
PHYSICAL REVIEW E 66, 031102 ~2002!
Theoretical analysis and simulations of the generalized Lotka-Volterra model
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The dynamics of generalized Lotka-Volterra systems is studied by theoretical techniques and computer
simulations. These systems describe the time evolution of the wealth distribution of individuals in a society, as
well as of the market values of firms in the stock market. The individual wealths or market values are given by
a set of time dependent variableswi , i 51, . . . ,N. The equations include a stochastic autocatalytic term
~representing investments!, a drift term~representing social security payments!, and a time dependent satura-
tion term ~due to the finite size of the economy!. Thewi ’s turn out to exhibit a power-law distribution of the
form P(w);w212a. It is shown analytically that the exponenta can be expressed as a function of one
parameter, which is the ratio between the constant drift component~social security! and the fluctuating com-
ponent~investments!. This result provides a link between the lower and upper cutoffs of this distribution,
namely, between the resources available to the poorest and those available to the richest in a given society. The
value of a is found to be insensitive to variations in the saturation term, which represent the expansion or
contraction of the economy. The results are of much relevance to empirical studies that show that the distri-
bution of the individual wealth in different countries during different periods in the 20th century has followed
a power-law distribution with 1,a,2.
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I. INTRODUCTION

In recent years there has been considerable interest in
collection and analysis of large volumes of economic da
Such data includes the distributions of the income and we
of individuals @1–8#, the market values of publicly trade
companies as well as their short and long term fluctuati
@9–12#. A common observation is that the distributions
economic data exhibit a power-law behavior of the form

P~w!;w212a, ~1!

where the variablew represents the wealth of an individu
or market value of a company anda is the exponent tha
provides the best fit to the empirical data. Empirical stud
show that the distribution of the wealth of individuals
different countries follows the power-law behavior describ
by Eq. ~1!, with 1,a,2 @1–5,8#. These results stimulate
theoretical studies in an attempt to construct models tha
produce the power-law behavior and predict the value oa
@13–19#.

In this paper we study a stochastic dynamical mod
based on the Lotka-Volterra system that gives rise to
power-law distribution of Eq.~1!. The model consists o
coupled dynamic equations, which describe the discrete t
evolution of the basic system componentswi , i 51, . . . ,N.
The structure of these equations resembles the logistic
and they are coupled through the average valuew̄(t). The
dynamics includes autocatalysis both at the individual le
and at the community level as well as a saturation term.
model the nonstationary conditions we introduce a time
pendent parameter into the saturation term in each of th
equations. We find that the system components spont
ously evolve into a power-law distribution of the form of E
~1!, even in the presence of nonstationary external con
1063-651X/2002/66~3!/031102~6!/$20.00 66 0311
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tions. Furthermore, it is shown analytically that the expon
a depends only on the ratio of the constant drift compon
~social security! and the fluctuating component~invest-
ments!. It is found to be insensitive to variations in the sat
ration term that describes the level of economic activity a
varies between periods of prosperity and depression.

The paper is organized as follows. In Sec. II we pres
the generalized Lotka-Volterra model under nonstation
conditions. Analytical results and predictions are presen
in Sec. III and compared with the results of numerical sim
lations in Sec. IV. A summary is presented in Sec. V.

II. THE MODEL

The generalized Lotka-Volterra system@13–15,18–20#
describes the evolution in discrete time ofN dynamic vari-
ableswi , i 51, . . . ,N. In ecological systems,wi represents
the population size of thei th specie, while in economic sys
tems it may represent the wealth of an individual investor
the market value of a publicly traded firm. At each time st
t, an integeri is chosen randomly in the range 1< i<N,
which is the index of the dynamic variablewi to be updated
at that time step. A random multiplicative factorl(t) is then
drawn from a given distributionP(l), which is independent
of i andt. It will later be convenient to express this multipl
cative factor by

l~ t !5^l&1h~ t !, ~2!

where^l& is the average value ofP(l) and

D5^l2&2^l&2 ~3!

is its standard deviation. The system is then updated acc
ing to
©2002 The American Physical Society02-1
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wi~ t11!5@11l~ t !#wi~ t !1(
j 51

N

ai , jwj~ t !2(
j 51

N

aj ,iwi~ t !

