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A consequent approach is proposed to construct symplectic force-gradient algorithms of arbitrarily high
orders in the time step for precise integration of motion in classical and quantum mechanics simulations.
Within this approach the basic algorithms are first derived up to the eighth order by direct decompositions of
exponential propagators and further collected using an advanced composition scheme to obtain the algorithms
of higher orders. Contrary to the scheme proposed by Chin and KifRlejls. Rev. E62, 8746(2000], where
high-order algorithms are introduced by standard iterations of a force-gradient integrator of order four, the
present method allows one to reduce the total number of expensive force and its gradient evaluations to a
minimum. At the same time, the precision of the integration increases significantly, especially with increasing
the order of the generated schemes. The algorithms are tested in molecular dynamics and celestial mechanics
simulations. It is shown, in particular, that the efficiency of the advanced fourth-order-based algorithms is
better approximately in factors 5 to 1000 for orders 4 to 12, respectively. The results corresponding to sixth-
and eighth-order-based composition schemes are also presented up to the sixteenth order. For orders 14 and 16,
such highly precise schemes, at considerably smaller computational costs, allow to reduce unphysical devia-
tions in the total energy up in 100 000 times with respect to those of the standard fourth-order-based iteration
approach.
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[. INTRODUCTION increasing the order of force decomposition schemes, the

number of stages and thus the number of the corresponding
Understanding the dynamic phenomena in classical angonlinear equationswhich are necessary to solve numeri-
quantum many-body systems is of importance in most area@@lly to obtain the required time coefficients for single-

of physics and chemistry. The development of efficient algo€XPonential propagationsncreases drastically. In addition,

rithms for solving the equations of motion in such Systemssuch equations become too cumbersome and all these, taking

should therefore impact a lot of fields of fundamental re_mto account the capabilities of modern supercomputers, led

) ! ) to the impossibility of representing the direct decomposition
search. During the last decade a considerable acit®]  yigorithms of order eight and higher in an explicit fofsi.
has been directed on the construction of symplectic time,” order to simplify this problem, it was proposed

reversible algorithms that employ decompositions of the evof1 3,5 6,20—2Bto derive higher-order integrators by com-
lution operators into analytically solvable parts. The decomposing schemes of lowgactually secondorders. The re-
position algorithms exactly preserve all Poincameariants  sulting second-order-based composition algorithms have
and, thus, are ideal for long-time integration in molecularbeen explicitly obtained up to the tenth ordér6,22.
dynamics[10] and astrophysicdl11] simulations. The rea-  Relatively recently24—26, a deeper analysis of the op-
son is that for these algorithms the errors in energy consefrator factorization process has shown that the class of ana-
vation appear to be bounded even for relatively large valueg’t'ca"y_ integr able d_e_composmpn integrators can be &x
of the size of the time step. This is in a sharp contrast t ended including additionally a higher-order commutator into

o ) he single-exponential propagations. As a consequence, a set
traditional Runge-Kutta and predictor-corrector scheme%f so-called force-gradient algorithms of the fourth order has

[12,13, where the numerical uncertainties increase linearyeen introduced. A distinguishable feature of these algo-
with increasing the integration tin{®,14-17. rithms is the possibility to generate solutions using only posi-
The main attention in previous investigations has beenjve values for time coefficients during each substage of the
devoted to derive different-order decomposition algorithmsintegration. This is contrary to the original decomposition
involving only force evaluations during the time propaga-approach, where beyond second ordas has been rigor-
tion. For instance, the widely used velocity- and position-ously proved by SuzuKi3]) any scheme expressed in terms
Verlet algorithmg 18,19 relate, in the general classification, of only force evaluation must produce some negative time
to a three-stage decomposition scheme of the second ordeoefficients. We mention that applying negative time propa-
with one force evaluation per step. The fourth-order algo-gations is impossible, in principle, in such important fields as
rithm by Forest and Ruth2] corresponds to a scheme with nonequilibrium statistical mechanics, quantum statistics, sto-
three such force recalculations and consists of seven singlehastic dynamics, etc., because one cannot simulate diffusion
exponential stages. Sixth-order schemes are reproddggld or stochastic processes backward in time nor sample configu-
beginning from fifteen stages and seven evaluations of forceations with negative temperatures. In the case of stochastic
for each body in the system per given time step. With furthedynamics simulations it has been demonstrated explicitly
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[27,28 that using fourth-order force-gradient algorithms simulations, respectively. A comparative analysis of the in-
leads to much superior propagation over standard Verletroduced algorithms with existing integrators is made there
based schemes of the second order in that it allows mucis well. The final discussion and concluding remarks are
larger time steps with no loss of precision. A similar patternhighlighted at the end in Sec. IV.
was observed in classical dynamics simulations comparing
the usual fourth-order algorithm by Forest and Ruth with its1l. GENERAL THEORY OF CONSTRUCTION OF FORCE-
force-gradient counterparf6]. GRADIENT ALGORITHMS

