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Minimal model for aeolian sand dunes
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We present a minimal model for the formation and migration of aeolian sand dunes in unidirectional winds.
It combines a perturbative description of the turbulent wind velocity field above the dune with a continuum
saltation model that allows for saturation transients in the sand flux. The latter are shown to provide a
characteristic length scale, called saturation length, which is distinct from the saltation length of the grains. The
model admits two different classes of solutions for the steady-state profile along the wind direction: smooth
heaps and dunes with slip face. We clarify the origin of the characteristic properties of these solutions and
analyze their scaling behavior. We also investigate in some detail the dynamic evolution of heaps and dunes,
including the steady-state migration velocity and transient shape relaxation. Although the minimal model
employs nonlocal expressions for the wind shear stress as well as for the sand flux, it is simple enough to serve
as a very efficient tool for analytical and numerical investigations and opens up the way to simulations of large
scale desert topographies.
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I. INTRODUCTION

The study of sand dunes has a long and colorful hist
@1–3#, but a sound understanding of the physical mec
nisms behind dune formation and migration has proved
sive, let alone the accurate prediction of the evolution
whole desert topographies. Simple questions such as the
lowing seemed theoretically very difficult to answer: Wh
determines the shape of dunes? How fast do they move
there a minimum or maximum dune size? Though sa
dunes develop wherever sand is exposed to an agitating
dium that can lift grains from the ground, they cannot eas
be scaled down to be studied in the lab. With the mac
scopic phenomena of interest separated by many order
magnitude from the grain scale and involving vario
coupled nonlinear processes such as turbulent air flow
grain hopping~‘‘saltation’’ !, one is bound to devise som
simplified models in order to address such questions. We
argue that approximate numerical models can only be s
cessful if based on a sound qualitative understanding of
problem. Therefore, our main aim is to identify the k
mechanisms underlying dune formation and migration a
incorporate them into a working minimal model of aeoli
sand dunes, and we will emphasize generic aspects ove
more specific details. For definiteness, the reader may fin
helpful to think of isolated transverse dunes or cresce
shaped barchan dunes as major applications of the mo
The broad phenomenology of aeolian~and submarine! land
forms provides a large number of different characteris
sand structures that can certainly not all be described by
same simple model developed with the specific example
barchan or transverse dunes in mind. However, we ex
that our approach is amenable to future adaptations
make it applicable to a broader class of sand topographie
the one hand, and for quantitative investigations of m
specific questions on the other hand. Although the minim
1063-651X/2002/66~3!/031302~18!/$20.00 66 0313
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model refers only to rather generic properties of the w
velocity field and the laws of aeolian sand transport, it c
make interesting predictions about the surface profile,
development and position of the slip face, dune migrati
etc., which are insensitive to the simplifying assumptio
The main features of the model have already been bri
presented in a recent letter@4#. The present contribution
gives a more comprehensive discussion of the model
tries to communicate its precise definition as well as its m
jor predictions to an interdisciplinary readership. The mod
as presented here, is restricted to a two-dimensional~2D!
slice of a dune parallel to the unidirectional wind.~A gener-
alization to 3D problems is in preparation.! A further restric-
tion is the neglect of ripples and direct slope effects onto
sand transport outside slip faces. Although they have s
cessfully been incorporated into continuum sand transp
models@5–7# similar to our own@8#, we chose to disregard
them for the present purpose and leave their integration
future work.

The paper is organized as follows. In the following intr
ductory section we summarize some background knowle
and basic definitions. We will also introduce a naive ‘‘zerot
order’’ description of the wind shear stress and the indu
aeolian sediment transport. Its instructive failure to produ
dunelike steady-state solutions will be a guide for identifyi
two relatively small effects~the upwind shift of the maxi-
mum of the shear stress with respect to the topography
the saturation transients in the sand flux! as key ingredients
of a proper description of structure formation by aeolian sa
transport. We will, moreover, derive the scaling behavior
the migration velocity for translation invariant heaps a
dunes of different sizes but similar shapes based on v
general grounds. Sections III and IV are devoted to the d
nition of the minimal model, i.e., to the modeling of the a
shear stress exerted onto a heap of sand and the induced
transport, respectively. The first step builds on turbul
©2002 The American Physical Society02-1
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boundary layer calculations developed in a series of publ
tions mainly by Hunt and co-workers@9–14#, the second one
on a previous contribution@8# by the present authors. Onl
the most pertinent results of these earlier developments
be summarized here. In the remainder, we will derive so
important predictions of the model for the central slice o
barchan dune or transverse dune. In particular, we will de
onstrate that there is a minimal dune size. Although we w
thereby gain interesting results, these are rather meant t
illustrative examples of possible applications of the mod
By no means do we attempt to provide a complete anal
of its predictions, and it should become obvious that mu
more remains still to be done. Finally we will summarize o
main results and speculate about probable consequenc
the present 2D theory for 3D topographies.

II. GENERAL

A. Aeolian sand transport

Before going into the description of the model, we wa
to recall some general background and introduce some q
tities of major interest. First of all, for convenience, we w
usually refer to dunes without slip face as heaps. Further
will sometimes find it helpful to focus on isolated heaps
dunes on bedrock, although most of our discussion is
restricted to this situation.

The key quantity for the description of the formation a
migration of sand dunes and heaps is the local horizo
surface velocityv(x,t) of a sand height profileh(x,t) at all
positionsx and timest. Via mass conservation it can be r
lated to the erosion rate“q(x,t) ~negative erosion is depo
sition!, where the sand fluxq(x,t) is defined as the mass o
sand transported per unit of time across a hyperplane tr
verse to the wind direction. More precisely, since we wan
specialize our discussion to a 2D slice parallel to the un
rectional wind velocity, the hyperplane is a vertical line a
q is actually a mass transport rate per unit width. Mass c
servation then takes the form of a continuity equation for
height profile,

%s

dh~x,t !

dt
52

]q~x,t !

]x
, ~1!

with %s being the density of the sand bed.
With Eq. ~1! one can write the position dependent migr

tion velocity at a given timet as

v~x!5%s
21 q8

h8
, ~2!

where we have introduced the shorthand notationf 8(x)
[d f(x)/dx. At this stage we can already get some physi
insight by observing that this equation needs special at
tion at the top of a heap or dune, where we expect the
nominator to vanish. Forv to remain finite at the crest a
required in the steady state, there are in general only
possibilities. Either the sand fluxq is fine tuned so that the
erosionq8 vanishes in exactly the same way as the slopeh8,
or the profileh(x) is not differentiable at the crest. As th
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reader may already anticipate and will be verified belo
both cases have their physical realizations, the former
heaps or small dunes with smooth crests and the latte
large dunes with a slip face that terminates in a sharp brin
the crest.

The problem we face, if we want to calculate the dynam
evolution of desert topographies, is the closure of Eq.~1! or
Eq. ~2! by expressing the fluxq(x,t) in terms of the height
profile h(x,t) and the external wind and boundary cond
tions. Since for the applications we have in mind, the mig
tion velocity is very small compared to the speed of elem
tary sand transport processes~grain hopping, etc.! and the
wind speed, the topography can be assumed to be statio
for considerations concerning the wind and sand trans
dynamics. This allows one to subdivide the problem of c
culatingq(x) into two independent steps. First, one needs
know the stationary wind velocity above a given topograp
More precisely, what is required is the shear stresst exerted
by the wind onto the ground. And second, one needs a m
that predicts the stationary sand fluxq(x) for a given station-
ary t(x), schematically

h~x!→t~x!, ~3!

t~x!→q~x!. ~4!

Computing the derivativeq8 and integrating the mass con
servation equation~1! then closes the model and allows on
to predict the development of the surface profile in tim
Since aeolian dunes typically have relatively gentle slo
outside their slip face, we restrict the scope of the minim
model to this case at the present stage, and have disrega
in Eq. ~4! ~outside of slip faces! the direct slope effects
h8(x)→q(x) onto the flux.

In special cases, the relations~3! and~4! are phenomeno-
logically and theoretically well established. For a flat su
face,h(x)[const, it is well known@15# that the mean tur-
bulent wind velocity increases logarithmically with heig
above the surface. It can be characterized by a single c
acteristic velocity, the shear velocityu* defined by u

*
2

[t0 /%a with t0 the ~suitably time averaged! shear stress
and%a the density of air. The shear stress of the air is tra
mitted to the surface as a friction that can mobilize grains
a surface covered with sand if it exceeds a threshold va
t t . As a result, the wind entrains some grains into a surf
layer flow. The grains advance mainly by an irregular ho
ping process~saltation!, thereby reducing the wind velocity
in the surface layer. Via this feedback mechanism a uni
relation between the shear stresst and the sand fluxq is
established in the equilibrium state. Ift is not too close to
the threshold, this relation can approximately be represen
as @1#

qs}t3/2. ~5!

