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Equilibrium temperature of a convex body in a free molecular shearing flow

Lars H. Söderholm*
Department of Mechanics, KTH, SE-100 44 Stockholm, Sweden

~Received 18 June 2002; published 24 September 2002!

It is shown that the equilibrium temperatureTw of a high conductivity axially symmetric convex body in a
simply shearing gas of temperatureT is given byTw/T511(ba/4)(pxy/p) sin2u sin(2w), u,w are polar angles
of the axis of the body (z is the polar axis!. a is a geometric shape factor of the body~which vanishes for a
sphere! andb takes the value 1 if only the lowest order Sonine term is retained.p is the pressure andpxy the
viscous pressure. The body is assumed small compared to the mean free path, which is small compared to the
length scale of the velocity field.
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I. INTRODUCTION

A small body in a gas with a temperature gradient ex
riences a force. This is the well-known phenomenon of th
mophoresis. The perhaps simplest case is where the bo
small compared to the mean free path which in turn is sm
compared to the length scale of the temperature field.
force is then caused by the non-Maxwellian nature of
molecular distribution function, see Waldmann@1#.

In this paper we point to an analogous phenomenon
shearing gas. For simplicity, we consider the case where
body is small compared to the mean free path which in t
is small compared to the length scale of the velocity field.
exterior transfer of heat to or from the body is shown to
needed to keep its temperature the same as that of the
rounding gas. If there is no such exterior heat transfer,
body will, in a stationary situation, take on a temperatu
different from that of the surrounding gas. For a conferen
report of this work, see Ref.@2#.

Bell and Schaaf@3#—see also Schaaf@4#—calculated the
heat transfer to an infinite circular cylinder with a diame
small compared to the mean free path in a gas with temp
ture and velocity varying on a scale large compared to
mean free path. They found a contribution to the heat tra
fer from the shearing of the gas. They also showed that
equilibrium temperature of the body was affected by
shearing of the gas. To the knowledge of the present au
there has been no systematic study of this phenomenon

Due to the tensorial nature of the shearing, there will
no net heat exchange, when the body is a sphere. For
reason, we consider bodies of arbitrary shape, in partic
axially symmetric bodies, in the present work. As the body
small compared to the mean free path it is a good appr
mation to assume free molecular flow in a region surrou
ing the body, see Bird@5# and Waldmann@1#. For a general
review of free molecular flow, see Schaaf@4#, Cercignani@6#,
and Sone@7#. The body is taken to be convex, so that the
are no multiple collisions with its walls.

We use the Maxwell boundary conditions at the surfa
assuming that a fractionat of the incoming particles are
diffusely reflected, whereas the fraction (12at) are specu-
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larly reflected. We further assume that the surface of
body is characterized by the energy accommodation co
cientae . See Kogan@8# and Eq.~10! below. The gas is taken
to be monatomic.

II. METHOD OF APPROXIMATION

Let us formally introduce a sphere surrounding the bo
The sphere is large compared with the size of the body,
small compared to the mean free path. We can thus neg
mutual collisions of the gas molecules in the sphere~free
molecular flow!. By the Liouville equation it follows that the
distribution function for a molecule colliding with the bod
has the same value as it had when the molecule entered
sphere.

The molecules, which have collided with the body, gi
on the surface of the sphere a small, strongly peaked, co
bution to the distribution function. After collisions with othe
molecules they will have a smeared out and very small
fluence on the ingoing molecules. So for the incoming m
ecules it is a good approximation to take the distributi
function to be unaffected by the presence of the body.

When the body is absent, the problem is well known.
we assume the length scale of the velocity field to be la
compared with the mean free path, first-order Chapm
Enskog theory applies.

