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Quantifying stock-price response to demand fluctuations
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We empirically address the question of how stock prices respond to changes in demand. We quantify the
relations between price changeG over a time intervalDt and two different measures of demand fluctuations:
~a! F, defined as the difference between the number of buyer-initiated and seller-initiated trades, and~b! V,
defined as the difference in number of shares traded in buyer- and seller-initiated trades. We find that the
conditional expectation functions of price change for a givenF or V, ^G&F and ^G&V ~‘‘market impact
function’’!, display concave functional forms that seem universal for all stocks. For smallV, we find a
power-law behavior̂G&V;V1/8 with d depending onDt ~d'3 for Dt55 min, d'3/2 for Dt515 min and
d'1 for largeDt!. We find that large price fluctuations occur when demand is very small—a fact that is
reminiscent of large fluctuations that occur at critical points in spin systems, where the divergent nature of the
response function leads to large fluctuations.
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Stock prices respond to fluctuations in demand, just as
magnetization of an interacting spin system responds to fl
tuations in the magnetic field. Periods with a large numbe
market participants buying the stock imply mainly positi
changes in price, analogous to a magnetic field causing s
in a magnet to align. Thus, understanding the dynamics
stock price fluctuations involves quantifying and understa
ing the relationship between price fluctuations and dema
Here, we quantify how price fluctuations depend on dem
@1–3#, and find a strikingly nonlinear relationship with a sp
cific functional form that is not altogether unlike the depe
dence of magnetization on field strength. Our findings for
behavior of this dependence near zero demand are cons
with the intriguing possibility that large price fluctuation
and their scale-free behavior arise not merely from exte
influences, but also from the ‘‘singular’’ response of the c
operative system, just as singularities near critical points
magnets arise from the intrinsic behavior of the system its

To quantify fluctuations in demand, we distinguishbuyer-
initiated and seller-initiated trades defined by which of th
two participants in the trade, the buyer or the seller, is m
eager to trade. When such a distinction does not exist,
label the trade asindeterminate. We identify buyer- and
seller-initiated trades using the bid and ask quotesSB(t) and
SA(t) at which a market maker is willing to buy or sel
respectively. For records of the bid-ask quotes, prices,
number of shares traded, we analyze the data for the
most-frequently traded US stocks from for the 2 yr peri
1994–1995 @4#. Using the mid-value SM(t)5@SA(t)
1SB(t)#/2 of the prevailing quote@5–7#, we label a trade
buyer initiated if S(t).SM(t), and seller initiated ifS(t)
,SM(t). For trades occurring exactly atSM(t), we use the
sign of the change in price from the previous trade to de
mine whether the trade is buyer or seller initiated, while
the previous trade is at the current trade price, the trad
labeled indeterminate@5,8#. Accordingly, for each tradei, we
define the variable

ai[H 1 ~buyer initiated!

0 ~ indeterminate!

21 ~seller initiated!.
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We quantify demand fluctuations by analyzing two qua
tities: ~a! the number imbalance~difference between the
number of buyer-initiated and seller-initiated trades@9,10# in
a time interval@ t,t1Dt#),

F5FDt~ t ![(
i 51

N

ai , ~2a!

and ~b! the volume imbalance~difference between the num
ber of shares traded in buyer-initiated and seller-initia
trades in the intervalDt),

V5VDt~ t ![(
i 51

N

qiai , ~2b!

where qi is the number of shares traded in tradei, and N
5NDt(t) is the number of trades inDt.

To choose a time scale in which to analyze the dep
dence of price fluctuations on demand, we first compute
correlation functions~Fig. 1! ^F(t)G(t1t)& and ^V(t)G(t
1t)&, where G(t)[GDt(t) is the stock price change ove

FIG. 1. Cross correlation functions @^F(t)G(t1t)&
2^F(t)&^G(t)&#/sGsF ~open circles! and @^V(t)G(t1t)&
2^V(t)&^G(t)&#/sGsV ~closed circles! computed using 5 min
time series forF, V, andG. We find short-range time dependenc
which after'15 min reaches noise levels~dashed lines!.
©2002 The American Physical Society04-1
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FIG. 2. ~a! Conditional expectation̂G&F of the price change for a given value ofF for five typical stocks over a time intervalDt
515 min. BothG andF are normalized to have zero mean and unit variance.~b! Conditional expectation̂G&V for the same five stocks a
in part ~a!. We normalizeG to have zero mean and unit variance. SinceV has a tail exponentz53/2 which implies divergent variance, w
normalizeV by the first moment̂ uV2^V&u&. ~c! ^G&F averaged over all 116 stocks studied. The solid curve shows a fit to the fun
A0 tanh(A1F), with A050.7160.01 andA150.5860.01, where the fit is performed with tolerance50.01 @22#. The dotted lines~nearly
indistinguishable from the solid curve! showA0 tanh(A1F) for the bounding values ofA0. ~d! Same as~c!, on a log-log plot forF.0 ~filled
symbols! and F,0 ~empty symbols! for Dt515 min and 195 min~shifted vertically for clarity!. The solid curves show fits to
A0 tanh(A1F), which agree well with the data.~e! Conditional expectation̂G&V averaged over all 116 stocks. We calculateG andV for
Dt515 min. The solid line shows a fit to the functionB0 tanh(B1V). ~f! ^G&V on a log-log plot for differentDt. For smallV, ^G&V

