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Charged particle layers in the Debye limit
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We develop an equivalent of the Debyedkal weakly coupled equilibrium theory for layered classical
charged particle systems composed of one single charged species. We consider the two most important con-
figurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided
by the classical fluctuation-dissipation theorem between the random-phase approximation response functions
and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and
polarization potentials, static structure functions, and static response functions are calculated. The importance
of the perfect screening and compressibility sum rules in determining the overall behavior of the system,
especially in ther—o limit, is emphasized. The similarities and differences between the quasi-two-
dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that
emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by
the individual layers exhibit a marked nonmonotonic dependence on the layer separation.
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I. INTRODUCTION sured by the traditional plasma parametey=
(Z2€%k)I(kgT) = k?/(27n) = (27nZ%*)/(kgT)?<1; note

Layered systems consisting of classical charged particlehe relationshipy=2I"2. The measure of thiterlayer cou-
have been realized in various laboratory experiments. Expling strength between the layers spaced a distdraqgart is
amples are ionic layers in Penning trdfis2| and layers of  characterized by the coupling paramet&fe?/(dkgT)
charged mesoscopic grains in complekisty) plasmag3]. =T'(a/d) = y/(«d).
The layer formation in trapped cryogenic ions was first Qver the past decade, substantial theoretical interest has
pointed out on theoretical grounds by Duli] and subse- peen directed at the static properties of layered systems. For
quently verified experimentalljl(d)]. Charged particle lay- charged particle bilayers the remarkable influence of the in-
ered systems are of importance in many other physical syserlayer coupling on the static response properties was first
tems such as semiconductor nanostructures, metalligointed out by @ierkowskiet al.[4], followed by the Monte
superlattices, nested nanotubes, etc. While these latter sysarlo studies of Rapisada and Senaf&fieThe structure and
tems are not classical, since the constituent electrons aghonon excitations of the bilayer crystal were analyzed by
fully or partially degenerate, a classical modeling providesGoldoni and Peeterg6] and by Falko[7], leading to the
in many cases, a good qualitative description. This is espeprediction of structural phase transformations. The structural
cially so with regard to thénterlayer correlations since in  features in the strongly coupled bilayer liquid phase were
most cases interlayer exchange and tunneling are negligibleubsequently examined via a classical hypernetted-chain cal-

While the number of lattice planed, in the different  culation by Kalman and co-workef8,9]. More recently,
layer configurations can vary, the two extreniés-2 and  molecular dynamics studies of both electron-electron and
N>1, (N—«), have attracted the most experimental andelectron-hole bilayers were done by Donko and co-workers
theoretical interest. An important parameter in all scenario$9,10], and Weis, Levesque, and Jordd].
is the plasma coupling parameter, representing the ratio of As to superlattices, interest in the effect of interlayer in-
the Coulomb energy to kinetic energy. If the system consistgeraction on the static response and screening potentials
of classical charged particlé®ns or graing the source of started with the early random-phase approximatiBiPA)
the kinetic energy is temperature and thiralayer coupling  treatment of Visscher and Falic¥2] for a zero-temperature
parameter I'=2%¢?/(akgT); a=1/\Jmn is the two- degenerate system. Going beyond the RPA, Kalman, Ren,
dimensional (2D) Wigner-Seitz radius. However, for the and Golden13] introduced an iterative scheme to generate
weak coupling ['<1) domain of interest in the present pa- interlayer pair correlation functions from known correlation
per, the length scale is set not by the Wigner-Seitz radius, biutinctions of the isolated 2D system. In contrast to the bi-

rather by the 2D Debye wave number27nZ2e?/(kgT). layer, a more systematic procedure for calculating the pair
In this domain, the coupling strength accordingly is mea-correlation functions in a superlattice has yet to be worked
out.
In this paper we have developed the equivalent of the
*Electronic address: golden@emba.uvm.edu Debye-Hickel (DH) weakly coupled equilibrium theory for
"Electronic address: kalman@bc.edu layered classical charged particle systems composed of one
*Electronic address: kyrkos@bc.edu single charged species. Layered ionic systems formed in
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laboratory experiments are necessarily strongly coupled andence on the interlayer separation distaddhat prevails in

are therefore not well described by the present calculatiorboth configurations. We invoke compressibility sum rules for
Semiconductor bilayers and other fully or partially degener-bilayers[9,15—17 and superlatticegl6,17]. With the aid of

ate systems are, on the other hand, mostly weakly coupledhese sum rules, we analyze the long-wavelendgth-Q)

