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Theoretical analysis and simulations of the generalized Lotka-Volterra model
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The dynamics of generalized Lotka-Volterra systems is studied by theoretical techniques and computer
simulations. These systems describe the time evolution of the wealth distribution of individuals in a society, as
well as of the market values of firms in the stock market. The individual wealths or market values are given by
a set of time dependent variables, i=1,... N. The equations include a stochastic autocatalytic term
(representing investmentsa drift term(representing social security paymensnd a time dependent satura-
tion term(due to the finite size of the econojmyrhew;’s turn out to exhibit a power-law distribution of the
form P(w)~w 172 It is shown analytically that the exponent can be expressed as a function of one
parameter, which is the ratio between the constant drift compdsental security and the fluctuating com-
ponent(investments This result provides a link between the lower and upper cutoffs of this distribution,
namely, between the resources available to the poorest and those available to the richest in a given society. The
value of « is found to be insensitive to variations in the saturation term, which represent the expansion or
contraction of the economy. The results are of much relevance to empirical studies that show that the distri-
bution of the individual wealth in different countries during different periods in the 20th century has followed
a power-law distribution with £ a<<2.
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[. INTRODUCTION tions. Furthermore, it is shown analytically that the exponent
a depends only on the ratio of the constant drift component
In recent years there has been considerable interest in tgocial security and the fluctuating componer(invest-

collection and analysis of large volumes of economic dataments. It is found to be insensitive to variations in the satu-
Such data includes the distributions of the income and wealthation term that describes the level of economic activity and

of individuals [1-8], the market values of publicly traded varies between periods of prosperity and depression.
companies as well as their short and long term fluctuations The paper is organized as follows. In Sec. Il we present
[9-12. A common observation is that the distributions of the generalized Lotka-Volterra model under nonstationary
economic data exhibit a power-law behavior of the form  conditions. Analytical results and predictions are presented
in Sec. Il and compared with the results of numerical simu-

P(w)~w~ 179 (1) lations in Sec. IV. A summary is presented in Sec. V.

where the variablev represents the wealth of an individual
or market value of a company and is the exponent that
provides the best fit to the empirical data. Empirical studies The generalized Lotka-Volterra systefi3-15,18-20
show that the distribution of the wealth of individuals in describes the evolution in discrete time NMfdynamic vari-
different countries follows the power-law behavior describedablesw;, i=1, ... N. In ecological systemsy; represents
by Eqg. (1), with 1<a<2 [1-5,8. These results stimulated the population size of thith specie, while in economic sys-
theoretical studies in an attempt to construct models that reems it may represent the wealth of an individual investor or
produce the power-law behavior and predict the valuerof the market value of a publicly traded firm. At each time step
[13-19. t, an integeri is chosen randomly in the range<i<N,

In this paper we study a stochastic dynamical modelwhich is the index of the dynamic variablg to be updated
based on the Lotka-Volterra system that gives rise to thet that time step. A random multiplicative facto(t) is then
power-law distribution of Eq(1). The model consists of drawn from a given distributiofl (\), which is independent
coupled dynamic equations, which describe the discrete timef i andt. It will later be convenient to express this multipli-

Il. THE MODEL

evolution of the basic system components i=1,... N. cative factor by
The structure of these equations resembles the logistic map
and they are coupled through the average vauig). The N =(N)+ n(1), 2

dynamics includes autocatalysis both at the individual level

and at the community level as well as a saturation term. Tovhere(\) is the average value di(\) and

model the nonstationary conditions we introduce a time de-

pendent parameter into the saturation term in each of these D=(A2)—(\)? (3)
equations. We find that the system components spontane-

