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Accuracy of universal formulas for percolation thresholds based on dimension
and coordination number
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Recent mathematical results regarding percolation thresholds are relevant to efforts to find universal formu-
las for the percolation threshold. This Brief Report uses exact solutions and recent rigorous bounds for site and
bond percolation thresholds to demonstrate that any universal formula based on only the dimension and the
coordination number must provide estimates differing substantially from the true threshold value for some

lattices.
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I. INTRODUCTION AND HISTORY with 3<d=<7, for whichp,=1.2868 anca=0.6160 for site

percolation andyy=0.7541 anda=0.9346 for bond perco-

Since the early development of percolation theory, therdation. For the lattices considered [i6], the maximum de-
have been efforts to find a universal formula, based on aiation of the formula from numerical estimates=g.008.
small number of features of the underlying lattice, for pre-However, the universality classes are not precisely defined in
dicting the values of the percolation threshold for all latticeterms of properties of the lattice graphs, so it may be unclear
graphs. For example, Wssotsky, Gordon, Frisch, and Hamwhich class a new lattice belongs to.
mersley[1] studied bond percolation on eight regular two- In [6], Galam and Mauger extended their formula to non-
and three-dimensional lattices, commented that &ppears regular latticedi.e., those that do not have a single coordi-
to be little affected by differences of lattice type if the num- nation number for all verticesvia the use of an effective
ber of dimensions and coordination number are the same fjarameteq. to replace the average coordination numder

and mentioned the approximation They suggest that their formula has predicting ability for
percolation thresholds which have not yet been computed:

_ d ) For example, if the site threshold of a lattice has been esti-

pC_(d— 1)q’ mated g can be computed from the formula for site thresh-

olds, and can be used to predict the bond threshold from the
whered is the dimension of the lattice amglis the coordi-  formula for bond thresholds.
nation numbelor vertex degreeof the lattice. Although the formulas of Galam and Mauger are in ex-
For site percolation, the formula tremely good agreement with simulation estimates for the
lattices studied, some numerical discrepancies have been
Pe= d ) noted in the past. Van der Mar¢K] noted that, if there is to
(d=1)(g—1) be a universal formula for percolation thresholds, it needs to
o ) be based on more information thahand g only. As ex-
was proposed by Sahinet al. [2] for d=3. An alternative  amples, he provides two three-dimensional lattices with

formula for site models, =3 and q=8, the body centered cubic lattice and the
stacked triangular lattice. Their site percolation threshold es-
_ 1 3) timates are 0.246 and 0.2623 respectively, with bond perco-
Pe \/q—_l ' lation estimates of 0.1803 and 0.1859, respectively. Baba-

lievski [8] investigated and confirmed a discrepancy of 0.020
proposed by Galam and Maugé,4] obtained good results in the estimate for the value of the bond percolation thresh-

in two dimensions, but not for higher dimensions. old of the ferrovariant of the dodecagonal lattice.
Galam and Maugd5,6] provided excellent estimates for ~ Researchers have considered other means of developing
several lattices using the power law formula universal formulas for the percolation threshold, based on a
minimal spanning tree approa¢8—11], lattice Green func-
Pe=Pol (d—1)(g—1)] 2d", (4)  tions [2], filling factors [12], and preferred directions for

_ ~ cluster formatior{ 13].
where the parameterg,, a, andb were determined by a fit

to known percolation threshold values. The lattices studied
were classified into three universality classes. For the two
classes of lattices with dimensiods<7, b=0 for site per- Recent mathematical analysis of percolation on
colation ando=a for bond percolation. One of these classesArchimedean lattices shows that percolation threshold ap-
includes the two-dimensional square, triangular, hexagonaproximation formulas based only on dimension and coordi-
and dice lattices, for whiclpy=0.8889 anda=0.3601 for  nation number must necessarily have large errors for some
site models ang,=0.6558 andh=0.6897 for bond models. graphs. Archimedean lattices are vertex-transitive graphs
The other class includes the Kagotattice and other lattices with a planar representation that is a tiling of the plane by