here the classical DH theory would provide a qualitativet  limit of S;;(k) and the corresponding asymptotic—)

in the absence of a proper treatment of the exchange, quabehavior ofh;;(r). Formally, the compressibility rules ex-
titatively unreliablé insight into their static behavior. Never- hibit quite different structures for bilayers and superlattices
theless, the DH calculation is of fundamental theoretical in-and as a result the asymptotic—¢«) behavior of the pair
terest, for it provides the only exact solution for the correlation functions for the two configurations is fundamen-
correlation and structure functions in layered systems and asally different. From the physical point of view, these differ-
such illuminates the interplay of the interparticle couplingent behaviors can be understood by contrasting the quasi-
and interlayer separation. We consider the two extréane  two-dimensionality of the bilayer with the quasi-three-
most easily tractabjeand, at the same time, also the mostdimensionality of the superlattice. Conclusions are drawn in
important configurations: the bilayer and the infinite super-Sec. IV where the similarities and substantial physical differ-
lattice. As much as it is possible, we attempt to parallel theences between the bilayer and superlattice are discussed.
treatments for these two systems, emphasizing both the simi-
larities and differences.

Our model is devoid of all the possible complexities that
arise from an asymmetry between the layers. We assume that A. Response functions
all charges, masses, densities, and layer separations are iden- : . -
tical. Thge quantities of interest that weyfocuspon are the static We consider a bilayer model, consisting of two 2D layers

density response functiop(k), the related static dielectric of charged partlc!e$v\nth Z=1) of eq.“"’?' areal den3|t|a$
. . separated by a distanck Each layer is immersed in a neu-
function e(k), and, most notably, the static structure func-

tion S(k); k is the in-plane wave vector. In the case of thetraIIZIng background of opposite charge. The charged par-

bilaver these quantities are in fact matrices in the tWO_ticIes obey classical statistics. The bilayer is isomorphic
yer, q to a two-component plasma and its interaction matrix

dimensional layer space; for the superlattice, they are either _ _ 2 _
infinite-dimensional matrices or, more commonly, depend on‘ilemengs are ¢1(K) = dop(k) = 2me7/K,  h1a(K) = d(K)
" . D : = (2me“/k)exp(—kd). With the aid ofg,;; (k) andy;:(r), the

the additional wave vectay, portraying the periodic varia- densi f ] h d'JI X

tion along the superlattice axis. s_creenidto_tal)_ ensity reiponseoI lrj]ncftlo"n, the |e§ctr|c_: ma-
The DH expressions for thg;,(k), S;»(k) elements of ﬁrel)é Soijn(s)’--Izi)m(;/;rzssgii:gn)s,tﬁjnct;de ull(external density

the bilayer structure function matrix and their superlattice PONSExij '

countgrpart§oo(k), Spi(k) have already been reported in a e (K)=68; — ¢ (K)xi; (K), (1)

preliminary study by the authors and Réd]. In the present

paper, we elaborate on the derivation of these matrix ele-

Il. CHARGED PARTICLE BILAYERS

ments and then go much further in several respects. It is not Xij (K) =X (K) 7 (k). @
our purpose to give a detailed account of the physical infor-
mation that can be gleaned from the structure functj8r, 7ij(K) = 8+ ¢i1 (K) x1;(K). 3

but rather to demonstrate the overall behavior of the bilayer
and Supel’|attice structure funCtionS and their Companion paigummation over repeated indices is understood.

correlation functions, in particular their differences and simi- gy purpose in this paper is to calculate the structure and
larities. This can, to some extent, be accomplished via thgaijr correlation functions to lowest order in the coupling
compressibility sum rulefd,15-17, but a more explicit dis-  parametery. This is clearly equivalent to the customary DH
play can be provided by the Debye calculation of the presenipproximation. To this order the fluctuation-dissipation rela-
paper. - ) o tions link the (k) matrix elements to the Vlaso(RPA)
Addltlo_nal quantities of interest are the polarization pO'Xij(k) matrix elements. In turn, in the Vlasov approximation
tential [®;(r;d)] and the (total screened potential the screened response functigp(k) is identical to the re-
[®(r;d)] in the different layers generated as a response tgponse function of the noninteracting gas and is necessarily
the presence of a charged impurity placed in one of the layeiagonal[18]. This feature can be adopted as the starting
ers. One of the convenient concomitants of the Debye appoint for the calculation,
proximation is that these potentials are directly related to the
pair correlation functions;;(r) on the one hand, and to the Xii(K)=—pns. (4)
total correlation energy of the system on the other. N v
The plan of the paper is as follows. Sections Il and Il
discuss bilayers and superlattices, respectively. For both co
figurations, we derive the DH expressions for the intralaye
and interlayer structure functiop§;; (k;d) ] and we generate
the corresponding equilibrium pair correlation functions Xij (k) == Bn;;(k), )
[hij(r;d)] and accompanying screened and polarization po-
tentials. We discuss their remarkable nonmonotonic deperwhence from Eqgs(5) and(3),