2(
j 51

N

ci , jwi~ t !wj~ t !,

wj~ t11!5wj~ t !, j 51, . . . ,N; j Þ i , ~4!

where ai , j and ci , j are constants. This is an asynchrono
update mechanism. The first term on the right hand side
Eq. ~4! describes the effect of stochastic autocatalysis at
individual level. In an ecological system this term represe
variations in the population of a given specie, includi
births and deaths that might be affected by external co
tions but are not affected by the interaction with other s
cies. In a stock-market system it represents the increase~or
decrease! by a random factorl(t) of the capital of the in-
vestori between timet andt11. The second and third term
in Eq. ~4! describe the interaction between different dynam
cal variables. In an ecological system, the second term
resents the dependence of populationi on the availability of
food, in the form of populationj. The third term represent
the fact that populationi itself may be the food of some othe
species. In an economic system the second and third te
represent trade between investors or firmsi and j, such as
buying and selling, respectively. The fourth term in Eq.~4!
describes saturation effects due to the competition for lim
resources. In an ecological model, this term implies t
large populations tend to exhaust the available resource
which they depend. The saturation parametersci , j are large
for populationsi and j that consume the same type of foo
In an economic system this term has to do with the satura
due to the finite size of the economy.

To simplify the analysis, we will consider in this paper
simple case in which thewi ’s interact in a uniform way with
each other. This case is obtained by choosingai , j5a/N and
ci , j5c/N. With this choice, Eq.~4! will be reduced to

wi~ t11!5@11l~ t !#wi~ t !1aw̄~ t !2cwi~ t !w̄~ t !,

wj~ t11!5wj~ t !, j 51, . . . ,N; j Þ i , ~5!

where

w̄~ t !5
1

N (
i 51

N

wi~ t ! ~6!

is the average value of the dynamical variables at timt.
Here the random terml(t) was shifted tol(t)2a, but its
distribution around the average~and thus the value of the
standard deviationD) remained unchanged. The second te
in Eq. ~5! may now describe the effect of autocatalysis at
community level. In an economic model, this term can
related to the social security policy or to general public
funded services that every individual receives. It prevents
individual wi from falling below a certain fraction of the
averagew̄. The third term in Eq.~5! describes saturation o
the competition for limited resources. It has the effect
03110
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limiting the growth to values sustainable for the current co
ditions and resources. Within the ecological context, here
interactions between populations are uniform, describing
case in which all of them consume the same type of food.
refer to Eq.~5! as the generalized Lotka-Volterra system b
cause when averaged overi and overl(t), this system tends
to approach a Lotka-Volterra-like equation@21,22#

w~ t11!5~11^l&1a!w~ t !2cw2~ t !, ~7!

where w(t)[w̄(t). Computer simulations show that afte
some equilibration time the system described by Eq.~5! ap-
proaches steady-state conditions. Even at steady state,w̄ ex-
hibits fluctuations. However, its average over long tim
scales approaches a constant value given by

^w̄& t5~^l&1a!/c. ~8!

In previous studies of the system described by Eq.~5! the
parametersa and c were considered as constants, cor
sponding to steady conditions of the market. In fact, the ty
cal dynamics of microscopic market models@8,13,14,23# is
genericallynot in a steady state. The effect of varying mark
conditions can be studied by considering the parametea
andc and the distributionP(l) as slowly varying functions
of time. We will show below that the systems described
Eq. ~5! lead, under very general conditions, to a power-l
distribution of thewi ’s of the form of Eq.~1!. Moreover, it
will be shown that the exponenta is insensitive to variations
in the parameterc, namely it depends only ona and D. In
order to examine the effect of variations in the econom
conditions we will now introduce an explicit time depe
dence into the third term, as well as a more general dep
dence on thewj ’s. The dynamic equation will now take th
form

wi~ t11!5@11l~ t !#wi~ t !1aw̄~ t !

2C~w1 , . . . ,wn ,t !wi~ t !,

wj~ t11!5wj~ t !, j 51, . . . ,N; j Þ i , ~9!

whereC(w1 , . . . ,wn ,t) is a general function of thewj ’s that
includes an explicit time dependence.

III. THEORETICAL ANALYSIS

In order to study the dynamics of the generalized Lotk
Volterra model, it will be convenient to denote the change
wi in a single time step byDwi(t)5wi(t11)2wi(t). We
introduce a set of normalized variables

xi5
wi

w̄
, i 51, . . . ,N. ~10!

