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Minimal model for aeolian sand dunes
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We present a minimal model for the formation and migration of aeolian sand dunes in unidirectional winds.
It combines a perturbative description of the turbulent wind velocity field above the dune with a continuum
saltation model that allows for saturation transients in the sand flux. The latter are shown to provide a
characteristic length scale, called saturation length, which is distinct from the saltation length of the grains. The
model admits two different classes of solutions for the steady-state profile along the wind direction: smooth
heaps and dunes with slip face. We clarify the origin of the characteristic properties of these solutions and
analyze their scaling behavior. We also investigate in some detail the dynamic evolution of heaps and dunes,
including the steady-state migration velocity and transient shape relaxation. Although the minimal model
employs nonlocal expressions for the wind shear stress as well as for the sand flux, it is simple enough to serve
as a very efficient tool for analytical and numerical investigations and opens up the way to simulations of large
scale desert topographies.
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[. INTRODUCTION model refers only to rather generic properties of the wind
velocity field and the laws of aeolian sand transport, it can
The study of sand dunes has a long and colorful historymake interesting predictions about the surface profile, the
[1-3], but a sound understanding of the physical mechadevelopment and position of the slip face, dune migration,
nisms behind dune formation and migration has proved eluetc., which are insensitive to the simplifying assumptions.
sive, let alone the accurate prediction of the evolution ofThe main features of the model have already been briefly
whole desert topographies. Simple questions such as the fgbresented in a recent lett¢d]. The present contribution
lowing seemed theoretically very difficult to answer: Whatgives a more comprehensive discussion of the model and
determines the shape of dunes? How fast do they move? tses to communicate its precise definition as well as its ma-
there a minimum or maximum dune size? Though sangor predictions to an interdisciplinary readership. The model,
dunes develop wherever sand is exposed to an agitating mas presented here, is restricted to a two-dimensi¢2a)
dium that can lift grains from the ground, they cannot easilyslice of a dune parallel to the unidirectional wirié gener-
be scaled down to be studied in the lab. With the macroalization to 3D problems is in preparatip@ further restric-
scopic phenomena of interest separated by many orders &ibn is the neglect of ripples and direct slope effects onto the
magnitude from the grain scale and involving varioussand transport outside slip faces. Although they have suc-
coupled nonlinear processes such as turbulent air flow ancessfully been incorporated into continuum sand transport
grain hopping(“saltation”), one is bound to devise some models[5-7] similar to our own[8], we chose to disregard
simplified models in order to address such questions. We wilthem for the present purpose and leave their integration to
argue that approximate numerical models can only be suduture work.
cessful if based on a sound qualitative understanding of the The paper is organized as follows. In the following intro-
problem. Therefore, our main aim is to identify the key ductory section we summarize some background knowledge
mechanisms underlying dune formation and migration andnd basic definitions. We will also introduce a naive “zeroth-
incorporate them into a working minimal model of aeolian order” description of the wind shear stress and the induced
sand dunes, and we will emphasize generic aspects over tlaeolian sediment transport. Its instructive failure to produce
more specific details. For definiteness, the reader may find dunelike steady-state solutions will be a guide for identifying
helpful to think of isolated transverse dunes or crescenttwo relatively small effectgthe upwind shift of the maxi-
shaped barchan dunes as major applications of the modehum of the shear stress with respect to the topography and
The broad phenomenology of aeoligand submarineland  the saturation transients in the sand flas key ingredients
forms provides a large number of different characteristicof a proper description of structure formation by aeolian sand
sand structures that can certainly not all be described by thieansport. We will, moreover, derive the scaling behavior of
same simple model developed with the specific examples adhe migration velocity for translation invariant heaps and
barchan or transverse dunes in mind. However, we expedunes of different sizes but similar shapes based on very
that our approach is amenable to future adaptations thaeneral grounds. Sections Il and IV are devoted to the defi-
make it applicable to a broader class of sand topographies amtion of the minimal model, i.e., to the modeling of the air
the one hand, and for quantitative investigations of moreshear stress exerted onto a heap of sand and the induced sand
specific questions on the other hand. Although the minimatransport, respectively. The first step builds on turbulent
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boundary layer calculations developed in a series of publicareader may already anticipate and will be verified below,
tions mainly by Hunt and co-workef8—14], the second one both cases have their physical realizations, the former in
on a previous contributiofi8] by the present authors. Only heaps or small dunes with smooth crests and the latter in
the most pertinent results of these earlier developments willarge dunes with a slip face that terminates in a sharp brink at
be summarized here. In the remainder, we will derive somehe crest.

important predictions of the model for the central slice of a The problem we face, if we want to calculate the dynamic
barchan dune or transverse dune. In particular, we will demevolution of desert topographies, is the closure of @g.or
onstrate that there is a minimal dune size. Although we willEq. (2) by expressing the flug(x,t) in terms of the height
thereby gain interesting results, these are rather meant to Ipeofile h(x,t) and the external wind and boundary condi-
illustrative examples of possible applications of the modeltions. Since for the applications we have in mind, the migra-
By no means do we attempt to provide a complete analysion velocity is very small compared to the speed of elemen-
of its predictions, and it should become obvious that muchary sand transport process@gain hopping, etg.and the
more remains still to be done. Finally we will summarize ourwind speed, the topography can be assumed to be stationary
main results and speculate about probable consequencesfof considerations concerning the wind and sand transport

the present 2D theory for 3D topographies. dynamics. This allows one to subdivide the problem of cal-
culatingq(x) into two independent steps. First, one needs to
Il. GENERAL know the stationary wind velocity above a given topography.

More precisely, what is required is the shear stresgerted

by the wind onto the ground. And second, one needs a model
Before going into the description of the model, we wantthat predicts the stationary sand flgix) for a given station-

to recall some general background and introduce some quaary 7(x), schematically

tities of major interest. First of all, for convenience, we will

A. Aeolian sand transport

usually refer to dunes without slip face as heaps. Further, we h(x)— 7(x), )
will sometimes find it helpful to focus on isolated heaps or
dunes on bedrock, although most of our discussion is not 7(X)—=q(X). 4

restricted to this situation.

The key quantity for the description of the formation and
migration of sand dunes and heaps is the local horizont
surface velocity (x,t) of a sand height profila(x,t) at all
positionsx and timest. Via mass conservation it can be re-

Computing the derivative’ and integrating the mass con-
?ervation equatioiil) then closes the model and allows one
%o predict the development of the surface profile in time.
Since aeolian dunes typically have relatively gentle slopes
outside their slip face, we restrict the scope of the minimal

Ia}t_ed to the erosion rat€ q(x,1) (r)egati_ve erosion is depo- model to this case at the present stage, and have disregarded
sition), where the sand flug(x,t) is defined as the mass of in Eq. (4) (outside of slip facasthe direct slope effects

sand transported per unit of time across a hyperplane tranﬁﬁ(x)ﬁq(x) onto the flux

verse to the wind direction. More precisely, since we want to In special cases, the relatiot® and (4) are phenomeno-

spegialize our discu;sion to a 2D ince_paraIIeI_to th_e unidi1ogically and theoretically well established. For a flat sur-
rectional wind velocity, the hyperplane is a vertical line andface h(x)=const, it is well known{15] that the mean tur-

q |fva;:itunaltlr)1/ arllrtniss i;]an?pr(:;t r?te pirtiﬁmi: width. t'i\/lﬁsfs rctohnbulent wind velocity increases logarithmically with height
Egi ﬂtorofilz axes the form ot a continuity equation 1or th€,, e the surface. It can be characterized by a single char-
gntp ' acteristic velocity, the shear velocity, defined by ui

dh(x,t) aq(x,t) =719/0, With 7, the (suitably time averagedshear stress

@s dat X N and g, the density of air. The shear stress of the air is trans-

mitted to the surface as a friction that can mobilize grains on

with o being the density of the sand bed. a surface covered Wi.th sand i.f it exceeds a th.reshold value
With Eq. (1) one can write the position dependent migra- 7t - AS a result, the wind entrains some grains into a surface
tion velocity at a given time as layer flow. The grains advance mainly by an irregular hop-

ping procesgsaltatior), thereby reducing the wind velocity
q’ in the surface layer. Via this feedback mechanism a unique
v(X)=QS_1—’, (2 relation between the shear stressand the sand fluxg is
established in the equilibrium state. 4fis not too close to

where we have introduced the shorthand notatié(x) the threshold, this relation can approximately be represented

=df(x)/dx. At this stage we can already get some physicafas[l]

insight by observing that this equation needs special atten- e 72 (5)

tion at the top of a heap or dune, where we expect the de-

nominator to vanish. Fop to remain finite at the crest as Although a host of more accurate descriptions have been
required in the steady state, there are in general only twdiscussed in the literatuf@,8,16—18 and one of them will
possibilities. Either the sand flux is fine tuned so that the be part of our definition of the minimal model below, the
erosionq’ vanishes in exactly the same way as the slope  simpler Eq.(5) will be sufficient for our qualitative discus-

or the profileh(x) is not differentiable at the crest. As the sion in the first part of the paper. The indexin Eq. (5)
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emphasizes that such local relations are restricted to situdem. First, even with a very simplistic model any reasonably
tions where the flux is saturated, that is, equal to the equilibheaplike initial condition will quickly develop into a dune-
rium transport capacity. This is certainly not the case near &ke shape with a slip face. Second, although the latter may
boundary between uncovered and covered ground or oseem to converge to a steady-state solution for intermediate
sloped beds. Neglecting this restriction for the moment, Eqtimes, it finally turns out to be unstable and flattens out. The