The distribution function of the outgoing molecules
found from the appropriate boundary conditions. We assu
a simple Maxwell type of boundary condition, where a fra
tion at of the molecules are reflected diffusely as a Maxwe
ian with temperatureTr and the rest are reflected specular
Explicitly, the distribution functionf on the boundary satis
fies (n is the outward normal of the surface,C•n is here
taken non-negative!

f ~C!5~12at! f „C22~C•n!n…1atnr S m

2pkBTr
D 3/2

3expS 2
mC2

2kBTr
D , ~1!

m is the mass of the molecules,Tr is the temperature of the
diffusely reflected molecules, andkB is the Boltzmann’s con-
stant. The parameternr is given by conservation of particles
see Eq.~5! below.
©2002 The American Physical Society04-1
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III. EQUILIBRIUM TEMPERATURE

A. Net influx of kinetic energy

For a general distributionf, the total flux of incoming
particles is~see Kogan@8#!

N( i )52E
n•C,0

~C•n! f d3C. ~2!

It is now our object to express the net influx of kinetic ener
in terms of the distribution function for incoming particle
which, in the approximation considered, is unaffected by
presence of the body.

The Maxwellian distribution is written as

f (0)5nS m

2pkBTD 3/2

e2C 2
. ~3!

Here,n is the number density of molecules,kB is the Boltz-
mann constant,T is the temperature, andm is the molecular
mass.Ci5Am/2kBTCi is the dimensionless molecular velo
ity, whereCi is the ordinary molecular velocity. For a Max
wellian distributionN( i ) takes the value

NM5nA kBT

2pm
. ~4!

The surface of the body has the temperatureTw . The
diffusely reflected molecules have the temperatureTr . Two
densitiesnw ,nr are defined by

N( i )5nrAkBTr

2pm
5nwAkBTw

2pm
. ~5!

The first of these relations ensures conservation of numbe
particles.

The total influx of kinetic energy is

E( i )52
m

2 En•C,0
C2~C•n! f d3C. ~6!

In particular, for a Maxwellian it takes the value

EM52kBTNM . ~7!

According to the Maxwell boundary conditions~1!, the
outflux of kinetic energy is given by

E(r )5~12at!E( i )1atEM~Tr !. ~8!

The temperature of the diffusely reflected particles is
lated to the temperature of the wall via the energy accom
dation coefficientae . To define it, let us first, in analogy
with Eq. ~8! introduce

E(w)5~12at!E( i )1atEM~Tw!, ~9!

ae5
E( i )2E(r )

E( i )2E(w)
. ~10!
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Equation ~10! relatesTr and Tw . They coincide whenae
51.

As a consequence, we obtain the net influx of kine
energy@we have here used Eq.~5!#

E5aeat@E( i )2EM~Tw!#5aeat~E( i )22kBTwN( i )!.
~11!

We have thus been able, for an arbitrary distribution funct
f, to express the net influx of kinetic energy in terms of t
distribution function for incoming particles only.

B. High conductivity body

Let us now assume thatae andat are constant, and the
thermal conductivity of the body is so high thatTw is uni-
form in the body. The net total influx of kinetic energy to th
body is (S is the area of the body!

E E ds5aeatS@E( i )22kBTwN( i )#. ~12!

The overbar denotes surface averagef̄ 5S21* f ds.
At stationary conditions, the temperature of the body

thus

Tw5
E( i )

2kBN( i )

. ~13!

For an arbitrary distribution functionf we have found the
equilibrium temperature of the body in terms of the distrib
tion function for incoming particles only, which in the ap
proximation considered is known.

IV. CHAPMAN-ENSKOG DISTRIBUTION FUNCTION

In a pure shearing flow, to first order in the mean free p
the distribution function is given by@see Chapman and
Cowling @9#; B̂(C 2) depends on the molecular forces#

f 5 f (0)S 11B̂~C 2!C^ iCj &

p^ i j &

p D , ~14!

pi j 522mv ^ i , j &

is the viscous pressure tensor,p is the pressure.̂•••& stands
for the symmetric traceless part and comma for partial
rivative. v is the macroscopic velocity field.

B̂ ~here normalized so thatb̂051) is usually expanded in
Sonine polynomials,

B̂~C 2!5 (
n50

`

b̂nS5/2
(n)~C 2!. ~15!

If the gas also has a macroscopic velocityv, we introduce
its dimensionless counterpart as~in a monatomic gas the
speed of sound isA5kBT/3m)
4-2
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Vi5A m

2kBT
v i5A5

6
Ma. ~16!

In the distribution function~14!, Ci is now replaced byCi
2Vi .