The changeDxi(t)5xi(t11)2xi(t) in a single time step is
given by
2-2



t

b

of

al

ua-

pli-

s

e
lti-

i-

ing

-

ion
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Dxi>
1

w̄
Dwi2

wi

w̄2
Dw̄ ~11!

up to first order in powers of theDwi ’s. Considering the time
dependence of the averagew̄, one should remember that a
any time stept of Eq. ~9! only one of thewi ’s is chosen
randomly and updated. Moreover, there is no correlation
tween the chosenwi andl(t). Thus, the time evolution ofw̄
should be considered on a longer time scale of the orderN

moves. However, for simplicity we evaluateDw̄ by averag-
ing Eq. ~9! for Dwi over i 51, . . . ,N at a given timet. We
make an independent random choice ofl(t) for each i,
which we denote byl i(t)5^l&1h i(t). The time depen-
dence ofw̄ is given by

Dw̄5
1

N (
j 51

N

h j~ t !wj~ t !1@^l&1a#w̄~ t !

2C~w1 , . . . ,wn ,t !w̄~ t !. ~12!

The dynamics of thexi ’s is thus given by

Dxi5xi~ t !Fh~ t !2a2
1

N (
j

h j~ t !xj~ t !G1a. ~13!

Consider the sum

r ~N!5(
j 51

N

h j~ t !xj~ t !. ~14!

If the xj ’s exhibit a distribution of the form

P~x!;x212a, ~15!

then the second moment of the distribution ofr (N) satisfies
@24,25#

^r 2~N!&1/25H N1/2, 2,a

N(32a)/2, 1,a,2

N, 0,a,1.

~16!

In the first case, the distribution of thexj ’s exhibits a finite
second moment andr (N)/N→0 in the limit N→`. In the
second case, the second moment ofP(x) diverges andr (N)
follows a Lévy distribution.

In both cases, namely, fora.1, we obtain that in the
~thermodynamic! limit N→`,

1

N
xi(

j
h j~ t !xj~ t !→0. ~17!

Thus, under the assumption thatP(x) follows Eq. ~15! with
a.1, we obtain to a good approximation that for large v
ues ofN

Dxi5@h~ t !2a#xi1a, i 51, . . . ,N. ~18!
03110
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We see that the dynamics of the normalized variablexi is
reduced to a set of identical decoupled linear Langevin eq
tions that do not depend on the functionC(w1 , . . . ,wn ,t) or
on the mean valuêl& of the multiplicative noise. These
equations can be cast into a general framework of multi
cative processes of the form

Dx~ t !5h~ t !G„x~ t !…1F„x~ t !…. ~19!

Equation~18! can then be recovered by takingF(xi)5a(1
2xi) andG(xi)5xi . By using a suitable change of variable
to y5y(x) that satisfies

dy

dx
5

1

G~x!
, ~20!

one can reduce Eq.~19! to a Langevin equation in which th
term h(t) appears as an additive noise, rather than a mu
plicative noise such ash(t)G„x(t)… @26#. The time evolution
of y(t) is obtained from Eq.~19! by using the chain differ-
ential rule up to second order inDx ~and first order inD),

Dy.
dy

dx
Dx1

1

2

d2y

dx2 Dx2. ~21!

InsertingDx(t) from Eq. ~19! and using the change of var
ables described in Eq.~20!, we obtain

Dy.
1

G
~F1hG!1

1

2

d

dx S 1

GD ~F1hG!2. ~22!

We now approximate the second order term by averag
over the noise termh that satisfieŝh&50 and^h2&5D. We
obtain

Dy.h1
F

G
2

1

2

dG

dx S D1
F2

G2D . ~23!

Assuming thatF2/G2!D, Eq. ~23! is reduced to a discrete
time Langevin equation

Dy.h1J~y!, ~24!

where the drift forceJ(y) takes the form

J~y!5
F

G
2

D

2

dG

dx
. ~25!

The Fokker-Planck equation corresponding to Eq.~24! is
@27#

]P~y,t !

]t
52

]

]y
@J~y,t !P~y,t !#1

D

2

]2P~y,t !