Although a host of more accurate descriptions have b
discussed in the literature@2,8,16–18# and one of them will
be part of our definition of the minimal model below, th
simpler Eq.~5! will be sufficient for our qualitative discus
sion in the first part of the paper. The indexs in Eq. ~5!
2-2
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emphasizes that such local relations are restricted to s
tions where the flux is saturated, that is, equal to the equ
rium transport capacity. This is certainly not the case nea
boundary between uncovered and covered ground or
sloped beds. Neglecting this restriction for the moment,
~5! predicts that the shear stress perturbation

t̂~x![t~x!/t021 ~6!

above a modulated topographyh(x) is responsible for flux
gradients dqs /dx that cause erosion and deposition a
thus—according to Eqs.~1! and ~2!—migration of the sand
surface. Explicitly closing the model by assuming that t
shear stress is an affine function of the modulation of
topography (t̂}h) leads to what we call the zeroth-ord
model, which will briefly be analyzed in the following sec
tion paragraph.

B. Failure of the zeroth-order model

The zeroth-order model is given by

t̂$h~x!%→ t̂~h!}h~x!/L, ~7!

q$t~x!%→q~t!5qs~t!, ~8!

where we have used the curly brackets to indicate a gen
functional dependence and introduced a characteristic le
scaleL of the topography to normalize the height profil
~The motivation for the latter step will become clear in t
following section.! The zeroth-order model assumeslocal
relations in Eqs.~3! and ~4!. It approximates the wind shea
stress perturbation by its ‘‘affine’’ contribution~proportional
to the profileh that causes the perturbation! and replaces the
true sand fluxq by its saturated valueqs , thereby neglecting
saturation transients. This model is so simple that its qu
tative predictions for an arbitrary smooth heap of sand
easily be anticipated without any actual calculations.

Combining Eq.~2! with Eqs. ~5!–~8! one obtains a sur
face velocity that increases with height (dv/dh>0) due to
the nonlinearity of Eq.~5!. This implies that the upwind~or
‘‘stoss’’! slope tends to decrease and the downwind~or
‘‘lee’’ ! slope tends to increase. Sincedq/dx}dh/dx by the
chain rule, there is no erosion or deposition at the top o
smooth heap, which therefore keeps its initial height. Ob
ously, integrating forward in time will eventually increas
the lee slope up to the angle of repose, where surface
lanches have to be introduced and a slip face of cons
slope develops. If the latter reaches the crest, the abov
gument for the persistence of the height can no longer
applied, because the slope at the crest is then ill defin
Since there is so far nothing to stop a further decrease o
windward slope, the model dune will then start to decreas
height and finally flatten out. The steady-state solution i
flat surface.

The simple argument shows that the zeroth-order mode
although it gives some clue as to the origin of the s
face—is insufficient for a proper qualitative understanding
dunes. However, some important lessons can be learned
it that will be helpful in our further investigation of the prob
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lem. First, even with a very simplistic model any reasona
heaplike initial condition will quickly develop into a dune
like shape with a slip face. Second, although the latter m
seem to converge to a steady-state solution for intermed
times, it finally turns out to be unstable and flattens out. T
discussion of the migration velocity in Sec. II A suggests th
small deviations from Eqs.~7! and~8! at the brink can make
an important difference. Obviously some caution is need
in judging the success of numerical models of dune form
tion. Unless stability has explicitly been demonstrated, th
may be suspected to fail in a similar way as the zeroth-or
model when integrated over sufficiently long times~which
has actually not been checked for some models that ca
found in the literature! or to be sensitive to numerical error
at the brink. Detailed numerical modeling should therefo
be preceded by a sound qualitative understanding of
mechanisms underlying dune formation. We will argue
Secs. III and IV that to this end a subtle balance between
small deviations from Eqs.~7! and~8! and especially nonlo-
cal contributions in Eq.~4! have to be taken into account.

C. Migration velocity

Before entering a detailed discussion of the minim
model, it is worth pausing for some general thoughts as
what can be said about the shear stress and the speed
the wind above an obstacle, without actually doing t
~somewhat involved! calculation.

A basic property of strongly developed turbulence is
dilation invariance or scale-free structure. Whereas gen
Navier-Stokes flow is invariant under a scale transformat
that keeps the Reynolds number constant, strongly turbu
flow ~for ‘‘infinite’’ Reynolds number! allows for infinitely
many such similarity transformations. Landau and Lifsh
@15# took advantage of this fact for deriving the logarithm
velocity profile mentioned above by an elegant scaling ar
ment. The logarithmic velocity profile suggests that t
speedup of the wind and therefore also the shear stress
turbation above a heap of given shape should itself be lo
rithmically dependent on its size. But how do they depend
the shape of the obstacle? Since the flow itself does not
vide any characteristic length scale, the dimensionless qu
tity t̂ defined in Eq.~6! can only depend on a dimensionle
characterization of the profileh(x). In other words, to lowest
order in the perturbation, it must be a linear functional of t
derivativeh8 and can be written as

t̂~j !5« T$ f 8~j!%, «[H/L, ~9!

with a dimensionless profile function

f ~j![h~x!/H, j[x/L ~10!

and a scale-free~and necessarily nonlocal! linear functional
T. This reasoning can be repeated for the dimensionless
locity and pressure perturbations. Intuitively, the scalingt̂
}« for a flat smooth obstacle («!1) can be understood from
Fig. 1. When the air flows over the obstacle, the veloc
close to the obstacle is deflected by an angle« whereas it
remains constant far above the obstacle. For incompress
2-3
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FIG. 1. Schematic sketch of the deflection of the wind velocityu above a flat heap of aspect ratio«[H/L!1. The characteristic length
scaleL is in this context conventionally often identified with the half length at half height of the heap. The vertical deflection ca
speedup above the top of the heap. This is accompanied by a pressure perturbation that is negative above the top of the heap a
at its tails. Due to turbulence, the flow pattern is asymmetric even above a symmetric heap.
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flow, continuity translates this into a speedup of order« and
~via Bernoulli’s law! into a corresponding pressure drop ne
the top of the heap. This in turn causes a shear stress pe
bation t̂ of the same order.

These general considerations already allow us to pre
the scaling of the migration velocityv with dune size if we
assume that dunes of different size have roughly sim
shapesf (j) and aspect ratios«, which is indeed suggeste
by the scale invariance of the turbulent wind field and
observations. Inserting Eq.~9! into Eq. ~2!, and again ap-
proximating Eq.~4! by a local sand transport lawq[q(t),
we find

v
dq

dt̂

dt̂/dx

%s« f 8
5

dq

dt̂

T8$ f 8%

%sL f 8
}

1

L
. ~11!

The final proportionality strictly holds only if the steady
state shapef (j) and aspect ratio« are scale invariant. How
ever, it can be expected to be robust and rather insens
against violations of exact scale invariance. First, the n
malized steady-state shapesf (j) are strongly constrained b
the requirement that they renderv(x)[v, independent ofx,
along the heap. Therefore, they should to a first approxi
tion be independent of size, which is indeed borne out by
minimal model ~Fig. 13! and empirical observations@19#.
Moreover, the dependencev$ f 8(j)% is rather indirect and
can therefore be expected to be weak. Second, Eq.~5! sug-
gests that for gently sloped obstacles («!1) the dependence
of dq/dt on the aspect ratio« also is not very pronounced
And finally—due to the above mentioned scale invariance
turbulence—a scale invariant aspect ratio can reasonabl
expected for large dunes. In fact, we will show below th
the minimal model predicts that the aspect ratio of sm
heaps is not constant but rather decreases proportion
their height. But this also implies that the latter becomes
small to have a very significant effect on the above argum
Note, however, that only for strictly scale invariant dune
Eq. ~11! becomes identical to the often quoted observat
that dunes migrate with a speed inversely proportiona
their height@20#. Since the deviations of large dunes fro
scale invariance are not very pronounced, the difference
tween these predictions is only noticeable for small du
03130
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and heaps. Presently available field data are maybe not a
rate enough to clearly distinguish betweenv}1/L and v
}1/H, though some data supportv}1/L, most notably the
comprehensive study of barchan dunes in southern Per
Finkel @21#. As we will show below, our numerical results fo
the minimal model clearly favorv}1/L.

We also note that together with Eq.~5!, Eq. ~11!, more-
over, predicts that the migration velocity grows nonlinea
with ~as the third power of! the wind velocity. A more accu-
rate relation can be obtained from the minimal model
described below, but the qualitative conclusion is the sa
Dunes can migrate farther in a short period of exceptiona
strong wind than during much longer periods of gen
winds. Finally, we should mention that some caution
needed when identifying the characteristic length scaleL in
Eq. ~11!. In our discussion, we have so far assumed thatf (j)
is a smooth function, which is not the case for dunes w
slip face. Below we will argue that in this casef should be
identified with the envelope of the dune and its separat
bubble andL with the characteristic length scale of this e
velope. For a barchan dune the latter practically coinci
with the total length of the dune from its windward end
the tips of its horns.

In contrast to the overall migration velocity of a transl
tion invariant dune, the position dependent migration vel
ity v(x) that determines the shape is much harder to ob
since it requires a precise knowledge of the nonlocal fu
tional T in Eq. ~9!. This will be provided in the following
section.