r@_z 1/(kgT). The full density response matrix is then calcu-
Ilated from Eqs(2) and(4),
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~ ~ 1
(K)= 72K) K1l (62
711\K) = 122\ K) = — —_ 08 —
(1+¥) 2~ exp( — 2Kd) N = |_Sul
- —— T ----3=10
k exp( —kd) P 3 G I p— =05
712K) = 121(K) = — = —, (6b) ¥ 2 - d=0.1
(1+k)%2—exp( — 2kd) ©“ > S k)
O ———===== iyl e
(k=k/k,d=kd). The matrix elements - PP sy L
1(1+2d Wl
7711(k:0)—1:—§ =, (78
l+ d 0 1 g 3 4
k
k=0)=— = 7b ; . .
71 ) 2(1+4) (7b) FIG. 1. Bilayer static structure functior®,(k) and S;,(k) as

functions of dimensionless in-plane wave numkerk/ « for layer

represent the total screening charges residing in layers 1 ars@parationsd=«d=0.1, 0.5, 1.0;x=2mnZ%? (kgT) is the 2D

2, respectively, surrounding Z=+1 impurity charge in Debye wave number.

layer 1. Expressiong7a and (7b) exhibit the expected ) ) ) ) )
monotonic dependence on the layer separati¢to be con- where the classical bilayer is collapsed into an isolated 2D
trasted with the corresponding nonmonotonic expressiotayer, the structure function$,,(k)=(1+k)/(2+k) and

(36) for the superlattice Si(k)=—1/(2+Kk) result from Eqs(9), (6a and(6b). This
is by way of saying that in thd=0 limit, there is no longer
B. Structure functions any distinction between the intralayer and interlayer pair cor-

Invoking the classical fluctuation-dissipation theorem'elation functionshyy(k) andhyy(k). In this limit, nhys(k)
(FDT) =nhy,(k) =—1/(2+Kk), which we can identify as the DH
pair correlation function for an isolated layer of density. 2
1 It is instructive to rotate physical quantities into the space
Sij(k)=— ﬁ){ii(k) ®) spanned by th&_ (k) in-phase(+) andS_(k) out-of-phase
(—) directions: S.. (k) =S;1(k) = S;5(k). One then obtains
and the RPA full density respongg), one readily obtains the compact DH expressions

Sij (k)= m;j (k). 9 %
S.(k)=

At long wavelengths, Eqg9), (6a and (6b) reproduce the e

S : 1+k+exp —Kd)
RPA limit of the expressions

Then in the long-wavelength limit, one obtains through

1 1 1 a2 - O(k?)
Su(k—0)=———+—| 1+ ———— |k+0(k?),
2L-N+d 4 (L—N+d)? " e
(109 S+(k—>0)=§—(1—d)z, (1239
1 1 1 d? - e
Sifk—0)=—————+—|1-——— [k 1 d> k ds(d—Z)k2
2L-N+d 4 (L—N+4d)? S_(k—=0)= + +

143 (14322 (143312
+0(k?), (10 (12h)

in agreement with the RPA limits of the in-phase and out-of-

derived from the compressibility sum rulg%15-17. In this phase compressibility sum rulda5] formulated through

limit, the direct inverse compressibility L=Lq; ~ ~ )
=p(dP,/dn;)=B(IP,/dn,)=L,, equals unity and the O(K?) andO(k), respectively.
trans-inverse compressibility N=Lq,=8(dP1/dn,)
= B(dP,/dn;)=L,, equals zero. In deriving Eq$10a and C. Pair correlation functions and potentials
(10D, it should be emphasized that the expansion of The pair correlation functionk;;(r) are calculated from
exp(—kd) holds only in the domaik<1/d; in fact, for large
d values this expansion is not very meaningful. ©

In the d—< limit, we observe thasS;,(k)—0 and we hij(r)ZVJO dkkJo(KF)[S;j (k) — 8] (13)
recover the Debye structure functi® (k) =k/(1+k) for
the isolated 2D layer. In the more interestidg=0 limit Figure 1 shows the respective behavior of Bgk) struc-
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d
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r FIG. 4. Bilayer screened potentia®{?(r,d) and ®(r,d)