(5) predicts that the shear stress perturbation discussion of the migration velocity in Sec. Il A suggests that
R small deviations from Eqg7) and(8) at the brink can make
7(X)=7(X)/ 79— 1 (6) an important difference. Obviously some caution is needed

) . in judging the success of numerical models of dune forma-
above a modulated topographyx) is responsible for flux  tion. Unless stability has explicitly been demonstrated, they
gradientsdgs/dx that cause erosion and deposition andmay be suspected to fail in a similar way as the zeroth-order
thus—according to Eqg¢1) and (2)—migration of the sand  model when integrated over sufficiently long tim@shich
surface. Explicitly closing the model by assuming that thenas actually not been checked for some models that can be
shear stress is an affine function of the modulation of thgound in the literaturgor to be sensitive to numerical errors
topography ¢oh) leads to what we call the zeroth-order at the brink. Detailed numerical modeling should therefore
model, which will briefly be analyzed in the following sec- be preceded by a sound qualitative understanding of the

tion paragraph. mechanisms underlying dune formation. We will argue in
Secs. Il and IV that to this end a subtle balance between two
B. Failure of the zeroth-order model small deviations from Eq€7) and(8) and especially nonlo-

The zeroth-order model is given by cal contributions in Eq(4) have to be taken into account.

9—{h(x)}—>9—(h)0<h(x)/L, (7) C. Migration velocity
Before entering a detailed discussion of the minimal
a{7(x)}—a(7)=0as(7), (8)  model, it is worth pausing for some general thoughts as to

o what can be said about the shear stress and the speedup of
where we have used the curly brackets to indicate a generghe wind above an obstacle, without actually doing the
functional dependence and introduced a characteristic Ieng@omewhat involvedcalculation.
scaleL of the topography to normalize the height profile. A pasic property of strongly developed turbulence is its
(The motivation for the latter step will become clear in the gjjation invariance or scale-free structure. Whereas general
following section) The zeroth-order model assume®al  Navier-Stokes flow is invariant under a scale transformation
relations in Eqs(3) and(4). It approximates the wind shear that keeps the Reynolds number constant, strongly turbulent
stress pert.urbanon by its “affine” contributiofproportional o (for “infinite” Reynolds numbey allows for infinitely
to the profileh that causes the perturbaticand replaces the  many such similarity transformations. Landau and Lifshitz
true sand fluxq by its saturated valugs, thereby neglecting 15 took advantage of this fact for deriving the logarithmic
saturation transients. This model is so simple that its qua“VeIocity profile mentioned above by an elegant scaling argu-
tative predictions for an arbitrary smooth heap of sand camment. The logarithmic velocity profile suggests that the
easily be anticipated without any actual calculations. speedup of the wind and therefore also the shear stress per-

Combining Eq.(2) with Egs. (5)—(8) one obtains a sur- trpation above a heap of given shape should itself be loga-
face velocity that increases with heigfdu/dh=0) due 10 (ithmically dependent on its size. But how do they depend on
the nonlinearity of Eq(5). This implies that the upwin€or  the shape of the obstacle? Since the flow itself does not pro-
“stoss”) slope tends to decrease and the downwibd  yige any characteristic length scale, the dimensionless quan-

“lee” ) slope tends to increase. Sinde/dxxdh/dx by the tity 7 defined in Eq(6) can only depend on a dimensionless

chain t;\u:we ’ thereh!shn?hero:lon kor dep.?s'.“‘.’t'f‘ i’;lththehio%gf Zharacterization of the profile(x). In other words, to lowest
smooth heap, which theretore keeps Its iniial heignt. DbV, qo iy the perturbation, it must be a linear functional of the
ously, integrating forward in time will eventually increase

derivativeh’ and can be written as
the lee slope up to the angle of repose, where surface ava-

lanches have to be introduced and a slip face of constant Sy / —

slope develops. If the latter reaches the crest, the above ar- n§)=e AT (O}, e=HIL, ©

gument for the persistence of the height can no longer bgjith a dimensionless profile function

applied, because the slope at the crest is then ill defined.

Since there is so far nothing to stop a further decrease of the f(¢§)=h(x)/H, &=x/L (20

windward slope, the model dune will then start to decrease in ] ]

height and finally flatten out. The steady-state solution is &nd a scale-freéand necessarily nonlogalinear functional

flat surface. 7. This reasoning can be repeated for the dimensionless ve-
The simple argument shows that the zeroth-order model-ocity and pressure perturbations. Intuitively, the scaling

although it gives some clue as to the origin of the slipexe for a flat smooth obstacles(<1) can be understood from

face—is insufficient for a proper qualitative understanding ofFig. 1. When the air flows over the obstacle, the velocity

dunes. However, some important lessons can be learned froaiose to the obstacle is deflected by an anglehereas it

it that will be helpful in our further investigation of the prob- remains constant far above the obstacle. For incompressible
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FIG. 1. Schematic sketch of the deflection of the wind velouigbove a flat heap of aspect raissH/L<1. The characteristic length
scaleL is in this context conventionally often identified with the half length at half height of the heap. The vertical deflection causes a
speedup above the top of the heap. This is accompanied by a pressure perturbation that is negative above the top of the heap and positive
at its tails. Due to turbulence, the flow pattern is asymmetric even above a symmetric heap.

flow, continuity translates this into a speedup of ordeand  and heaps. Presently available field data are maybe not accu-
(via Bernoulli's law) into a corresponding pressure drop nearrate enough to clearly distinguish betweem1/L and v

the top of the heap. This in turn causes a shear stress perturl/H, though some data suppartc1/L, most notably the
bation 7 of the same order. comprehensive study of barchan dunes in southern Peru by

These general considerations already allow us to predid{—inkel[21]. As we will show below, our numerical results for
the scaling of the migration velocity with dune size if we the minimal model clearly favos < 1/L.
assume that dunes of different size have roughly similar We also note that together with E€p), Eq. (11), more-
shapesf(¢) and aspect ratios, which is indeed suggested OVer, predicts that the migration velocity grows nonlinearly
by the scale invariance of the turbulent wind field and byWith (as the third power ofthe wind velocity. A more accu-
observations. Inserting Eq9) into Eq. (2), and again ap- fate relation can be obtained from the minimal model as

proximating Eq.(4) by a local sand transport lag=q(7),  described below, but the qualitative conclusion is the same.
we find Dunes can migrate farther in a short period of exceptionally

strong wind than during much longer periods of gentle

dgdr/dx dq7{f} 1 winds. Finally, we should mention that some caution is
v— -=— ST (1))  needed when identifying the characteristic length staie
dr geef’ d7 oiLf Eq. (11). In our discussion, we have so far assumed th&}

is a smooth function, which is not the case for dunes with
slip face. Below we will argue that in this cagehould be

The final proportionality strictly holds only if the steady-

state shapé(¢) and aspect ratie are scale invariant. How- Vigentified with the envelope of the dune and its separation

ever, it can be expected to be robust and rather insensiti . I .
against violations of exact scale invariance. First, the nor—b ubble and. with the characteristic length scale of this en-

malized steady-state shapiis) are strongly constrained by velope. For a barchan dune the latter practically coincides

the requirement that they rendefx)=v, independent ox, m(tehtig‘seotﬁfsl Le;r;gtsh of the dune from its windward end to
along the heap. Therefore, they should to a first approxima- In contrast to the overall migration velocity of a transla-

tion be independent of size, which is indeed borne out by th%on invariant dune, the position dependent migration veloc-

minimal model (Fig. 13 and empirical observationsl9]. . . . .
, . S ity v(x) that determines the shape is much harder to obtain
Moreover, the dependenagif’(¢); is rather indirect and since it requires a precise knowledge of the nonlocal func-

can therefore be expected to be weak. Second (& sug- . . S ; . .
gests that for gently sloped obstacles<1) the dependence 2223{2?'” Eq. (9). This will be provided in the following

of dg/d+ on the aspect ratie also is not very pronounced.

And finally—due to the above mentioned scale invariance of

turbulence—a scale invariant aspect ratio can reasonably be Ill. WIND SHEAR STRESS
expected for large dunes. In fact, we will show below that
the minimal model predicts that the aspect ratio of small
heaps is not constant but rather decreases proportional to The discussion in the preceding section showed that—in
their height. But this also implies that the latter becomes toa@ontrast to the assumption in Eq)—the dependence of the
small to have a very significant effect on the above argumenshear stress on the height profile is nonlocal. Although it will
Note, however, that only for strictly scale invariant dunes,turn out that this shortcoming of E¢7) is not responsible

Eqg. (11 becomes identical to the often quoted observatiorfor the failure of the zeroth-order model, it should by now
that dunes migrate with a speed inversely proportional tdave become apparent that further progress can hardly be
their height[20]. Since the deviations of large dunes from achieved without a rather detailed understanding of the tur-
scale invariance are not very pronounced, the difference bdsulent wind field above heaps and dunes. For dunes with a
tween these predictions is only noticeable for small duneslip face that typically has a slope of about 32°-35° and

A. Surface shear stress on a smooth heap
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terminates in a sharp brink, the situation is similar to the

textbook example of a backward facing step, which has the 5 \
reputation of a test case for numerical turbulent models.

