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Microscopic two-dimensional lattice model of dimer granular compaction with friction
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We study by Monte Carlo simulation the compaction dynamics of hard dimers in two dimensions under the
action of gravity, subjected to vertical and horizontal shaking, considering also the case in which a friction
force acts for horizontal displacements of the dimers. These forces are modeled by introducing effective
probabilities for all kinds of moves of the particles. We analyze the dynamics for different values of the time
7 during which the shaking is applied to the system and for different intensities of the forces. It turns out that
the density evolution in time follows a stretched exponential behavioisfnot very large, while a power law
tail develops for larger values af. Moreover, in the absence of friction, a critical vala® exists, which
signals the crossover between two different regimesrfor* the asymptotic density scales with a power law
of 7, while for 7> 7* it reaches logarithmically a maximal saturation value. Such behavior smears out when a
finite friction force is present. In this situation the dynamics is slower and lower asymptotic densities are
attained. In particular, for significant friction forces, the final density decreases linearly with the friction
coefficient. We also compare the frictionless single tap dynamics to the sequential tapping dynamics, observing
in the latter case an inverse logarithmic behavior of the density evolution, as found in the experiments.
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[. INTRODUCTION spheres where it seems to favor local dense crystalline order
[28,29. Highly anisotropic granulars, namely, rods, have
The process of compaction in granular media attracts &een recently investigated under vertical shaking. In contrast

great deal of attention in the scientific community, in particu-t0 Sphere packings which tend to end up in disordered con-

lar amongst physicists and chemical engineers. In fact it disfigurations, evidence is found that the particle anisotropy

plays features that are general enough to make it suitable f(sirr|ve.s.orde(|ng[_3_0]. We try to incorporate in our model,
investigation through models that are relatively simple, al"’.‘lbe't n a S|mpllf|eq manner, al! these aspects, namely,_par-
least for a nonequilibrium process. Granular compactiont'ClSa anlsotropy, horizontal shakmg,.and frlctlonal'dyp.amlcs,
therefore appears appealing for testing new promising an hich We_flnd to affect the compaction process 5|g_n|f|cantly.
unifying ideas in the field of disordered systefiis-4. In partlcu!ar, our model IS basec_l on the diffusional dY'
Grains poured into a vessel fill it with loose arrangementd'3MICS of d|.mers, considered as ngld and nonoverlappmg
and relatively low densities. The action of external perturbaP2rticles, which occupy two lattice sites on a square lattice.
tions, such as shaking and tapping, in the presence of a'F'he mpdel has.no quenched disorder, but for this type of
external driving, such as the gravity field, leads to a verydYnamics glasslike properties may be expe¢84], because
slow increase of density through a rich phenomenology, disQf the onset of geometrically frustrated configurations. Since

playing different regimes and both reversible and irreversibld"€ NUmber of states with the closest packed density is expo-

dynamical phase$—18]. A number of different lattice mod- n_entially large in the lattice siz[é;2,_3?ﬂ, this model is ‘”tf‘”'
els have been recently investigated in order to unravel thémally different from the other lattice models recently inves-

microscopic mechanisms producing such behaviors, and t ated[19-25 and is suitable to understand how horizontal

clarify to which extent they may be considered general, alsghaklng and friction may influence the general characteristics

in relation to other disordered systems such as gldd$es attributed to th? compaction process. .
27). In the following section we describe in detail the model

In this work we introduce a lattice gas model for dimerand the Monte Carlo method that we used. In Sec. Il we

compaction which includes, besides the vertical, also horidiscuss the results for the compaction dynamics without fric-

zontal shaking and friction. Friction, although playing a fun- 1N alr\1/d |IIu_stratcei the ﬁVOIL#'On offfthe_packlrég rs]trucf[ure. In
damental role in real granular systems, has not been introS_eC' we Introduce the effect of friction and show its cru-
duced so far in models for compaction. Horizontal shakin cial role in the dy”am'ca' behavior. The final section Is de-
has been considered only experimentally for non-Browniar/©t€d to the conclusions.