FIG. 2. Bilayer pair correlation functions hll(r) (normalized with respect to their values&t: 1) as functions oﬁ
=(1IN)Z [S1(k)—1]e%" and hy(r)=(1N)=,S;(k)e* " as  forfixedT=0.25, 0.5. Note that while{?(r,d) is a monotonically
functions of dimensionless in-plane distaficer for layer sepa- decreasing function af, ®M(r,d) is not. The physical explanation
rationsd=0.1, 0.5, 1.QN is the number of particles per layeAlso is facilitated by the inset showing the variation of the two separate
shown is the behavior of the screened potentials known to drop oféharge contributions td$"(r,d), one coming from its own layer 2
as 1t3 for r—o in the plane of the bilayer. The inset showing and the other from layer 1 where the unit charge impurity resides.
T3h,4(r) andi3h,,(r) as functions ofi for r — is generated from
Egs.(14a and(14b). the screened potential. Figure 3 shows the behavior of the

polarization potential{(r) = (r)— &1 (r); &1 is the
ture fUnCtionS, while Flg 2 shows the behavior of the COIr€-external potentia| due So|e|y to the |mpur|ty At the point
spondingh;;(r) pair correlation functions. The divergence of \yhere the impurity resides, the polarization potential
hll(r—>0) is a_well-known defect of the Debye approxima- 5(11)(r:0):(,8n/A)2k¢1m(k) e (K) boy(K) is related to
tion. The relationh;;(r) = — 1+ exd — BW;(r) ]~ — BW;;(r) . T
can be interpreted as defining the potential of the mean fielfl® corrglatlon energy Ecor=2iEii +(1/2)2;E;j
Wi;(r). Itis the general feature of the Debye approximationiZElelz“LEElZ’ . hEijk:n Ekﬁbij(k)hij(k) o (i#1), Eoii
thatW;;(r) is identical tod{"(r), the screenedotal) poten- =(n%2) L‘fli;( )i )'_ -cor CAN NOW DE expressed as
tial generated in layarby an impurity of unit charge placed Ecor=NA®3;”(r=0). Similar to the 2D isolated monolayer
in layeri. Consequently, Fig. 2 also portrays the behavior ofin the Debye approximation, the intralay@d, 22 contribu-
tions are logarithmically divergent, whereas the interlayer
0 (12, 21 contributions are finite; the usual remedy for the
J; —<21) - logarithmic divergence is to invoke the customadhy in-
PR = verse Landau distance cutoff.
We turn now to the analysis of thel dependence
D of ®"(r;d) [or equivalently h(r,d)] at a fixed r.
]7 While ®{"(r,d) is a monotonically decreasing function
of d, ®{)(r,d) is not (see Figs. 4 and)5The physical ex-
planation for this rather counterintuitive behavior can be un-
derstood by referring to the inset to Fig. 4 which shows the
T L B e variation of the two separate charge contributions to
B2 %. / CD(Zl)(r,d), one coming from charges in its own layer 2 and
j’/// s / ] the other from charges in layer 1 where the impurity resides.
]

0 05 1 15 The first contribution is negative, because it is generated by
d - the negative screening charge; it decreases in absolute value

with increasingd because the amount of total charge in layer

2 decreases with increasing layer separaficin Eq. (7b)].

_ _ The second contribution is positive because the net charge in
FIG. 3. Bilayer polarization potentialb{"(r) and®§"(r) as  layer 1 is positive; it decreases with increasthpecause a

function of dimensionless in-plane distaricéor layer separations  |arger portion of the screening charge accumulates in layer 1

d=0.1,0.5, 1.09{" is the polarization potential generated in layer with increasing layer separati¢of. Eq.(7a)]. The combina-

j by an impurity of unit charge placed in layieiThe inset shows the  tion of these two effects leads to the nonmonotonic behavior

variation of ®V(r=0) with d. as shown in the inset to Fig. 4.