ously evolve into a power-law distribution of the form of Eq. is its standard deviation. The system is then updated accord-
(1), even in the presence of nonstationary external condiing to
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N N limiting the growth to values sustainable for the current con-
wWi(t+1)=[1+N(t)]w;(t)+ E a jwi(t)— 2 a; wi(t) ditions and resources. Within the ecological context, here the
=1 =1 interactions between populations are uniform, describing the
N case in which all of them consume the same type of food. We
> Wi (Hw;(1), refer to Eq.(5) as the generalized Lotka-Volterra system be-
=1 cause when averaged oveand overA(t), this system tends
to approach a Lotka-Volterra-like equatip2il,22]
wj(t+1)=w;(t), j=1,...N; j#i, (4)
o W(t+1)=(1+(\)+a)w(t)—cw(t), (7)
wherea; ; and c;; are constants. This is an asynchronous
update mechanism. The first term on the right hand side of — . .
Eq. (4) describes the effect of stochastic autocatalysis at thyhere W(t_)_E W(.t)' Computer S|mulat|ons_ show that after
individual level. In an ecological system this term represent$©Me equilibration time the system described by &gap-
variations in the population of a given specie, includingProaches steady-state conditions. Even at steady stag;
births and deaths that might be affected by external condibibits fluctuations. However, its average over long time
tions but are not affected by the interaction with other spescales approaches a constant value given by
cies. In a stock-market system it represents the incréase
decreaseby a random factoi (t) of the capital of the in- (v_v>t=((>\)+a)/c. (8)
vestori between timé andt+ 1. The second and third terms
in Eqg. (4) describe the interaction between different dynami' In previous studies of the system described by(Ehthe
cal variables. In an eCOIOgical system, the second term remarametersa and ¢ were considered as constants, corre-
resents the dependence of populatian the availability of  sponding to steady conditions of the market. In fact, the typi-
food, in the form of population. The third term represents cal dynamics of microscopic market mod¢g13,14,23 is
the fact that populationitself may be the food of some other genericallynotin a steady state. The effect of varying market
species. In an economic system the second and third termggnditions can be studied by considering the parameters
represent trade between investors or fifmendj, such as  andc and the distributiodI(\) as slowly varying functions
buying and selling, respectively. The fourth term in B4).  of time. We will show below that the systems described by
describes saturation effects due to the Competition for I|m|te(Eq (5) |ead7 under very genera' ConditionS, to a power-|aw
resources. In an ecological model, this term implies thayistribution of thew;’s of the form of Eq.(1). Moreover, it
large populations tend to exhaust the available resources Qg be shown that the exponent s insensitive to variations
which they depend. The saturation parametgfsare large iy the parametet, namely it depends only oa and D. In
for populationsi andj that consume the same type of food. grder to examine the effect of variations in the economic
In an economic system this term has to do with the saturatiogonditions we will now introduce an explicit time depen-
due to the finite size of the economy. dence into the third term, as well as a more general depen-

To simplify the analysis, we will consider in this paper a dgence on thev;’s. The dynamic equation will now take the
simple case in which the;’s interact in a uniform way with  form

each other. This case is obtained by choosing=a/N and

¢ j=C/N. With this choice, Eq(4) will be reduced to Wi(t+1)=[ 1+ (t)wi (1) + aw(t)

wi(t+1) =[1+N(0)]w;(t) +aw(t) — cwi(t)w(t), —C(Wy, . . . Wy, DW(1),
wi(t+D=wi(t), j=1,...N; j#i, ®) w(t+D)=w(t), j=1,...N; j#i, ©)
where . .
whereC(wy, ... wp,t) is a general function of the;'s that
o 1 N includes an explicit time dependence.
Wt = 2 wi(t) (6)

Ill. THEORETICAL ANALYSIS
is the average value of the dynamical variables at time
Here the random term(t) was shifted tox(t)—a, but itS  \pjterra model, it will be convenient to denote the change of
distribution around the averagend thus the value of the w; in a single time step byAw;(t)=w;(t+1)—w;(t). We
standard deviatioD) remained unchanged. The second term;irqdquce a set of normalized variables
in Eg. (5) may now describe the effect of autocatalysis at the
community level. In an economic model, this term can be
related to the social security policy or to general publicly X = i=1,...N. (10)
funded services that every individual receives. It prevents an w
individual w; from falling below a certain fraction of the

averagew. The third term in Eq(5) describes saturation or The change\ x;(t) =x;(t+1)—x;(t) in a single time step is
the competition for limited resources. It has the effect ofgiven by

In order to study the dynamics of the generalized Lotka-
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Wi

