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Effect of asymmetry on stochastic resonance and stochastic resonance induced
by multiplicative noise and by mean-field coupling
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In the paper, we investigate the effect of asymmetry of the potential on stochastic res¢@Bnéer a
model with an asymmetric bistable potential and driven by additive noise, the signal-to-noisgsN&pfor
a model with a monostable potential and driven by additive and multiplicative noises, and the SNR for a
mean-field coupled model with infinite globally coupling oscillators driven by additive noises. It is shown that
for the first model,the asymmetry of the potential can weaken the phenomenon of SR; for the second and third
models, a SR induced by multiplicative noise and a different one caused by mean-field coupling are found.
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I. INTRODUCTION height in the power spectrum to the noise background as a
probe of the stochastic resonance effect. Zhou, Moss, and
Noise-induced nonequilibrium phenomena in nonlineardung[11] have suggested the escape time distribution to de-
systems have recently attracted a great deal of attention ing¢ribe stochastic resonance. Jung anddga[12] described
Variety of Contexts{j_]_ In genera|' these phenomena involve stochastic resonance within the framework of nonstationary
a response of the System that is not on|y produced or erﬁtpChaStiC processe_s without restriction to small driVing am-
hanced by the presence of the noise, but that is optimized fdilitudes or frequencies, where they presented power spectral
certain values of the parameters of the noise. One example glensities and signal amplification as measures of stochastic
the “Brownian motors,” wherein for the Brownian motion in "€Sonance. _ ,
stochastic spatial periodic potentials the spatial asymmetry or However, the above. theorles.for StOChaSt'P resoné&@}s. :
noise asymmetry leads to a systematic transport whose ma%\?al with the symmetric potential system d“"?” by additive
oise, and SR is only induced by additive noise. When one
studies a practical problem, it is inevitable to meet the sto-
chastic asymmetric potential system, the system driven by

sys:)ergls .W'th ;‘:nlte or "f"f'”%e fgouplzd oscnlatorz, which multiplicative noise, and the stochastic coupling oscillators
probably is a phase transitigthe first order or second order  ygiem 'S0 one can ask how the effect of the asymmetry of

[3—5] or not[6]. For these systems, the most exciting is thatihe potential on SR will be, and whether there will be SR
a reentrant sec;ond order phase transition has been found fJyced by multiplicative noise and one by the coupling
a general spatially extended model by Van den Broeck, Pazmong different oscillators. In this paper, we will investigate
rondo, and Toral3]. Afterwards, this phenomenon has beenthese problems. Here we will use the SNR to represent the
found in a lot of systems with coupled oscillators. A third is phenomenon of SR. To solve the above problems, the SNR
the resonant activatiof¥], here the mean first passage time for system with asymmetric potential will be requiréske
(MFPT) of a particle driven by(usually whit¢ noise over a Secs. Ill, IV, and V. So we will first derive the SNR for
fluctuating potential barrier exhibits a minimum as a functionsystem with asymmetric potential in Sec. Il. Then in Sec. lll,
of the parameter of the fluctuating potential barigsually  we will study the effect of asymmetry of the potential on SR;
the flipping rate of the fluctuating potential barjiek fourth  and in Secs. IV and V we will show a SR induced by mul-
such phenomenon is the phenomenon of stochastic resonanigicative noise and a one by mean-field coupling respec-
[8-13], the one of interest to us in this paper, wherein thetively.

response of a nonlinear system to a signal is enhanced by the

presence of noise and maximized for certain values of the Il. THE SIGNAL-TO-NOISE RATIO

noise parameters. ) _ _ )

Since the stochastic resonance was proposed by Benzi and !N this section, we derive the formula of the signal-to-
co-workers[8] to explain the periodic recurrences of the NOise ratio for a stochastic systefonly driven by additive
earth’s ice ages, this phenomenon has been extensively ifise and in dimensionless foyrwith asymmetric bistable
vestigated from both the theoretical and experimental pointotential(see Fig. 1 In Fig. 1,w, andw_ are the transition
of view [9-13. rates fromx; to X, and fromx, to x; in absence of the