0 05

~t = |—
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i ")‘NE (kaexdiaz-z), (16

wherez;=jd (j=0,£1,%2,...) locates th¢th layer above or
below the reference lattice plane &£ 0. The2* notation
indicates that the summation is restricted to the first Brillouin
zone. We observe that for the infinite superlattice, quantities
such ass;j(k), Sj(k), etc. remain invariant under translation
of their layer indices, e.ggj;=&;_j -

Proceeding as in Sec. Il, we introduce the interaction po-
tential

2

$(k,q)=——F(k,q), (17)

FIG. 5. Bilayer three-dimensional perspective showing varlatlonwhere the well-known superlattice form factor
of hy(r,d) with bothT andd. Note the strong nonmonotonic varia-
tion of hy5(r,d) with d for larger values. . sinh kd

Flka)= coshkd— cosqd (18)

D. Asymptotic behavior
is the layer-space Fourier transfofprescribed by Eq15)]
of exp(—kjz—z|). The superlattice counterparts of Eqs),
I@ and(3) are then given by

It is known that forr — o the screened potential in a 2D
layer drops off like 17°, reflecting the fact that an impurity
charge and its screening cloud constitute a quadrupole as t

leading contribution to their combined charge distribution. In 1 —

the bilayer the quadrupole moment is supplemented by a s(ka)=1-¢(kaxk.a), 19
dipole moment in the direction perpendicular to the layers x(k,q)=x(k,q) 7(k,q), (20)
whose potential also drops off ag 1for r— in the plane

of the bilayer. The asymptotic expressions resulting from Eqg. 7k, q) =1+ ¢(k,q) x(K,q); (21)

(13) display this expected behavi(see inset in Fig. Pwith
coefficients generated from tif@(k) terms in compressibil- y(k,q) and x(k,q) are the screenetotal) and full (exter-

ity sum rules(109 and (10b), nal) density response functions, respectively, amk,q)
i 21 =1/e(k,q) is the inverse dielectric response function.

s v d Paralleling the weak coupling calculation of Sec. Il, Egs.
limThyy(r)=——| 1+ ol (148 (20), (21), and the density response of the noninteracting gas,
r—om

x(k,q)=—pn, (22)
i o
o vy d yield the full density response and inverse dielectric func-
r— 1+d
x(k,q)=—pnn(k,q), (23
whereT = «r.
1
n(k,Q)= ————. (24
Il. SUPERLATTICES 1+ ,EF(k,q)

A. Response functions

We turn next to the calculation of the DH structure func- 1he zero-temperature degenerate RPA equivalent of 3.
tions for the infinite superlatice consisting M(—)  has been calculated in R¢l2].
equally spaced electron plasma 2D monolayers, each of large
but bounded are@d and parallel to thexy plane;d is the B. Structure functions
spacing be_tween adjacent lattice planes a_rid the mean Invoking the superlattice static FD[L9],
areal density of each monolayer. The periodic structure of the
infinite superlattice configuration allows one to introduce di- 1
rect and inverse Fourier transformations along thexis, S(k,q)=— an (k,q), (25
e.g.,

and the RPA full density respon$23), one readily obtains

sk@)= 2 ey(Wexd-iaz-2), (19 Stk = n(k.q). 26
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At long wavelengths the structure function assumes the fornm Sho 02
ped NI e on s S
T -’_,r’
1-cosqd 2+cosqd  d%k? o e
S(k—0,q)= @, Sl , \ 0=
1-cosqd+d (1—cosqd+d)? 6 ¥ e = " —
(27) L./
Il
consistent with the out-of-phase compressibility rule 025 a | =
0 4 — Q
1—cosqd gc /772 0 0.2 0.4 0.6 0.8 1 v
S(k—0,0)= = 5 0 T e e o ) Ao 0 =
L(g)(1—cosqd)+d / .17 /__»—;7"" =2
32 025 |- o A // 3
2+ cosqd d3k i =
+ L ; (29 | P P
[L(@)(1-cosqd)+d)* © I s _— o
. /4\// -=-- ad=10
9P, . ward \ ----- - 2=05
L(q)= ,B_EI:J . exp[—lq(zi—zj)] (29) ol S sy —1 o
-02
. . i e . . .. 0 1 2 3 4 5 6
is the inverse compressibility function that in the RPA limit i
is equal to unity for all values ofi. In theq=0 (in-phase
limit, the system exhibits 3D one-component-pladi@&P- FIG. 6. Superlattice static structure functioBgy(k), Sgi(k),
like behavior portrayed by the long-wavelength expansion ofnd Sy,(k) as functions of dimensionless in-plane wave nuniber
the structure function, for layer separationd=0.1, 0.5, 1.0. The inset, generated from Eq.
) 4 2 (36), shows the nonmonotonic variation &,(k=0)| with d for
S(k—0g=0)= k__ k_ Kk3pd (30) layer indicesm=1,2,3,4. Note thaB,,,(k=0) also represents the
(k=00=0)= K35 K3p 12 total charge residing in lattice plama+ 0.
consistent with the in-phase compressibility sum fé]; 1
k3p=Amne?Bld is the 3D-like Debye wave number for Soo(k)=1— , (39
the superlattice. \/ 1+%2+ 2k cothkd
In order to see the behavior of the individual lattice
planes, one can generate the hierarchy of structure functions 1 1+% cothid
=0+1.+ —— Cco
Som(k), (m=0,=1,%£2,...) from Eqgs{(24), (26), and Soa(k) = — sinhkd{ 1— . (39
K V1+K2+ 2K cotrkd