Quite recently, Chin and Kidwe[l29] have considered a
guestion of how to iterate the force-gradient algorithms to
higher orders. The iteration was based on Creutz and Gock-
sch’s approach30] according to which an algorithm of order ~ Consider first a classicé-body system described by the
K+ 2 can be obtained by triplet construction of a self-adjointHamiltonian
(i.e., time-reversiblescheme of ordeK. Then starting from N

A. Basic equations of motion for classical and quantum
systems

a fourth-order integrator, it has been shown in actual celestial H— E
mechanics simulations that for orders 6, 8, 10, and 12, the =
numerical errors corresponding to the force-gradient-based

schemes are significantly smaller than those of the schemegnerer; is the position of particlé moving with velocity
basing on iterations of usual nongradient algorithms. Thes,=dr;/dt and carrying massn;, <P(rij)5¢(|ri—rj|) de-
resulting efficiency of the integration has also increased comotes the interparticle potential of interaction, ah@nd U
siderably despite increased computational efforts spent ofelate to the total kinetic and potential energies, respectively.
the calculations of force gradients. The same has been se@men the equations of motion can be presented in the follow-
in the case of quantum mechanics simulations when solvinghg compact form:

the time-dependent Schiinger equatiod31].

It is worth emphasizing, however, that the iteration p
scheme proposed by Chin and Kidwell is far to be optimal E:[P"H]E'-P(t)- @
for deriving high-order integrators belonging to the force-
gradient class. The reason is that the number of total forcgjere p={r vi={r; v} is the full set {(=1,2,...N) of
and its gradient evaluations increases too rapidly with inpnase variablege] represents the Poisson bracket and
creasingK. Remembering that such evaluations constitute
the most time-consuming part of the calculations, this may N 09 f 9
restrict the region of applicability of force-gradient algo- L=2 (vi—+—'—) ©)]
rithms to relative low orders only. Note that high-order com- =10 dn Mo
putations are especially desirable in problems of astrophysi- o ) N
cal interest, because then one can observe a system ove#Sathe Liouville operator withf; = —3 ;" (rjj)rj; /rj; be-
very long period of time. They may also be useful in highly ing the force acting on particles due to the interactions.
precise molecular dynamics and quantum mechanics simula- In the case of quantum systems, the state evolution can be
tions to identify or confirm very subtle effects. described by the time-dependent Safinger equation,

In the present paper we propose a general approach to
construction of symplectic force-gradient algorithms of arbi-
trary orders. The approach considers the splitting and com-
posing of the evolution operators on the basic level, taking
into account the explicit structure of truncation terms at eactwhere7= — %2!\‘: 1fiZViZ/mi andl{ are the kinetic and poten-
given order in the time step. This has allowed us to obtairtial energy operators, respectively, atds the wave func-
exclusively precise and economical algorithms by using sigtion. The so-called quantum-classical dynamics mofz2$
nificantly smaller number of single-exponential propagationsan also be introduced. This leads to a coupled system of
than that appearing within standard decomposition and iteraNewtonian(2) and Schrdinger (4) equations. But, in order
tion schemes. The paper is organized as follows. The equae simplify notations, we restrict ourselves to the above
tions of motion for classical and quantum systems are prepurely classic and quantum considerations.
sented in Sec. IlA. The integration of these equations by If an initial configurationp(0) or (0) is provided, the
direct decompositions and their force-gradient generalizationique solution to Eq(2) or (4) can be formally cast as
are described in Sec. IIB. Explicit expressions for basic
force-gradient algorithms of orders 2, 4, 6, and 8 are also R(t)=eR(0)=(e**Y)R(0), (5)
given there. The higher-order integration based on advanced
compositions of lower-order schemes is considered in SesvhereAt andl=t/At are the size of the single time step and
[IC. The composition constants for fourth-, sixth-, and the total number of steps, respectiveR, denotes eithep or
eighth-order-based schemes are calculated and written in thig whereasC corresponds th or —iH/#%. As is well known,
same section up to the overall order 16. Sections Il A andhe time evolution of many-particle systems cannot be per-
[IIB are devoted to applications of obtained force-gradientformed exactly in the general case. Thus, the problem arises
algorithms to molecular dynamics and celestial mechanicen evaluating the propagatef*! by numerical methods.