Il. MODEL

* Author to whom correspondence should be addressed. Electronic We consider a square lattice bif=L X L sites, with lat-
address: fusco@sci.kun.nl eral periodic boundary conditions, an open boundary at the
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the action of gravity, whilep, and p,, represent, respec-
tively, the horizontal and vertical component of the external
; tap. The functional form chosen for the time dependence of

I l Ph and py,, is [19]

where 6(x) is the Heaviside functiofithe same expression
holds forp,(t), with py, instead ofpp]. Paowr(t) is deter-
mined from the normalization condition

Pr(t)=pa(l—t/7)O(7—1), 1)

Pdown(1) = 1= Pyp(t) = Pr(t) = pJownt (POp+ PRI/ T,
)

I ] wherepg =1~ (Pop+ P)- SINCePgow(t)=0 V t it must
be p8p+ pgowngl. If not stated explicitly otherwise, we as-
—_— —_— sumepgo,n=Pup. SO Py results to bepp=1-2p7,, that is
I I I only one independent input parameter is needed. In each MC
move one extracts a particle with uniform probability,
o ) ] chooses a move for this particle according to the values of
FIG. 1. Schematic picture of the lattice mo_dgl_ studied. The ar-ph’ Pup» aNdPyoun, and performs the move if all the geo-
rangement of the particles is th_e result of the |n|t|_a_l sample prepar atrical constraints are satisfied. One MC time )
irra;:tl(;ns.el(;lote that lateral periodic boundary conditions have beerz:orresponds toN attempted moves. In the following, time is
P ' always given in units of MCS. To save CPU time we used an
algorithm in which the attempted moves are always success-
top, and a rigid wall at the bottom. Elongated particles occuful, and consistently updated time through probabilistic argu-
pying two consecutive lattice sitédimers are inserted from ments(for the details of our computation see Rgg4] on a
the top one at the time with randothorizontal or vertical  reaction-diffusion model for dimersWe performed our MC
orientation, letting them fall down keeping their orientation simulations on a lattice with =100, for which we checked
fixed, until reaching a stable position. In this way we are ablghat finite size effects are negligible.
to prepare the system in an initial state which is saturated, As a next step we introduce friction between adjacent
i.e., no more particles can be put in, and with statisticallyhorizontal layers in the material in the following simplified
reproducible density,, i.e., characterized by a precise meanway: the effective probability of making a horizontal move is
value, py=0.587, corresponding to a random loose packingset to
In the present model, particles are subjected only to geo-
metrical interactions, and the nonoverlapping condition pro- pﬁ”(t)zph(t)—,u[pdown(t)—pup(t)]
duces strong constraints on their relative positigee Fig. o o o o o o
1). The aim of this paper is to study the system in the pres- =[P~ #(1=Pp—2Pyp) ~[Pnt (Pht2Pyp)]
ence of gravity and external vibrations, with the possibility _
of taking into account also a frictionlike force for horizontal XUT]6o(p) =1, &
displacements. For this purpose we perform Monte Carl
(MC) simulations introducing a random diffusive dynamics
in our model, which mimics the aforementioned forces and
preserves the geometrical constraints. At this stage, we con-
sider separately horizontal and vertical dimers and keep their
orientation fixed without allowing rotations. We plan to in-
troduce this feature, which would make the model more rey, acts as a friction coefficientu(>>0) and the “friction
alistic in the future. We consider in detail a single tap appliedforce” is proportional to the load, represented by the net
to the system for a fixed time, comparing it with the mul-  vertical force, reducing the probability of the move. This
tiple tapping for selected casésee[19]). We first describe assumption implies that the frictional force occurs only for
the dynamics without friction. The dynamics can be dividedhorizontal moves, independently of whether an underlying
into two stages(i) for t<r particles can move horizontally dimer (i.e., a dimer in the adjacent lower rovwg present. We
(left or right with probabilityp,/2) and vertically(upwards are aware that this is a simplified approximation, but it is
with probability p,, or downwards with probabilitypey,) ; meant as a first step in describing this complex process. To
(i) for t>7 only downward movement of particles is pos- ensurepﬁ”>0 att=0, u has to satisfy the condition
sible(i.e., pyp=Pn=0 andpgown=1). We note that~* can

ere

pr—u(1—pp—2pY,)
pa+ u(pp+2pg,)

to(u)=1] 4

be thought of as the quench rate of an initially annealed pﬂ
system. The probabilities for the different moves are normal- MS — oo
ized: pp+ Pupt Paown=1. Physicallypyows corresponds to (1-pPp—2pyp)
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FIG. 2. Temporal behavior of density in the frictionless case for < i 7

different values of the shaking timer (from left to right 07 1

7=10,30,50,80,103,125,150,210,280,400,800,2000,4000,10 000). B .