Som(K) = 2 S(k,q)exp(igmd)

Figure 6 shows the variation of the structure functions

e - Soo(K), Soa(K), andSp(k) with .
" 27 wldqu(k,q)eprqmd). (32) ' ﬁ\jt long wavelengths the small-expansion of Eq(32)
yields

[m|

Carrying out the integration, one obtains
[ d
-~ w1 Im k—0)~dom— \/ —| (1+d)— Vd(2+d
kd Z(k d) 1 Smhkd SOm( ) om 2+a ( ) ( )

Som(K) = dom— — _ ~ _
VK2(k,d)— k d?| 3+2d |m[(3+d)|_,
X{ 1= — + k). (36
(M=0,+1,%2,..) (32) 6ld2+d)  Vd2+d)
L~ We note that the matrix elementsyy(k=0)—1=
~ ~_ Sinhkd = _ )
K(k,d)= + coshkd. (33 —+vd/(2+d) and gn(k=0) (m==1,+2,+3,...) given di-
k rectly by Som= 70om from Eq. (36) represent the total screen-

ing charges residing in lattice plane 0 and in all the other
It is of some interest to display the intralayer=0 and (m#0) lattice planes, respectively, surroundingZa +1
nearest neighbom=1 Debye structure functions individu- impurity charge in lattice plane 0. It is remarkable that, in
ally [14,194 contrast to the expected monotonic decrease of the screening

031107-6



CHARGED PARTICLE LAYERS IN THE DEBYE LIMIT PHYSICAL REVIEW E66, 031107 (2002

charge in thenth (m+0) lattice plane with increasing[cf. =
Eq. (7) for the bilayel, the charge exhibits a maximum at R
somed=d,, value(see inset in Fig. 6 The physical expla- — "W, 47 7 | | | - =05
nation for this behavior is discussed below. - =01
The nonanalytic behavior i exhibited in Eq.(36) is //4/
quite remarkable, especially so when compared with Egs.__ _; [l /¥ [ _
(103 and (10b) for smallk and the combination of Eq$9), =% 7’/."\ oo S,
(6), and(7) for arbitraryk. This feature notwithstanding, the < i/ S Bo _
total S(k,gq=0) reverts to its expected analytic behavior, / /,’ <6 \ Ve
o5 L) S ANV |
o / I{ Q? 2 BZ/' \\
|
S(k,q=0)= > Sym(k) -3 oL B —
m=—o ] 0 0.1 02 0.3 0.4 0.5
L T
sinhkd ~ 0 0.5 1 1.5 2
=1-——— > [K—yKZ2-1]™ r
kVKZ—1m="= FIG. 7. Superlattice pair correlation functiohgy(r), hg(r),
o and hg,(r) as functions of dimensionless in-plane distaificéor
sinhkd - I — layer separations=0.1, 0.5, 1.0. It also portrays the behavior of
=1+- [1_2 > [K- K2_1]|ml} the screened potentiaB{’(r), ®(r), and®(r); ®O(r) is
kVK?—1 m=0 the (total) screened potential generated in lageby an impurity of

unit charge placed in reference layer 0. The inset shows the varia-
tion of the exponential decay constaftg(d), B;(d), andB,(d)
calculated from Eq(42). The exponential decay consta@{d)

[which very nearly coincides witB,(d)] refers to the asymptotic
(m—x) behavior ofhy,,(r=0) along thez axis.

1

1-K+VK2-1

sinhkd 2 sinhkd

+ —_
T(\/Kz—l ~|<\/K2—1

=1

sinhkd 1
=1- = . (37)
k(K—1) F(k,0) Sboo(K)hoo(k). For the case of the infinite superlattice
I+ —— (with the 0 lattice plane relocated to the interior of the siack
K the correlation energy is therefore given By, = Z;E;
+(1/2)2; 4 jEijj=NEgo+ (N/2)27_ 1Eom . Then the polariza-
C. Correlation functions and potentials tion potential at the point where the particle resides,

— o _
We turn now to the equilibrium pair correlation functions ) (r =0)=(Bn/A) 2 Fom(K) 7mr(K) Bro(K), is related to
hoo(r), hoy(r), andhgx(r), which are generated from the correlation energy througBc, = (N/2)nAD ) (r=0).
Similarly to the bilayer and the 2D monolayer, the intralayer
N Ry _ Eqo contribution is logarithmically divergent, whereas the in-
Pom(r) on dkkJo(KM)Som(k) = om], (38) terlayerEo,, (M=1,2,...) contributions are finite. The polar-

and displayed in Fig. 7. The divergence lof,(r—0) is 0
again a well-known defect of the Debye approximation.