2 N
m;V;
|2|_+ > e(rij)=T+U, 1)
i#]

N =

L, oY
1 —- =HI) y=[T+UN) 14, 4
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B. Integration by direct decompositions increase too rapidly. This leads to the impossibility of repre-
senting algorithms of such a type f&>6 in an explicit
form [6], because it becomes impossible to solve the same
The main idea of decomposition integration consists innumber of the resulting cumbersome nonlinear equations
factorization of the full exponential operatef*! on such (with respect toa, and b,) even using the capabilities of
subpropagators that allow to be evaluated analytically or afnodern supercomputers. Another drawback consists in the
least be presented in quadratures. Within the original apfact that fork >2 it is impossiblg 3] at anyP to derive from
proach, this is achieved by splitting the operatbr A+B  Eq. (6) a decomposition scheme with the help of only posi-
into its kinetic.A and potential3 parts, whered=v-g/dr or  tive time coefficients. For example, in the case of Forest-
A=—iTh and B=a-9/dv with a={a;}={f;/m;} being the  Ruth integration, three of eight coefficients, namely, b,,
acceleration oB= —il/f: for the cases of classical or quan- andbs, are negative. As was mentioned in the introduction,
tum mechanics, respectively. Then, taking into account thgchemes with negative time coefficients have a restricted re-
smallness ofAt, the total propagator can be decomposedgion of application and are not acceptable for simulating
[1-3,5,24 using the formula nonequilibrium statistical mechanics, quantum statistics, sto-
chastic dynamics, and other important processes. Moreover,
for schemes expressed in terms of force evaluation only, the
main termO(AtK*1) of truncation uncertainties appears to
be, as a rule, too big, resulting in a decrease in the efficiency
where the coefficienta, andb, are chosen in such a way so of the computations.
as to provide the highest possible value Ko 1 at a given ) _ -
integer numbeP=1. As a result, integratiofb) can be per- 2. Generalized force-gradient decomposition method
formed approximately with the help of E(f) by neglecting From the aforesaid, it is quite desirable to introduce a
truncation term©(At“*1). The precision will increase with more general approach that is free of the above disadvan-
increasing the orde and decreasing the sizet of the time  tages. At the same time, this approach, like the original
step. scheme, must be explicit, i.e., lead to analytical propaga-
As can be verified readily, the exponential subpropagatorgions. In addition, it is expected that the already known de-
e*” ande®”, appearing in the right-hand-side of E6), are  composition algorithms should appear from it as particular
analytically integrable for classical systems. Indeed, takingases.

1. Original decomposition approach

P
e(A+B)At+ o(atitly _ H gAapAtgBbyAt (6)
p=1

into account the independencewbnr anda onv yields Let us first analyze the structure of third-order truncation
o il errorsO(At3) of the velocity-Verlet algorithm in detail. Ex-
e Tp=e™" "N r vi={r+vr,v}, panding both the sides of E¢8) into Taylor's series with

. respect taAt, one finds
eBp=eNr v}={r v+ar}, (7)

1 1

which represent simple shift operators in position and veloc- O(At3)= 1A LABIH 54 [B.LAB]] At+0(At?),
ity spaces, respectively, withbeing equal ta,At or byAt. (9)
For quantum mechanics propagations, the kinetic pdft
=e 7" will require carrying out two, one direct and one where[,] denotes the commutator of two operators. Taking
inverse, spatial Fourier transforf1], whereas the calcula- into account the explicit expressions for operatdrand it
tion of e®7=e~ """ s trivial. can be shown that one of the two third-order operators in Eq.

In view of decompositiong6), one can reproduce integra- (9), namely[,[ A, 8]], is relatively simple and, more impor-
tors of various orders in the time step. In particular, the well-tantly, it allows to be handled explicitly, contrary to the op-
known second-order K=2) velocity-Verlet algorithm  erator[.A4,[.4,B]]. In the case of classical systems it can be
(19,18 obtained readily that

e(A+BIALHO(AL) _ oB(AU2) gAML gB(AL2) ®)

N
i Jd J

C=[BIABI=S, > =G . (10

is readily derived from Eq(6) by putting P=2 with a, =

=0, b;=b,=1/2, anda,=1. The fourth-order K=4) al- wherea = : ;

. . . Gio=22gf; g/m;dfi /015 In view of the expression

gorithm propiosed_ by Fgrest aEd R_l{tkﬂ |s_obta|ned from fia=—2i(21)¢ () (Fia—T;)/1;; for forces, the required

Eq. (6) at P=4 with a;=0, a;=2a,=9, a3—(1—20)?: by force-gradient evaluationd; ,/dr;; are explicitly represent-
=b,=0/2, and b,=by=(1-0)/2, where 6=1/(2-%2). e ie.