Even if a commercial turbulent solver is used, the accurate 2
calculation of the shear stress, e.g., on a barchan dune is a 4, B 1

nontrivial task and quite demanding in computer time and

memory, and the most interesting long-time dynamics of 0.5

dunes is therefore difficult to access. For this reason, we |77 7==-o__

want to focus on flat smooth heaps first. In this case, one can 0.2 . TTmeme—e
apply an analytical perturbation theory for turbulent bound- 0.01 0.1 1 10 100
ary layer flow over smooth hills that has been developed 1075L/z

over the last decadd9-14]. Though the calculation is es-
sentially a formalization of the intuitive description accom-
panying Fig. 1, it requires a highly nontrivial boundary layer
construction that we will not recapitulate here. The intereste
reader is referred to the original literature. We merely quote gq; the following discussion we want to specialize Eq.
the final result for thex component(along the main wind (1) to the central slice of a transverse or barchan dune along
direction 7, of the surface shear stress perturbation above ée wind direction. To this end we evaluate E#j2) for the

FIG. 2. The theoretical prediction for the dependence of the
parameterd\ (solid line) andB (dashed lingof Eq. (13) on the ratio
é)f the dune sizé to the roughness lengtty.

profile h(x,y) [12,14), central sliceh(x) of a heap that has a Gaussian shape with
_ standard deviation in the transverse direction parametrized
~ Akx(kx+|B|kx|) by Y,
fxy{Tx}: —]:xy{h(xay)}- (12)

2 2\1/2
(erly) h(x,y)=h(x)e """, (14
We have abbreviated the Fourier transformation from the S ) )
space variables, y to the respective wave numbeks, k, This approximation is technically useful, and although it may
by Fy,. For simplicity the logarithmid dependence of the S€em relatively crude for a particular real dune, it typically
parameterd\ andB was neglected. The latter are then givendo€s not introduce any noteworthy derogation of the results

by compared to a more accurate description. The Fourier coef-
ficients of the shear stres$x)=7,(x,0) on the central slice
In(®?/In P)? along the wind direction become
=— [1+Inp+ 2 In(7/2) + 4],
2(In ¢)3 i oA
Fr(x)}=—=k(k+iB|k|)
B=m/[1+In ¢+2 In(m/2) + 4ye], (13) J2m
2 2 2 k2a?
$=2x“®/In ¢, X @ VAo K 2 )f’{h(x)}. (15)

and depend logarithmically on the ratio=L/z,, whereL is . . .
the characteristic length &f(x,0) (for this purpose, conven- Here,K, denotes a m_odlfled Bessel function and the Fourier
tionally often identified with half the length at half height or fransforms are one dimensional, so that we can drop the re-
about one-fourth of the characteristic wavelengthdz, is a ~ dundantx subscripts. _

measure of the surface roughneggpically an effective For transverse duneso(L—), we obtain the two
length somewhat below the linear dimension of the latter €duivalent expressions

We also have introduced the von igaan constantk~0.4

and Euler's constany~0.577. A practical approximation H7(0}=A(K| +iB k) Fh(x)}, (163
for ¢ is obtained by iteratindtwice) the implicit equation R
for ¢ and closing it by dropping the remaining dn The 7 (X)=A[h'(x)® (7x) *+Bh’'(x)]. (16b

dependence oh andB on L is depicted in Fig. 2. Obviously,

as long ad./z, does not change by orders of magnitegy.,  For the real space version we have abbreviated a convolution
due to vegetation this extremely weak scale dependence isintegral according to

negligible for our purposes, andlandB can be regarded as

constant theoretical or phenomenological parameters. For — f‘” _

definiteness we often work with the valuds=4 and B fog wdgf(g)g(x & (7
=0.25 (approximately obtained fot./zy=10°-1CF). Al-

though these values may vary somewhat depending on thevaluation for arbitraryr gives two correction terms
particular application in mind, or on the presence or absence

of ripples, and may phenomenologically be somewhat differ- 7=7"—Ah®A;+Bh ®A,), (18
ent from the theoretical prediction, this does not affect our

general conclusions. with
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0.2
0.8
0.15 0.6 /
0.4 J
A, 0.1 #z) o o p
0.05 0 9
-0. 2 €ggy: <
0 -0.4
-4 -2 0 2 4 -2 -1 0
z/L z/L
0.25 FIG. 4. Shear stress perturbation above the central slice of a 3D
symmetric ¢=L/y2) Gaussian heap. The plot compares two ap-
0.2 proximations to Eqs(12) and (18) (points: (i) Eq. (21) with Lc;
~C,~0.2 (solid line) and (ii) Eq. (16) with A renormalized by a
A, 0.15 factor 0.8 (dashed ling While (i) is practically indistinguishable
0.1 from Eq.(12) on the present level of accuracy, the simpler approxi-
’ mation (ii) already captures most of the 3D effects.
0.05
new effects to Eq(16), they may for simplicity be omitted
0 1 5 5 5 i altogether in the following discussion that mainly aims at a
- h z/L qualitative understanding. Figure 4, moreover, shows that

FIG. 3. The peaked functions; andA, of Egs.(19) and(20)

they can approximately be mimicked by a renormalized pa-
rameterA in Eg. (16) for the central slice of a symmetric

heap. This leads to the important conclusion that the wind
shear stress on the central slice of a 3D symmetric heap and

for o=1, 2, 5. The area under the peaks remains congfaand
1/27), while the peak heights decrease proportionabte? and

o1, respectively.

on a heap with a profile that is constant in the transverse
direction is qualitatively the same and quantitatively similar,

3 X2 Jr [1 X2 which was nota priori obvious. Together with the fact that
U 5,1,—2 7U E’O’_2 -1 on a gently sloped obstacle the transverse components of the
_ 20 20 shear stress are small compared to its longitudinal compo-
A= + , (19 ) o .
4\/502 X2 nents, this suggests that the predictions of @) apply in a
first approximation to any slice of a dune parallel to the wind
1 (= X §e§2’4 &2 direction. In this sense, the study of E36) is representa-
A2=—f dé¢ co{ —) 1-—K, Z) , (200  tive. Summarizing the foregoing discussion, we can say that
gmJo 7 V2w to gain a qualitative understanding of dune formation by aeo-

lian sand transport one may focus on EtH) as a model for
the wind shear stress. We therefore analyze this equation in
some detail in the following section.

two even functions depicted in Fig. 3 that are flat fefl
—o0 and become peaked for=L. (The confluent hypergeo-
metric U functions[22] have been introduced to rephrase the
sine part of the Fourier integrals.

Since the correction terms in EQ1l8) are numerically
small, we may—given a reasonable localized heap shape in
the wind direction—approximately replace both functians
andA, by é functions, thus arriving at

B. Properties and consequences of Eq16)

A scaling analysis of Eq16) immediately reveals that

is indeed of the general form anticipated on general grounds
in Eqg. (9). The amplification of the shear stress at the top of
n - , a smooth profile is thus determined by its aspect ratio
7o~ 7.~ AlCi(0)hTBC(a)h']. @D _pL and is essentially independent of the absolute height
In this approximation they are seen to give merely aH- It only has a very weak logarithmic dependence on the
o-dependent renormalization of the asymmetry parametefPsolute size of the dune through the prefactarand B
B—B(o)=<B(x)=B and to add dtrivial) term c,(c)h(x) given in Eq.A(13). Moreover, for a symmetric profild
within the brackets of Eq(16b). Numerically, one can esti- (—¢&)=1(§), 7 is the sum of a symmetric part and an anti-
matelL cl(L/\/E) andcz(L/\/f) to be about 0.2cf. Fig. 4). symmetric part, i.e., the flow over the heap has a symmetry
The exacts dependence of the coefficients is determined bybreaking component that is a consequence of turbulence. The
the shape and extension of the heap in xhdirection, be-  origin of the symmetric and antisymmetric parts ofcan
cause the area under the peaksand A, is constant and intuitively be understood as follows. As we have pointed out
independent o, while the peak height decreases propor-in Sec. Il C (see Fig. 1, the streamlines have to be com-
tional to o~ 2 and o~ 1, respectively. Since both corrections pressed above the heap if the perturbation is not to be trans-
vanish foro/L—o and do not contribute any substantial mitted to infinite height, and as a consequence, there is a
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corresponding increase in the shear stress. For the laminar 1
average flow, this speedup and the associated decrease in
atmospheric pressure above the heap are symmetric for a
symmetric heap as is the corresponding shear stress pertur-

bation, which accounts for the dominant symmetric parA;t.of
On the other hand, the inertia of the turbulent velocity fluc-
tuations around this laminar main flow contributes an asym-
metric resistance to deflections of the flow. It counteracts the 0
upturn of the streamlines on the windward side and the
downturn on the lee side. Formally, this effect enters the
perturbative calculation of through the Reynolds stress.