The development of the relationships among the superlat:
tice pair correlation functions, the potentials, and the corre-  -es
lation energy follows the same pattern as in the bilayer
case. Similarly to the bilayer, the relationg,(r)=—1
+exg —BWom(r) 1= — BWym(r) can be interpreted as defin- s _
ing the potential of the mean field/y,,(r); in the Debye S
approximation\Wym(r) is identical tod{?)(r), the screened 8
(total) potential generated in lattice plameby an impurity
of unit charge placed in reference plane 0. Consequently, Fig
7 also portrays the behavior of the screened potential. Figure -2
8 shows the behavior of the polarization potentif’)(r)
=dO(r)—d(r); ®V is the external potential due solely
to the impurity. To see how the polarization potential relates ° o ¥ e :

to the correlation energy, we first observe that folNalayer _ _
structure with the O-lattice plane located at the bottom of the FIG. 8. Superlattice polarization potentiasi’(r), ®{°(r),

stack, the correlation energy i€qo,=NEg+=N_}(N  and®{(r) as functions of in-plane dimensionless distaficior
—mM)Eom; Eom=n?Zkdom(K)hom(K)(M#0), Ege=(n%/2)  separation distancé=0.1, 0.5, 1.0.

-1
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FIG. 9. Superlattice pair correlation functidn,,(r=0) as a 0 08 1 5 2
function of layer indexm for d=0.1, 0.3, 0.5. The inset indicates d
that asm—x, a 3D.-I|ke behavior similar to Eq39) prevails along FIG. 10. Superlattice screened potentialg”(r,d), ®{*
the superlattice axis.

(r,d), and(ID(ZO)(r,d) (normalized with respect to their valuesdat
o 1 2(0) . . =1) as functions ofl for fixed T=0.25, 0.5. Note the nonmono-
ization potentials®’(r=0) (m==1,=2,.) in the adja- tonic d dependence similar to that found in the bilayer configura-
cent lattice planes also remain finite. Unlike the bilayer,tion: the physical explanation is facilitated by the inset showing the
however, in thed—0 limit, the system assumes a 3D-like variation of the two separate charge contribution®#®(r,d), one
behavior marked by the disappearance of the logarithmic dieoming from its own layer 1, where the potential is measured, and
vergence Withtﬂ)o)(r—>0)~ezf<3|3. the_;ther from reference layer 0, where the unit charge impurity

resides.

D. Asymptotic behavior The above analytical expressions fBg(d), B,(d), and
. O : \ B,(d) are displayed in the inset to Fig. 7.
ior of the sgreened potentials is no't given by an inverse Comparison of5,,(k) andSp,(k) shows the expected de-
power law, since for —c the superlattice behaves like a 3D 5y of correlations with increasing. To analyze this point
bulk system. Indeed, fod sufficiently small @§—0), the  further, we have calculatetiy,(r=0). Its behavior as a
asymptotic behavior of thgm|=0,1,2,3,... hierarchy of function of the layer indexm is displayed in Fig. 9. As
screened potentials can be well described by the 3D OCRHn— «, one would expect that a 3D behavior similar to Eq.
like formula (39) prevails in thez direction. This is corroborated by the
- inset to Fig. 9 which also shows that ds-0, hy,(r=0)
hom(r—22) == BOR(r — %)~ Ar(1F)expl( — ByT) becomes proportional to (bA|d)exp(—|m/xspd). The com-
(39 parison of the decay constants along #hexis and in-plane
directions is shown in the inset in Fig. 7. There is no discern-
able difference between the decay consta)sand C per-
taining to ther and z directions, respectively, that would
indicate an anisotropy of the screening. A similar conclusion
was reached by Visscher and Falidd2].