Schemes of the sixth ordelK&6) are derivable starting

from P =8 with numerical representation of time coefficients N ol T

[4,6]. g=-2 > |(a—a)—+—(rjef—eplr(a-a)]
The original decomposition approach has, however, a set 1G+0) iy rj

of disadvantages. First of all, it is worth pointing out that N

with fgrther increasing the order of integratid®) to K=8 = 2 g(ri))=a(r). (11)

and higher, the number2of unknownsa, andb, begins to iG#i)
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As can be seen easily from Eq40) and(11), the opera- An important feature of decomposition integratid3) is
tor C commutes withB=a-d/dv, and, in addition, the func- that it, being applied to classical dynamics simulations, con-
tion G like a does not depend on velocity. Then the force-serves the symplectic map of particle’s flow in phase space.
gradient pariCAt3/24 of truncation uncertaintie®) can be  This is so because separate shifts of positi@hsnd veloci-
extracted by transferring them from the left-hand side of Eqties (14) do not change the phase volume. The time revers-
(8) to its right-hand side and further symmetrically collecting ibility S(—t)R(t)=7R(0) of solutions[following from the
with operator3 under exponentials. This yields the follow- property S 1(t)=S(—t) of evolution operatorS(t)=e*']
ing force-gradient version: can be reproduced exactly as well by imposing additional
constraints on the coefficienss,, b,, andc,. In particular,
for velocitylike decompositions such constraints reag:
(12 =0, apr1=ap_p+1, bp=bp_p41, @andc,=cp_ps1. Then
single-exponential subpropagators will enter symmetrically
into the decompositions, providing automatically the re-
. . . quired reversibility. The case when the operators of shifting
In the case of higher-ordel(>2) integration(6), the e incity and position are replaced by each other in the result-

: : : . K+1
operatorC will enter into truncation uncertainti€S(At™" %) 55 symmetrical decomposition is also possible. This leads to
by various combinations. They can be extracted similarly as, positionlike integration that can be reproduced from Eq.

for K=2, and we come to a force-gradient decompositior:%:%) ata,=ap_.1, by=bp andc,=cp_, athp=0 and
P —p+1> Yp -p P -p

e(A+B)ALE o(atd) _ eB(AU2)~ C(At3/48)eAAteB(At/2)—C(At3/48)

of the velocity-Verlet integrator, where alread9(At®)
=[A,[A,B]At%12.

approach. The most general representation of this approa 1-0
IS The above symmetry will result in its turn to automatic
P disappearing of all even-order terms in the error function
a(A+B)At+O(AK 1) _ 11 eAapAtBOALECeAt (13 O(AtK*_l)_. For this reason, the ordét of time-reversible
p=1 (self-adjoin} algorithms may accept only even numbeks (

=2,4,6...). Thecancellation of the remaining odd-order
terms up to a given order will be provided by fulfilling a set
Bf basic conditions fom,, b,, andc,. For example, the
condition =;_,a,=3;_,b,=1 is required to cancel the
first-order truncation uncertainties. Then the error function
can be cast in the form

where again at a giveR the coefficientsa,, by, as well
asc, must be chosen in such a way to cancel the truncatio
termsO(At“*1) to the highest possible orde Forc,=0,
generalized factorizatiofl3) reduces to usual representation
(6). It is worth emphasizing that in view of the velocity in-
dependence o on v, the modified operator of shifting ve-
locities remains to be evaluated exactly for dnyandc,, O(AtkTY) =03At3+ O5At5+ Q7At7+ R OK+1AtK+1-
namely, (15

eBprtJrCCpAts{r,V}:{r,v_’_bpaAt+CpGAt3}_ (14)  Inorder to kil higher odd-order truncation terms in Eg5),
let us write down explicit expressions f@;, Og, and O,
For quantum systems, whefe=i 3| V,i|?/(fm;), the corre-  (this will be enough to derive algorithms up to the eighth
sponding calculations also present no difficuliiasleast for  ordep. Expanding both the sides of EL3) into Taylor’'s
particles in external fieldsbecause this requires only know- series, and collecting the terms with the same poweurstof

ing the gradient of the potential. one finds
|
Os=alA,[A B]]+ BLB,[ A B]], (16)
Os5= yi[ AL ALA LA BN+ vol A LA LBLABIN+ vl B[ A, LALA B+ val B[ B,LA[A B, 17

O7=LIB.[B.LA[B,LALB AN LIB. BB, [ALALB AT+ LB B.LALALALB Al
+ LBLALBLALALB AN+ £sLALB, B[ A, LALB, AN+ L[ ALB.LA[B.LA[ B, AlllI]
+ {[B LA LALALALB AN+ oL ALLB. LA LALALB, AT+ £l A LALB.[ALALB, Al
+OHd ALALALALALB AT (18

Here we take into account the fact that the operatbasmdC  truncation termOs this has allowed us to exclude the two
commute between themselves, i.e5,C]=0, so that any zero-valued commutators [B,[B,[B,[A,B]]]] and
occurrence of constructions containing the chainlA,[B,[B,[A,B]]1]]). The multipliers «, B, v;_4, and
[B,[ B,[A,B]]] has been ignore@n particular, for fifth-order  {;_1¢, arising in Eqs(16)—(18), are functions of the coeffi-
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cientsa,, b,, andc,, wherep=1,2,... P. The concrete
form of these functions will depend oR and the version
(velocity or position under consideration.