II. DIMENSION AND COORDINATION NUMBER
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regular polygons(A vertex-transitive graph is one in which 0.6527036 . . <p.(hexagonal site<0.794 72. (11)
all vertices are equivalent, i.e., for any pair of vertices, there
is a graph isomorphism which maps one into the other.The range of values is at least the difference between the
There are exactly 11 Archimedean lattiddsl]. We denote ~exact threshold of the (3,fplattice and the upper bound for
each Archimedean lattice by a sequence of integerthe hexagonal lattice, which is 0.013 18, implying an error of
(ng,Nn,, ... N for somek, where then; denote the number at least 0.006 59 for one graph. Such errors are within the
of sides of successive faces as one moves around a singienge of accuracy, 0.008, claimed by Galam and Mauger, for
vertex. (For conciseness, an exponent is used to indicate @xample. However, simulations provide estimates of ap-
number of successive faces of the same sifBeveral proximately 0.697 043 for the site percolation threshold of
authors—d'Iribarne, Rasigni, and Rasighll], van der the hexagonal lattice, which would imply a substantially
Marck [15], Suding and Ziff{16], Ruskin and Cadilh¢17],  larger error in such formulas.
and Wierman18,19—have considered various percolation  Note that Galam and Mauger divide the low-dimensional
models on Archimedean lattices. lattices into two classes, with a different formula for each
We first discuss why there must be substantial errors wheglass. This approach may eliminate errors of the size men-
predicting bond percolation thresholds based only on dimentioned above for site models. For bond models, however, an
sion and coordination number. Four of the 11 Archimedeannfinite collection of the examples must fall into one of the
lattices are regular graphs with coordination numger3.  two classes, so there must still be substantial inaccuracy.
The exact bond percolation threshold for the®)3attice,
called “hexagonal” or “honeycomb,” is * 2sin(m/18) IIl. EFFECTIVE COORDINATION NUMBER
—0.65 ... This value was derived by Sykes and Essam  1pe gyccess of the effective coordination number ap-
[20] and proved by Wiermah21]. wWierman[19] used the nach requires that the bond percolation thresholds of
substitution method to determine the following rigorous o anhg pe close if their site percolation thresholds are close.
bounds for the bond percolation threshold for threeyntorynately, the class of periodic fully triangulated graphs
Archimedean lattices: studied in[22] all have site percolation thresholds equal to
one-half, but the bond percolation thresholds range from near

0.7385<p [ (3,12) bond| <0.7449, 5) zero to 2 sing/18)=0.3473 . . . . Thus, the procedure of pre-
dicting bond thresholds from the site threshold will be inac-
0.6430<pc[(4,6,12bond| <0.7376, ®  curate by at least 0.1736 for at least one of these lattices, for
any such formula.
0.6281<pc[(4,8) bond <0.7201. () For example, the Galam and Mauger site threshold formu-
_ . _ las, solved forge When sitep.=1/2, give a value o
Thus, among the Archimedean lattices with 2 andq=3, 5 942 269 for class 1 angl=5.639 41 for class 2, lead-

the bond percolation thresholds can have a difference of %g to bond threshold predictions pf,=0.351 391 for class

least 0.0858. 1 andp,=0.343475 for class 2. Thus, there are discrepan-

Furthermore, Wiermarj22] constructed a sequence of qjos o5 |arge as 0.343475, even though two formulas are
planar periodic fully triangulated graphs with bond percola- qq

tion thresholds converging to zero. Since the bond percola-
tion thresholds of dual lattices add to 1, the sequence of dual IV. LACK OF MONOTONICITY
lattices of these fully-triangulated lattices has percolation
thresholds converging to 1. However, the dual of a fully tri-  In the formulas off 1-6], for fixed dimension the perco-
angulated lattice is a regular lattice with coordination num-lation threshold is a monotonically decreasing function of the
ber q=3. Therefore, bond percolation thresholds of latticesaverage coordination number. A recent counterexample of
with d=2 andq=3 range between 0.6527 and 1, an interval\Wierman [24] involves two two-dimensional lattices with
of length 0.3473. Consequently, any bond percolation thresHond percolation thresholds and average degrees in the same
old estimate from any universal formula based on only theorder, violating the monotonicity in the formulas: A modifi-
dimension and the coordination number must differ from thecation of the (3,12 lattice has bond percolation threshold
true threshold by at least half the length of this interval,between 0.69523 and 0.69825 and average degrge 3
0.1736, for at least one lattice. which may be compared to the hexagonal lattice, with exact
For site models, the discrepancy in predictions that camond threshold 0.652. . . anduniform coordination number
currently be proved mathematically is not as large as fo. Since the difference in the thresholds is at least 0.042 53,
bond models. For the four Archimedean lattices wdth2  any monotone formula must err by at least half this amount,
andg=3 we have the following exact solutions and boundsor 0.021 26, for one of these lattices. The counterexample
[18,23: can be converted into site models, by the bond-to-site trans-
_ formation and containment principle, for which monotone
po[ (3,12)site]=0.807900786 . . ., (8)  formulas must err by at least 0.021 26 also.
Furthermore, a different counterexample of Wiermas|
0.707 16<p,[ (4,8°) site]<0.799 97, (9)  shows that two lattices may have bond percolation and site
percolation thresholds in the opposite order. If universal for-
0.72173<p,[(4,6,12site] <0.818 98, (100  mulas for bond percolation and site percolation thresholds
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were monotone function of the average coordination numbesion and average coordination number must err by at least

this would not be possible. 0.1736 for at least one planar lattice, as shown in Sec. Il.
Furthermore, any such universal formula that is monotone in
V. BOND-TO-SITE TRANSFORMATION the average coordination number must err by at least