The horizontal shaking amplitude izﬁ=0.1. 0.6 r -

. - . . . 1 3 4

In addition, for the friction force to give a negative contribu- 10 10° tmcs) 10 10

tion to p,, one must haveyew(t)=pyp(t) V t (this is au-

. . . ) .0
tomatlcally.sat!sfled with O.ur.ChOIdeOW”_ p‘!‘?).' Npte t'hat and 7=4000 (b). The solid lines are the result of the MC simula-
the normalization of the frictionless probabilities is spll,  ion the dashed lines are stretched exponential fits usingSEpr
+Pgownt Pr=21. In other terms we have introduced a p(t)=0.6, with parameter€=1.1, t,=170, 7o=250, 3=9.8 for
“sticking” probability (probability that the particle does not .—gg (a), and C=1.1, t,=2900, 7o=3600, 8=9.7 for r=4000
move ps, given byps= u(Pgown— Pup)- If We putu=0 we  (p). The dot-dashed line itb) is a fit for t=1000 according to Eq.
recover the frictionless case. (6) with parameter8=0.018, =330, anda=4.95. The horizon-
tal shaking amplitude igp=0.1.

FIG. 3. Density relaxation in the frictionless case for 80 (a)

I1Il. COMPACTION DYNAMICS WITHOUT FRICTION

We have analyzed the time behavior of the mean densitthe process, but the evolution takes place on a much wider

. ; . ¥ime scale and finally a larger value of the asymptotic density
of the systenp(t) (nu_mber of occupled_ s_ltes normalized to is achieved. We have tried to fit different functional forms to
the total number of sitgdy measuring it in the lower 30%

f the b t timet. In thi ¢ the data in Fig. 2, looking in particular at the relaxation
of the box at imet. In this way We areé sure 1o measure g, qjong proposed in the seminal experimental paper of Ref.
densﬂy at the bu!k,_smce fluctuations can Increase S'gn'f'[s]. It is clear that the observed dynamical behavior is very
;mtelyclgnggﬁcgrt?éln;g)r/ng;gt]ii:%Z%at\)\zgp?r?%i;erseu;?gg] n acomplex and is not compatible with a single relaxation time,

. - ) . Cooe. imple exponential. We have found that th mmonl
Since the statistical fluctuations of the density can be quit €., a simple exponential. We have found that the commonly

I i h f d | MC lizatiGns ¢ Rlaimed inverse logarithmic relaxation does not hold for our
relevant, we have perlormed severa reaiiza iGas to system in the single tap case. Instead, the most suitable func-
500) of the process in order to obtain reliable results. After,

: o . ) . tional form for our data is a stretched exponential, as pro-
preparing the system in its low density configuratigm

= p(t=0)~0587, the diffusive dynamics starts as de- _posed by Nicodemet al.[19] for the single tapping dynam-

scribed in the preceding sectiopﬁ is chosen as an input s
parameter and consequently] = po,,=(1—pp)/2. We . . .
stop the simulations when a steady asymptotic valueof p(t;7,pp) = po(7,Pp) — CLp=(7,Pp) — pol
the density is reached. We have studied the density evolution _
for different values opy and of the shaking time, in order xexp{—[(t+10)/ 7o)}, ®
to find out if some kind of scaling law, describing the behav-
ior of the final density as a function of these parameterswhere the fit parametefs, ty, 79, andB depend in principle
exists. As far as we know, no systematic study concerningn both r and pJ. Actually, it turns out from our fits that
this point has been performed. C=1.1 andB=10 are almost independent ofand p. In

The time behavior of the density for several choices of Fig. 3(a) we show the density evolution for a small value of
is illustrated in Fig. 2, where a relatively low valuef has 7. As can be seen, the intermediate-long time behavior can
been usedf)=0.1). We have observed that the dynamicsbe accurately fitted by Ed5) (all fits have been performed
gets drastically slower whenincreases; actually, because of for p=0.6). As 7 increases, however, E¢(p) fails to repro-
our shaking rule, Eq(1), when a long tap is applied the duce the long time regime. In fact, a power law tail develops,
density does not significantly change in the initial steps ofindicating that the compaction process slows down at long
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FIG. 4. Temporal behavior of density in the frictionless case FIG. 5. Temporal behavior of density in the frictionless case for