In contrast to the bilayer configuration, the langbehav-

fitted to hgmy(r) computed from Eq938) and(32). Analyti-

cal formulas forA,,(d) andB,,(d) can be derived by equat-
ing the smallk Debye structure functiof36) to the smallk
equivalent of Eq(39),

An(d) k2

yBm(d)

Symn(K—0)~ S+ E. d dependence
m ~ O0m

——=|- (40 ) ]
2B, (d) As to thed dependence of thé,’(r,d), or equivalently
of thehg,(r,d), at a fixedr, one encounters a nonmonotonic

One obtains d dependence similar to that found in the bilayer configura-

tion (Figs. 10 and 11 Unlike the bilayer, however, the su-

Im| perlattice exhibits more pronounced extrema and the physi-

w3l (1+d)— Vd(2+4d) cal mechanism leading to the development of the extrema is

~ somewhat different. The difference originates from the pecu-
Am(d)=— B s — 0, (4D jiar d—0 behavior of the superlattice. In this limit, all the
(3+2d)+|m|(3+d) Vd(2+d) lattice planegan infinite number of theinshare the screen-

ing charge equally and therefore, in contrast to the bilayer,

the screening charge on each individual lattice plane goes to

~ 1+(2/d) zero. As the lattice planes recede from each other, the nearest
Bm(d)=v3 _ s — (42) layers assume their privileged role by acquiring the biggest
3+2d+|m|(3+d) Vd(2+d) share of the screening charge. Thus the screening charge in
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combined result of the nonmonotonic variation of the screen-
ing charge(peculiar to the infinite superlattiteand of the
effect shared with the bilayer as described in Seds#e
inset to Fig. 4.

Finally, we note a remarkable recursion relation that
makes it possible to generate the hierarchy of Fourier-
transformed interlayer pair correlation functiorg,(k)
(m#0) from hgy(k) andhgg(k). From Eq.(32) and the re-

lation Sy, (K) = Som+ Nhom(k), we observe that

o o hom(K) =[hoo(k) 12~ M hgy(k) 7M. (43)

A more illuminating way of expressing the same relationship
is by way of introducing the transfer function(k)
=hgy(k)/hoo(k) =K — VKZ—1; Eq.(43) then becomes

hom(K) =[t(k)]™hgo(K). (44)

In view of Eq. (26), similar recursion relations exist for
nom(K). The existence of the latter was postulated, but not
derived, by Visscher and Falicd2].

IV. CONCLUSIONS

In this paper we have developed an equivalent of the
Debye-Huckel (DH) weakly coupled equilibrium theory for
layered classical charged particle systems composed of one
single charged species. We have considered the two most
important configurations, the charged particle bilayer and the
infinite superlattice. The approach is based on the link pro-
vided by the classical fluctuation-dissipation theorem be-
tween the RPA response functions and the Debye equilibrium
pair correlation functioribilayer Eq.(8) and superlattice Eq.
(25)]. The DH results are of fundamental interest since they
are based on the only exact calculation available for layered
systems and, as such, elucidate the effect of the interlayer
separation on particle correlations.

We have calculated pair correlation functioms(r),
screened and polarization potentials”(r) and ®{(r),
static structure function§;;(k), and static response func-
tions x;j(k), 7;;(k) in layer space, and in addition, in the
case of the superlattice, in the Fouriér, g) representation.
The values of the latter in tHe— 0 limit are consistent with
the earlier derived9,15-17 perfect screening and com-

_ _ ) ] _ pressibility sum rules. With the aid of the sum rules one can

FIG. 11. Superlattice three-dimensional perspective showingynalyze the asymptotic behavior of the correlation functions
variation 0f hoo(r,d), hoy(r,d), andhoy(r,d) with both¥ andd.  and verify the expected algebraic® decay(for the bilayey
Note .the diﬁgrence in the behavior .bfas.a function ofl between  gn( exponential decaffor the superlatticefor r—. The
the bilayer(Fig. 5 and the superlatticéhis figure. monotonic decay ofi;(r) in r [or of S;(k) in k], character-
istic of the weakly correlated regime, prevails for all layer

separations. On the other hand, the rather unexpected behav-
these lattice planes increases to a maximum at some critic@r that emerges from the analysis is the marked nonmono-

separatiord,,, as can be inferred from the discussion imme-tonic dependence of the screened potential and of the corre-
diately following Eq.(36). Further increase ofl, however, lations on the layer separatiah In other words, in a certain
leads to a decrease of the screening charge for reasons digarameter domain an increase in the distance between layers
cussed in relation to the bilayer. This behavior is shown inleads to a locally enhanced screened potential or correlation.
the inset to Fig. 10. The extrema mﬁ?)(r,d) are now the In the case of the superlattice, for small values, the
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