Further insight can be gained from special analytical so-
lutions to Eq.(16). For the normalized heap profiles

0.5

FIG. 5. The symmetric and asymmetric pattg, and 7,5, of the

shear stress perturbatiog, of Eq. (24) for the Gaussian profilég
of Eq. (22) with Ae=0.8 andB=0.25. Note the small windward

f (&)=

1+¢ ? shift of the maximum of the shear stress with respect to the crest of
5 the heap caused by the asymmetric contribution proportionBl to
fa(§)=exp(— &%), (22)
- a metric one. For the profilé, the corresponding shiféx . of
c(§)=S(¢)cos's, the location of the maximum of the shear stress with respect
with to that of the maximum of (x) can be calculated analyti-
cally,
1, |&<=ml2
S(¢)= (23 ox,IL=2(1+B?)Y%siarctariB)/3]—B. (25
0, |g=mn/2,
we obtain It is indeed found to l:_)e very small, becalBés small and
thus 6x, /L~ — B/3 typically amounts to a length of about a
TL=A(1-2B¢- (9, few percent of the total heap length. Nevertheless, it is a
crucial element in the modeling of aeolian sand transport, as
Fe=2A[ 7 V2= g(B+erfie)fo(£)], will now be demonstrated.

For a qualitative estimate of the effects of Ef6) onto
A the sand transport over a dune, it is useful to consider once
Tc=—C0g2&)[Si(7+2&) +si(m—2&)] again the local zeroth-order model for aeolian sand transport,
m Eqg. (8), i.e., a completely saturated flux=q¢(7) with g
A given by Eq.(5). (Below, we will show that this is asymp-
— Esin(Zf)[ci(w-F 28)+cCi(—m—2€&)—ci(7m—2X) totically valid on large dunes in strong wingid.he distinct
features of Eq(16) that are missing in the zeroth-order ap-
—ci(—m+2x)]-2B S(§)cosésing  (n=2), (24)  proximation for the shear stress, K@), are then easily seen
to have potentially profound effects on the shape evolution.
with erfi the imaginary error function and si and ci the sineFirst, due to the depression of the shear stress at the tails of
and cosine integral functions, respectivéB2]. The result the profiles, deposition rather than erosion may occur at the
given for 7 is for the special case=2. A plot of both the ~ Windward foot. Second, due to the asymmetric contribution
profiles of Eq.(22) and the corresponding solutions of Eq. in 7(x) there can be a net deposition on a symmetric heap of
(16) given in Eq.(24) was already presented in Fig. 1 of Ref. sand. In particular, the shift of the position of the maximum
[4]. These plots ofr show that as a rule of thumb one can shear stress with respect to the top of the heap allows depo-
estimate the relative magnitude of the shear stress perturbifion at the top of the heap. For an initially flat heap of sand
tion at the top of the heap b&s_ They also share several there is thus the pOSS|b|I|ty of a Steepening of the windward
crucial properties that are missing in the affine approximaslope and mass growth. This implies that a plane sand sur-
tion 7ech of the zeroth-order model. At the tails of the pro- face is unstable against modulat|0_ns. To |Ilustrat.e this effect,
files, the shear stress falls below its asymptotic valy®n we us_ed Eq(24) to calculate the mlgranon_velocmy(x) of
the plane. This effect is most pronounced for the prdfifle a cosine-shaped heap of _saf@(x) gccordmg to Egs(2), .
that has a discontinuity in its second derivative. Further, théS)' (_8)’ an,d(16)_. Th_e latter is _shown n th? upper part of Fig.
surface shear stress is not symmetric even for symmetrig: S\Ncev’ <0 implies that increases with height, the de-

profiles like those of Eq(22). Figure 5 displays the symmet- ¢'€as¢€ ofv(x) on the lee side reveals the self-amp[ifying
. d . - 43 f the sh tendency of the unstable lee slope to steepen, which was
fic and asymmetric partss,, and 7,5y OF the shear stress already present in the zeroth-order model. It will ultimately

perturbationrg for the Gaussian profilés, separately. The |ead to the formation of a slip face. In contrast to the zeroth-
asymmetric contribution te is small compared to the sym- order model, Eq(16) however renders (x) approximately
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deed, the model as developed so far, is still insufficient. To
obtain a consistent general model for dune formation under
general influx and wind conditions, the present wind model
[Egs.(12) and(16)] has to be appropriately adapted to situ-
ations with flow separation above slip faces. And, most im-
portantly, the saturated-flux approximation E®) of the
zeroth-order model has to be abandoned. These steps will be
discussed in the following section and in Sec. IV, where we
will also explain the lower part of Fig. 6. This will complete
the definition of the minimal model. Its numerical solutions
will be presented in Sec. V.

C. Flow separation

The wind model as discussed so far works fine for smooth
heaps with gentle slopes. However, as we have already men-
tioned, its application to dune profiles with slip faces and
sharp brink lines is not straightforward. The perturbative tur-

FIG. 6. The position dependent surface migration velogity) ~ bulent boundary layer approach leading to Ep) does not
in arbitrary units according to Eq€2) and (16) with A=4, B account for flow separation, a phenomenon that occurs at
=0.25. Upper part: for the profiléZ (gray) and varying aspect sharp edges and steep slopes to prevent an extreme bending

ratiose =0.01 (dashed 0.1 (solid), 0.19(dotted, and the local flux ~ Of the streamlineg15]. (For some of the technical terms
relation Eq.(8). Lower part: for the profilef1® (gray) with & involved in this section, the reader is referred to Fig. 7.

=0.1(solid), 0.05(dashed| and the nonlocal flux relation E¢g0).  Instead of bending the streamlines around sharp edges, recir-
To allow direct comparison with the upper part of the figurewas ~ culating eddies separate from tfen averagglaminar main
represented by Eq5) andl¢~0.1L was taken constant. flow, thereby creating an effective envelope that diverts the

main flow on a smooth detour around the obstacle. See Figs.
7 and 10 for a schematic sketch and a numerical calculation

constant over almost the whole windward side # H/L is of a typical velocity field, respectively. Fortunately, it turns
close to a certain value determined by the values of the co yp y ' P Y. Y

. . : ~ “-out that dune formation and migration do not, in general,
eff|C|_entsA and_B in Eq. (18). _Sllgh_tly better constancy is depend very sensitively on the details of this complicated
possible for a slightly lowen (with slightly largere) but not

for the profilesf s andf, . for whichv(x) is always nonuni- process. Or in other words, there is a large number of inter-

esting problems of aeolian sand transport for which these

form, so that they are deformed by erosion. Let us flnallydetails are largely irrelevant, and for which their somewhat

consider the dashed and dotted lines in the upper part of Fig

6. Th dt I dal ‘ rati r}gea“StiC physical representation would create a huge over-
- 1€y correspon 'oa}sma eranda qrgerlaspec ratio angsad in complexity(especially in three dimensionso an
represent a steepening’(<0) and flattening{’'>0) of the

ndward sid ivelv. In oth q il th otherwise tractable problem. It was therefore suggested ear-
}N'n V\;ar ﬁ" e, _redspecdlvelz y. In o gr_ worts, pré) |te;]s WII lier [11] that for the purpose of calculating the shear stress on
arger/smaller windward slopes are driven towards e Sollg, o \yingward side of a dune, one may to a good approxima-
tion with constant windward (x) and a stable optimum

: . : tion represent flow separation on the lee side by the follow-
windward slope different from zero. Altoge'gher, Fig. 6 thusing heuristic method. A wind model such as HA6) re-
suggests that the coup[ed EujS).anQ(16).dr|ve a heap of stricted to smooth, gently sloped objects is applied to the
sand towards a dune with a cosinelike windward profile of aenvelope
preferred aspect ratio, and a slip face on the lee side.

Although the above analysis based on the surface velocity h(x) = maxh(x),s(x)} (26)
is suggestive, it does not prove that the model converges to a '
translation invariant steady-state solution if integrated oveof a duneh(x) and a phenomenologically defined separation
time. Also some previous studies based on similar descripsubble s(x). This disregards the fact that the separating
tions either did not scrutinize the long-time behavior of theirstreamline does not represent a solid boundary of the same
models [23,24], or failed to obtain stable dundd1,25. roughness as the original object, but the corresponding errors
However, as our discussion in Sec. Il B showed, the longare expected to be small. Typically, one wastg) to be a
time behavior is nontrivial and needs special attention. Inmathematically simple smooth continuation of the dune pro-

. separating streamline
streamlines

separation bubble

R

FIG. 7. Sketch of the central slice of a barchan dune and the separation bubble. The shear stress on the windward side of the dune is
calculated by applying Eq16) to the phenomenologically defined envelope of the dune and the separation zone.
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file. It is, however, crucial that the latter respects some major
phenomenological properties of flow separati@6]. Al-
though this is by no means a rigorous procedure, one can test
its predictions for selected cases against numerical solutions
of various turbulence models. The hope is that via this ap- %i)
proach, one can eventually get a qualitative understanding of 7
the mechanisms and phenomena involved in dune formation
and migration, leaving certain quantitative aspects to a more
elaborateland much more laborioliguture analysis.