III. WIND SHEAR STRESS

A. Surface shear stress on a smooth heap

The discussion in the preceding section showed that—
contrast to the assumption in Eq.~7!—the dependence of th
shear stress on the height profile is nonlocal. Although it w
turn out that this shortcoming of Eq.~7! is not responsible
for the failure of the zeroth-order model, it should by no
have become apparent that further progress can hardl
achieved without a rather detailed understanding of the
bulent wind field above heaps and dunes. For dunes wi
slip face that typically has a slope of about 32° –35° a
2-4
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MINIMAL MODEL FOR AEOLIAN SAND DUNES PHYSICAL REVIEW E 66, 031302 ~2002!
terminates in a sharp brink, the situation is similar to t
textbook example of a backward facing step, which has
reputation of a test case for numerical turbulent mod
Even if a commercial turbulent solver is used, the accur
calculation of the shear stress, e.g., on a barchan dune
nontrivial task and quite demanding in computer time a
memory, and the most interesting long-time dynamics
dunes is therefore difficult to access. For this reason,
want to focus on flat smooth heaps first. In this case, one
apply an analytical perturbation theory for turbulent boun
ary layer flow over smooth hills that has been develop
over the last decades@9–14#. Though the calculation is es
sentially a formalization of the intuitive description accom
panying Fig. 1, it requires a highly nontrivial boundary lay
construction that we will not recapitulate here. The interes
reader is referred to the original literature. We merely qu
the final result for thex component~along the main wind
direction! t̂x of the surface shear stress perturbation abov
profile h(x,y) @12,14#,

Fxy$t̂x%5
Akx~kx1 iBukxu!

~kx
21ky

2!1/2
Fxy$h~x,y!%. ~12!

We have abbreviated the Fourier transformation from
space variablesx, y to the respective wave numberskx , ky
by Fxy . For simplicity the logarithmick dependence of the
parametersA andB was neglected. The latter are then giv
by

A5
ln~F2/ln F!2

2~ ln f!3
@11 ln f12 ln~p/2!14g#,

B5p/@11 ln f12 ln~p/2!14gE#, ~13!

f[2k2F/ ln f,

and depend logarithmically on the ratioF[L/z0, whereL is
the characteristic length ofh(x,0) ~for this purpose, conven
tionally often identified with half the length at half height o
about one-fourth of the characteristic wavelength! andz0 is a
measure of the surface roughness~typically an effective
length somewhat below the linear dimension of the latte!.
We also have introduced the von Ka´rmán constantk'0.4
and Euler’s constantgE'0.577. A practical approximation
for f is obtained by iterating~twice! the implicit equation
for f and closing it by dropping the remaining lnf. The
dependence ofA andB on L is depicted in Fig. 2. Obviously
as long asL/z0 does not change by orders of magnitude~e.g.,
due to vegetation!, this extremely weak scale dependence
negligible for our purposes, andA andB can be regarded a
constant theoretical or phenomenological parameters.
definiteness we often work with the valuesA54 and B
50.25 ~approximately obtained forL/z05105–106). Al-
though these values may vary somewhat depending on
particular application in mind, or on the presence or abse
of ripples, and may phenomenologically be somewhat dif
ent from the theoretical prediction, this does not affect o
general conclusions.
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For the following discussion we want to specialize E
~12! to the central slice of a transverse or barchan dune al
the wind direction. To this end we evaluate Eq.~12! for the
central sliceh(x) of a heap that has a Gaussian shape w
standard deviations in the transverse direction parametrize
by y,

h~x,y!5h~x!e2y2/2s2
. ~14!

This approximation is technically useful, and although it m
seem relatively crude for a particular real dune, it typica
does not introduce any noteworthy derogation of the res
compared to a more accurate description. The Fourier c
ficients of the shear stresst̂(x)[t̂x(x,0) on the central slice
along the wind direction become

F$t̂~x!%5
sA

A2p
k~k1 iBuku!

3e21/4k2s2
K0S k2s2

4 DF$h~x!%. ~15!

Here,K0 denotes a modified Bessel function and the Fou
transforms are one dimensional, so that we can drop the
dundantx subscripts.

For transverse dunes (s/L→`), we obtain the two
equivalent expressions

F$t̂`~x!%5A~ uku1 iB k!F$h~x!%, ~16a!

t̂`~x!5A@h8~x! ^ ~px!211Bh8~x!#. ~16b!

For the real space version we have abbreviated a convolu
integral according to

f ^ g[E
2`

`

dj f ~j!g~x2j!. ~17!

Evaluation for arbitrarys gives two correction terms

t̂s5 t̂`2A~h^ D11Bh8^ D2!, ~18!

with

FIG. 2. The theoretical prediction for the dependence of
parametersA ~solid line! andB ~dashed line! of Eq. ~13! on the ratio
of the dune sizeL to the roughness lengthz0.
2-5
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D15

US 3

2
,1,

x2

2s2D
4Aps2

1

Ap

2
US 1

2
,0,

x2

2s2D 21

px2
, ~19!

D25
1

spE0

`

dj cosS jx

s D F12
jej2/4

A2p
K0S j2

4 D G , ~20!

two even functions depicted in Fig. 3 that are flat fors/L
→` and become peaked fors.L. ~The confluent hypergeo
metricU functions@22# have been introduced to rephrase t
sine part of the Fourier integrals.!

Since the correction terms in Eq.~18! are numerically
small, we may—given a reasonable localized heap shap
the wind direction—approximately replace both functionsD1
andD2 by d functions, thus arriving at

t̂s't̂`2A@c1~s!h1Bc2~s!h8#. ~21!

In this approximation they are seen to give merely
s-dependent renormalization of the asymmetry param
B→B(s)&B(`)5B and to add a~trivial! term c1(s)h(x)
within the brackets of Eq.~16b!. Numerically, one can esti
mateL c1(L/A2) andc2(L/A2) to be about 0.2~cf. Fig. 4!.
The exacts dependence of the coefficients is determined
the shape and extension of the heap in thex direction, be-
cause the area under the peaksD1 and D2 is constant and
independent ofs, while the peak height decreases prop
tional to s22 ands21, respectively. Since both correction
vanish for s/L→` and do not contribute any substanti

FIG. 3. The peaked functionsD1 andD2 of Eqs.~19! and ~20!
for s51, 2, 5. The area under the peaks remains constant~0 and
1/2p), while the peak heights decrease proportional tos22 and
s21, respectively.
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new effects to Eq.~16!, they may for simplicity be omitted
altogether in the following discussion that mainly aims a
qualitative understanding. Figure 4, moreover, shows t
they can approximately be mimicked by a renormalized
rameterA in Eq. ~16! for the central slice of a symmetri
heap. This leads to the important conclusion that the w
shear stress on the central slice of a 3D symmetric heap
on a heap with a profile that is constant in the transve
direction is qualitatively the same and quantitatively simil
which was nota priori obvious. Together with the fact tha
on a gently sloped obstacle the transverse components o
shear stress are small compared to its longitudinal com
nents, this suggests that the predictions of Eq.~16! apply in a
first approximation to any slice of a dune parallel to the wi
direction. In this sense, the study of Eq.~16! is representa-
tive. Summarizing the foregoing discussion, we can say
to gain a qualitative understanding of dune formation by a
lian sand transport one may focus on Eq.~16! as a model for
the wind shear stress. We therefore analyze this equatio
some detail in the following section.

B. Properties and consequences of Eq.„16…

A scaling analysis of Eq.~16! immediately reveals thatt̂
is indeed of the general form anticipated on general grou
in Eq. ~9!. The amplification of the shear stress at the top
a smooth profile is thus determined by its aspect ratio«
5H/L and is essentially independent of the absolute he
H. It only has a very weak logarithmic dependence on
absolute size of the dune through the prefactorsA and B
given in Eq. ~13!. Moreover, for a symmetric profilef
(2j)5 f (j), t̂ is the sum of a symmetric part and an an
symmetric part, i.e., the flow over the heap has a symm
breaking component that is a consequence of turbulence.
origin of the symmetric and antisymmetric parts oft̂ can
intuitively be understood as follows. As we have pointed o
in Sec. II C ~see Fig. 1!, the streamlines have to be com
pressed above the heap if the perturbation is not to be tr
mitted to infinite height, and as a consequence, there

FIG. 4. Shear stress perturbation above the central slice of a
symmetric (s5L/A2) Gaussian heap. The plot compares two a
proximations to Eqs.~12! and ~18! ~points!: ~i! Eq. ~21! with Lc1

'c2'0.2 ~solid line! and ~ii ! Eq. ~16! with A renormalized by a
factor 0.8 ~dashed line!. While ~i! is practically indistinguishable
from Eq.~12! on the present level of accuracy, the simpler appro
mation ~ii ! already captures most of the 3D effects.
2-6
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corresponding increase in the shear stress. For the lam
average flow, this speedup and the associated decrea
atmospheric pressure above the heap are symmetric f
symmetric heap as is the corresponding shear stress pe
bation, which accounts for the dominant symmetric part oft̂.
On the other hand, the inertia of the turbulent velocity flu
tuations around this laminar main flow contributes an asy
metric resistance to deflections of the flow. It counteracts
upturn of the streamlines on the windward side and
downturn on the lee side. Formally, this effect enters
perturbative calculation oft̂ through the Reynolds stress.

