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Equilibrium temperature of a convex body in a free molecular shearing flow
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It is shown that the equilibrium temperatufg, of a high conductivity axially symmetric convex body in a
simply shearing gas of temperaturés given byT,,/T=1+(Ba/4)(p,/p) sirtgsin(2p), 6, ¢ are polar angles
of the axis of the bodyZ is the polar axis a is a geometric shape factor of the bo@yhich vanishes for a
spherg and 8 takes the value 1 if only the lowest order Sonine term is retaipésithe pressure angl,, the
viscous pressure. The body is assumed small compared to the mean free path, which is small compared to the
length scale of the velocity field.
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I. INTRODUCTION larly reflected. We further assume that the surface of the
body is characterized by the energy accommodation coeffi-
A small body in a gas with a temperature gradient expecienta,. See Kogari8] and Eq.(10) below. The gas is taken
riences a force. This is the well-known phenomenon of therto be monatomic.
mophoresis. The perhaps simplest case is where the body is
small compared to the mean free path which in turn is small II. METHOD OF APPROXIMATION
compared to the length scale of the temperature field. The

force is then caused by the non-Maxwellian nature of thel’he sphere is large compared with the size of the body, but

molecular distribution function, see Waldmaitq.
. . . small compared to the mean free path. We can thus neglect
In this paper we point to an analogous phenomenon in 3 s ;
) RS : mutual collisions of the gas molecules in the sphéree
shearing gas. For simplicity, we consider the case where the 2 O
. o molecular flow. By the Liouville equation it follows that the
body is small compared to the mean free path which in turn

is small compared to the lenath scale of the velocity field Andistribution function for a molecule colliding with the body

) P 9 . y " has the same value as it had when the molecule entered the
exterior transfer of heat to or from the body is shown to beslphere
needed to keep its temperature the same as that of the su " The molecules, which have collided with the body, give

rounding gas. If there is no such exterior heat transfer, the .
A ; Lo on the surface of the sphere a small, strongly peaked, contri-
body will, in a stationary situation, take on a temperature_ . e . . )
different from that of the surrounding gas. For a Conferencebutlon to the distribution function. After collisions with other
: g gas. molecules they will have a smeared out and very small in-

report of this work, see Ref2].

Bell and Schaaf3]—see also Schadfi]—calculated the fluence on the ingoing molecules. So for the incoming mol-

PR ; . : ecules it is a good approximation to take the distribution
heat transfer to an infinite circular cylinder with a diameter :

: . function to be unaffected by the presence of the body.
small compareq to the_ mean free path in a gas with tempera- When the body is absent, the problem is well known. As
ture and velocity varying on a scalg Iarge compared to th(\e/ve assume the length scale of the velocity field to be large
mean free path. They found a contribution to the heat trans; '~ " 5o e oo ot first-order Chapman-
fer from the shearing of the gas. They also showed that th%nslfog theory applies path, P

equilibrium temperature of the body was affected by the The distribution function of the outgoing molecules is

tsr?ee}inagsogge]i %isé -I—s()térni\tl?;]c;\;\dzdg; ?;i;heh%rﬁsﬁ]r:nz%tmﬁ)und from the appropriate boundary conditions. We assume
Y y b " a simple Maxwell type of boundary condition, where a frac-

Due to the tensorial nature of the shearing, there will bet. .
: on . of the molecules are reflected diffusely as a Maxwell-
no net heat exchange, when the body is a sphere. For tha

reason, we consider bodies of arbitrary shape, in particul 1an with temperatur@, and the rest are reflected specularly.

axially symmetric bodies, in the present work. As the body isﬁé(sl'(f]'tlé’ :Eg g'usttvr\'lglrjé'onnqumn;“g;f tﬁg ;Zerf:é);hgﬁgy ;::":'
small compared to the mean free path it is a good apprOXifaken non-negative '
mation to assume free molecular flow in a region surround- 9