There have been many theoretical developments of stg2xternal signal. Itis clear that, #w_ . The mean first pas-
chastic resonance in conventional bistable systems. Mcage times fronx; to X, and vice versa are respectiv¢li4]
Namara and Wiesenfeld 0] have suggested a master equa- 1 rx y
tion f(_)r the popu_lauons. in two s.table states: They considered T, (X —Xp) = _f 2dyeu(y)/Df e U@/Dg, 1)
the signal-to-noise ratidSNR), i.e., the ratio of the peak DJx, E

nitude and even direction can be tuned by parameters of th
noise [2]. Another is the nonequilibrium transition for the
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R A 3 To the first order inA, from Egs.(3) and(4) we can obtain

(“_’+ , . D L Acosot
Wt—i + D M y (5)
W_
> | - ]
! WAL in which M= =T1/T., To=/2 Lexp[U®)
X 5 ~U@YDldydz T} = [27(y~2exp[Uy)~U@VD}dydz

T-=fﬁ;fy_xeXP[[U(y)—U(Z)]/D}dydz and TI=I§;f‘iw(y

, ] —2z)exp[U(y)—U(2)]/D}dydz

S e A ] We definen_=1-n,=[%_xp(x)dx, herep(x) is the

) % % stationary probability density. Then the governing rate equa-
tion is just

FIG. 1. Asymmetric bistable potential in dimensionless form.
The minima are ak,; andx,, the maximum at,. The transition dn, dn_

rates fromx, to x, and vice versa are/_ andw,, . FTE szl(t)n, —w' (t)n,

1 (x y =w_ —[w_(t)+w/ (t)]n, . 6
T,(X2—>X1)=Bf ldyeu(y)’Df er(Z)/DdZ, @ w_—[w_(D)+wi(D)]n, (6)
X2

—o0

whereD is the additive noise strength. The transition ratesSUbStItUtIng Ea(5) into Eq. (6), and solving equation, we

. . can get
arew. =1/T. . When adding the external signalcoswt we g
have the transitions ratém the adiabatic limit

) N (t[Xo,to) =[XzA cog wto+ ¢p1) — X1A cog wto— )
W’+=D[ f “dy expl[U(y) — Ay coset]/D} + AXg Sinwt—Xo+ 8y, ]~ (1)
y -1 +[ XA cog wt— ¢) — X,Acog wt+ ¢q)
><Jxexp{—[U(z)—AzcosM]/D}dz} ., (3 — AXg Sinwt+X], @
r_ X _ where Xo=D/(T_Qp), X1=M/(T_{JQ2+w?, X,
w’ D[deyexp{[U(y) Aycoswt]/D} —Q,D/(T_w ’_2_Q0+602), Xa=(Q1/0)Xe,  b=tg Yl
Qo) $1=tg (Qo/w), Qo=D([LT_]+[1/T,]), and

-1
% fy exp{—[U(z2)—Azcoswt]/D}dz) . (4) Q,=(M*/T.)+(M~/T_). From Eq.(7) the average auto-
—w correlation function can be computed as follows:

w (27w
(x(t 7)) = [ xcxce e

w 27w ) 10} 27w ) )
:Zfo lim (X(t)X(t+T)|Xo,to>dt:§fo lim [X{n.(t+7]x1,)n. (t]xo,to)

t0—>—oo to—‘—oo

+ XXM 4 (14 7]Xo, 1) N_(t]Xg, to) + X1 XN _ (t+ 7|1, )N (t]Xg,to) +X3N_(t+ 7Xp,t)N_(t]Xg,to) ]dt
=X3[ X5+ A?B; coswr+ (A?B,+B3)e” 7+ B,A? sinwre” 207+ BgA? coswre” 07
—2X1Xo[ X3+ A?B; cosw 7+ (A?B,+ Bg)e %07+ B,A% sinwre” 07+ BsAZ coswre 07— 2X]