Further insight can be gained from special analytical
lutions to Eq.~16!. For the normalized heap profiles

f L~j!5
1

11j2
,

f G~j!5exp~2j2!, ~22!

f C
n ~j!5S~j!cosnj,

with

S~j![H 1, uju<p/2

0, uju>p/2,
~23!

we obtain

t̂L5A~122Bj2j2! f L
2~j!,

t̂G52A@p21/22j~B1erfij! f G~j!#,

t̂C5
A

p
cos~2j!@si~p12j!1si~p22j!#

2
A

2p
sin~2j!@ci~p12j!1ci~2p22j!2ci~p22x!

2ci~2p12x!#22B S~j!cosj sinj ~n52!, ~24!

with erfi the imaginary error function and si and ci the si
and cosine integral functions, respectively@22#. The result
given for t̂C is for the special casen52. A plot of both the
profiles of Eq.~22! and the corresponding solutions of E
~16! given in Eq.~24! was already presented in Fig. 1 of Re
@4#. These plots oft show that as a rule of thumb one ca
estimate the relative magnitude of the shear stress pertu
tion at the top of the heap byA«. They also share severa
crucial properties that are missing in the affine approxim
tion t̂}h of the zeroth-order model. At the tails of the pr
files, the shear stress falls below its asymptotic valuet0 on
the plane. This effect is most pronounced for the profilef C

n

that has a discontinuity in its second derivative. Further,
surface shear stress is not symmetric even for symme
profiles like those of Eq.~22!. Figure 5 displays the symme
ric and asymmetric partst̂sym and t̂asy of the shear stres
perturbationt̂G for the Gaussian profilef G , separately. The
asymmetric contribution tot̂ is small compared to the sym
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metric one. For the profilef L the corresponding shiftdxt of
the location of the maximum of the shear stress with resp
to that of the maximum off L(x) can be calculated analyti
cally,

dxt /L52~11B2!1/2sin@arctan~B!/3#2B. ~25!

It is indeed found to be very small, becauseB is small and
thusdxt /L'2B/3 typically amounts to a length of about
few percent of the total heap length. Nevertheless, it i
crucial element in the modeling of aeolian sand transport
will now be demonstrated.

For a qualitative estimate of the effects of Eq.~16! onto
the sand transport over a dune, it is useful to consider o
again the local zeroth-order model for aeolian sand transp
Eq. ~8!, i.e., a completely saturated fluxq5qs(t) with qs
given by Eq.~5!. ~Below, we will show that this is asymp
totically valid on large dunes in strong winds.! The distinct
features of Eq.~16! that are missing in the zeroth-order a
proximation for the shear stress, Eq.~7!, are then easily seen
to have potentially profound effects on the shape evoluti
First, due to the depression of the shear stress at the tai
the profiles, deposition rather than erosion may occur at
windward foot. Second, due to the asymmetric contribut
in t(x) there can be a net deposition on a symmetric hea
sand. In particular, the shift of the position of the maximu
shear stress with respect to the top of the heap allows d
sition at the top of the heap. For an initially flat heap of sa
there is thus the possibility of a steepening of the windw
slope and mass growth. This implies that a plane sand
face is unstable against modulations. To illustrate this eff
we used Eq.~24! to calculate the migration velocityv(x) of
a cosine-shaped heap of sandf C

2 (x) according to Eqs.~2!,
~5!, ~8!, and~16!. The latter is shown in the upper part of Fi
6. Sincev8,0 implies thatv increases with height, the de
crease ofv(x) on the lee side reveals the self-amplifyin
tendency of the unstable lee slope to steepen, which
already present in the zeroth-order model. It will ultimate
lead to the formation of a slip face. In contrast to the zero
order model, Eq.~16! however rendersv(x) approximately

FIG. 5. The symmetric and asymmetric partst̂sym andt̂asyof the

shear stress perturbationt̂G of Eq. ~24! for the Gaussian profilef G

of Eq. ~22! with A«50.8 andB50.25. Note the small windward
shift of the maximum of the shear stress with respect to the cres
the heap caused by the asymmetric contribution proportional toB.
2-7
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constant over almost the whole windward side if«5H/L is
close to a certain value determined by the values of the
efficientsA and B in Eq. ~16!. Slightly better constancy is
possible for a slightly lowern ~with slightly larger«) but not
for the profilesf G and f L , for which v(x) is always nonuni-
form, so that they are deformed by erosion. Let us fina
consider the dashed and dotted lines in the upper part of
6. They correspond to a smaller and a larger aspect ratio
represent a steepening (v8,0) and flattening (v8.0) of the
windward side, respectively. In other words, profiles w
larger/smaller windward slopes are driven towards the s
tion with constant windwardv(x) and a stable optimum
windward slope different from zero. Altogether, Fig. 6 th
suggests that the coupled Eqs.~5! and ~16! drive a heap of
sand towards a dune with a cosinelike windward profile o
preferred aspect ratio, and a slip face on the lee side.

Although the above analysis based on the surface velo
is suggestive, it does not prove that the model converges
translation invariant steady-state solution if integrated o
time. Also some previous studies based on similar desc
tions either did not scrutinize the long-time behavior of th
models @23,24#, or failed to obtain stable dunes@11,25#.
However, as our discussion in Sec. II B showed, the lo
time behavior is nontrivial and needs special attention.

FIG. 6. The position dependent surface migration velocityv(x)
in arbitrary units according to Eqs.~2! and ~16! with A54, B
50.25. Upper part: for the profilef C

2 ~gray! and varying aspec
ratios«50.01~dashed!, 0.1 ~solid!, 0.19~dotted!, and the local flux
relation Eq. ~8!. Lower part: for the profilef C

1.65 ~gray! with «
50.1 ~solid!, 0.05~dashed!, and the nonlocal flux relation Eq.~30!.
To allow direct comparison with the upper part of the figure,qs was
represented by Eq.~5! and l s'0.1L was taken constant.
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deed, the model as developed so far, is still insufficient.
obtain a consistent general model for dune formation un
general influx and wind conditions, the present wind mo
@Eqs.~12! and ~16!# has to be appropriately adapted to sit
ations with flow separation above slip faces. And, most i
portantly, the saturated-flux approximation Eq.~8! of the
zeroth-order model has to be abandoned. These steps w
discussed in the following section and in Sec. IV, where
will also explain the lower part of Fig. 6. This will complet
the definition of the minimal model. Its numerical solution
will be presented in Sec. V.

C. Flow separation

The wind model as discussed so far works fine for smo
heaps with gentle slopes. However, as we have already m
tioned, its application to dune profiles with slip faces a
sharp brink lines is not straightforward. The perturbative t
bulent boundary layer approach leading to Eq.~12! does not
account for flow separation, a phenomenon that occur
sharp edges and steep slopes to prevent an extreme be
of the streamlines@15#. ~For some of the technical term
involved in this section, the reader is referred to Fig.!
Instead of bending the streamlines around sharp edges, r
culating eddies separate from the~on average! laminar main
flow, thereby creating an effective envelope that diverts
main flow on a smooth detour around the obstacle. See F
7 and 10 for a schematic sketch and a numerical calcula
of a typical velocity field, respectively. Fortunately, it turn
out that dune formation and migration do not, in gener
depend very sensitively on the details of this complica
process. Or in other words, there is a large number of in
esting problems of aeolian sand transport for which th
details are largely irrelevant, and for which their somewh
realistic physical representation would create a huge o
head in complexity~especially in three dimensions! to an
otherwise tractable problem. It was therefore suggested
lier @11# that for the purpose of calculating the shear stress
the windward side of a dune, one may to a good approxim
tion represent flow separation on the lee side by the follo
ing heuristic method. A wind model such as Eq.~16! re-
stricted to smooth, gently sloped objects is applied to
envelope

h̃~x!5max$h~x!,s~x!% ~26!

of a duneh(x) and a phenomenologically defined separat
bubble s(x). This disregards the fact that the separati
streamline does not represent a solid boundary of the s
roughness as the original object, but the corresponding er
are expected to be small. Typically, one wantss(x) to be a
mathematically simple smooth continuation of the dune p
he dune is
FIG. 7. Sketch of the central slice of a barchan dune and the separation bubble. The shear stress on the windward side of t
calculated by applying Eq.~16! to the phenomenologically defined envelope of the dune and the separation zone.
2-8
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MINIMAL MODEL FOR AEOLIAN SAND DUNES PHYSICAL REVIEW E 66, 031302 ~2002!
file. It is, however, crucial that the latter respects some ma
phenomenological properties of flow separation@26#. Al-
though this is by no means a rigorous procedure, one can
its predictions for selected cases against numerical solut
of various turbulence models. The hope is that via this
proach, one can eventually get a qualitative understandin
the mechanisms and phenomena involved in dune forma
and migration, leaving certain quantitative aspects to a m
elaborate~and much more laborious! future analysis.