: -0 0 . A0 0 _ H H
for different values of the horizontal shaking amplitug® (from dg‘fer%nt values of the r_a‘t"p’up/pd%wn'Opup/pdown_l (solid line),
bottom to topp?=0.1,0.2,0.3,0.4,0.6,0.8,1). The shaking time is Puy/Paown=2 (dashed ling and p,/Pgown=3 (dotted ling. The

=103, shaking time isT=80 and the horizontal shaking amplitudep‘%
=0.1.
times for large shaking duration. The fitting function that we ) .
have used for the long time behavior is initial transient, the density decreases at the bottom of the
container for a strong tap. Such a decompaction upon verti-
Pl T, pﬂ)—Po cal acceleration increase seems to be a genuine feature of

(6)  two-dimensional systems, as claimed 8b]. The saturation
density is also sensitive to variationsrnﬁp and decreases for
increasingpgp/pgown. However, the scaling behavior does

. ; not change and the density evolution can still be described
> . . ;
applied forr>1000. The exponent of this power law can by Eq.(5), but with a smaller value gB with respect to the

be considered independent of (a=5). However, the o o - 0,0 —
stretched exponential function still describes the density be¥3>€ Pup™ Pdown (B=9.8 for pyp/Pgown=1, B=7.6 for

0 _ ~ 0 0 —
havior in the intermediate time regime well. Pup/Pdown=2, andB=6.5 for pyy/Pgown=3)-

We have also studied the density relaxation for different [N order to gain a better understanding of the degree of
values ofp? at fixed 7 (r=103). The corresponding plots Compaction of the system, we mveostlgated the dependence of
are shown in Fig. 4, where it is clear that the role of theth€ saturation density.. on 7 andp; . The data forp., vs 7
horizontal shaking amplitude is crucial in determining the@'® plotted in Fig. @&). A crossover from a power law scaling
asymptotic density. to a logarithmic behavior is observed at a characteristic value

Moreover, we have considered the effect of different ra-7" =200:
tios P/ Paown ON the density evolution, which we show in

t;7,Pp) = Pl 7,PP) ———————.
p(t;7,Pn) = pe(7,Pp) L+ B(t)"

This is illustrated in Fig. @) for 7=4000. Fit(6) has been

; . - s
Fig. 5. Whenpp ;> pg,,,, We observe a decompaction at the p(7)=(7/7)° for r<7*,
beginning of the process, which becomes more pronounced
if the vertical tap is stronger. This reflects the fact that, in the po(T)=pm—BlIn(7/7,) for r>7*, @)
100 L) L) L) L) 0082 L) L) L) L) L) L) L) L)
| (@) HE L (b) J
el FIG. 6. Saturation density..
09 III] 1 osor ] in the frictionless case as a func-
| m i | i tion of the shaking timer (a) and
the ratio pYpd,.n (b). The
lost 12078 | e squares are the numerical data,

while the solid line and dotted line
in (a) are, respectively, the fits for
07k 1l o076 i 7<7* andr>7* given in Eq.(7).
The horizontal shaking amplitude
s - - in (a) is p2=0.1 and the shaking
time in (b) is 7=103.

1 1 1 1 1 1 1
10° 10" 102 10® 10* 10° 0 1 2 3 4 5 6 7 8 9
 (MCS) Pr /Paown
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FIG. 7. Snapshots of one particular realization of the packing at  FIG. 8. Snapshots of the final configuration of the packing for
different times for7=4000. The horizontal shaking amplitude is two differentp and fixedr (upper part and two differentr and
po=0.1. fixed pp (lower pan.

where 7=4.5x10%, 6=0.073, p,=1, B=0.6, and 7, order proceeds from the bottom to the top of the packing
~18. This means that for Iarg’e vglueéaothe pl’(')CGSS gzets while empty spaces reduce in size. The final state is therefore

sover and sower, a5 bserved befre. eventall reacing 221226 B e presence ofrge lstrs of Lovaonte
final value of the densityp,=1 for r—o (which corre- ) 9

. . amplitude pﬂ and time 7 play a significant role, we have
sponds _to _about the _maX|maI density for theosy(?[@tt]_). reported in Fig8 a comparison between the final configura-
The variation ofp.. with respect to the rati@,/pgyown IS