0.021 26 for some graph, due to the lack of monotonicity of

The bond-to-site transformation converts any bond percothe percolation threshold as a function of the average coor-
lation model on a lattice to an equivalent site percolationdination number. Similarly, lack of consistency with the
model on theline graph or covering graphof the lattice.  bond-to-site transformation and planar graph duality also ex-
Note that for a regular graph with coordination numbethe  poses inaccuracies in the predictions of such universal for-
covering graph has coordination numbeg-22. Therefore, mulas. The sizes of the discrepancies established in Secs.
discrepancies will arise if the bond percolation threshold forl-VI are minimums, established by mathematical proof:
coordination numbeq does not agree with the site percola- Simulation estimates indicate discrepancies that are consid-
tion threshold for coordination numbeng2 2. erably larger in some cases.

For example, the bond percolation threshold of the It is important to note that the discrepancies exhibited are
Kagomelattice, which has coordination number 4, is equal toobtained with any universal formula depending only on di-
the site percolation threshold of its covering graph, whichmension and coordination number. The mathematical results
has coordination number 6. However, since the Kagtatte provide bounds on the accuracy of the predictions of the
tice is in class 2, the Galam and Mauger formula estimates itentire class of universal formulas. Galam and Mauger’s for-
bond threshold as 0.5162, while its covering graph has sitenulas were not singled out for criticism, but used as ex-
threshold estimated as 0.4979 if it is in class 1 and 0.4775 iamples precisely because they are the most accurate formulas
it is in class 2. Nearly exact mathematical bounds exist foto date.
the Kagomelattice bond threshold26], for which 0.5209 The main theme of this Brief Report is that just dimension
<p.(Kagomebond)<0.5291. Thus, the discrepancy is at and average degrder even a measure of effective average
least 0.0230 for the site percolation threshold of the coveringlegreg are insufficient to explain the variation in percolation

graph of the Kagoméattice. thresholds. The introduction of a third explanatory variable is
a natural approach to this problem. The use of universality
VI. DUALITY classes in Galam and Mauger’s formula essentially intro-

duces another explanatory variable to obtain better predic-

An important theoretical result in mathematical percola-tions, although the nature of the variable and its dependence
tion theory, due to Kestefh27], is that bond percolation on the lattice structure are not clearly defined.
thresholds of a dual pair of periodic planar lattices sum to 1. Other approaches to developing universal formulas have
The formulap.=d/(d— 1)q satisfies this property, as a con- peen proposed, in addition to those involving dimension and
sequence of Euler’s formula for planar graphs. However, thewerage degree. However, these approaches must also deal
property is not satisfied for the other formulas mentionedwith issues such as lack of monotonicity, consistency relative
above. i to the bond-to-site transformation, and consistency with du-

For example, the Kagomhattice falls into Galam and ality for planar graphs. For example, Suding and Zif]
Mauger’s class 2 and its dual, the dice lattice, falls into classind others use a filling factor to obtain excellent estimates of
1. Since both have average degree equal to 4, the formulagte percolation thresholds of Archimedean lattices. How-
produce the estimates 0.5162 and 0.4958, respectively, whickver, they note that their method does not apply as well with
sum to 1.0120. Thus, at least one of the threshold estimatefonregular graphs. In fact, the percolation behavior depends
must be in error by at least 0.006. In fact, mathematicabnly on the adjacency structure of the lattice graph, while
bounds of being independent of its planar representation. Thus, one

; cannot expect filling methods to fully capture the complexity
0.5208< p.(Kagomebond <0.5291 (120 of the dependence of the percolation threshold on the de-
tailed structure of the underlying graph.

The comments in this paper demonstrate that developing
accurate universal formulas for percolation thresholds is
much more challenging that previously believed. Explaining
the dependence of the percolation threshold on the detailed
structure of the lattice is an important and interesting prob-
lem, worthy of further attention. It is hoped that this note will
help influence and stimulate further research on this problem.

and, consequently,
0.4709< p.(dice bond=<0.4791, (13

have been proved26]. Thus, the inaccuracy is at least
0.0037 for the Kagomattice and 0.0167 for the dice lattice.

VII. CONCLUSIONS AND DISCUSSION
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