+x3[1+ X3+ A?B, cosw T+ (A?B,+Bg)e” 07+ B,A?sinwre” 207+ BgAZ coswre” 07— 2X], (8)
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in which
M 1=X3X2— 2X1 X, X3+ 2X1 XX+ X5+ X5X5— 2X5 X,
M,=x5B;A%2— 2x,X,B,A%+ x5B,A?,
M3=x2(A?B,+ Bg) — 2X,X»(A?B,+ B3) + X5(A?B, + By),
M 4= Xx5B4A%— 2x,X,B A%+ X5B,A?,
and
Mg=Xx5BsA%— 2X;X,B5A%+ X5BsA?,
with
Blzg(xﬁ X3+ X3)— X1 X, cog ¢+ 1) — X1 X5 singh

—X,X38ing,,
1o o :
Bp=— 5 (XT+X5)+ X1 X2 C0d b+ ) + X1 X5 Sin¢h

1
+ §X2X3 Singq,

B3=Xo(1—Xo),
1
B4=5[X1X5 08¢ —X;X5c08¢4],
and
1 . 2
Bszz[xlx3 sin g+ X;X3 cos¢; — X3].

The power spectrum is

S(2)=(s(2))¢+(s(—Q2))=2M15(Q) +27M(w) 5(£2

4M3(w)Qq Qo
@ Q2+02 2M5(w)<Qé+(ﬂ—w>2
Qo

" Q3+ (Q+ w)?

=GP8(0)+GM(w)8(Q—w)+GP(w,Q), (9

where(s(Q)),=[“ {(x()x(t+ 7)))e ' *"d7.
So the signal-to-noise ratig; can be obtained

GM(w)
G{P(w,Q)

’7TM2

"M 1\
4o = 3Q2+M5( 2Q0 2+_>
Qitw Qtw Qo

1:

(10
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FIG. 2. The signal-to-noise ratio versus the additive noise
strengthD in dimensionless form witlw =0.0005,A=0.001, and
a=0, £0.3, and*0.5 for the model I.

zero frequency| This part is produced by the asymmetry of
the bistable potentiallf the bistable potential is symmetric,
we haveM;=0.)]; the signal output that is & function at
the signal frequency; and the broadband noise outputs that
are three Lorentzian bumps centeredlat 0, 1= — w, and
Q= w, respectively.

In our calculation, we have used the adiabatic approxima-
tion for the transition rate. So our formu(&0) is restricted
to the condition: the signal frequency is much slower than
the inverse value of the relaxation time(for double-well
system, 7 is the time for probability within one well to
equilibratg. In addition, the other valid conditions for the
formula (10) are: (1) A/D<1, which is same as that in Ref.
[10]; and(2) h,~h_ [see Fig. 1. Ith,>h_ (or h,<h_),
the formula(10) will be invalid].

Ill. MODEL I: EFFECT OF THE ASYMMETRY ON SR

Now we consider a special model whose Langevin equa-
tion is (in dimensionless form

X=—a,U(x)+ (1), (11

where U(x)=1x*—1x?—1ax3, which is an asymmetric
bistable potential, ang(t) is noise with zero mean and cor-
relation function (7n(t)n(t'))=2D4s(t—t'). When a
=0, U(x) is symmetric bistable; with the increase of the
absolute value of, U(x) becomes more and more asym-
metric. Here we can uda| to describe the asymmetry of the
bistable potential.

If inputting an external periodic signdd=A coswt, we
can obtain the phenomenon of SR. In Fig. 2 we plot the
signal-to-noise ratio versus the additive noise strength for
different values ofa (a=0, =0.3, and*+0.5). The figure
shows that the asymmetry of the bistable potential can
weaken the phenomenon of SR.