In the spirit of the minimal model we want to parametri
the separating streamlines(x) in the simplest form that
obeys physically motivated boundary conditions at its
tachment and reattachment pointsxd andxr . At detachment,
the slope of the separating streamline must match the s
of the dune. Moreover, also the curvature must be continu
there, since discontinuities in curvature are detected by
~16! and cause kinks int and discontinuous steps in th
erosion/deposition, as is, e.g., the case for the profilef C

2 . For
the reattachment point, there are no comparable restrict
to the slope and curvature, since the separation bubble is
sharply defined there, and the model aims at a realistic
scription of the conditions in the wake region only insofar
they affect the shear stress on thewindwardside. On the lee
side, inside the separation bubble, the shear stress can s
be set to zero@27#, since it is typically below the threshol
for aeolian sand transport. Therefore, the choice of the r
tachment matching condition is a matter of convenien
rather than physical significance in the present model. H
ever, we wants(x) to reproduce some common phenomen
logical knowledge about flow separation. First, from ma
numerical calculations it is known that, at high Reynol
numbers, the turbulent boundary layer reattaches at a
tance of about 6H after a backward-facing step of heightH.
Second, it has often been observed experimentally tha
strongly turbulent flows over hills and symmetric triangu
obstacles, flow separation sets in if the backward slope
ceeds an angle of about 14°. Although, in both cases
exact numerical values depend on various factors such a
surface roughness and the Reynolds number, they sha
treated as fixed phenomenological constants at the pre
stage. A model that fulfills all the above requirements is
third-order polynomial with continuous slopes at the boun
aries and a maximum negative slope of tan 14°. The bou
ary conditions

s~xd!5hd[h~xd!, s~xr !50,

s8~xd!5hd8[h8~xd!, s8~xr !50, ~27!

s̄8[max$2s8~x!%5tan 14°50.25

constrain the third-order bubble parametrization to be of
form

s~z!5~2hd1hd8Lb!z32~3hd12hd8Lb!z21hd8Lbz1hd,
~28!
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with z[(x2xd)/LbP@0,1#. With the further abbreviationn
[hd8/ s̄8, we can express the lengthLb[xr2xd of the bubble
as

Lb5
3hd

hd8

12n2A11n

32n
'

3hd

2s̄8
S 11

n

4
1

n2

8 D , ~29!

where the final approximation for smallhd8 is sufficient for
our purpose~and numerically better behaved as the ex
expression!. A subtlety of such a separation bubble para
etrization is the fact that the slope atxd determines the length
of the bubble, which in turn, via Eq.~16! influences the
curvature atxd . In other words, the presence of the bubb
introduces a nonlocal feedback between the slope and
curvature at the brink, which we believe is physically re
sonable. In Fig. 8 we give some examples of separa
bubbles for different boundary slopeshd8 , while Fig. 9 illus-
trates the application of the above discussion for the ca
lation of the shear stress. It shows an example for a d
profile h(x) with a slip face and the separation bubbles(x),

FIG. 8. Separation bubbles with a maximum negative slope
0.25 according to Eq.~29! for varying initial slopes20.25<hd8
<0.25. ~The aspect ratio of the plot was stretched for presentatio!

FIG. 9. The windward profileh(x) of a dune with slip face and
the separation bubbles(x) form together a smooth effective ob

stacle, defined by the envelopeh̃(x). To calculate the shear stres

t(x) on the windward side of the dune,h̃ is substituted forh in Eq.
~16!. In the region of recirculation the surface shear stresst is set to
zero @27#. Without the separation bubble,t(x) would develop a
sharp singularity at the brink.
2-9
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together with the shear stresst(x) resulting from Eq.~16! if
h is replaced by the envelopeh̃.

We have performed several series of numerical fluid
namics calculations in two dimensions and three dimens
with the commercial fluid dynamics solverFLUENT5 @28# us-
ing the ke and large-eddyturbulent closure models to con
firm the general picture outlined above and our particu
implementation of the separation bubble. The differences
tween numerical and theoretical predictions for the sh
stress on the windward side of various dunelike and heap
objects in 2D and 3D were quantitatively small and not m
significant than other neglected terms. Moreover, a comp
son of predictions obtained from Eq.~28! with wind mea-
surements on a barchan dune in Brazil@29# showed good
agreement. Therefore, we are confident that the propo
mathematical description of the wind shear stress capt
the relevant aspects in the spirit of the minimal model. As
example for the numerical fluid dynamics calculation, w
show in Fig. 10 a section of the flow velocity in the symm
try plane of a 3D barchan dune obtained withFLUENT5 @28#.
The wind is blowing from left to right. The boundaries we
chosen to be periodic in the transverse direction. At the
flux boundary~not shown!, the velocity was fixed by impos
ing a logarithmic velocity profile. The wind profile at th
outflux boundary is not knowna priori. Although, for high
Reynolds numbers the latter is expected to affect the solu
only close to the boundary, it is well known that differe
choices for the outflux boundary condition as well as diff
ent discretization schemes may lead to quantitatively dif
ent results@30#. Here, we chose to set the derivative of t
velocity normal to the outflux boundary to zero. The surfa
profile was represented as a solid boundary with cons
roughness length. Finally, along the top boundary we
posed the velocity of the undisturbed logarithmic inflow pr
file. The whole calculation was performed on a grid that h
an exponentially growing mesh size in the vertical directio
A considerable grid refinement was necessary in the wed
like region of the separation bubble close to the brink.

These remarks complete the first task of constructin
model for the calculation of the wind shear stress on a gi
dune profile as outlined in Eq.~3!. By deriving the linear Eq.
~16! for the shear stress and combining it with the heuris
separation bubble, we have obtained an approximate bu
merically extremely efficient model for the wind shear stre
on dunes. This is a crucial step in the construction of a m
mal model of aeolian sand dunes, since the enormous c

FIG. 10. Cut along the symmetry plane of a 3D barchan du
The velocity vectors calculated numerically with a commercial flu
dynamics solver@28# clearly display the flow separation at the brin
and a large eddy in the wake region.
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plexity of the turbulent air flow over structured terrain ot
erwise severely restricts the possible applications of
model.

Going back to the upper part of Fig. 6 with the abo
discussion in mind, we can reinterpret this figure in order
anticipate the behavior of the surface migration velocityv(x)
of a dune with slip face. If, for qualitative purposes,f C

2 is
interpreted as the envelope of a dune and its separa
bubble, we can conclude that the slip face must be loca
near the sharp drop ofv(x) slightly upwind from the top of
the envelope. This is indeed consistent with observations
large dunes. Together with the good representation of
windward profiles of large dunes@19# by f C

n (n'2), it sug-
gests that the given description becomes qualitatively cor
in the limit of large dune sizes. The following section
devoted to the discussion of important subtleties related
the fact that dunes are not typically in this limit.

IV. SAND FLUX

As outlined in Eq.~4!, the second task in the specificatio
of the minimal model is to find a prescription for calculatin
the sand fluxq(x) for a given topographyh(x) and shear
stresst(x). So far, we have been using the local saturat
flux approximation Eq.~8! in our qualitative arguments
However, a closer look at the predictions obtained within t
approximation reveals a number of inconsistencies. First
we have already noted in the discussion of Fig. 6, the us
Eq. ~8! together with the complete wind model of Sec. I
leads to the odd prediction of deposition at the windwa
foot of an isolated heap or dune, where the shear stress
creases. This defect of Eq.~8! has been noticed in the litera
ture before~see, e.g., Refs.@8,31#!. Previous numerical stud
ies tried to avoid this problem by focusing onto the sho
time behavior and by introducingad hocheuristic methods
such as a ‘‘smoothing operator’’@23# or an ‘‘adaptation
length’’ @24#. The reason for the problem is that th
saturated-flux approximation breaks down at the grou
sand boundary. As another shortcoming, we want to men
that the model as discussed so far predicts a universal s
invariant dune shape with a brink that is displaced sligh
upwind from the maximum of the envelope, leading alwa
to a positive slope at the brink. A glance at a real dune fi
proves that the latter is not always the case and careful m
surements@19# have revealed systematic deviations fro
scale invariance. Though less obvious, it turns out that
reason for this discrepancy lies again in the saturated-
approximation. Both mentioned problems are thus natur
resolved by introducing a slightly more general sand tra
port law that allows for saturation transients.

A. Saturation transients

The saturated-flux approximation Eq.~8! assumes that the
flux is everywhere equal to the equilibrium transport cap
ity qs of the wind. However, due to variable wind or san
conditions, the actual sand fluxq is, in general, different
from qs . These deviations are called saturation transie
because they quickly relax to zero under homogeneous

.

2-10
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ditions. We have recently demonstrated@8# that this relax-
ation occurs within a characteristic length scale, called
saturation length,s , which is related to~but distinct from!
the mean saltation length of the grains. It was, moreo
shown how the introduction of saturation transients cures
problem of deposition at the windward foot of an isolat
sand dune. Here, we only summarize the most pertinen
sults of this earlier development in order to demonstrate h
a size dependence of the dune shape naturally results
consequence of saturation transients.