. N J ) tions for pd=0.1 andp?=0.8 at fixedr=103 (upper par,

llustrated in Fig. ). The (|)ncrea_se Ob-: Is more pro- 54 ¢~ 80 andr=4000 at fixedpp=0.1 (lower par}. We

hounced for IO.W values oy, vyhﬂg it tends to saturate . hotice that an intense or/and long tap is effective in locally

afterwards. This compares qualitatively WeII. to thg eXperl-removing frozen configurations through collective rearrange-

mental results for a horizontally shaken box filled with beadsyents of particles, thus letting the defects migrate towards

[28], where it was found that for low filling rates the packing the free surface of the packing.

crystallizes upon increase of the adimensional paraniéter e have also investigated in detail the behavior of the

=Aw?/g (whereA andw are the amplitude and pulsation of parameters of the stretched exponential&g. (5)] t, and

the vibration andg is the gravitational acceleratiprwhich 7, which is reported in Fig. 9. We have observed a change

roughly corresponds tpY/pdq.n- of behavior in correspondence to the critical value of the
In Fig. 7 we show some snapshots of one particular realshaking timer*, the same value determining the change in

ization of the compaction process for=4000. We see how the behavior ofp., vs 7 described in Eq(7). A similar tran-

the packing evolves from a highly disordered state=ad to  sition was also signaled by Nicodeet al.[19]. The param-

a polycrystalline state, made of many crystalline ordered doeters of the stretched exponential relaxation &j.change

mains, at the end of the compaction. As time increases thaccording to

10* | . . . 7 10% ¢
() o
~ |
S FIG. 9. Parametert, (a) and
7o (b) of fit Eq. (5) in the friction-
— k —_ less case. The squares are the nu-
a 3 3 3 merical data, while the solid line
= 10°F £ 1 =2 10°¢ (r<7*) and dotted line £>7*)
= < e in (a) are the functions given in
s Eqg. (8) and those in(b) are the
functions given by Eq.9). The
horizontal shaking amplitude is
H ; pP=0.1.
10 10° 10 102 10® 10 10 10° 10’ 102 10° 10*
1 (MCS) 1 (MCS)
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FIG. 10. Compaction timeé.,m, vs shaking timer in the fric-
tionless case. The horizontal shaking amplitudgfis0.1.

to(7) =7/t +t.  for 7<7*,
to(r)=(7/ty)Y+a for >7*, (8)
To(r)=7lm+7. for 7<7*,
To(7)=(7/75)Y+b for 7>7*, 9

where t;=1.40, t.=130, t,=7x10°, y=0.47, a=
—700, 7,=0.76, 7.=150, 7,=10"4, b=—700. It is re-
markable that bothty and 7o vary linearly with 7 for =
< 7* and both follow a power law with the same exponent

1.00 T T T
095 | (a)
0.90 |

085 |
0.80 |
0.75 |
0.70 |
065 |

p(H)

0.60

0.55 y
10

10%
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10* 10°
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for 7> 7*. This could mean that they are both determined by
the same relaxation mechanismashangedi.e., if we de-
fine t():to_t< y TO— T T< Tozto_a, and’;'(): ’To_b,

we see from Eqs(8) and (9) thatt, /o andty/7, are con-
stants independent af].

We note that the critical shaking time" physically sig-
nals the crossover between two different regimes. In fact, a
careful inspection of Fig. 2 shows that, fex 7*, compac-
tion occurs after the shakingvhen p,=p,,=0 andpgown
=1) and is mainly driven by gravity. On the other hand,
when 7>7*, the compaction timet(,yy, i.e., the time
needed to reach the saturation density, is shorter thamd
vibrations act on the system till the end of the procese
Fig. 10. We believe this is responsible for the power law talil
for large values ofr, since the combined action of shaking
and gravity produces a slowing down of the dynamics, en-
abling at the same time to obtain denser packings. However,
we are not sure whether this picture corresponds to a real
dynamical phase transition in the system, and, moreover, the
identification of an order parameter would be quite problem-
atic. Therefore a deeper investigation on this point is needed
and we hope to stimulate some future experimental and the-
oretical works.