If the potential has only one well, no phenomenon of SR
appears. If the potential has three or more wells, the phenom-
enon of SR can emerge. For this case, we study several other
examples by using the formuld0). [Now the formula(10)

Notice that the spectrur(®) divides naturally into three is still applicable, but we should u:ve(})+w(f)+ .- tore-

parts: the zero-frequency output that issdunction at the

placew’. , wherew!™ w®, ... are the transition rates from
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the first well to the second we(the particle moves from the
right to the lefy, from the second well to the third well,

. , andw® w® ... are the transition rates for
vice versd. Study shows that the asymmetry of the potentials ;
can induce the phenomenon of SR to change. It is deter- 2x 1077
mined by the term in the Langevin equation, which induces ;
the asymmetry of the potentials, how the phenomenon of SR
changes. For our modéll), it is the effect of the ternax®

on the system that the phenomenon of SR can be weakened.
Because of the variety of the change for the asymmetry of
the potentials, here we cannot exclude the case that the
asymmetry of the potentials has no effect on the phenom- 0
enon of SR. or has more complex effect on this phenomenon.

3x107 F o ' R

SNR

1077 |

IV. MODEL II: SR INDUCED BY MULTIPLICATIVE
NOISE FIG. 3. The signal-to-noise ratio versus the additive noise

strengthD in dimensionless form with the multiplicative noise
In this section, we study a model with monostable potenstrengthD,=0.7, A=0.001, andw=0.0005 for the model II.
tial driven simultaneously by additive and multiplicative
noises. The Langevin equation of the moddiisdimension- and

less form
= Xy [ D _ D]_ _ \/D\l
K= —x3— 252+ xE(t) + 7(b), (12) T ‘Lz J,m \/D_l[tg 1( By)‘tg l( BZ>

in which &(t) and 5(t) are respectively the multiplicative Xexp{[Uesf(y) —Ugs(2)]/D}dydz
and additive noises with zero means and correlation func- . - _ .
tions  (£(t)p(t'))=0, (£(t)&(t'))=2D,8(t—t'), and 1O replaceT,; andT; respectively in Eqs(5), (7)—(10), the

(n(t)p(t"))=2Ds(t—t’). corresponding formula will be applicable to E{.6). The
The Fokker-Planck equation of E€L2) is SNR versus the additive noise stren@ths plotted in Fig. 3
with D;=0.7 [in order to make our calculation satisfy the
AP (X,t) = = dy(—x3=2X%) P(X,1) + D 19, X P(X, 1) valid conditionh, ~h_ of the effective potential for the for-

mula (10), in this figure we set the multiplicative noise
strength a® ;=0.7]. The figure shows that there is the phe-
nomenon of stochastic resonance. But this phenomenon of
stochastic resonance is different from the one for model I,
P (x)=Me Uerx)/D (14) since it is a different one caused by the multiplicative noise.
5 [ T . . .
In the absence of the multiplicative noise, there is no phe-
where  Ugi(X) =X (x3+2x2+D,x)/[(D,/D)x2+1]}dx,  homenon of stochastic resonance. In addition, we find that it

which is the stationary effective potential of the system, ands not for all the cases of E¢12) there is the phenomenon of