The most simple way to obtain explicit expressions for
the multipliers consists in the following. First, since we are

PHYSICAL REVIEW E 66, 026701 (2002

YD 0 4 (1 (304/(M (M — 30a(M B — 3081 ()
+3aM25(M24+ 2a(M (M (W24 3, (W22 /180,
(23)

dealing with self-adjoint schemes, the total number of single- (1+1)= (" 4 5("M (V[ (8a(M2+ 123(M (M 4 1,(M2) 5

exponential operatorstagesin Eq. (13) is actually equal to
S=2P-1, i.e., it accepts only odd valuésention that one
of the boundary set of coefficients is set to zeag=0 or

—120a(]/360,

bp=cp=0). Then we can always choose a central single- ¥4 = 4" +aMaM[(6a™ + v(M) (M2 - 605("]/180.

exponential operator, and further consecutively applyihg
—1 times the two types of symmetric transformation,

(n+1) 4 o(n+1) (n) (n) 4 o(n) (n)
eW +0 :eAa AteW +0 eAa At1

(414 00+ ppar+ce™Mard o™+ 0™ _pbMar+ ceMard
VMDD _ M at+ceMard W ™+ 0 ab(Mat+ ccMat
(19

come to factorizatior{13), where
W= (v A+ oB)At,

and O is defined by Eq(15). The quantitiesa™, b(™, and
c(™ are related t@,, b,, andc,, respectively(the relation-
ship betweem andp is determined beloy For velocitylike
decomposition with eveR or positionlike at oddP, the cen-
tral operator is correspondingly e/dr-2)2+1At  or

e/3(r-12+18t So that here we must put®=0 as well as
a@=p0=,0) =0 —0 and let either »©@

= 7174_
=ap_2)2+1 Of O=ap_1):1 0N the very beginningr(

=0) of the recursive procedure. The start of the procedure

should be performed with the second line of Ef9) at
b(O): b(P*Z)/Z and C(O): C(P*Z)/Z or b(O): b(P*l)/Z and C(O)
=C(p—1),2 With further consecutive decreasing the ingbelxy
unity with increasing the number=1,2, ... P—1 ata(™
=a,, b™=b,, andcM=c, in both the lines of transfor-
mation (19). For velocitylike decomposition with odg or
positionlike at evenP, the central operator will be
eBb(P—l)/ZHAHCC(P—1)/2+1At3 or eBb(P—2)/2+1At+CC(P—2)/2+1At3,
corresponding tar®=bp_1y.1 and BO=cp_1yp41 OF
o O=bp_z 51 and BO=cp_z)p.1, respectively, with
v@=0 anda@=+®,=¢?, =0. In this case, the proce-

For the second type of transformation the relations read

YD () D)= )y pp() (24)

aM D= (M4 (M ,(M2/g, (25)

B = g 4 1260 1 pMM(p(™ 1 5M)]/6, (26)
’Y(ln+ 1)_ ,y(ln)_ b(M4(M4/360,

y(2n+ 1)_ y(zn) _ V(n){GOa'(n)b(n)

—v(W[30cM ™M (M(6b™ + (M) ]}/180,

YD =50 4 MM 60aM + »(M2(4b(M — ¢(M)]/360,
(27)

y2n+ Y- 72“) —[30aMbM(bM + (M) — (M (308Mp(M
+60b(Mc(M —3pM34,(N) 4 30c(M 5N
—2b(M2(M (M — KM 3,(M (M2)7/180.

The relations for{,_,9 are presented in the Appendix. In
such a way, at the end of the recursive prodgss, afterP

—1 step$ the multipliers can readily be obtained. The form
of the first two multipliers are particularly simple and look as
v=37_,a, ando=37_;b,. So that, as was already men-
tioned above, puttingg=1 ando=1 will cancel the first-
order truncation uncertaintiedecause the resulting expo-
nential propagator must behave like(*BAt  Next
multipliers should be set to zero and we come to the neces-
sity of solving a system of nonlinear equatiofso-called

order conditiongwith respect taa,, b,, andc,. We shall

dure should be started with the first type of transformation ahow consider actual self-adjoint algorithms of ordirs 2,

a(0)=a(p,l),2+l or a(0)=a(p,2)/2+1 with deCfeaSingD at
increasingn for b™=b,, cM=c,, andaW=a, in Eq.
(19).

The recursive relations between the multiplietso, «,
B, andy;_, corresponding to the first line of E¢L9) are

p(H D= (M 4 2 G+ () (20
2D = (0 — g (M (M 1 (M) /6, (21)
B(n+l):B(n)_ a(n)o'(n)z/G, (22)

YD = ) 4 a0 4, (M)[7( M2 7(M ()

+ M2y (M — 60 (M]/360,

4, 6, and 8.