]y2 , ~26!

where P(y,t) is the probability distribution ofy at time t.
The solution of this equation under the stationary condit
]P(y,t)/]t50 is

P~y!5expF 2

DEy

J~y8!dy8G . ~27!
2-3
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Thus, the distributionP(x)5P(y)dy/dx of the original vari-
ablesxi is

P~x!5
1

G2~x!
expF 2

DEx F~x8!

G2~x8!
dx8G . ~28!

By takingF(x)5a(12x) andG(x)5x, we obtain a power-
law distribution of the form@28#

P~x!5x212aexpF12a

x G , ~29!

where

a511
2a

D
. ~30!

The exponenta thus depends on a single parametera/D,
namely, on the ratio of the global drift coefficienta and the
fluctuations measured byD.

Another way to derive Eq.~30! from dynamical models of
the form ~18! was shown in Refs.@6,16#. It is based on the
fact that, under steady-state conditions, linear Lange
equations of the form~18! satisfy @6,16,29#

^~h2a11!a&51. ~31!

Consideringh2a as a small parameter and expanding E
~31! in a power series up to second order, we obtain

a511
2a

D1a2 . ~32!

Assuming thata2!D we reproduce Eq.~30!.

IV. NUMERICAL SIMULATIONS AND RESULTS

To examine the theoretical predictions presented in S
III, we have performed computer simulations of the gene
ized Lotka-Volterra system described by Eq.~9! with differ-
ent choices ofC(w1 , . . . ,wn ,t). It was found that after
some equilibration time the distributionP(x) reaches a
steady state, and exhibits a power-law behavior.
C(w1 , . . . ,wn ,t)5cw̄ @as in Eq. ~5!#, w̄(t) fluctuates
around some average value, given by Eq.~8!. For a general
function C(w1 , . . . ,wn ,t), which exhibits an explicit time
dependence,w̄(t) continues to vary according to this func
tion and its temporal average does not reach a steady s

To examine how robust the power-law distribution is u
der varying conditions, we have simulated Eq.~9! with

C~w1 , . . . ,wn ,t !5coS 11sin
2pt

T D (
j 51

N

wj
2 ~33!

~for c050.001, T523105 and ^l&50.002) and compared
the results with the caseC(w1 , . . . ,wn ,t)5cw̄ ~for c51
and ^l&50.01). The time dependence ofw̄ in both cases is
shown in Fig. 1~a!. The distributionsP(x) obtained from the
simulations in these two cases are shown in Fig. 1~b!. These
03110
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distributions are found to be nearly identical and exhibi
power-law behavior characterized by the same exponena.
The exponenta is also found to be independent of^l&. Note
that the power-law behavior is maintained even
C(w1 , . . . ,wn ,t)[0, wherew̄(t) does not reach a stead
state and diverges to infinity~for ^l&.0) or collapses to 0
~for ^l&,0) @15#. This can lead to changes by orders
magnitude in the total wealth or the population size witho
affecting the exponenta.

To examine the theoretical prediction for the distributio
given by Eq.~29!, and the exponenta, given by Eq.~30!, we
have compared these predictions to the results of nume

FIG. 1. ~a! The time dependence of the average wealthw̄ for the
model of Eq.~9! with C(w1 , . . . ,wn ,t) given by Eq.~33! where
c050.001 and T523105 ~upper curve!, and with

C(w1 , . . . ,wn ,t)5cw̄ wherec51 ~lower curve!. In the first case

w̄ oscillates, following the time dependence ofC(w1 , . . . ,wn ,t),
while in the second case it only exhibits small fluctuations aroun
constant value. In both casesN5100, a50.000 83,D50.0033.~b!