+DA2P(x,t). (13

The stationary solution of Eq13) is

M is the normalization constant. stochastic resonance. This can be observed from the structure
If we only consider the stationary state, HG2) can be Of the effective potential ¢(x) of Eq.(12), which indicates
written as that only when 8<D;<1 this phenomenon can appear.
Below we consider the cases when the multiplicative
X=— U grr(X)+ (). (15)  noise{(t) is other types of noise, such &U noise, di-
chotomous noise, and Poisson noise.
If inputting an external signak coswt to Eq. (12), the cor- If £(t) is O-U noise with zero mean and correlation func-
responding equation for Eq15) becomes tion (£(t)&(t"))= (D1 /7)exp(—|t—t'|/7), one can obtain the
following approximate Fokker-Planck equation for small
. A coswt correlation timer applying the UCNA to the Eq12) [15]
X:_‘yxueff(x)+7l(t)+D—- (16)
31X2+ 1 aP(x,1) == 3, A(X)P(x,t) + 92B(X) P(x,1),
) where
In Eq. (16) the external signal depends anso the for-
mula (10) of the SNR is not applicable to it. But if we use A —x3-2x2 . 2D;x
X)=
- % (~= [D D, D, 1+27(x%2+x)  [1+27(x?+x)]?
= Ve Ve o
xp Jo 1 27(2x+1)(D,x*+D)
Xexp{[Ues(y) —Ues(2)]/D}dydz, [1+27(x*+x)]°
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D;x*+D 45%1077 | ]

B o

The stationary effective potential is

Ueff(X)=Dfx[(&B(X)—A(X)]/B(X)dX-

Then, using the method proposed by us in this section we
can calculate the SNR when inputting an external periodic
signal F=A coswt. Calculation indicates that there is the
phenomenon of SR induced by the multiplicat®eU noise. D
[In addition, we still note that the correlation timeof the
mu|tip|icati\/e O-U noise for mode|(12) can enhance the FIG. 4. The signal-to-noise ratio versus the additive noise
phenomenon of SR strengthD in dimensionless form witlkb =0.0005 andA=0.001 for

If &(t) is dichotomous noise or Poisson noise, because thi&e model lil.
values of noise are allowed to take on two discrete values or
more discrete values, the phenomenon of SR can appeuthereU(x,s)=;x*—3x3—sx?, andM, is a normalization
even if the system is linedl6]. Now the phenomenon of SR constant.

is also induced by the multiplicative noise. In the limit of N— e, the self-consistent Weiss mean-field
approach of Desai and Zwanzig is valiti7/] and the Weiss
V. MODEL IlI: SR INDUCED BY MEAN-FIELD mean field has to comply with the condition
COUPLING
In this section, we consider a system with infinite globally 5= f XP(X,s)dX, (21

coupled oscillators. The Langevin equations of the oscillators
are (in dimensionless form

this is a self-consistency equation whose solution yields the
) s , 3 . dependence d$ with the system parameters.
Xi= =X X+ oXist 7i(t), i=123..., (17 We first turn to a more detailed analysis of E81). The
trivial solution s=0 does not exist. The Ed21) only has
nonzero solutiors# 0. Thus for the mode(17), there is no
nonequilibrium transition between the stege=0 and the
states#0.
When adding an external periodic sigatoset we can
calculate the SNR of this model from the formulg0). In
Fig. 4, the SNR versuB is plotted. From the figure we can
find that there is the phenomenon of stochastic resonance for
the SNR versus the additive noise strength. If we do not
consider the coupling, this phenomenon is ab§tw poten-
tial function of Eq.(17) will be monostablgé So the phenom-
enon of stochastic resonance appearing here is a different
one, which is caused by the mean-field coupling.
in which s(t)=(x(t)), which represents the time-dependent We have noted that in Re{18] Zaikin, Kurths, and

wheres is the mean field andzlimNHm(llN)EiN:lxi , and

7;(t) are the noise that is similar to the one in Efjl). In
Eq. (17) the coupling parameter is taken as 3/2, which is for
the sake of making the potential of Hd.7) satisfy the valid
conditionh . ~h_ for the formula(10).