The sand transport model of Ref.@8# is based on a mean
field-like description of saltation. It models a typical gra
that is accelerated by friction with the air and slowed do
by dissipative interactions with the bed. The average pro
ties of the complicated splash process@32–34# are subsumed
into two dimensionless parameters, an effective restitu
coefficienta for collisions with the bed, and a kinetic coe
ficient g that characterizes the relaxation of the density
saltating grains to its saturated value. Together with an ef
tive height for the wind-grain interaction that enters on
logarithmically, these are the only phenomenological para
eters of the model. They have been determined by a c
parison with experiments and grain scale simulations. F
mally, the model consists of two coupled differenti
equations for mass and momentum conservation, an
modified turbulent closure relation that accounts for the fe
back of the saltating grains on the wind velocity.

For the present purpose, the model can be simplified
taking advantage of the fact that the prevailing conditions
applications to dunes are typically well described by
steady-state (]/]t.0) version. Further, the relaxation of th
typical sand transport velocity can be assumed to be
compared to the variations in the density of mobilized gra
in the saltation layer. Approximating the latter by its sa
rated value for the calculation of the effective wind speedueff
via the modified turbulent closure, one can decouple
mass and momentum conservation equations. The w
model can then in a reasonable approximation be reduce
a single differential equation

,s]q/]x5q~12q/qs! ~30!

for the sand fluxq(x). The shear stress dependent para
eters

,s5 l /~t/t t21!, qs5rsus ~31!

are immediately identified as the saturation length and
saturated flux, respectively. The equation forqs generalizes
Eq. ~5! to arbitrary wind speeds. In the following we speci
the explicit expressions for both quantities as they re
from the sand transport model of Ref.@8#, but the structure of
Eq. ~30! is thought to be more general and independen
the precise form of Eq.~31!. Again, t(x) is the position
dependent shear stress discussed in Sec. III andt t
'0.1 kg m21 s21 is the estimated impact shear stress thre
old that corresponds to a critical shear velocityu* t
'0.28 m s21 @35#. ~For simplicity, we do not introduce the
additional threshold for purely aerodynamic entrainm
here, but allow instead for a small residual influx even if t
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latter is nominally zero.! To make the underlying structure o
the model more palpable, we have expressed,s in terms of
another characteristic length scalel[2aus

2/(gg), which ~up
to a numerical factor! is the average saltation length of th
grains. The latter—but not,s—must always be considerabl
smaller than the dune length for the model to be applica
Further, we have decomposedqs into the saturated densit
rs52a(t2t t)/g and the effective sand transport velocity
saturationus5ueff2du with ueff the effective wind velocity
that accelerates the grains, given by

ueffkA%a52At t1~t2t t!/z1~ ln z822!At t. ~32!

By g we have denoted the gravitational acceleration a
from Ref. @8# we adopt the~approximate! numerical values
a50.35, g50.2, z58, z85200, anddu51.8 m/s for the
lag velocity of the grains. We note that these numerical v
ues are not completely independent of each other and of
mentioned value for the impact thresholdt t , due to the cali-
bration of the sand transport model with experimental d
@8#. For convenience we show a plot of the saturation len
,s obtained with these values in Fig. 11. This completes
definition of the sand transport part of the minimal model
gently sloped ground.

B. Consequences

Before we complete the general model definition by
brief paragraph on slip faces, we want to point out so
implications of the model as developed so far. First, note t
the full expression forqs given in Eq.~31! contains Eq.~5!
as a limiting case for strong winds but is better approxima
by qs}t2t t for moderate wind speeds. For weak flux gr
dients and strong winds, one may set the left hand side of
~30! to zero, leading toq5qs . This is typically the case on
most of the windward slope of a large dune, where the
hand side of Eq.~30! can roughly be estimated by,sqs /L
!qs . The local saturated-flux approximation with Eq.~5! for
qs , which we have applied throughout our qualitative d
cussion so far, is thus asymptotically valid for large dun
and strong winds~except near the windward foot of an iso
lated dune!. This is what one might have expected in the fi

FIG. 11. The saturation length,s in meters as a function of the
shear stress exerted by the wind onto the sand bed. This func
sets the natural length scale for dunes and heaps.
2-11
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place, and the reader may wonder at this point how the s
ration transients and their characteristic length scale,s can
have the claimed importance. How can,s affect the shape o
a dune that is typically about two orders of magnitude larg
This apparent puzzle is now easily resolved by going bac
Fig. 5 and Eq.~25! and by observing that the symmet
breaking shiftdxt of the location of the maximum of the
shear stress with respect to that of the maximum of
height profile~or envelope!, which is responsible for the fi
nite windward slope and growth of dunes, is also of the or
of a few percent of the total dune length. In summary,
longitudinal profile of dunes and heaps is determined by
competition of two quantitatively small but qualitatively cru
cial effects, one related to turbulent wind flow and the oth
to sediment transport. This may be the reason why its ex
nation proved elusive for a long time.

To get a qualitative idea of the consequences of the in
duction of the generalized nonlocal flux law in Eq.~30! as a
replacement for Eq.~8!, we want again to go back to ou
discussion of the surface migration velocity of the cosin
shaped heapf C

n in Fig. 6. Let us for the moment adopt
crude approximation and replace the expression forqs given
in Eq. ~31! by its simpler limiting formqs}t3/2 introduced in
Eq. ~5! for reasons of comparison. For the same reason,
also neglect the variation of,s on the dune and replace it b
a ~fine tuned! constant,s'0.1L. With an influx~about 0.7qs
for the solid and 0.8qs for the dashed line in the lower part o
Fig. 6! one can thus achieve a fairly constant surface velo
over thewhole length of a cosine-shaped heap. Again t
constancy is slightly better forn,2 than for n52. It is
further improved by reducing the slope of the heap well
low the optimum windward slope of the dune obtained
,s→0, as seen from a comparison of the solid line and
dashed line. We also note in passing that the influx neede
maintain the shape is increasing with decreasing slope.
comparison of the uppper and lower part of Fig. 6 confir
our claim that even for,s!L, saturation transients may vis
ibly affect the overall shape of aeolian dunes. Although,
the example shown in the lower part of Fig. 6, the saturat
length is only about 1/30 of the heap length, the slip fa
instability is evidently completely washed out. Altogeth
this strongly suggests the existence of translation invar
cosine-shaped heap solutions for the model. The ultim
proof will be provided by the numerical results presented
Sec. V, where the full form ofqs and ,s according to Eq.
~31! will be used, but the present crude approximation
ready illustrates the main point, and also demonstrates
the behavior is a generic consequence of Eq.~31! and insen-
sitive to the detailed form of the parameters,s(x) andqs(x)
that may phenomenologically be somewhat different fr
the model prediction without affecting our general conc
sions.

An immediate consequence of the foregoing discussio
the existence of a minimum dune size. For small enou
dunes, the slip face instability is washed out by the satura
transients. One may also arrive at this conclusion from
analysis of heaps. To this end we observe that the valu
the saturation length,s is a property of the wind velocity and
the saltation kinetics and depends on the topography o
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indirectly through the variable shear stresst. Moreover, it is
apparent from Fig. 11 that this dependence becomes w
for strong winds. On the other hand, the symmetry break
shift dxt is proportional to the absolute size of the heap~or
envelope! and not directly dependent on the wind velocit
For the special profilef L , this was verified analytically in
Eq. ~25!. As we have seen, a smooth heap can only b
translation invariant solution of the model if the lag~of order
,s) of q(x) with respect toqs(x) and the shiftdxt are fine
tuned to guarantee a vanishing erosion rate at the top of
heap. From this we expect heaps to obey

,s.dxt}L'const ~33!

to a first approximation. This condition can only be fulfille
if the aspect ratio« of heaps grows proportional to their siz
~i.e., roughly«}H). Hence, in contrast to large dunes wi
slip face, for which we have argued that they are asympt
cally scale invariant («;const), heaps must have a strong
size dependent aspect ratio. As a consequence, transl
invariant heap solutions obviously cannot exist beyond a c
tain critical size. A slip face will develop when the she
stress on the lee side of the heap drops below the thres
value t t , or at the latest, when the lee slope exceeds
critical slope for flow separation. This will be further an
lyzed in Sec. V. Finally, we note that the steady-state flux
a heap can be estimated by the observation that the outflu
essentially determined by the strength of the reductiont0
2tmin of the shear stress at the lee end of the heap. Acc
ing to Eq.~9!, the latter is~for a given shape! proportional to
the aspect ratio«. For qualitative purposes, the outfluxqout

may thus be estimated in the saturated-flux approxima
with Eqs.~31!, ~32!, and~9! as

qs
out}tmin2t t}«c2«, ~34!

where we have assumedtmin /tt&2 ~fulfilled for moderate
wind speeds and/or heaps near the critical heap size! to lin-
earize the expression forqs(t) given in Eq.~31!. Here,«c
}t02t t is the critical aspect ratio for which the shear stre
on the lee drops below the threshold and the outflux v
ishes. Note that the latter increases with increasing sh
stress whereas the heap length decreases according to
~31! and ~33!. The effects of the two trends onto the critic
heap mass could therefore partially cancel unless the
slope exceeds the critical slope for flow separation.