Let us formally introduce a sphere surrounding the body.

ing the body, see Birfl5] and Waldmanrj1]. For a general m 312
review of free molecular flow, see Schadf, Cercignan{6], f(C)=(1—a,)f(C—2(C-n)n)+ aan(m)
and Sond7]. The body is taken to be convex, so that there el
are no multiple collisions with its walls. mC?
We use the Maxwell boundary conditions at the surface, XeXp( - 2kBTr)’ 1)

assuming that a fractioma, of the incoming particles are
diffusely reflected, whereas the fraction{k,) are specu- m is the mass of the molecul€s, is the temperature of the
diffusely reflected molecules, atg is the Boltzmann'’s con-
stant. The parametey, is given by conservation of particles,
*Email address: lhs@mech.kth.se see Eq.(5) below.
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l1l. EQUILIBRIUM TEMPERATURE Equation (10) relatesT, and T,,. They coincide whery,
=1.
As a consequence, we obtain the net influx of kinetic
For a general distributiori, the total flux of incoming energy[we have here used E¢6)]
particles is(see Kogari8])

A. Net influx of kinetic energy

E=aca [Ei)—Em(Tw) 1= @ca (E(j)— 2kgTyNqi)) -
N(i)z—f (C-m)fd3C. 2) 1D
n-C<0

We have thus been able, for an arbitrary distribution function
It is now our object to express the net influx of kinetic energyf, to express the net influx of kinetic energy in terms of the
in terms of the distribution function for incoming particles, distribution function for incoming particles only.
which, in the approximation considered, is unaffected by the
presence of the body.

B. High conductivity bod
The Maxwellian distribution is written as g y y

Let us now assume that, and «, are constant, and the
2 thermal conductivity of the body is so high th&}, is uni-
) 3 formin the body. The net total influx of kinetic energy to the
body is (S is the area of the body

fO=n

2 7TkBT

Here,n is the number density of moleculds; is the Boltz-
mann constan(T is the temperature, and is the molecular f E ds=a.a S[E_<—2k T N_-]. (12)
mass.C;= {Vm/2kgTC; is the dimensionless molecular veloc- A B
ity, whereC; is the ordinary molecular velocity. For a Max- _
wellian distributionN ;) takes the value The overbar denotes surface averégeS [ f ds.
At stationary conditions, the temperature of the body is

N = [ kgT 4 thus
m=n 2mm’ )

The surface of the body has the temperatlife The Tw=
diffusely reflected molecules have the temperaflire Two
densitiesn,, ,n, are defined by

(13

For an arbitrary distribution functiofi we have found the
\/kBTr \/kBTW equilibrium temperature of the body in terms of the distribu-
=ny (5)  tion function for incoming particles only, which in the ap-
proximation considered is known.

2mm’

The first of these relations ensures conservation of number of
particles. IV. CHAPMAN-ENSKOG DISTRIBUTION FUNCTION

The total influx of kinetic energy is In a pure shearing flow, to first order in the mean free path

the distribution function is given bysee Chapman and

m ~
En=- EJ . OCZ(C' n)fd3C. (6)  Cowling[9]; B(C?) depends on the molecular fordes
n-C<
In particular, for a Maxwellian it takes the value f=£0) 1+I§(CZ)C<iCJ—>% ' (14)
p
EMZZkBTNM . (7)
Pij =~ 2pv j)

According to the Maxwell boundary condition4), the
outflux of kinetic energy is given by is the viscous pressure tenspiis the pressurd.- - - ) stands
for the symmetric traceless part and comma for partial de-
rivative. v is the macroscopic velocity field.