1 _
AXiE :AWi - :ZAW
W

w

(11)

up to first order in powers of th&w;’s. Considering the time
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We see that the dynamics of the normalized variablés
reduced to a set of identical decoupled linear Langevin equa-
tions that do not depend on the functiGw,, . .. ,w,,t) or

on the mean valug¢\) of the multiplicative noise. These
equations can be cast into a general framework of multipli-

dependence of the average one should remember that at cative processes of the form

any time stept of Eq. (9) only one of thew,;’s is chosen

randomly and updated. Moreover, there is no correlation be-

tween the chosew; and\ (t). Thus, the time evolution of

should be considered on a longer time scale of the ordir of

moves. However, for simplicity we evaluatev by averag-
ing Eq. (9) for Aw; overi=1,... N at a given timet. We
make an independent random choice \dft) for eachi,
which we denote by\;(t)=(\)+ 7;(t). The time depen-
dence ofw is given by

_1N
Aw=g 2 7

(Ow;(D)+[(\)+alw(t)

—C(Wq, ... Wy, Hw(t). (12)
The dynamics of the;’s is thus given by
Axi=x(t)] n(t)— a—— E (DX | +a. (13
Consider the sum
N
r<N>=J§1 7 (1)X;(1). (14)
If the x;'s exhibit a distribution of the form
P(x)~x"17¢, (15

then the second moment of the distributionr§N) satisfies
(24,25

NY72, 2<a
(r(N))¥2=q NC79% 1<a<? (16)
N, o<a<l.

In the first case, the distribution of the's exhibits a finite
second moment and(N)/N—0 in the limit N—c. In the
second case, the second momenP¢x) diverges and (N)
follows a Levy distribution.

In both cases, namely, faxr>1, we obtain that in the
(thermodynamiglimit N—oo,

1
N2 70X (0)=0. (17

Thus, under the assumption tHa¢x) follows Eg. (15) with

Ax(t)=n(t)G(x(t))+ F(x(1)). (19
Equation(18) can then be recovered by takiigx;)=a(1
—X;) andG(x;)=X;. By using a suitable change of variables
to y=y(x) that satisfies

dy 1 20
one can reduce E@19) to a Langevin equation in which the
term 7(t) appears as an additive noise, rather than a multi-
plicative noise such ag(t)G(x(t)) [26]. The time evolution

of y(t) is obtained from Eq(19) by using the chain differ-
ential rule up to second order ihx (and first order irD),

1 d?%y

dy
d—zAX

Ay= g Ax+ (21)

InsertingAx(t) from Eq.(19) and using the change of vari-
ables described in Eq20), we obtain

(F+75G)2. (22

1 1d/1

We now approximate the second order term by averaging
over the noise terny that satisfie€ »)=0 and( »*)=D. We
obtain

Ay=n+ =<

F dG( Fz)
(23

G 2dx|°T a2

Assuming thafF?/G?<D, Eq.(23) is reduced to a discrete-
time Langevin equation

Ay=n+J(y), (24)
where the drift forcel(y) takes the form
_ F DdG 2
V=577 4x (29

The Fokker-Planck equation corresponding to Ezy) is
[27]

D #*P(y,t)
ay?

dP(y,t)
ot

= —[J(y OP.D]+ 5 (26)

where P(y,t) is the probability distribution ofy at time't.
The solution of this equation under the stationary condition

a>1, we obtain to a good approximation that for large val-P(y,t)/dt=0 is

ues ofN

Ax;=[n(t)—a]xj+a, i=1,...N. (18

2
P(y)= exp[ f 3y’ )dy} 27
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Thus, the distributior?(x) = P(y)dy/dx of the original vari-
ablesx; is

(0~ e £ [ F0.
X)= ——exg =

G*(x) D) Gx)
By taking F(x) =a(1—x) andG(x) =X, we obtain a power-
law distribution of the forn{28]