In the spirit of the minimal model we want to parametrize
the separating streamling(x) in the simplest form that 0 2 4 6 8
obeys physically motivated boundary conditions at its de- (@~ za)/ha
tachment and reattachment poirtsandx, . At detachment,
the slope of the separating streamline must match thg slopgos according to Eq(29) for varying initial slopes—0.25<h),
of the d‘_me- Moreover, g_lso .the curvature must be continuous g o5, (The aspect ratio of the plot was stretched for presentation.
there, since discontinuities in curvature are detected by Eq.
(16) and cause kinks inr and discontinuous steps in the with z= (x—xg)/L,, € [0,1]. With the further abbreviatiom
erosion/deposition, as is, e.g., the case for the prbﬁileFor e ’ he | . f the bubbl
the reattachment point, there are no comparable restrictions_ ¢ s, we can express the lengtly=x; —x of the bubble
to the slope and curvature, since the separation bubble is n
sharply defined there, and the model aims at a realistic de-
scription of the conditions in the wake region only insofar as _3hg1-v—Vl+v 3hy v
they affect the shear stress on thimdwardside. On the lee b_h_('j 33—y o tat 8/ (29)
side, inside the separation bubble, the shear stress can simply

be set to zerd27], since it is typically below the threshold y_\/here the final approximation for smdil, is sufficient for

for aeolian sand transport. Therefore, the choice of the rea .
tachment matching condition is a matter of convenience Y’ purpose(and numerically better behaved as the exact

rather than physical significance in the present model. Hongpre§3|o?1 A subtlety of such a separanon bubble param-
ever, we wans(x) to reproduce some common phenomeno—etr'zat'on is the fact that the slopexatdetermines the length

. : : of the bubble, which in turn, via Eq.16) influences the
logical knowledge about flow separation. First, from many curvature atxy. In other words, the presence of the bubble

numerical calculations it is known that, at high Reynolds. trod local feedback bet the sl d th
numbers, the turbulent boundary layer reattaches at a gightroauces a nonlocal feedback between the slope an €

tance of about Bl after a backward-facing step of height curvature at the brink, which we believe is physically rea-

Second, it has often been observed experimentally that i . . :
strongly turbulent flows over hills and symmetric triangularﬁUbbles for dlff.ere_nt boundary SIODBS_’ Wh"? Fig. 9 illus-
rates the application of the above discussion for the calcu-

obstacles, flow separation sets in if the backward slope e@_
ceeds an angle of about 14°. Although, in both cases th tion of the _shear stress. It shows an exgmple for a dune
exact numerical values depend on various factors such as ti&0file h(x) with a slip face and the separation bubb(&),
surface roughness and the Reynolds number, they shall be
treated as fixed phenomenological constants at the presel
stage. A model that fulfills all the above requirements is a
third-order polynomial with continuous slopes at the bound-
aries and a maximum negative slope of tan 14°. The bound

o o O o

o N P Y 0 B

FIG. 8. Separation bubbles with a maximum negative slope of

2

onable. In Fig. 8 we give some examples of separation

ary conditions e’
R z
S(%g) =hg=h(xa), s(x)=0, =4
s'(Xg)=hj=h"(xq), s'(x,)=0, (27) 0 ; T i ;
-3 -26 -2 15 -1 -05 ] 0.5 1 1.5 2
z/L

s'=max —s’(x)}=tan 14°=0.25
FIG. 9. The windward profiléa(x) of a dune with slip face and

constrain the third-order bubble parametrization to be of thet:he separ?tlon bubbls(x) forT together a smooth effective ob-
form stacle, defined by the envelopéx). To calculate the shear stress

7(x) on the windward side of the dunle,is substituted foh in Eq.
(16). In the region of recirculation the surface shear streissset to
s(z)=(2hg+hjLp)z3— (3hg+2h{Lp) 22+ hjLpz+ hy, zero [27]. Without the separation bubble(x) would develop a
(28) sharp singularity at the brink.
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plexity of the turbulent air flow over structured terrain oth-
erwise severely restricts the possible applications of the
model.

Going back to the upper part of Fig. 6 with the above
discussion in mind, we can reinterpret this figure in order to
anticipate the behavior of the surface migration velogity)
of a dune with slip face. If, for qualitative purposef% is
interpreted as the envelope of a dune and its separation

FIG. 10. Cut along the symmetry plane of a 3D barchan dunebubble, we can conclude that the slip face must be located
The velocity vectors calculated numerically with a commercial fluid near the sharp drop af(x) slightly upwind from the top of
dynamics solvef28] clearly display the flow separation at the brink the envelope. This is indeed consistent with observations for
and a large eddy in the wake region. large dunes. Together with the good representation of the

windward profiles of large dundd9] by f¢ (n~2), it sug-
together with the shear stresgx) resulting from Eq(16) if ~ gests that the given description becomes qualitatively correct
h is replaced by the enveloﬁe in the limit of large dune sizes. The following section is

We have performed several series of numerical fluid dy-devoted to the discussion of important subtleties related to
namics calculations in two dimensions and three dimensionthe fact that dunes are not typically in this limit.
with the commercial fluid dynamics solveruenTs [28] us-
ing theke andlarge-eddyturbulent closure models to con-
firm the general picture outlined above and our particular
implementation of the separation bubble. The differences be- As outlined in Eq.(4), the second task in the specification
tween numerical and theoretical predictions for the sheaof the minimal model is to find a prescription for calculating
stress on the windward side of various dunelike and heaplikéhe sand fluxq(x) for a given topography(x) and shear
objects in 2D and 3D were quantitatively small and not morestressr(x). So far, we have been using the local saturated-
significant than other neglected terms. Moreover, a compariflux approximation Eq.(8) in our qualitative arguments.
son of predictions obtained from E(8) with wind mea-  However, a closer look at the predictions obtained within this
surements on a barchan dune in Brd29] showed good approximation reveals a number of inconsistencies. First, as
agreement. Therefore, we are confident that the proposegle have already noted in the discussion of Fig. 6, the use of
mathematical description of the wind shear stress captureBq. (8) together with the complete wind model of Sec. llI
the relevant aspects in the spirit of the minimal model. As arleads to the odd prediction of deposition at the windward
example for the numerical fluid dynamics calculation, wefoot of an isolated heap or dune, where the shear stress de-
show in Fig. 10 a section of the flow velocity in the symme- creases. This defect of E(B) has been noticed in the litera-
try plane of a 3D barchan dune obtained WAHIVENTS [28].  ture before(see, e.g., Ref$8,31]). Previous numerical stud-
The wind is blowing from left to right. The boundaries were ies tried to avoid this problem by focusing onto the short-
chosen to be periodic in the transverse direction. At the intime behavior and by introducingd hocheuristic methods
flux boundary(not shown, the velocity was fixed by impos- such as a “smoothing operatorf23] or an “adaptation
ing a logarithmic velocity profile. The wind profile at the length” [24]. The reason for the problem is that the
outflux boundary is not knowa priori. Although, for high  saturated-flux approximation breaks down at the ground-
Reynolds numbers the latter is expected to affect the solutiosand boundary. As another shortcoming, we want to mention
only close to the boundary, it is well known that different that the model as discussed so far predicts a universal scale
choices for the outflux boundary condition as well as differ-invariant dune shape with a brink that is displaced slightly
ent discretization schemes may lead to quantitatively differupwind from the maximum of the envelope, leading always
ent result30]. Here, we chose to set the derivative of theto a positive slope at the brink. A glance at a real dune field
velocity normal to the outflux boundary to zero. The surfaceproves that the latter is not always the case and careful mea-
profile was represented as a solid boundary with constardurements[19] have revealed systematic deviations from
roughness length. Finally, along the top boundary we im-scale invariance. Though less obvious, it turns out that the
posed the velocity of the undisturbed logarithmic inflow pro-reason for this discrepancy lies again in the saturated-flux
file. The whole calculation was performed on a grid that hadapproximation. Both mentioned problems are thus naturally
an exponentially growing mesh size in the vertical direction.resolved by introducing a slightly more general sand trans-
A considerable grid refinement was necessary in the wedgeort law that allows for saturation transients.
like region of the separation bubble close to the brink.

These remarks complete the first task of constructing a
model for the calculation of the wind shear stress on a given
dune profile as outlined in E@3). By deriving the linear Eq. The saturated-flux approximation E®&) assumes that the
(16) for the shear stress and combining it with the heuristicflux is everywhere equal to the equilibrium transport capac-
separation bubble, we have obtained an approximate but nity g5 of the wind. However, due to variable wind or sand
merically extremely efficient model for the wind shear stressconditions, the actual sand flux is, in general, different
on dunes. This is a crucial step in the construction of a minifrom ¢s. These deviations are called saturation transients,
mal model of aeolian sand dunes, since the enormous conecause they quickly relax to zero under homogeneous con-

IV. SAND FLUX

A. Saturation transients
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ditions. We have recently demonstrategd] that this relax- 5
ation occurs within a characteristic length scale, called the
saturation lengthf, which is related tqbut distinct from 4

the mean saltation length of the grains. It was, moreover,
shown how the introduction of saturation transients cures the 3
problem of deposition at the windward foot of an isolated &
sand dune. Here, we only summarize the most pertinent re- « ,
sults of this earlier development in order to demonstrate how
a size dependence of the dune shape naturally results as a 1
consequence of saturation transients.