Now we briefly mention the main changes occurring
when a sequential tapping is applied to the system. Although
the single tap dynamics can give an insight into the dynami-
cal evolution and the relaxation of the system, the sequential
tapping procedure can be closely related to experimental
situations. In Fig. 1(a) we compare the density evolution
obtained by a single tap of duratiar=10 000 with that ob-
tained by a sequential tapping applied for the same amount
of time 7. In particular, we have generated 5000 taps, each of
which was applied for a time/5000. From the comparison
we deduce that the multiple tapping dynamics is slower, sug-
gesting that the fitting form Ed5) cannot describe properly
the density evolution in this case. Besides, the saturation
density is also lower. In Fig. 1) we characterize more

0.95 T T
(b)

0.90

0.85

0.80

0.75

0.70

0‘65 2 a2 aaaaal 2 22 2 aaaal 2 A2 22222
10’ 102 10°

10*
Ntap

FIG. 11. Comparison between single and multiple tappindalrthe behavior of density as a function of time is plotted: the solid line
is obtained by a single tap with=10 000, while the dashed line is the result of 5000 taps, each of which is applied for a/5669. In
(b) the density is shown as a function of the number of tapg,: the solid line is the result of the simulation and the dashed line is a fit
according to Eq(10) for ny,p,>40, with parameters=47, d=1.2x 10°, andT=3x 10" The horizontal shaking amplitude |i§=0.1.
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FIG. 12. Temporal behavior of density for friction coefficient FIG. 13. Density relaxation fop=0 (top solid line and x

n=0.4 and different values of the shaking timéfrom left to right g 4 (hottom solid ling. The dashed lines are stretched exponential
7=30,50,80,150,400,2000,4000,10 000). The horizontal shaklngts using Eq.(5) for p(t)=0.6, with parameter€=1.1, t,=275

. . 07
amplitude isp,=0.1. T0=400, B=9 for x=0.4 (the parameters for.=0 can be found

o . . . .. in the caption of Fig. 8 We note that the major differences between
guantitatively the dynamical behavior by plotting the denS|tythe Wo (F:)urves areg due to the different va:uesﬁo&nd oo [

as a function of the number of taps. It turns out that in this:O):O 782 andp.. (= 0.4)~0.685. The horizontal shaking am-
case the intermediate-long time evolution of the density Calliide is p°=0.1 an the Shak-ing time is=80
h_ . .

be described by the claimed inverse logarithmic law, which
was also found in the experiments]:
Fig. 12 the time evolution of the density for a fixed value of
the friction coefficientuw and several choices of is dis-
p(t)=p.—c— Pz PO (10  Played. A comparison with Fig. 2 shows that for a same
1+dIn(1+t/T) value of 7 a much smaller asymptotic density is reached, and

. . . that a slowing down of the dynamical behavior occurs. As a
In this way we can connect directly our model to the experi-

) . onsequence, larger values ofare needed to obtain the

mental data and we can also examine the effect of differen : o = . .
. X X ame final densities as fegr=0. In Fig. 13 a comparison of
dynamical shaking procedures on the compaction process. n a C PP
: . . -~ p(t) betweenu=0 and u=0.4 for 7=80 is illustrated. It
this respect, our results are in agreement with those of Nico- .
. ' o . seems that the same functional form Eg). adopted foru

demiet al.[19], who find a similar change of behavior when =0 can be used to describe the dynamical evolution of the
considering single and multiple tapping. This should clarify y

to a certain extent the mechanisms of density relaxation ipystem. .In spite of that, for.+0 some slight d|screpan|es
different dynamical situations. in the tails can be detected for small valuesrphot visible

at the level of detail of the figure. This means that the re-
duced probability for horizontal moves affects the compac-
tion mainly in the late stages of the process.

When a frictional force is introduced, as described in Sec. We have also examined the dependence of(t). The
I, some qualitative and quantitative changes are found. lrcurve for =0 is far above the others, and furthermore the

IV. COMPACTION DYNAMICS WITH FRICTION

1-0 T ) ) T T T T T T T T T
- @ o ® ®4 o7 ® ]
i L - FIG. 14. Saturation density.,
. EI] as a function of(a) = for u=0.4
m 0.74 - . and (b) of w for r=150. The
o 1 | EI] i circles in(a) and the squares if@)
4= and(b) are the numerical data for
0.70 .\é . w=0 and x=0.4, respectively.
7 The dashed lines ite) and(b) are
4 - . fits, respectively, according to
Egs.(11) and(12). The horizontal
{1 oser ‘%\' shaking amplitude i =0.1.
aaasal 1 1 1 1 1 1 1 1
10* 0 02 04 06 08 1
1 (MCS) 1
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125 y y - y y - y y y might indicate a change of behavior in the dynamics of the
12} . system as a function of the friction coefficient. For this pur-
15 F . pose we show in Fig. 15 the stretched expongif Eq. (5)
11[.] _ vs w. It rapidly decreases for<<0.4, but it is almost con-

