings.piling (P,) and jamming Ps) are enhanced.

For 0.8<p, the CD packings show a slightly lower coordi-  The above data show that the morphology of a CA pack-
nation number than the CA packings. The solid fraction ing is very close to that of a CD packing at the same solid
=0.8 corresponds ta=4 in both methods. fraction. Both methods suggest four packing regimes charac-

The anisotropya of the packings as a function gf is  terized by the properties of the packing structure as a func-
displayed in Fig. 12. The anisotropy decreases as a functiotion of solid fraction:
of p for both methods except in the loosest CA packings (& p<0.6: This regime corresponds to loose random
where it increases a bit with and passes through a peak packings characterized by chainirige., P, is the largest
before decreasing. The relatively low rate of decrease in theonnectivity number branching P5 increases as a function
rangep< 0.6 suggests that sticking is the dominant mechaof p and becomes dominant at=0.6), and screeningq is
nism of growth in this regime, whereas rolligr relaxation  large.
is far more efficient in the subsequent range. (b) 0.6<p<0.7: This is the regime of moderate random

Figure 13 shows the major principal directigh of the  packings characterized by the largest valu®gfbranching
fabric tensor restricted to the intervd,=/2] (as defined in  at the expense of chainind?§) that decreases rapidly as a
the preceding sectigras a function ofp. In CD packings, function of p.
the directioné;, representing the average direction of con- (c) 0.7<p<0.8: This regime corresponds to dense close
tact normals in the intervdl0,7/2], increases quite slowly packings where piling is the main mechanism of growth and
for p<0.6 and much faster beyond 0.6. In CA packings, theP, is larger than other connectivity numbers.
anisotropy decreases fpr< 0.6, passes through a minimum  (d) 0.8<p: This is the well-known dense ordered packing
at p=0.6 and increases in the subsequent range. Howevergime[18] characterized by>4.

A. Fabric
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The transition densities (0.6, 0.7, and 0.8) appearing in (3) Both methods reveal four packing regimes as a func-
this classification are approximate values. A more refinedion of solid fraction, the prevailing mechanism of growth
evaluation of these specific densities requires a considerablyeing different in each regime.
more computation time and a deeper insight into the mecha- An important outcome of this work is to show that the
nisms at play during the packing growth. dynamic rearrangements are quite weak in the very loose and
very dense limits where the structural properties are nearly
the same. This means that the random sequential adsorption
model (irreversible sticking without relaxationeading to

We investigated the structure of a class of randomly devery loose packings, and the steepest descent m@uel
posited granular packings whose density is controlled by &ticking) leading to very dense packings, can be used with
geometrical parameter, referred to as the critical angle. Wggnfidence in these two limits.
used both a random ballistic deposition model with simple The cD simulations reported in this work were meant to
relaxation rulesthe CA mode), and a contact dynamics al- keep as close as possible to the CA model in order to per-
gorithm (the CD methog that incorporates those relaxation form comparable calculations with both methods. There is
rules through a rolling friction law. The CD approach natu- mych more to be learned about the structure of particle packs
rally leads to stable packings following dynamic rearrangeyenerated by the CD methddr equivalently, molecular dy-
ments while in the CA model the packing is kinematically namics method The influence of inertia and polydispersity

V. CONCLUSION

frozen after each single-particle relaxation.

on the observed packing regimes is currently under investi-

The following results were shown by means of extensiveyation. The shear resistance of deposited leds, in a bi-

simulations:

axial compressionas a function of solid fraction is another

(1) The packings prepared according to the CA model ar¢mportant issue that we would like to address in near future.
generically unstable. When fed into the CD algorithm as ini-

tial configuration, the CA packings undergo dynamic rear-
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