C. Slip face

We have argued above that for large heaps (L@,s), aeo-
lian sediment transport tends to increase the downwind s
until it reaches the angle of repose of the grains. At t
point, any further increase of the lee slope initiates a
lanches that restore a slope slightly below the static angl
repose and eventually create a slip face of a roughly unifo
slope of about 32° –35°. Since the physical modeling of t
process itself is not a major objective of the present con
bution, we can choose between different possible implem
tations for this phenomenon. In 2D it is possible to repres
the slip face as boundary condition for the sand transpor
2-12
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FIG. 12. Solution of the mini-
mal model.
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is uniquely determined by its fixed uniform slope and ma
conservation. However, with regard to a future generaliza
of the present 2D model to three dimensions we chos
more realistic implementation based on a widely used a
lanche model@36#. The formulation of this model bears som
close similarities with the sand transport model presente
the preceding paragraph, and thus suggests itself as a na
extension of the latter to the slip face. This completes
definition of the minimal model that will be solved numer
cally in the following section.

V. SOLUTION OF THE MODEL

Apart from the model definition, the preceding sectio
have provided some qualitative insights into the m
mechanisms responsible for dune formation and migrat
Now we are prepared to study numerically the quantitat
predictions of the model. Again, we emphasize that we o
can explore some major features of the model in the pre
report, leaving many interesting questions and more syst
atic and quantitative parameter studies for future work.

For convenience, the solution procedure of the minim
model is summarized as a flowchart in Fig. 12. One st
with an initial profileh(x,t50) ~typically f G or f C

2 ), checks
whether a separation bubble has to be added for the calc
tion of the shear stress, then obtains the latter from Eq.~16a!
and uses the result as input for the iterative solution of
sand transport equation Eq.~30!. This finally gives the
erosion/deposition needed to update the surface pro
Technically, Eq. ~16a! is implemented as a fast-fourie
transform algorithm, and for the integration of Eqs.~30! and
~1! an upwind discretization scheme is used. Simulat
times can be reduced by using an adaptive time step.

A. Steady-state shapes

The scheme of Fig. 12 can be iterated for different infl
boundary conditions. For all of the numerical calculatio
presented below, we chose periodic boundary conditio
They are the natural choice for studies of the steady-s
shapes. To investigate the mass balance under prescribe
flux conditions, on the other hand, one has to apply o
boundary conditions.

Figure 13 shows steady-state solutions of the model
initial profiles f G of different mass. These solutions are o
tained for fixed wind conditions with parametersA53.2 and
B50.25, appropriate for the central slice of a 3D~symmet-
ric! heap or of a barchan dune. The shear velocityu*
50.4 m/s lies well above the impact threshold.~The situa-
tion very close to or below the threshold would need spe
attention.! As anticipated above, large dunes become asy
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totically scale invariant. The asymptotic master curve for
windward profile is practically indistinguishable from th
profile f C

n (n&2), and the slope at the brink is indeed po
tive. Its average windward slope is inversely proportional
the value of the parameterA given in Eq.~13!. Due to the
additional terms in the expression Eq.~18! for the shear
stress on dunes with a finite width, somewhat steeper a
age windward slopes are predicted for barchan dunes
for transverse dunes under identical influx and wind con
tions. A detailed quantitative comparison is probably beyo
the scope of the present semi-quantitative implementat
More important are the remarkable qualitative predictions
the model. In particular, the fact that dunes with a slip fa
are only stable above a certain~wind dependent! critical size,
whereas smooth steady-state heaps only exist below a cr
size, deserves attention. We also note that the steady sta
not always unique. There is a hysteretic regime where
initial conditions can select one of two possible steady-s
shapes and accordingly the masses for the two sets of pro
in Fig. 13 are not all distinct. The largest heaps in the up
plot were obtained from flat initial profilesf G , whereas the
smallest dunes with a slip face in the lower plot were o
tained from steeper initial profilesf G of the same mass. Es
pecially, the dune with a negative slope at the brink co
only be obtained from steep initial conditions. Since und
natural wind and sand conditions, the initial conditions the
selves will generally be heaps or dunes close to the ste
state, one can say that the model predicts a critical heap
for slip face formation and a critical dune size for slip fa
destruction. In both cases the slip face is finite as a con

FIG. 13. Steady-state heaps~upper plot! and dunes~lower plot!.
The aspect ratio is stretched for better visualization.
2-13
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quence of flow separation. The latter also allows a dune to
somewhat higher than a heap of the same mass, sinc
effective volume as seen by the average air flow is increa
by the separation zone. As anticipated, the aspect ratio o
dunes is asymptotically constant, whereas it is strongly s
dependent for heaps. This effect can be seen more quan
tively in the representation of Fig. 14, where the heightH of
the steady-state heaps and dunes is plotted versus the pr
HL of their height and lengthL. Clearly, heaps are bette
described byH}HL as predicted in Eq.~33!, whereas large
dunes approach the scaling limitH}AHL.

B. Migration velocity

For the overall migration velocity of steady-state dun
with a scale invariant profile, we derived on general groun
the simple scaling predictionv}L21 in Sec. II C. We have
also given some arguments why this prediction should
rather robust against relaxing the condition of shape inv
ance, in contrast to the relationv}H21 that can only be
inferred from it if the scaling assumption holds exactly. He
we check these predictions for the steady-state solutions
merically. Figure 15 shows the numerically obtained mig
tion velocity for dunes fitted to the scaling relationsv

FIG. 14. Steady-state heightsH versus the product of the heigh
and length of the heaps and dunes. In the hysteretic regime, fla
steep initial conditions have to be distinguished.
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}H21 ~left! and v}L21 ~right!. As we have mentioned
above, one has to take forL the characteristic length of th
envelope rather than that of the dune alone. For simplic
we estimateL by adding 6H to the horizontal length from
the windward foot of the dune to its crest, thus neglecting
weak slope dependence of the size of the separation bub
Obviously, theL21 scaling is superior for moderate wind
and small dunes, wherev}H21 systematically fails to de-
scribe the data. This is also supported by field data@21#. Both
fits become identical in the scaling limitL@,s . Due to the
decrease of,s with the wind speed, the latter is reached f
smaller dunes at stronger winds.

C. Stability

We have already pointed out that the choice of differe
boundary conditions for the flux allow a separate discuss
of shape and mass stability. This is of practical importan
since~in two dimensions! all steady-state shapes are unsta
with respect to mass changes. If the influx of a steady-s
solution deviates slightly from its corresponding steady-st
flux, this solution will start to either shrink until it has flat
tened out or grow without bound. Despite the fact that
steady-state shapes are~locally! stable attractors for the
shape evolution under periodic flux conditions, mass stab
can, in general, not be achieved under open boundary co
tions. The situation is clarified in Fig. 16. It depicts th
steady-state sand fluxq over the bedrock as a function of th
aspect ratio. The numerical results nicely confirm our th
retical expectation from Eq.~34!. For all dunes with slip face
the flux vanishes identically in two dimensions, whereas
general it grows with decreasing size for smooth heaps.
open boundary conditions, the line in Fig. 16 can be int
preted as an unstable phase boundary~with hysteresis! be-
tween infinitely growing and shrinking solutions. For e
ample, a heap with influx slightly below the steady state w
shrink a bit. To remain close to the steady-state shape, it
therefore mainly reduce its height, whereas its length w
stay almost constant. Due to the reduced aspect ratio«, t̂
decreases in magnitude and the shear stress depression
lee boundary is less pronounced. As a consequence the
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.
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FIG. 15. Migration velocities
predicted by the minimal mode
for steady-state dunes of differen
size at various wind velocities
The caption gives the shear veloc
ity u* in m/s. The numerical data
are compared to the scaling law
v}H21 ~left! and v}L21, where
L is the length of the envelope o
the dune and its separation bubb
as described in the main tex
~Note that the migration of rea
dunes is substantially slower du
to the small fraction of wind days
per year.!
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MINIMAL MODEL FOR AEOLIAN SAND DUNES PHYSICAL REVIEW E 66, 031302 ~2002!
less deposition on the downwind slope and the outflux
higher, so that the heap shrinks even more, etc. A comple
analogous reasoning applies to the opposite case of hi
influx.

The above discussion explains why isolated smooth a
lian sand heaps are rarely observed as distinct feature
desert topographies. Under approximately stationary w
and influx conditions they only exist as transient states
either vanish or develop into dunes with a slip face. Un
variable wind and influx conditions, the situation is less cle
and deserves a detailed study of its own. For example,
model predicts that during a period of strong wind all dun
are driven towards the asymptotic shape. After a subseq
period of weak winds, finite size effects become more p
nounced, and small dunes may develop longitudinal profi
such as those in the hysteretic regime or even loose their
face. Again, the caset0't t of a shear stress close to o
below the threshold shear stress needs special attention

The prevailing wind conditions as well as recent chan
in the wind velocity are thus encoded in a complicated
comprehensible way in the shapes of the dunes in a d
field. This is a promising direction for further studies. O
may hope that by systematic studies along these lines
will in the future be able to infer flow conditions in remote
uncomfortable places~e.g., on the sea bottom or on oth
planets@37,38#! by analyzing dune shapes.