3. Force-gradient algorithms of order two
Putting P=2 in Eq. (13) with a;=0, b;=b,=1/2, a,
=1, andc,;=c,=¢ leads to the following velocity-force-
gradient algorithm of the secondK&2) order:

e(A+BALE o(atd) _ eB(AU2)+ gCAt3eAAteB(At/2)+ §CAt3,
(28

with a=1/12 andB=1/24+2¢&. Note that here and below,
for reducing the number of unknowns, we will always take
into account in advance the symmetry of coefficieaysb,,
andc, as well as the fulfilling the first-order conditions
=2p-18,=1=%,_.b,=c when writing decomposition
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formulas. Then solving the equatigg=0 yields é=—1/48 Remembering that we are interested in the derivation of
and we come to the already found integratt®). It is worth  most efficient integrators, three cases deserve to be consid-
remarking that negative values of quantitigsat force gra-  ered. The two of them are aimed to reduce the number of
dients have nothing to do with the above problem of posiforce-gradient recalculations from two to one. This is pos-
tiveness of time coefficients arising at velocities and forcessible by choosing either

i.e., fora, andb,. The reason is that the incremental veloc-

ity bpaAt+chAt3 in Eq. (14) can be rewritten ash(a £=0, x= 1 (32
+c,GAt?)At=b,aAt, and thus treated as the velocity ' 72
changing in a modified step-size-dependent acceleration fiel(t)zlr

a=a+(c,/b,)GAL%

The position counterpart of EG28) is obtained from Eq. 1
(13 at a;=0, a;=a,=1/2, b;=1, b,=0, c;=¢, andc, x=0, &= (33
=0, which yields
5 5 In the third case we will try to minimize the norm
e(A+B)ALTO(AL) — o A(AU2) gBAL+ECA g A(AL2). (29)

_ _ y=\Yit vt vat v (34)
for which a=—1/24 and B=—1/12+¢&. Letting £=1/12
will minimize the third-order truncation errors to the value of fifth-order truncation errorsO(At®) at é+0 and x
o[ A[ A,B]]At3, which is even twice smaller in magnitude =1/72—2¢+0, treatingé as a free parameter. In view of
than that of the velocity version. Note, however, that for bothrecursive relation$23) and(27), explicit expressions for the
versions(28) and (29), which require one force plus one components oD(At®) are
force-gradient evaluations per time step, the order of integra-

tion is not increased with respect to the usg@hen £=0) :7_307\ :i_ X )\_2+ E
Verlet integrators requiring only one force recalculation. In 1775760 ' Y2480 24 24 6
view of this, the applying force gradients in a particular case
of P=2 can be justified only for strongly interacting systems 1 A N2
when the kinetic partd of the Liouville operatorZ is much Y37 360 4_8Jr 24’
smaller than the potential pa, i.e., whenl=¢ A+ B with
g<1. Then the remaining part[.A,[.A,B]]At® of local un- 1 N A2 A% & /1
certainties will behave likece? and can be neglected. Y4150 16 48 8 6 2.3
4. Force-gradient algorithms of order four Then taking into account E¢31) one finds the function

Further increasind® on unity allows us to kill exactly 1
both the multiplierse and 8, which is needed for obtaining _ 19+ 12 24+ 6 480 00G2
fourth-order K=4) integrators. So that choosing=3 4 135/2048\/ ¢ ¢

leads to the velocitylike propagation
with the minimum-y,,;,= y661/43 206-0.000 595 at
e(A+B)At+O(AL) — oBALH ECAT G A(AU2) gB(1~2N) At+ xCAL®
17 71

T 18000 X 4500 (35

¢ @A(AU2)gBAALH ECAL (30) &=

following from Eq. (13) at a;=0, a,=a3=1/2, b;=bs At the same time, the values of corresponding to first two
=\, b,=1-2\, ¢;=c3=§, andc,= . Here relation$21),  zigorithms (32) and (33 constitute /19/2048/135

(22), (25), and(26) come to the two order conditions ~0.000713 and 71_7/864% 0.003 34, respectively.
16N 1 A2 B Position version of Eq(30) reads
LY =0, p=- 272" 7+2§+X—0’ a(A+B)AL+O(AL%) _ o ANAtB(AL2)+ ECAB g A(1—20)At

with three unknowns\, &, andy. The first unknown is im- ¢ @B(AU2)+ ECAt g ANAL (36)
mediately obtained satisfying the first condition,
and is obtained from Eq13) at P=3 with a;=a3z=\, a,
)\:}_ (31) =(1-2\), by=b,=1/2, c1=92f§, an(_:lb3=c3=0. Here,
the number of unknowns coincides with the number of the
order conditions,
The second equality is then reduced t+2y=1/72, result-

ing in a whole family of velocity-force-gradient algorithms 1 N \? 1 A
—=0, B=5—512£=0,

of the fourth order. In general, such algorithms will require a=1m515 24" 4
two force and two force-gradient recalculations per time
step. the solving of which yields two solutions,
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1 1 Relations(40) constitute a family of extended force-gradient
11—), &= E(ZI J3). (370  position algorithmg38) of the fourth order with\ being a