The sand transport model of R¢8&] is based on a mean-
field-like description of saltation. It models a typical grain 1 2 3 4 5
that is accelerated by friction with the air and slowed down T[T
by dissipative interactions with the bed. The average proper- _ ) _
ties of the complicated splash proc§82—34 are subsumed FIG. 11. The saturation Iengrﬂ‘mS in meters as a functlon_ of the _
into two dimensionless parameters, an effective restitutiorcl’hear stress exerted by the wind onto the sand bed. This function
coefficienta for collisions with the bed, and a kinetic coef- sets the natural length scale for dunes and heaps.
ficient v that characterizes the relaxation of the density of

saltating grains to its saturated value. Together with an effeclf"ltter is nominally zer9.To make the underlying structure of

tive height for the wind-grain interaction that enters onlythe model more palpable, we have ex‘;’res@‘“ tgrms of
logarithmically, these are the only phenomenological param@nother characteristic length scate2aus/(gy), which (up
eters of the model. They have been determined by a coni® @ numerical factgris the average saltation Ieng@h of the
parison with experiments and grain scale simulations. Fordrains. The latter—but ndts—must always be considerably

mally, the model consists of two coupled differential smaller than the dune length for the model to be applicable.
equations for mass and momentum conservation, and Burther, we have decomposed into the saturated density
modified turbulent closure relation that accounts for the feed?s=2@(7— 7)/g and the effective sand transport velocity at

back of the saltating grains on the wind velocity. saturationug= Uep— OU Wi_th Ueff the effective wind velocity
For the present purpose, the model can be simplified bjfat accelerates the grains, given by
taking advantage of the fact that the prevailing conditions in ,
Uetikc @a=2\7+ (1= m)/{+(INE = 2)\7.  (32)

applications to dunes are typically well described by the
steady-stated/dt=0) version. Further, the relaxation of the we have denoted the aravitational acceleration and
typical sand transport velocity can be assumed to be fa%%y gR f18 dopt the( grav t cal val
compared to the variations in the density of mobilized grainsro_m € '[_] we a_op ’_appromma Eumerlca vaiues

in the saltation layer. Approximating the latter by its satu-2~ 0-3% ¥=0.2, {=8, {’=200, andéu=1.8 m/s for the

rated value for the calculation of the effective wind spagg Iagsvaerlgcr:tg[ gmeggmisr}ﬁeennﬁgn?gﬁ ter;isheor,:ﬁ;nre;:;lo\ﬁke
via the modified turbulent closure, one can decouple the' P y P

mass and momentum conservation equations. The who Zggznggtleiz;%r ttrhaenlsmg?tcrntgéifr\]/vﬁﬁ] il:(e;(r)ir:]:ntc;“;jata
model can then in a reasonable approximation be reduced P P

: : . : |. For convenience we show a plot of the saturation length
a single differential equation € obtained with these values in Fig. 11. This completes the
€99/ 9x=q(1—q/qs) (30)  definition of the sand transport part of the minimal model on
gently sloped ground.
for the sand fluxq(x). The shear stress dependent param-

eters B. Consequences

(=/(rl7—1), gs=pgUs (31) Before we complete the general model definition by a
brief paragraph on slip faces, we want to point out some

are immediately identified as the saturation length and th@mplications of the model as developed so far. First, note that
saturated flux, respectively. The equation éprgeneralizes the full expression fogs given in Eq.(31) contains Eq(5)
Eq. (5) to arbitrary wind speeds. In the following we specify as a limiting case for strong winds but is better approximated
the explicit expressions for both quantities as they resulby g 7— 7, for moderate wind speeds. For weak flux gra-
from the sand transport model of RE8], but the structure of dients and strong winds, one may set the left hand side of Eq.
Eqg. (30) is thought to be more general and independent o{30) to zero, leading ta=qs. This is typically the case on
the precise form of Eq(31). Again, 7(x) is the position most of the windward slope of a large dune, where the left
dependent shear stress discussed in Sec. Il apd hand side of Eq(30) can roughly be estimated bfsqs/L
~0.1 kgm s 1is the estimated impact shear stress thresh<qs. The local saturated-flux approximation with ) for
old that corresponds to a critical shear velocity,, gs, Which we have applied throughout our qualitative dis-
~0.28 ms! [35]. (For simplicity, we do not introduce the cussion so far, is thus asymptotically valid for large dunes
additional threshold for purely aerodynamic entrainmentand strong windgexcept near the windward foot of an iso-
here, but allow instead for a small residual influx even if thelated dung This is what one might have expected in the first
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place, and the reader may wonder at this point how the satundirectly through the variable shear stressMoreover, it is
ration transients and their characteristic length s€alean  apparent from Fig. 11 that this dependence becomes weak
have the claimed importance. How cépnaffect the shape of for strong winds. On the other hand, the symmetry breaking
a dune that is typically about two orders of magnitude largerahift 6x, is proportional to the absolute size of the héap

This apparent puzzle is now easily resolved by going back tenvelopg and not directly dependent on the wind velocity.
Fig. 5 and Eq.(25 and by observing that the symmetry For the special profild, , this was verified analytically in
breaking shiftdx, of the location of the maximum of the Eq. (25. As we have seen, a smooth heap can only be a
shear stress with respect to that of the maximum of thdranslation invariant solution of the model if the léaf order
height profile(or envelopé which is responsible for the fi- €) of q(x) with respect togs(x) and the shiftéx, are fine

nite windward slope and growth of dunes, is also of the ordetuned to guarantee a vanishing erosion rate at the top of the
of a few percent of the total dune length. In summary, theneap. From this we expect heaps to obey

longitudinal profile of dunes and heaps is determined by the

competition of two quantitatively small but qualitatively cru- {s= x> L~const (33

cial effects, one related to turbulent wind flow and the other, , L . - )
to sediment transport. This may be the reason why its explat—0 a first approximation. This condition can only be fl_Jlf'”.ed
nation proved elusive for a long time. If the aspect rati@ of heaps grows proportional to their size

To get a qualitative idea of the consequences of the intro("_e" roughlyeH). Hence, in contrast to large dunes with

duction of the generalized nonlocal flux law in E80) as a  SIP face, for which we have argued that they are asymptoti-

replacement for Eq(8), we want again to go back to our cally scale invariant£~const), heaps must have a strongly

discussion of the surface migration velocity of the cosineSiZ€ dependent aspect ratio. As a consequence, translation

shaped heag. in Fig. 6. Let us for the moment adopt a invariant heap solutions obviously cannot exist beyond a cer-

P . : tain critical size. A slip face will develop when the shear
crude approximation and replace the expressiomfagiven .
in Eq. (31) by its simpler limiting formge 732 stress on the lee side of the heap drops below the threshold

introduced in alue 7, or at the latest, when the lee slope exceeds the
Eq. (5 for reasons of comparison. For the same reason, W%riticalﬁs’lo e for flow separation. This will bF()e further ana-
also neglect the variation df; on the dune and replace it by lyzed in Sgc V. Finally v5e note that the steady-state flux of
a(fine tuned constant’;~0.1L. With an influx(about 0.4 heap can be estimated by the observation that the outflux is

for the solid and 0.8, for the dashed line in the lower part of : . :
Fig. 6) one can thus achieve a fairly constant surface velocitye ssentially determined by the strength of the reductign

: : — Tmin Of the shear stress at the lee end of the heap. Accord-
over thewhole length of a cosine-shaped heap. Again the. "min ) : )
constancy is slightly better fon<2 than forn=2. It is ing to Eq.(9), the latter isfor a given shapeproportional to

i itati ut
further improved by reducing the slope of the heap well be—the aspect ratie. For qualitative purposes, the outflaR

low the optimum windward slope of the dune obtained formay thus be estimated in the saturated-flux approximation

{s—0, as seen from a comparison of the solid line and thé’\”th Egs.(31), (32), and(9) as

dashed line. We also note in passing that the influx needed to out, _  _ _
P L . - . Os *Tmin~ Tt*Ec— &, (34)
maintain the shape is increasing with decreasing slope. The

comparison of the uppper and lower part of Fig. 6 confirmsynere we have assumel, /n=<2 (fulfiled for moderate

our claim that even fof ;<L, saturation transients may vis- \ying speeds and/or heaps near the critical heap sizn-

ibly affect the overaI_I shape of aeolian dt_mes. Although, ‘forearize the expression fay,(7) given in Eq.(31). Here, s,

the example shown in the lower part of Fig. 6, the saturation, . _ s the critical aspect ratio for which the shear stress
length is only about 1/30 of the heap length, the slip facg the jee drops below the threshold and the outflux van-
instability is evidently completely washed out. Altogether,spes Note that the latter increases with increasing shear
th|s_ strongly suggests the.eX|stence of translation invariantyess whereas the heap length decreases according to Egs.
cosine-shaped heap solutions for the model. The ultimatgsy) 504 (33). The effects of the two trends onto the critical
proof will be provided by the numerical results presented iMeap mass could therefore partially cancel unless the lee

Sec. V, where the full form ofjs and ¢5 according t0 EQ. gjope exceeds the critical slope for flow separation.
(32) will be used, but the present crude approximation al-

ready illustrates the main point, and also demonstrates that
the behavior is a generic consequence of Bd) and insen-
sitive to the detailed form of the parametérgx) andqg(x) We have argued above that for large hedps (), aeo-
that may phenomenologically be somewhat different fromlian sediment transport tends to increase the downwind slope
the model prediction without affecting our general conclu-until it reaches the angle of repose of the grains. At this
sions. point, any further increase of the lee slope initiates ava-
An immediate consequence of the foregoing discussion itanches that restore a slope slightly below the static angle of
the existence of a minimum dune size. For small enoughiepose and eventually create a slip face of a roughly uniform
dunes, the slip face instability is washed out by the saturatioslope of about 32°—35°. Since the physical modeling of this
transients. One may also arrive at this conclusion from amrocess itself is not a major objective of the present contri-
analysis of heaps. To this end we observe that the value dfution, we can choose between different possible implemen-
the saturation lengti is a property of the wind velocity and tations for this phenomenon. In 2D it is possible to represent
the saltation kinetics and depends on the topography onlthe slip face as boundary condition for the sand transport. It