In the case oN—x, all the oscillators have an identical
evolution given by the nonlinear stochastic equation

. 3
x=—x3+x2+ Sxst (1), (18)

order parameter. Schimansky-Geier investigated a mean-field coupled model
The Stratonovich interpretation for E¢18) yields the (a nonlinear lattice of coupled overdamped oscillgtansd
Fokker-Planck Equation found stochastic resonance for the symmetric bistable mean

field in the presence of small periodic signal. They called this

effect doubly stochastic resonance. For our madié), there
—x3+x2+§sx>P(x,s,t) is no such phenomeno(the_me_an field is not_ bistable

Moreover, in order to determine if all the mean-field coupled
models with asymmetric two-wellor multiwell) potential
have the phenomenon of stochastic resonance, we have made
a lot of numerical calculations for different models. We find
Yhat for some models there is the phenomenon of stochastic
resonance, but for others there is not this phenomenon even
if the potential is two well(or multiwell). Below we give a
P(x,5)=Mge Yxs)/D, (200  example for a mean-field coupled model with asymmetric

P (X,S,t)=—dy

+D2P(x,8,1). (19

Under the natural boundary condition, the stationary solutio
of Eq. (19 is
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37 T e P T a the additive noise strength that causes for the maii@l

; ] there is the phenomenon of stochastic resonance, but for the
model(22) there is not. To illustrate there is not the phenom-
enon of stochastic resonance for the md@@), in Fig. 5c)
we depict the SNR as a function bX

VI. CONCLUSION AND DISCUSSION

In conclusion, we have studied the effect of asymmetry of
the potential on SR for a model with an asymmetric bistable
potential and driven by additive noise, the SNR for a model
with a monostable potential and driven by additive and mul-
tiplicative noises, and the SNR for a mean-field coupled
model with infinite globally coupling oscillators driven by
additive noises. For the first model, we find that the asym-
metry of the potential can weaken the phenomenon of SR;
for the second and third models, we find a phenomenon of
SR induced by multiplicative noise different a new one by
the mean-field coupling.

In Sec. I, we derive a formula for the signal-to-noise ratio
by using the adiabatic approximation for system with asym-
metric bistable potential. Although this formula is derived for
the system with asymmetric bistable potential, it is appli-
cable to the systems with asymmetric multiwéiree or
more wellg potential. In addition, in our calculation for this
D formula we only approximatev’, to the first order inA. If
we consider the high order, the power spectrum formula will

contain the terms of high frequencies. For example, if we
» approximatew’. to thenth order inA, the power spectrum
410 will become
g
v n
2x107 s(0)=GP8(0)+ >, [GV(iw)8(Q—iw)+G{(iw,Q)].
i=1
(23)
0 . . . . .
Then the signal-to-noise ratig; at the frequenciebw is
D
FIG. 5. The mean fields versus the additive noise strengths in G(i)(iw)
dimensionless form for the model %), the model22) (b), and the R=|——""""— , i=123...n. (29
signal-to-noise ratio versus the additive noise strength in dimen- D G0 (iw,Q)
sionless form withw=0.0005 andA=0.001 for the mode(22) (c). =0 @, 0
=lw
two-well potential but without the phenomenon of stochastic .
resonance. The Langevin equations of the model are In Eq. (24) owing to A/D<1, we can getR;>R,>

>R,.

) In Sec. IV, we propose a method to calculate the SNR for

Xi=—x+(xZ+x)s+ (1), (i=1,23...), (22  a system simultaneously driven by additive and multiplica-

tive noises. We note that in RgfL9], Jia, Yu, and Li inves-

wheres and 7;(t) are same as the ones in Ef7). In Figs.  tigated stochastic resonance for a symmetric bistable system
5(a) and §b), we plot the mean fields versus the additive with additive and multiplicative noises and calculated the
noise strengths for the mode(d7) and (22) respectively. SNR for the system. Our model Il is different from the one
From the figures we can find that for the mod#&l) the  studied in Ref.[19] even though they are both driven by
mean field decreases progressively with the increase of thedditive and multiplicative noises. The former has a bistable
additive noise strength; while for the mod@2) the mean potential, while the latter has a monostable one. In addition,
field increases successively with increasing the additivén our calculation we have not used the approximate Kramers
noise strength. It is just because of the difference of thaime, but in the calculation made by Jia, Yu, and Li they
change of the mean fields for different models with varyinghave.
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