Let us first assume that the macroscopic velocity vanis
at the body. The influx of particles is then calculated fro
Eqs.~2! and~14!. For symmetry reasons it can be written

N( i )5S 11
bN

2

p^ i j &

p
n^ inj &DNM , ~17!

bN5E
0

`

B̂~C 2!C 5e2C 2
dC5

1

2E0

`

B̂~x!x2e2xdx. ~18!

bN51, if only the first term in the expansion~15! is re-
tained. This is usually a good approximation.

For the influx of kinetic energy we similarly obtain

E( i )5S 11
3bE

4

p^ i j &

p
n^ inj &DEM , ~19!

bE5
1

6E0

`

B̂~x!x3e2xdx. ~20!

bE also takes the value 1 if just the lowest term is kept in
Sonine polynomials expansion.

V. EQUILIBRIUM TEMPERATURE IN SHEARING

A. Arbitrary body

We introduce a purely geometric tensor, characterizing
shape of the body,

n^ inj &5
1

SE ~ninj2
1
3 d i j !ds.

The eigenvalues of the tensorn^ inj & lie in the interval
@21/3,2/3#. We note thatn^ inj & vanishes for a sphere.

From Eq.~11! we find the net total influx of kinetic en
ergy as

aeatF11
3bE

4

p^ i j &

p
n^ inj &2

Tw

T S 11
bN

2

p^ i j &

p
n^ inj D GSEM .

~21!

If the temperature of the body is kept the same as that of
gas, there is a nonvanishing net influx

b

4
aeat

p^ i j &

p
n^ inj &SEM . ~22!

Here (b51, if only the first term in the Sonine polynomia
expansion is retained!,

b53bE22bN . ~23!

As terms to second order in the mean free path are
glected we find the equilibrium temperature~13!
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b

4

p^ i j &

p
n^ inj &DT. ~24!

As n^ inj & vanishes for a sphere, its equilibrium temperatu
is the same as that of the surrounding gas.

B. Axially symmetric bodies

For an axially symmetric body, with axisN, the tensor
n^ inj &5aN^ iNj & , where

a5
3

2

1

SE F ~n•N!22
1

3Gds. ~25!

For a flat body,a51. For a needle-shaped body,a521/2.
For a sphere,a50.

Let us, in particular, consider an axially symmetric bo
in plane shear flow. In suitable coordinates, the only non
nishing component of the velocity gradient isvx,y.0. Let us
denote the polar angles (z is the polar axis! of the axial
direction of the body byu,w. The equilibrium temperature is
then

Tw5F11
ba

4

pxy

p
sin2u sin~2w!GT. ~26!

A needle-shaped body (a521/2) will have an equilibrium
temperature, higher than that of the surrounding gas, if
axis of the body points into the first~or third! quadrant in the
xy plane, but lower than that of the gas, if the axis points in
the second~or fourth! quadrant.

If instead the body is kept at the temperature of the s
rounding gas the total rate at which heat is transferred to
body from the gas is@EM , the influx from a Maxwellian, is
given by Eq.~7!#

ba

4
aeat

pxy

p
sin2q sin~2w!EMS. ~27!

Needle-shaped bodies absorb heat when their axes point
first ~or third! quadrant. They emit heat when their axes po
into the second~or fourth! quadrant. For flat bodies the situ
ation is reversed.

VI. ADDING HOMOGENEOUS FLOW

When besides the shearing the gas also has a macros
velocity, we have, to the lowest order in the shearing, t
contributions,

f 'nS m

2pkBTD 3/2

exp@2~Ci2Vi !
2#1nS m

2pkBTD 3/2

e2C 2
f.

~28!

In the absence of shearing we find to second order in
Mach number,
4-3
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N( i )

NM
511V n

2 ,
E( i )

EM
5~11V 2!1

3

2
V 2n^ inj &eiej .

Adding the two effects we have@e is the unit vector in the
direction of the flow; Ma is given by Eq.~16!#

Tw

T
511

10

9
Ma21S 5

12
Ma2eiej1

b

4

p^ i j &

p Dn^ inj &. ~29!
a-
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