X/

(28
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1-«
P(x)=x"1"%x , (29

0.01 FAM sl s i p e s ot s

where
2a 00T, 100000 200000 300000 400000 500000
a=1+ o (30 () t
The exponentr thus depends on a single paramedéD, 107 3
namely, on the ratio of the global drift coefficieatand the .
fluctuations measured dy. 107 . ®
Another way to derive Eq30) from dynamical models of . 2
the form (18) was shown in Refd.6,16]. It is based on the 10° L D' i} J
fact that, under steady-state conditions, linear Langevin ‘. 3
equations of the forn(18) satisfy[6,16,29 3 ot L ’D. ]
R, o
((7-a+1)?)=1. (3 “

107 ¢ .
Consideringnz—a as a small parameter and expanding Eg. Fo . 3
(31) in a power series up to second order, we obtain 10° Le . -

[m]
2a 107 [ ) ) . .D
a=1+ Dial (32 10" 10° 10 10°
(b) T

Assuming thag®<D we reproduce Eq(30).

IV. NUMERICAL SIMULATIONS AND RESULTS

To examine the theoretical predictions presented in Se
[ll, we have performed computer simulations of the general

ized Lotka-Volterra system described by E§) with differ-

ent choices ofC(wq, ... w,,t). It was found that after
some equilibration time the distributio(x) reaches a
steady state, and exhibits a power-law behavior.

C(wy, ... wy,t)=cw [as in Eq. (5)], w(t) fluctuates
around some average value, given by E). For a general
function C(wq, ... w,,t), which exhibits an explicit time
dependencey(t) continues to vary according to this func-

CC(wl, ..

For

FIG. 1. (a) The time dependence of the average weaitfor the
model of Eq.(9) with C(wy, ... w,,t) given by Eq.(33) where
Cp=0.001 and T=2x10° (upper curvg and with
. w,,t)=cw wherec=1 (lower curve. In the first case
w oscillates, following the time dependence @fw., ... wy,t),
while in the second case it only exhibits small fluctuations around a
constant value. In both cashis=100, a=0.000 83,D =0.0033.(b)

The distributions of the variableg;=w;/w for the simulations

shown in the lower curvésquaresand the upper curve®) in (a).
The two distributions are found to be nearly identical, showing an
approximate power-law behavior. We thus observe that the expo-
nenta is robust and insensitive to variations@{(w,, . . . ,W,,t).

tion and its temporal average does not reach a steady statgistributions are found to be nearly identical and exhibit a
To examine how robust the power-law distribution is UN-power-law behavior characterized by the same exponent

der varying conditions, we have simulated E®). with

N
2t
C(Wq, ... Wp,t)=C,l 1+sin —)2 WJ-2 (33
=1

T

(for c,=0.001, T=2x10° and (\)=0.002) and compared
the results with the cas€(wy, ... w,,t)=cw (for c=1

and(\)=0.01). The time dependence wfin both cases is
shown in Fig. 1a). The distributiondP(x) obtained from the
simulations in these two cases are shown in F{g).IThese

The exponent is also found to be independent(¥). Note
that the power-law behavior is maintained even for

C(wy, ... w,,t)=0, wherew(t) does not reach a steady
state and diverges to infinitffor (\)>0) or collapses to 0
(for (\)<0) [15]. This can lead to changes by orders of
magnitude in the total wealth or the population size without
affecting the exponent.

To examine the theoretical prediction for the distribution,
given by Eq.(29), and the exponent, given by Eq.(30), we
have compared these predictions to the results of numerical

031102-4



THEORETICAL ANALYSIS AND SIMULATIONS OF THE . .. PHYSICAL REVIEW E 66, 031102 (2002

' ' ' 25 . . .
10' [
10°
107 s ]
10° [
3
— a3 4
§/ 10 E
Q‘! 10_4 L o
10° [ \. i
s,
10° [ .. ¢
...'.... ] »
10 0‘1 1I 1|0 160 1000 0.5 ; ; ;
: ~0.0 02 04 0.6
:c a/D
FIG. 2. Results of computer simulatiofdots and theoretical ] ]
analysis based on ER9) (@) for the distribution of the variables FIG. 3. Simulation results for the exponesntof the power-law
x;=w;/w. The parameters areN=1000, a=0.00023, D distribution of the variableg;=w; /w, i=1, ... N as a function of

=0.00083, andC(wq, . .. ,Wn,t):0.0JW. In both cases a power- the parameter a/D  for N=1000 and C(wy, ... W.t)

law distribution is obtained with an excellent agreement betweeri= 0-000 0v (@). The theoretical prediction of Eq30) (line) is
the theoretical predictions and the simulation results. found to be in agreement with the numerical valuesdtp >0.2.