105 | i stant for largerw. In other terms, the independence ofof
wl | the dynamical evolution reflects itself just in a linear scaling
@ of the final density withu. We hope to elucidate this point
881 | more thoroughly in a future work.

ol |
85 [ 1

8 1 V. CONCLUSIONS AND PERSPECTIVES
75} 1 . L

, . . . . . . . . . We have proposed and discussed a simplified model for

0 01 02 03 04 05 06 07 08 09 A1 dimer compaction, with the intent to take into account rel-
" evant dynamical features, such as horizontal shaking and

friction forces between particles, analyzing in detail their ef-

FIG. 15. Stretched exponeptof Eq. (5) vs friction coefficient ~ f€CtS on the density time evolution. The dynamical behavior

w for p°=0.1 andr= 150. of our model is very complex with interesting features. In the
absence of friction, for a single tap, the compaction dynam-

difference between the curves for low values;ofis more ics cannot be interpreted as an inverse logarithmic relaxation
marked. Such differences show up only after an initial tranbut in terms of a stretched exponential law, which is a pecu-
sient in which the various curves are practically superimJiar characteristic of a continuous range of time constggits
posed one on the othetthe curves do not start diverging Thus, the fact that we do not find a logarithmic Igw but a
significantly until the density reaches about 0.6). This is inStretched exponential relaxation could be a peculiar feature
compliance with what we have just said about the effectivel®lated to the single tap dynamics, since Nicodetral. [19]
ness of friction in the asymptotic dynamics. obs'er.ve the same kind of behavior in a different model wnh
The behavior of the asymptotic density is depicted in Fig.2 Similar dynamics. Furthermore, we are not aware of experi-
14 and reveals more interesting aspects. In Figajlwe  Ments in which a single tap is applied as external perturba-

have plottedp..(7) for x=0 andx=0.4. We were able to tion, since they all refer to a tapping sequence. Actually, it
identify a power law regime for sma# also for u=0.4: turns out that the logarithmic behavior found in experiments

is recovered also in our model when a sequential tapping is
applied. We therefore might infer that different shaking pro-
pa(7)=(7/ Tl(ﬂ))ﬁ(“) (11 cedures give rise to intrinsically different compaction behav-
iors, driven by different dynamical mechanisms. However, it
still needs to be clarified whether the logarithmic law is just
with 5*)=0.062[not very different froms in Eq. (7)] and & good fit to the experimental data or it has a deeper meaning
7"=6.9x 10*. Thus, saturation density scales in the same(see, for example, the discussion in Ref2]).
way as foru=0, with nearly the same exponent but with a  We also find a crossover in the behavior of the asymptotic
very different relaxation timémore than one order of mag- density as a function of the shaking time with a slowing
nitude largey, i.e., the process is much more sluggish. Wedown above a critical shaking time value, indicating a pos-
did not manage to find the functional behavior for larger sible dynamical transition process. More detailed studies of
and it is not very clear whether it is possible to define athis point are planned for the future in order to reach a better
crossover shaking time, at least for the values ofe have understanding of the physical mechanism underlying this pe-
considered. For>1000, p.. increases more steeply than for culiar behavior. _ _ _
w=0 and it is likely that one could find another regime for ~ Similar to what is found in experiments, horizontal shak-
larger 7. However computational limitations prevented us toind favors locally ordered configurations and leads to higher
explore in detail the region for>10000(since simulations compaction[28,29. We believe it would be important to
become more and more time consumingrascreases and address further this issue by improving our model, allowing

we will address this problem in the future. rotations of the dimers during the dynamics. _
Finally in Fig. 14b) we have analyzed the behavior of The resglts_obtameq by introducing thg fr!ctlonal effect in

vs u. Interestingly, p.. decreases linearly withe for u our model indicate the important role of friction on the com-

~0.4: paction dynamics. In particular, we find a slowing down of

the dynamical behavior which is more evident in the
asymptotic regime. The relaxation of the density is still de-
po(m)=A—Bu, (120  scribed by a stretched exponential in the presence of friction,
with a stretched exponent that becomes constant at large val-
ues of the friction coefficient. It would be worthwhile to
whereA=0.71 andB=0.073. Instead the decrease is moreexplore this issue in future works with an improved model-
drastic for lower values ofu, as noted above. This fact ing of the frictional force.
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