V3 free parameter. Chifi26] has introduced an algorithm like
Then the norm of truncation uncertainti@$At®) appearing Eq. (38) in somewhat another way, namely, as a symmetric

: . product of two third-order schemes. This results only in one
in Eq. (36) is y= (18737 402187)"%2160, so that the pref- <o of time coefficients which can be reproduded sign

erence should be given to sign *~" in E@87), because this  «_» ) from Eq. (40) as a particular case corresponding to
leads to a smaller value;_~0.000 715, ofy (whereasy,

~0.0283). Position algorithni36) needs, like velocity ver- 3 1 1

sion (35), the same number of two force and force-gradient A==, 0=—=, x=-—=

evaluations per time step. 8 6 192
Integratorg(32) and(37) have been previously derived by

Suzuki[24] based on McLachlan’s method of small pertur- @hd has been referred to as schete _ o

bation[33] and referred by Chif26] to schemes and B, _ Solution(41) may not, however, t_>e_ n(_acessarlly optimal in

respectively. Algorithmg33) and (35) will be labeled by us ~View of the fact that it does not minimize the norp[see

asA’ andA”. While scheme\’ seems to have no advantages Eqg. (34)] of truncation uncertaintie®©(At®). Indeed, the

over theA integrator, algorithmA” corresponds to the best components ofy for scheme(38) are

accuracy of the integration, because it minimizeslt re-

Lt
T2

(41)

quires, however, one extra force-gradient evaluation and, 1 1 _6+5\61
thus, can be recommended for situations when this evalua- Yim KzoJr 691’ Y2= 2880 '
tion does not present significant difficulties.

With the aim of considerably decreasing the truncation 1 (3 5 N
errors with a little additional computational efforts, Ch26] ya=— _( Z+ - 45 \/\) ,
has proposed to consider extended force-gradient algorithms 36012 \Jo6n 24

of the fourth order. This has been achieved by increasing the
number of force recalculations on unity with respect to the 1
necessary minimum, i.e., choosing=3. At the same time, V4= — m(SiS\/24>\+45>\—30)\2),
the number of force-gradient evaluations was fixed to its
minimal valuen,= 1. Within our general approach, it is pos- . .
¢]
sible to introduce two fourth-order schemes satisfying the\t'é?r?]rse ()Efqéﬁg);];Zrt‘)neeetgrues;(eccliutgi\?exlsrﬁ'sﬁetgfofgglcz?:i%Em
above requirements. The schemes are . P C X .
a of this function isy,i,~0.000 141 and is achievdat sign
e(A+B)At+ o(Atd) _ eAaAteBxAteA(l—29)(At/2)e3(1—2>\)At+XCAt3 minus at

x @1 =20)(At2) g B At ADAL (39 A=0.2470939580390842, and thus

and 6=0.089 358047 63220157,

e(A+B)At+O(ALS) — oBAALHECAL G AIAL g B(1-20) (AU2) g A(1~26) At
x=0.006938 106 540 706 989 (42

™ eB(l—2)\)(At/2)eA0AteB)\At+§CAI3’ (39)

(all results found numerically will be presented within six-
following from Eq.(13) at P=4 and corresponding to posi- teen significant digits for schemes up to the eighth order and
tionlike and velocitylike integration, respectively. Note that within thirty two digits for order ten and higherOn the
further we will not present the relationship between the coother hand, the value of corresponding to schen@ [Eq.
efficientsa,, bp, ¢, of Eq.(13) and reduced variables (41)] is equal only toy87 817/414 726-0.000 715, i.e., it is
[such as, for example, N, xin Eq.(38)]inview ofits  approximately five times larger than that of the optimized

evidence. algorithm (42). The last algorithm we will designate as
The order conditions for schent@8) are schemeC’.
1 1 A similar pattern is observed in the case of extended
a=——+4rZ—0+6%=0 velocity-force-gradient integratiof39). Previously, Chin and
24 4 ’ Chen[31] have indicated that for quantum mechanics simu-

) lations the integration of such a type is more preferable than
1 N A positionlike schem&38), because it requires a fewer number

B==13T 5~ 5 ~MA=M+Xx=0, of spatial Fourier transforms. Again using the symmetric
. _ product of two third-order integrators to increase the order
and solving them one obtains from three to four, they have obtained the following set:
1 1 1+ 6N(1—\) 1 1 1
0= -*+*—, = 40 =_ =_ =
2" oa X 12 40 N=g 073 T (43)