.V1/d. For Dt515 min find a mean value 1/d50.6660.02 by fitting ^G&V for all 116 stocks individually. The same procedure yiel
1/d50.3460.03 atDt55 min ~interestingly close to the value of the analogous critical exponent in mean field theory!. The solid curve
shows a fit to the functionB0 tanh(B1V). For smallV, B0 tanh(B1V);V, and therefore disagrees with^G&V , whereas for largeV the fit

shows good agreement. ForDt5195 min (12 day! ~squares!, the hyperbolic tangent function shows good agreement.
027104-2
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the interval Dt. We find significant dependence att50,
while for utu.0, both correlation functions decay rapid
ly and cease to be statistically significant beyondt
'15 min—thereby setting a short time scale for the
sponse of price changes to fluctuations in demand.

Next, we shall examine the relationships

^G&F[E~GuF!, ~3a!

^G&V[E~GuV!, ~3b!

which give the equal-time expectation values ofG(t) for a
given F(t) or V(t). Figures 2~a! and 2~b! show ^G&F and
^G&V for five typical stocks forDt515 min. We find that
both ^G&F and ^G&V are nonlinear, displaying concave cu
vature with increasingF andV @11–14#, and ‘‘flattening’’ at
large values@15#.

Figure 2~c! shows the average behavior of^G&F for all
stocks. The error bars correspond to one standard devia
for eachF bin. We find that^G&F is consistent with the
functional form

^G&F5A0 tanh~A1F!, ~4!

FIG. 3. ~a! Conditional expectation̂ N&F of the number of
trades for a givenF averaged over all 116 stocks, shows appro
mately linear behavior with increasingF. ~b! ^N&V averaged over
all 116 stocks shows strikingly nonlinear behavior. The solid l
shows a fit to the functionC02C1 exp(2C2V) ~which has the same
large V behavior as a hyperbolic tangent!. For both parts~a! and
~b!, we calculateG, F andV overDt515 min. BothF andG are
transformed to have zero mean and unit variance, whereasV is
normalized by its first moment.
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whereA0 is a constant that denotes the level of ‘‘saturation
andA1 determines the average price change for unit cha
in F. In the case of a spin system, the saturation at la
values for the analogous curve—magnetization vs field—
due to the fixed number of spins. The apparent saturatio
^G&F is surprising in the present context, since there is
clear upper limit either on the price change, or on the num
of trades. We find that̂G&F for a range ofDt, also displays
good agreement with Eq.~4! @Fig. 2~d!#.

We next focus on̂G&V @Fig. 2~e!#. We find that the func-
tion ^G&V , like ^G&F , is consistent with Eq.~4! @1,16,17#.
However, nearV50, ^G&V shows not a strict linear behav
ior for small V as we expect for tanhV, but rather a power-
law ^G&V;V1/d @Fig. 2~f!#. We find that 1/d depends onDt
@Fig. 2~f!#: d'3 for Dt55 min andd'3/2 for 15 min, and
d→1 for largerDt ~agreeing well with tanhV) @16#. On a
trade-by-trade basis, we find values of 1/d ranging from 0.2
up to 0.6 for different stocks.

Next, we analyze the dependence of the number of tra
N on demand fluctuations to quantify how large volume i
balances generate trades. Figure 3~a! shows that the equal
time expectation valuêN&F shows a linear increase withF.
The dependence ofN on volume imbalanceV is nonlinear;
^N&V displays a ‘‘cusp’’ atV50 followed by a sharp in-
crease and saturation at large values@Fig. 3~b!#. We further
analyze the small-V behavior of^N&V and find the relation-
ship N;Vg for each stock. We obtain a mean value ofg
50.1760.02 for all stocks analyzed.

-

FIG. 4. ~a! Conditional expectation̂x&F , wherex is calculated
using Eq.~5!, shows large values nearF50 and decay for increas
ing F. The solid lines show a fit to the functionD0 sech2(D1F).
~b! Number of events withuGu.5 standard deviations for a give
F shows large values atF50.
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In spin systems, the amplitude of spin fluctuations is
lated to the susceptibility, which quantifies the response
the system to fluctuations in the magnetic field. In our pro
lem, a certain changeDF in demandF ~analog of the field!
causes a responsed^G&F /dFDF, which we find to be larg-
est atF50 ~Fig. 2!, suggesting that the nonlinear shape
^G&F can give rise to large fluctuations~large ‘‘volatility’’
@18#! whenF is small. The average amplitude of fluctuatio
in G[( i 51

N dpi is given by the variance

x2[^dpi
2&2^dpi&

2, ~5!

wheredpi is the price change due to tradei and ^•••& de-
t
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notes the average computed over the intervalDt. Figure 4~a!
shows that̂ x&F displays large values nearF50 and a rapid
decay for increasingF. Figure 4~b! shows the dependenc
on F of the number of events with price changeuGu.5
standard deviations. Interestingly, we find that a majority
the large events occur atF50, consistent with previous em
pirical results@19# which show that the power-law distribu
tion of price changes@20# mainly arises fromx. Our findings
are reminiscent of phase transitions in spin systems, wh
the divergent behavior of the response function at the crit
point ~zero magnetic field! leads to large fluctuations@21#.
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