The temperature of the diffusely reflected particles is re-_ B (here normalized so thap=1) is usually expanded in
lated to the temperature of the wall via the energy accommo>°Nine polynomials,
dation coefficienta,. To define it, let us first, in analogy

=~

Emy=1—a)Eg+aEu(T)). (8

with Eq. (8) introduce B(CZ):EO B, SM(C?). (15)
Ew=(1-a)Ej+aEu(Ty), 9
E _E _ If '_che gas also has a macroscc_)pic veloaitywe _introduce
Q= 0~ (100 s d|menS|0nIes_s counterpart &s a monatomic gas the
Eiy~Ew) speed of sound i§5kgT/3m)
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BN
Vi— mvi— 6 a.

In the distribution function(14), C; is now replaced by
V.

(16)
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B p(lj)

TW—(1+ o nan J>)T (24)

As n(n;, vanishes for a sphere, its equilibrium temperature
is the same as that of the surrounding gas.

Let us first assume that the macroscopic velocity vanishes

at the body. The influx of particles is then calculated from
Egs.(2) and(14). For symmetry reasons it can be written as

Bn p(l])

1+2p

Neiy= n<|n1>>NM, (17)

© 1(>=,
Bsz B(cz)c5e*02dc=§f B(x)x%e *dx. (18
0 0

Bn=1, if only the first term in the expansioflb) is re-
tained. This is usually a good approximation.
For the influx of kinetic energy we similarly obtain

3Pe P

”<i”1>)EM'

Be= GJ B(x)x e *dx. (20

Be also takes the value 1 if just the lowest term is kept in the

Sonine polynomials expansion.

V. EQUILIBRIUM TEMPERATURE IN SHEARING
A. Arbitrary body

B. Axially symmetric bodies

For an axially symmetric body, with axiN, the tensor
ninj=aN;N;y, where

_31f
a=353

1. For a needle-shaped boays — 1/2.

1d
§ S.

(n-N)?— (25

For a flat bodya=
For a spherea=0.

Let us, in particular, consider an axially symmetric body
in plane shear flow. In suitable coordinates, the only nonva-
nishing component of the velocity gradientig,>0. Let us
denote the polar angle< (is the polar axis of the axial
direction of the body by, ¢. The equilibrium temperature is
then

a
Tu= 1+%%”sin205in(2¢) T

(26)

A needle-shaped bodyaE& —1/2) will have an equilibrium
temperature, higher than that of the surrounding gas, if the
axis of the body points into the firgor third) quadrant in the

xy plane, but lower than that of the gas, if the axis points into

We introduce a purely geometric tensor, characterizing théhe secondor fourth) quadrant.

shape of the body,

1
nnjy= f(n,n 5IJ)ds
The eigenvalues of the tensor;n;, lie in the interval
[—1/3,2/3. We note thann;, vanishes for a sphere
From Eq.(11) we find the net total influx of kinetic en-
ergy as

B
2N p ngn ‘”SEM

(21)

IBE p(lj)

L+ = M)~

el 1+

If the temperature of the body is kept the same as that of the

gas, there is a nonvanishing net influx

B Pijy——
ZaeaTTn<inj>SE,\,| . (22)

Here (8=1, if only the first term in the Sonine polynomial

expansion is retained

B=3Be—20Bn- (23

If instead the body is kept at the temperature of the sur-
rounding gas the total rate at which heat is transferred to the
body from the gas i§Ey,, the influx from a Maxwellian, is
given by Eq.(7)]

Ba

TaeaT%Sinzﬁ sSin(2¢)EyS. 27

Needle-shaped bodies absorb heat when their axes point into
first (or third) quadrant. They emit heat when their axes point
into the secondor fourth) quadrant. For flat bodies the situ-
ation is reversed.

VI. ADDING HOMOGENEOUS FLOW

When besides the shearing the gas also has a macroscopic
velocity, we have, to the lowest order in the shearing, two
contributions,

3/2
m e .
2 7TkBT
(28

3/2
) ex;{— (C, _Vi)z]"r‘ n

f m
M ke

As terms to second order in the mean free path are ndn the absence of shearing we find to second order in the

glected we find the equilibrium temperatuks)

Mach number,
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