The distributions of the variablesxi5wi /w̄ for the simulations
shown in the lower curve~squares! and the upper curve (d) in ~a!.
The two distributions are found to be nearly identical, showing
approximate power-law behavior. We thus observe that the ex
nenta is robust and insensitive to variations inC(w1 , . . . ,wn ,t).
2-4
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simulations. This comparison for the distributionP(x) is
shown in Fig. 2. The simulations were done forN51000,
a50.000 23,C(w1 , . . . ,wn ,t)50.01w̄, andl(t) uniformly
distributed in the range 0.0<l(t)<0.1 ~namely, D
50.000 83). We found that the simulation results are in v
good agreement with the theoretical predictions. A pow
law distribution is found for a range of almost three orders
magnitude, with the exponenta51.52. This is close to the
theoretical prediction ofa5112a/D51.55. The distribu-
tion has a peak atx05(a21)/(a11), which using Eq.~30!
can be expressed byx05a/(a1D). Above x0 the distribu-
tion P(x) behaves like a power law, while below itP(x)
decays exponentially. This provides an effective lower cu
for the range ofx in which a power-law behavior is observe
This result can be compared to a somewhat simpler mo
studied earlier, in which the value of the lower cutoffxmin is
imposed as a constraint@15#. In this model, using the sum
rules for the probability and the total wealth, it was fou
that xmin5121/a. Using Eq. ~30! it can be expressed a
xmin52a/(2a1D). These predictions for the lower bound
in the two models satisfyx0,xmin,2x0, namely, they are in
good agreement in light of the broad distribution ofx.

To examine the prediction given by Eq.~30! for the ex-
ponenta, we present in Fig. 3 a comparison between th
prediction and the numerical results fora as a function of
a/D. The numerical results are presented forN51000 (d).
The prediction of Eq.~30! ~solid line!, shows a good agree
ment with the numerical results fora/D.0.2. The numerical
results for the range of smalla/D converge to the theoretica
prediction as the value ofN is increased. As shown in Re
@15# the infinite system limit,N→`, and the vanishing cou
pling limit, a/D→0, do not commute. On the one hand, f
any finiteN anda/D→0 the exponenta→0. On the other
hand, for any fixed positive value ofa/D ~no matter how
small! and N→` the exponenta>1. The majority of em-

FIG. 2. Results of computer simulations~dots! and theoretical
analysis based on Eq.~29! (d) for the distribution of the variables

xi5wi /w̄. The parameters areN51000, a50.000 23, D

50.000 83, andC(w1 , . . . ,wn ,t)50.01w̄. In both cases a power
law distribution is obtained with an excellent agreement betw
the theoretical predictions and the simulation results.
03110
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pirical results in which 1,a,2, indicate that the secon
case is highly relevant and that the theoretical predictions
Eqs.~29! and ~30! broadly apply. Thus, forN→`, both the
exponenta of the power-law decay and the lower boundx0
depend only on a single parametera/D. In the economic
context, this parameter represents the ratio between the fi
income of minimal wage jobs or social security payme
and the level of fluctuations of the speculative income/lo

V. SUMMARY

We have studied the dynamics of stochastic Lotk
Volterra systems under nonstationary conditions using b
analytical and numerical techniques. For this class of m
els, we found that in order to obtain a power-law distributio
it is sufficient that relative returns of the agents are stoch
tically equivalent. The assumption that the distributionP(l)
of the multiplicative noise is independent ofi means that
there are no investors or strategies that can obtain ‘‘abn
mal’’ returns. This can be related to the ‘‘efficient mark
hypothesis,’’ which assumes that the market pricing mec
nism is so efficient that it reaches the ‘‘right price’’ befo
any of the agents can take systematic advantage. There
the presence of a power-law distribution may be a sign
‘‘market efficiency,’’ by analogy with Boltzmann distribu
tions in statistical mechanics systems, which characte
thermal equilibrium. Here we have shown that the power-l
distribution is stable even under nonstationary econo
conditions, which are represented by the time dependenc
the saturation termC(w1 , . . . ,wn ,t). We found that even
under such conditions the distribution of the~normalized!
dynamical variablesxi follows a power-law distribution with
an exponenta. An expression fora in terms of the ratio of
the parametersa andD was obtained@Eq. ~30!#. In the eco-

n

FIG. 3. Simulation results for the exponenta of the power-law

distribution of the variablesxi5wi /w̄, i 51, . . . ,N as a function of
the parameter a/D for N51000 and C(w1 , . . . ,wn ,t)

50.000 01w̄ (d). The theoretical prediction of Eq.~30! ~line! is
found to be in agreement with the numerical values fora/D.0.2.
The agreement for small values ofa/D tends to improve asN
increases.
2-5
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nomic context, the parametera represents the minimal wag
or social security payments, whileD represents the level o
fluctuations in speculative income/loss. These results pro
the distribution of wealth in a society in terms of the soc
et

y,

nd
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security policy and the volatility of the stock market. The
also provide a connection between the incomes/wealth
the poorest and the richest sectors of the society as a func
of a single parameter.
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