C. Slip face
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hiz, t = 0) Eq.(28) Eq.(162) Eq.(30) Eq.(1) & FIG. 12. Solution of the mini-
avalanches mal mOdel.

is uniquely determined by its fixed uniform slope and masgotically scale invariant. The asymptotic master curve for the
conservation. However, with regard to a future generalizationindward profile is practically indistinguishable from the
of the present 2D model to three dimensions we chose profile f (n<2), and the slope at the brink is indeed posi-
more realistic implementation based on a widely used avative. Its average windward slope is inversely proportional to
lanche mode[36]. The formulation of this model bears some the value of the parameteé given in Eq.(13). Due to the
close similarities with the sand transport model presented iadditional terms in the expression E@.8) for the shear

the preceding paragraph, and thus suggests itself as a natugaless on dunes with a finite width, somewhat steeper aver-
extension of the latter to the slip face. This completes theage windward slopes are predicted for barchan dunes than
definition of the minimal model that will be solved numeri- for transverse dunes under identical influx and wind condi-

cally in the following section. tions. A detailed quantitative comparison is probably beyond
the scope of the present semi-quantitative implementation.
V. SOLUTION OF THE MODEL More important are the remarkable qualitative predictions of

the model. In particular, the fact that dunes with a slip face
X S T . ~are only stable above a certdimind dependentcritical size,
have provided some qualitative insights into the mainypereas smooth steady-state heaps only exist below a critical
mechanisms responsible for dune formation and migrationgjze geserves attention. We also note that the steady state is
Now we are prepared to study numerically the quantitativg,i a\ways unique. There is a hysteretic regime where the
predictions of the model. Again, we emphasize that we onlyiia| conditions can select one of two possible steady-state
can explore some major features of the model in the presei,anes and accordingly the masses for the two sets of profiles

report, leaving many interesting questions and more systemy rig 13 are not all distinct. The largest heaps in the upper
atic and quantitative parameter studies for future work. lot were obtained from flat initial profilef , whereas the

For convenience, the solution procedure of the minimalyiiest dunes with a slip face in the lower plot were ob-

m.odel i§ §ymmar_ized asa ﬂowchart in Fig. :ZLZ' One Start?ained from steeper initial profilely; of the same mass. Es-
with an initial profileh(x,t=0) (typically fg or fc), checks  pecially, the dune with a negative slope at the brink could
whether a separation bubble has to be added for the calculgpy pe obtained from steep initial conditions. Since under
tion of the shear stress, then obtains the latter from(E88  natural wind and sand conditions, the initial conditions them-
and uses the result as input for the iterative so!utlon of theejves will generally be heaps or dunes close to the steady
sand transport equation Eq30). This finally gives the giate one can say that the model predicts a critical heap size
erosion/deposition needed to update the surface profilgo, gjip face formation and a critical dune size for slip face

Technically, Eq.(169 is implemented as a fast-fourier- gesiryction. In both cases the slip face is finite as a conse-
transform algorithm, and for the integration of E¢R0) and

(1) an upwind discretization scheme is used. Simulation 25— g - ; ; ' §
times can be reduced by using an adaptive time step. ‘ ¢ : ‘- -

Apart from the model definition, the preceding sections

A. Steady-state shapes

The scheme of Fig. 12 can be iterated for different influx
boundary conditions. For all of the numerical calculations
presented below, we chose periodic boundary conditions
They are the natural choice for studies of the steady-stat
shapes. To investigate the mass balance under prescribed |
flux conditions, on the other hand, one has to apply oper
boundary conditions. g

Figure 13 shows steady-state solutions of the model fo— .|
initial profiles f g of different mass. These solutions are ob- = ;
tained for fixed wind conditions with parameteks- 3.2 and R
B=0.25, appropriate for the central slice of a 8&ymmet- 0
ric) heap or of a barchan dune. The shear velocity
=0.4 m/s lies well above the impact threshof@he situa-

tion very close to or below the threshold would need special F|G. 13. Steady-state heapusper plof and duneglower plod.
attention) As anticipated above, large dunes become asympfhe aspect ratio is stretched for better visualization.
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o xH™1 (left) and vxL ™! (right). As we have mentioned
above, one has to take farthe characteristic length of the
envelope rather than that of the dune alone. For simplicity,
we estimatel by adding 61 to the horizontal length from
the windward foot of the dune to its crest, thus neglecting the
weak slope dependence of the size of the separation bubble.
Obviously, theL ~! scaling is superior for moderate winds
and small dunes, wherexH ! systematically fails to de-
scribe the data. This is also supported by field §213. Both

fits become identical in the scaling limit>¢. Due to the

0 100 200 300 200 500 decrease of ; with the wind _speed, the latter is reached for
smaller dunes at stronger winds.

HL [m?

FIG. 14. Steady-state heigHtbversus the product of the height C. Stability

and length of the heaps and dunes. In the hysteretic regime, flat and \y/e have already pointed out that the choice of different
steep initial conditions have to be distinguished. boundary conditions for the flux allow a separate discussion
. of shape and mass stability. This is of practical importance,
gg;lﬁhgtflﬁiwhseip?r::goan'rTehae la;}fe{haelssaﬂgwrﬁ;guZ?ntcc;bl énce(in two dimensionsall steady-state shapes are unstable

9 P ! e\g{lth respect to mass changes. If the influx of a steady-state

. o . solution deviates slightly from its corresponding steady-state
by the separation zone. As anticipated, the aspect ratio of t ux, this solution will start to either shrink until it has flat-

dunes is asymptotically constant, whereas it is strongly Siz?ened out or grow without bound. Despite the fact that the

dependent for heaps. This effect can be seen more quanutgtea dy-state shapes afcally) stable attractors for the

tively in the representation of Fig. 14, where the heighof shape evolution under periodic flux conditions, mass stabilit
the steady-state heaps and dunes is plotted versus the prodlc P P ' y

HL of their height and length.. Clearly, heaps are better can, in general, not be achieved under open boundary condi-

. . ; tions. The situation is clarified in Fig. 16. It depicts the
described byH«<HL as predicted in Eq.33), whereas large X ;
dunes approach the scaling linite L, steady-state sand fluxover the bedrock as a function of the

aspect ratio. The numerical results nicely confirm our theo-
o ) retical expectation from Eq34). For all dunes with slip face
B. Migration velocity the flux vanishes identically in two dimensions, whereas in

For the overall migration velocity of steady-state dunesgeneral it grows with decreasing size for smooth heaps. For
with a scale invariant profile, we derived on general groundsppen boundary conditions, the line in Fig. 16 can be inter-
the simple scaling prediction=L ! in Sec. Il C. We have Ppreted as an unstable phase boundavigh hysteresis be-
also given some arguments why this prediction should béween infinitely growing and shrinking solutions. For ex-
rather robust against relaxing the condition of shape invariample, a heap with influx slightly below the steady state will
ance, in contrast to the relatian<H ! that can only be shrink a bit. To remain close to the steady-state shape, it will
inferred from it if the scaling assumption holds exactly. Here therefore mainly reduce its height, whereas its length will
we check these predictions for the steady-state solutions ntay almost constant. Due to the reduced aspect kgtio
merically. Figure 15 shows the numerically obtained migra-decreases in magnitude and the shear stress depression at the
tion velocity for dunes fitted to the scaling relatioms lee boundary is less pronounced. As a consequence there is

700

700

FIG. 15. Migration velocities
predicted by the minimal model
for steady-state dunes of different
size at various wind velocities.
The caption gives the shear veloc-
ity u, in m/s. The numerical data
are compared to the scaling laws
veH™?! (left) andvocL ™%, where
L is the length of the envelope of
the dune and its separation bubble
as described in the main text.
(Note that the migration of real

: : : dunes is substantially slower due
0 50 100 150 200 to the small fraction of wind days
per yean.

600 600

500
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FIG. 16. Steady-state outflux under periodic boundary condi-g“' :
tions. In the hysteretic regime, steep and flat initial conditions have~<=
to be distinguished, as in Fig. 14. The figure may also be read as
phase diagram for the situation with open boundary conditions. Ir
this case the steady-state solutions—though attractors for th
shape—are unstable with respect to mass fluctuations.