D. Relaxation dynamics

As a first step towards an understanding of the effects
variable wind speeds~for constant wind direction!, this sec-
tion is devoted to an exploratory study of the transient sh
evolution. We restrict ourselves to periodic boundary con
tions leaving the richer phase space of open boundary
ditions for future studies. Figure 17 shows two extreme s
narios. A flat initial condition with a mass greater than t
critical mass for slip face formation in the upper two pane
and a steep initial condition of the same mass in the lo
panel. The steep initial condition quickly leads to the form
tion of a slip face, whereas the flat heap needs to steepe

FIG. 16. Steady-state outflux under periodic boundary con
tions. In the hysteretic regime, steep and flat initial conditions h
to be distinguished, as in Fig. 14. The figure may also be read
phase diagram for the situation with open boundary conditions
this case the steady-state solutions—though attractors for
shape—are unstable with respect to mass fluctuations.
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a long time until the shear stress on the lee falls to the thre
old value. This causes complete deposition on the lee sid
the heap and thus leads to slip face formation. Whether
happens before or with the onset of flow separation depe
on wind and influx conditions. As it also depends on t
precise numerical values of some of the phenomenolog
parameters of the model, a detailed parametric study is a
beyond the scope of the present contribution.

Although the times to reach the steady state are ap
ently somewhat longer for the flat initial condition, it is ev
dent from Fig. 17 that the relaxation dynamics is in gene
relatively fast even if the initial condition is far from th
steady-state shape. Large dunes under low influx condit
as they prevail, e.g., in fields of isolated dunes should the
fore be well described by an adiabatic approximation, ass
ing that ~except after drastic changes in the wind and sa
conditions as they occur during sand storms! the dune is
practically in a steady state. Apart from the low influx, th
also relies on the fact that virtually no sand is lost over
slip face. For a large isolated 3D barchan dune this imp
that most of the sediment transported over the dune is a
ally trapped in a treadmilling flux, and only a small portio
of the total flux is contributed by and contributes to the e
ternal flux. Hence, under steady wind conditions these du
are in a quasisteady state and thus very close to their

i-
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n
he

FIG. 17. Upper two panels: growth history for a Gaussian he
of longitudinal aspect ratioH/s51/4. Lower panel: growth history
for a Gaussian heap of the same mass but longitudinal aspect
H/s51. Both initial conditions converge to the same steady-st
shape. The shear velocity was fixed tou* 50.45 m/s for both simu-
lations.
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KLAUS KROY, GERD SAUERMANN, AND HANS J. HERRMANN PHYSICAL REVIEW E66, 031302 ~2002!
steady-state shape. Investigation of the steady-state pro
ties is therefore the starting point also for the study of th
time evolution. Moreover, this suggests that a comparison
our steady-state shapes to shapes obtained in field mea
ments is justified. In fact, the calculated shapes agree ni
with recent measurements for barchan dunes@19#. The situ-
ation is less clear for small heaps, where mass losses ca
of the order of the total flux and may thus lead to significa
differences between the steady-state and the transient sh
under vanishing influx.

In the remainder of this section, we want to investiga
more closely the mechanism that drives the shape relaxa
As we have pointed out, the positions of the maximum of
sand flux and of the maximum of the profile must coincide
the steady state to make the erosion/deposition vanish a
crest. We have shown that for small heaps, this can
achieved by a fine tuning ofdxt to about,s . In contrast, for
large dunes and strong winds,dxt@,s and the steady-stat
condition can only be met with a singularity at the crest. T
important difference is exemplified by Figs. 18 and 19. Bo
figures show the evolution of the height and the displa
ments,dxt anddxq , of the locations of the maximum of th
shear stress and of the maximum of the sand flux from
location of the top of the sand profile, respectively. The d
tance between both displacements is the lag of the flux w
respect to the shear stress due to the saturation transients
is therefore closely related to the saturation length,s for
smooth surface profiles. It guarantees the proper vanishin
the erosion rateq8 at the top of a steady-state heap whe
dxt is finite, but vanishes for large steady-state dunes, wh
the slip face ends in a sharp brink singularity at which
grains fall into the wake and are quickly deposited.

FIG. 18. The figure shows the transient evolution of vario
interesting length scales for a heap. Lower part: height of the h
Upper part: distance of the locations of the maximum of the sh
stress and of the maximum of the sand flux from the position of
top of the heap. In the steady state, the erosion/deposition van
at the crest.
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VI. SUMMARY AND OUTVIEW

In summary, we have shown that a simple minimal mo
for the wind-driven sediment transport over a sand dune
capable of explaining several important features of de
topographies. Among them are the migration velocities
heaps and dunes, their shape along the wind direction,
the existence of a minimal dune size and a maximum h
size.

As we have emphasized throughout this contribution a
demonstrated by the numerical solutions in the preced
section, the symmetry breaking part of the shear stress
erted by turbulent air flow on an obstacle, and local dev
tions of the sediment flux from its equilibrium transport c
pacity ~‘‘saturation transients’’!, are the essential ingredien
in the modeling of aeolian sand dunes. It is exactly the b
ance of these two relatively small effects that is respons
for the relaxation of arbitrary initial conditions into a cha
acteristic dune or heap shape. Their neglect was respon
for the failure of the naive zeroth-order model discussed
Sec. II B. In hindsight we can say that it is not so much t
quantitative errors but the omission of thisqualitatively im-
portant mechanism that makes the zeroth-order model an
sufficient description. In contrast, taking this balance pro
erly into account makes the minimal model structura
stable against the neglect of less significant quantitative
tails of the same order of magnitude.

This direction was recently pursued further in an effort
calculate analytically certain steady-state shapes of du
and heaps by ‘‘linearizing’’ the minimal model@39#. One
may as well wish to proceed also into the opposite directi
After the basic mechanism is understood, more elabo

s
p.

ar
e
es

FIG. 19. The figure shows the transient evolution of vario
interesting length scales for a dune that develops out of a sm
heap as in the upper pannel of Fig. 17. Lower part: height of
dune. Upper part: distance of the locations of the maximum of
shear stress and of the maximum sand flux from the position of
top of the crest. The lag between shear stress and sand flux van
when the slip face reaches the crest.
2-16



n
tr
an

o
po
tu
e

c
n
g

d
,
m
u
e
i-
0

e
x-

igra-
re
ined
be
en-

al
hes

se-
ves-
on
ute
at

tion

ced
ur-

s.
be

ues-
um
of a

her

ful
eut-

th
y i
an

MINIMAL MODEL FOR AEOLIAN SAND DUNES PHYSICAL REVIEW E 66, 031302 ~2002!
dune models can be constructed by putting some of the
glected details back into the description. Detailed parame
studies of such a refined model for a certain dune type
comparison to field data would be very useful to test some
the less generic predictions of the underlying sand trans
model@8#, such as the shear stress dependence of the sa
tion length,s ~Fig. 11!. This is important, since, as we hav
shown, the variable parameter,s sets the characteristi
length scale with respect to which dunes and heaps ca
said to be large or small. Phenomenological knowled
about ,s is still very limited. More detailed studies coul
further be helpful to map out quantitative shape diagrams
the type sketched qualitatively in Fig. 20. These diagra
could be useful not only for the validation of the model, b
also for the comparison of field data from different plac
with different prevailing wind and sand conditions. The m
gration velocity is constant along the rising lines in Fig. 2
which were obtained from Eq.~11! using q'qs together

FIG. 20. Qualitative shape diagram that could be useful in
analysis and comparison of field studies. The migration velocit
constant along rising lines, whereas falling lines indicate invari
dune shape.
e

et

eo
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with Eq. ~31!. They allow, for example, a comparison of th
migration velocities of dunes of different sizes that are e
posed to~on average! identical winds. Or one may infer the
average wind speed from measurements of sizes and m
tion velocities in a dune field. The falling lines in Fig. 20 a
lines of constant shape, assuming that the latter is determ
by ,s /L, which holds for the steady state. They may thus
used for correlating wind speeds with dune shapes. In g
eral ~in particular, for the full 3D problem!, such shape dia-
grams will be more complex since the influx is an addition
important variable that we have neglected here, as it vanis
for 2D dunes in the steady state.

Moreover, as we pointed out, there are still many con
quences of the present model that await a systematic in
tigation. And a major future task is finally the generalizati
of the present discussion to the 3D case. A promising ro
could be the construction of an effectively sliced model th
allows one to use the proposed model for the separa
bubble and to keep the time-limiting calculation~the integra-
tion of the flux equation! effectively one dimensional. The
smaller transverse currents could be inferred from the sli
solution. A generalization of the flux equation to the 2D s
face of a 3D dune is also feasible@29#. A more ambitious
task will eventually be the simulation of dune field
Whereas the existence of a minimum dune size could
obtained by an analysis of the shape stability alone, the q
tion of a possible existence of a characteristic or maxim
dune size in a dune field depends on the mass balance
dune in the complicated environment provided by the ot
dunes, and is much more difficult to answer@40#.
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