The agreement for small values afD tends to improve afN

simulations. This comparison for the distributid®(x) is  increases.
shown in Fig. 2. The simulations were done fér= 1000,

a=0.00023,C(w,, . .. ,Wn,t)=0.0]W, and (t) uniformly pirical results in which K «<2, indicate that the second

e ) case is highly relevant and that the theoretical predictions of
distributed in the range O0sOA(1)<0.1 (namely, D Egs.(29) and(30) broadly apply. Thus, foN—c, both the

=0.000 83). We found that the simulation results are in very _
good agreement with the theoretical predictions. A power_exponenta of the power-law decay and the lower bousyl

law distribution is found for a range of almost three orders Ofdepend only on a single parame - In the economic
. . A context, this parameter represents the ratio between the fixed
magnitude, with the exponemt=1.52. This is close to the P P

. L i income of minimal wage jobs or social security payments
theoretical prediction olv=1+2a/D=1.55. The distribu- g .
tion has a peak aty— (@—1)/(a + 1), which using Eq(30) and the level of fluctuations of the speculative income/loss.

can be expressed byy=al/(a+ D). Above X, the distribu-
tion P(x) behaves like a power law, while below R(x)
decays exponentially. This provides an effective lower cutoff \We have studied the dynamics of stochastic Lotka-
for the range ok in which a power-law behavior is observed. \olterra systems under nonstationary conditions using both
This result can be compared to a somewhat simpler modelnalytical and numerical techniques. For this class of mod-
studied earlier, in which the value of the lower cuteffi,is  els, we found that in order to obtain a power-law distribution,
imposed as a constraifil5]. In this model, using the sum it is sufficient that relative returns of the agents are stochas-
rules for the probability and the total wealth, it was foundtically equivalent. The assumption that the distributld(i)
that Xpin=1—1/a. Using Eq.(30) it can be expressed as of the multiplicative noise is independent bfmeans that
Xmin=2a/(2a+ D). These predictions for the lower bounds there are no investors or strategies that can obtain “abnor-
in the two models satisfyto<Xqin<2Xo, namely, they are in - mal” returns. This can be related to the “efficient market
good agreement in light of the broad distributionxof hypothesis,” which assumes that the market pricing mecha-
To examine the prediction given by E(BO0) for the ex- nism is so efficient that it reaches the “right price” before
ponenta, we present in Fig3 a comparison between this any of the agents can take systematic advantage. Therefore,
prediction and the numerical results faras a function of the presence of a power-law distribution may be a sign of
a/D. The numerical results are presented fbr 1000 @).  “market efficiency,” by analogy with Boltzmann distribu-
The prediction of Eq(30) (solid line), shows a good agree- tions in statistical mechanics systems, which characterize
ment with the numerical results fa/D>0.2. The numerical thermal equilibrium. Here we have shown that the power-law
results for the range of small/D converge to the theoretical distribution is stable even under nonstationary economic
prediction as the value dfl is increased. As shown in Ref. conditions, which are represented by the time dependence of
[15] the infinite system limitN— <0, and the vanishing cou- the saturation ternC(wq, ... w,,t). We found that even
pling limit, a/D—0, do not commute. On the one hand, for under such conditions the distribution of tlileormalized
any finiteN anda/D—0 the exponentr— 0. On the other dynamical variables; follows a power-law distribution with
hand, for any fixed positive value @/D (no matter how an exponent. An expression fow in terms of the ratio of
smal) andN—co the exponentv=1. The majority of em- the parametera andD was obtainedEq. (30)]. In the eco-

V. SUMMARY
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nomic context, the parametarrepresents the minimal wage security policy and the volatility of the stock market. They
or social security payments, whil@ represents the level of also provide a connection between the incomes/wealths of
fluctuations in speculative income/loss. These results providthe poorest and the richest sectors of the society as a function
the distribution of wealth in a society in terms of the socialof a single parameter.
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