0

less deposition on the downwind slope and the outflux is—.sf
higher, so that the heap shrinks even more, etc. A completelﬁ
analogous reasoning applies to the opposite case of high@4
influx. =Ll
The above discussion explains why isolated smooth aec
lian sand heaps are rarely observed as distinct features « o
desert topographies. Under approximately stationary winc ~
and influx conditions they only exist as transient states thart
either vanish or develop into dunes with a slip face. Under FIG. 17. Upper two panels: growth history for a Gaussian heap
variable wind and influx conditions, the situation is less clearof longitudinal aspect ratiél/ o= 1/4. Lower panel: growth history
and deserves a detailed study of its own. For example, thfer a Gaussian heap of the same mass but longitudinal aspect ratio
model predicts that during a period of strong wind all dunesH/o=1. Both initial conditions converge to the same steady-state
are driven towards the asymptotic shape. After a subsequeshape. The shear velocity was fixedutp=0.45 m/s for both simu-
period of weak winds, finite size effects become more prodations.
nounced, and small dunes may develop longitudinal profiles
such as those in the hysteretic regime or even loose their sli
face. Again, the casey,~ 7, of a shear stress close to or
below the threshold shear stress needs special attention.
The prevailing wind conditions as well as recent change

long time until the shear stress on the lee falls to the thresh-
Id value. This causes complete deposition on the lee side of
the heap and thus leads to slip face formation. Whether this
Qappens before or with the onset of flow separation depends

in the wind velocity are thus encoded in a complicated buf" V‘."nd and mflux conditions. As it also depends on the
comprehensible way in the shapes of the dunes in a durfectse nhumerical values of some of the phenomenqlogmql
field. This is a promising direction for further studies. One parameters of the model, a detailed parametric study is again

may hope that by systematic studies along these lines orpeeﬁ?t?]d thi StEOpte. of thte presehnttrcl:ontzlbu(;uon.t ‘
will in the future be able to infer flow conditions in remote or oug € umes 1o reac e steady state are appar-

uncomfortable placeg¢e.g., on the sea bottom or on other gntl¥fsome';/\_/ha;;o?hgetrtgor thle ﬂatt. |n|t:jal conqnpn,_n IS evl- |
planets[37,38) by analyzing dune shapes. ent from Fig. at the relaxation dynamics is in general

relatively fast even if the initial condition is far from the
steady-state shape. Large dunes under low influx conditions
as they prevail, e.g., in fields of isolated dunes should there-
As a first step towards an understanding of the effects ofore be well described by an adiabatic approximation, assum-
variable wind speedfor constant wind direction this sec-  ing that (except after drastic changes in the wind and sand
tion is devoted to an exploratory study of the transient shapeonditions as they occur during sand stoyrtise dune is
evolution. We restrict ourselves to periodic boundary condipractically in a steady state. Apart from the low influx, this
tions leaving the richer phase space of open boundary coralso relies on the fact that virtually no sand is lost over the
ditions for future studies. Figure 17 shows two extreme sceslip face. For a large isolated 3D barchan dune this implies
narios. A flat initial condition with a mass greater than thethat most of the sediment transported over the dune is actu-
critical mass for slip face formation in the upper two panels,ally trapped in a treadmilling flux, and only a small portion
and a steep initial condition of the same mass in the lowebf the total flux is contributed by and contributes to the ex-
panel. The steep initial condition quickly leads to the forma-ternal flux. Hence, under steady wind conditions these dunes
tion of a slip face, whereas the flat heap needs to steepen fare in a quasisteady state and thus very close to their true

D. Relaxation dynamics
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0.1 0.2 0.3 0.4
time

FIG. 18. The figure shows the transient evolution of various
interesting length scales for a heap. Lower part: height of the heap. FIG. 19. The figure shows the transient evolution of various
Upper part: distance of the locations of the maximum of the sheafnteresting length scales for a dune that develops out of a smooth
stress and of the maximum of the sand flux from the position of thé'e@p as in the upper pannel of Fig. 17. Lower part: height of the

top of the heap. In the steady state, the erosion/deposition vanish€sn€. Upper part: distance of the locations of the maximum of the
at the crest. shear stress and of the maximum sand flux from the position of the

top of the crest. The lag between shear stress and sand flux vanishes

o when the slip face reaches the crest.
steady-state shape. Investigation of the steady-state proper-

ties is therefore the starting point also for the study of their
time evolution. Moreover, this suggests that a comparison of
our steady-state shapes to shapes obtained in field measure-In summary, we have shown that a simple minimal model
ments is justified. In fact, the calculated shapes agree nicelir the wind-driven sediment transport over a sand dune is
with recent measurements for barchan duri€s. The situ-  capable of explaining several important features of desert
ation is less clear for small heaps, where mass losses can fgpographies. Among them are the migration velocities of
of the order of the total flux and may thus lead to significantheaps and dunes, their shape along the wind direction, and
differences between the steady-state and the transient shapke existence of a minimal dune size and a maximum heap
under vanishing influx. size.

In the remainder of this section, we want to investigate As we have emphasized throughout this contribution and
more closely the mechanism that drives the shape relaxatiodemonstrated by the numerical solutions in the preceding
As we have pointed out, the positions of the maximum of thesection, the symmetry breaking part of the shear stress ex-
sand flux and of the maximum of the profile must coincide in€rted by turbulent air flow on an obstacle, and local devia-
the steady state to make the erosion/deposition vanish at tions of the sediment flux from its equilibrium transport ca-
crest. We have shown that for small heaps, this can b_@acity(“satu@tion trans_ients)’, are the esse_ntial ingredients
achieved by a fine tuning a¥x. to about( . In contrast, for I the modeling of aeolian sand dunes. It is exactly the bal-

large dunes and strong windsx.> ¢ and the steady-state ance of these two relatively small effects that is responsible
T S

condition can only be met with a singularity at the crest. Thisfor the relaxation of arbitrary initial conditions into a char-

important difference is exemplified by Figs. 18 and 19. BothaCte”StIC _dune or heap _shape. Their neglect was responS|_bIe
fiqures show the evolution of the height and the dis Iacefor the failure of the naive zeroth-order model discussed in

9 . g . P Sec. Il B. In hindsight we can say that it is not so much the
ments,ox, and dx,, of the locations of the maximum of the

h 4 of th ; £ th d flux f hquantitative errors but the omission of tlysalitativelyim-
shear stress and of the maximum of the sand flux from they, ot mechanism that makes the zeroth-order model an in-

location of the top of the sand profile, respectively. The dis-g ficient description. In contrast, taking this balance prop-
tance between both displacements is the lag of the flux withy |y into account makes the minimal model structurally
respect to the shear stress due to the saturation transients, afjflple against the neglect of less significant quantitative de-
is therefore closely related to the saturation lengthfor  taijls of the same order of magnitude.

smooth surface profiles. It guarantees the proper vanishing of This direction was recently pursued further in an effort to
the erosion rate|’ at the top of a steady-state heap wherecalculate analytically certain steady-state shapes of dunes
Ox, Is finite, but vanishes for large steady-state dunes, wherend heaps by “linearizing” the minimal modgB9]. One

the slip face ends in a sharp brink singularity at which themay as well wish to proceed also into the opposite direction.
grains fall into the wake and are quickly deposited. After the basic mechanism is understood, more elaborate

VI. SUMMARY AND OUTVIEW
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200 with Eg. (31). They allow, for example, a comparison of the
migration velocities of dunes of different sizes that are ex-
posed to(on averaggidentical winds. Or one may infer the
average wind speed from measurements of sizes and migra-
= tion velocities in a dune field. The falling lines in Fig. 20 are
— 100 lines of constant shape, assuming that the latter is determined
by €,/L, which holds for the steady state. They may thus be
used for correlating wind speeds with dune shapes. In gen-
eral (in particular, for the full 3D problem such shape dia-
grams will be more complex since the influx is an additional
1 1.5 3 2.5 3 important variable that we have neglected here, as it vanishes
for 2D dunes in the steady state.

Moreover, as we pointed out, there are still many conse-

FIG. 20. Qualitative shape diagram that could be useful in thequences of the present model that await a systematic inves-
analysis and comparison of field studies. The migration velocity isigation. And a major future task is finally the generalization
constant along rising lines, whereas falling lines indicate invarianiof the present discussion to the 3D case. A promising route
dune shape. could be the construction of an effectively sliced model that

allows one to use the proposed model for the separation

dune models can be constructed by putting some of the n&uPPle and to keep the time-limiting calculatidhe integra-
glected details back into the description. Detailed parametrifon Of the flux equationeffectively one dimensional. The
studies of such a refined model for a certain dune type anamal!er transverse currents could be mferred from the sliced
comparison to field data would be very useful to test some of°lution. A generalization of the flux equation to the 2D sur-
the less generic predictions of the underlying sand transpotfc€ Of @ 3D dune is also feasibl@9). A more ambitious
model[8], such as the shear stress dependence of the satulg@SK Will eventually be the simulation of dune fields.
tion length¢ (Fig. 11. This is important, since, as we have Whereas the existence of a minimum dune size could be
shown, the variable parametdt; sets the characteristic thalned by an analy§|s of the shape Stab"'Fy glone, thg ques-
length scale with respect to which dunes and heaps can gion of a pQSS|bIe eX|§tence of a characteristic or maximum
said to be large or small. Phenomenological knowledg une size in a dune field depends on the mass balance of a

about{ is still very limited. More detailed studies could dune in the complicated environment provided by the other

further be helpful to map out quantitative shape diagrams, oftines, and is much more difficult to ansj@p].

the type sketched qualitatively in Fig. 20. These diagrams
could be useful not only for the validation of the model, but
also for the comparison of field data from different places We thank Ken Andersen and Philippe Claudin for helpful
with different prevailing wind and sand conditions. The mi- discussions, and acknowledge financial support by the Deut-
gration velocity is constant along the rising lines in Fig. 20,sche Forschungsgemeinschéftontract No. HE 2732/1)1
which were obtained from Eq(1l) using g~qs together and by the European Communiti.K.).
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