026701-7



I. P. OMELYAN, I. M. MRYGLOD, AND R. FOLK PHYSICAL REVIEW E 66, 026701 (2002

of time coefficients and referred to it as schemé/Ne have 1 ) ) 5
realized that this set is not the only one possible and found a ¥2=7g5[1~20x+80u—200"(1—86+ 180"~ 120°)
whole family of solutiongwhich includes Eq(43)], namely,
—209%4 20N (20— 1)(0+29—609)+80¢
xzi(e+;), P S PSR S — 4800+ 4800%¢]=0,
12 6(6—1) 288 0(0—1)2 (46)
1
where ¢ should be considered as a free parameter. The opti-y;=-—{2—30\2(20—1)>— 159+ 309°— 15\ (26— 1)?
mal solution, which minimizes the norm of fifth-order er- 720
rors to the valuey,,;~0.000 855, is X[1-49—0(49-2)]}=0,

N =4.432204907 934 76810 2,

1
Ya=={2+40u—3003(26—1)>—40x[1+\(66—23)
0=2.409 202 729 169 54310 1, 240
—39]-159+3592—309°—5\%(26—1)[7— 189
£=4.179297 897 540 42010 ° (44)

+660(29—1)]+5\(26—1)[3— 149+ 189%+26(1
and will be labeled as scheni2’. At the same time, the 2
; o —69+ +40¢— + =0.
norm of errors corresponding to scheMé¢Eq. (43)] is equal 69+65%)]+406—2400¢+48009¢}=0

to y=+237457/4147268:0.00117, i.e., it exceeds the mini-
mum, which may decrease the precision of the calculations.
As can be ensured readily, the time coefficients arising at

basic operatorsd and B under exponentials are positive for 1 3*/[675+ 75\/5 5
all the fourth-order force-gradient algorithms described in 9= —+ + 9=

0
this subsection. Therefore, contrary to usual force Forest- 2 30 23*/[675+ 75\/6’ 3’
Ruth-like schemes, such algorithms can simulate dynamical

processes in all areas of physics and chemistry without any

The unique real solution to syste{®#6) is

. e 56 5> 9 1
principal restrictions. - _ - _ +——
N=mg6mD =t 35 28
5. Force-gradient algorithms of order six
Beginning fromP =5, the force-gradient factorization be- 1 o0
. 4 . . . I X=———==l=s+1], u=0. 47
ing written in velocity representation allows to eliminate the 144 36\ 2

components of truncation uncertainties up to the sixth order
(K=6) inclusively. In view of Eq.(13), such a representa-

) Solution (47) constitutes a velocity-force-gradient algorithm
tion reads “7) Y g g

of the sixth order with four force and thregsince u=0)
force-gradient evaluations per time step, i.e., witke4 and
my=3. Its advantage over usual sixth-order integrators con-
BrALHECA g AL 26)(AU2) sists in the fact that it is composed of a considerably smaller
number, namelyS=2P—1=9, instead of 15, of single ex-
s @BL—2(\+ 9))At+ xCAL g A(1—20) (At/2) g BA AL+ £CALS ponential operators. The norm

e(A+ B)At+0(At")

3
_ eBﬁAt+,uCAt eAHAte

3
X eAOAteBﬁAH—,uCAI . (45) 10

=\ 2 & (48)
The number of unknowns in propagati6tb) is the same as -t

the number of order conditions which now take the form _
of seventh-order truncation erro@(At’) [see Eq.(45)],

1 corresponding to solutio@7), is equal to/~0.001 50. Note

)— 2—4(1—619)=0, also that the position version of decomposit{d®) does not
exist atP=5, because then the number of unknowns is less
1 than the number of order equations, resulting in the absence
_ 2 2 of solutions.

B=x 12[1 24u =617 (20—1)~69+69 As has been shown in the preceding subsection for the
case of fourth-order integration, algorithms with minimal
numbersn; of force evaluation may not lead to optimal so-
lutions. The reason is that slightly increasimgmay signifi-
1 cantly decrease the local errors and thus overcompensate the

- 17— _ 132 402 _ _
L& 5760[7 300 (26— 1)7(1+46-467)-303]=0, increased computational efforts. So that increasings well

=\ 1 2
a= Z—0+0

—BN(260—1)(29—1)—24¢]=0,
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asP on unity (note thatn;=P—1) and not changingg, i.e.,  respectively. The number of unknowns for both the schemes
choosingP =6 with n;=5 andny=3, itis possible to derive is also equal to 18 and we can try to solve the system of
from decomposition(13) up four (two velocitylike and two  order conditions with respect to these unknowns.

positionlike) extended sixth-order schemes. They are

It is worth remarking that such a system appears to be

very cumbersome for schemes under consideration. For in-
CACABABACAC CABACACABAC stance, the resulting nonlinear equations of this system being
written explicitly in MATHEMATICA create a file of size 0.5
ABACACACABA ACABACABACA (49 Mb. In view of this, our attempts to solve the equations
symbolically have not met with much success. We mention
where A and B denote exponential operatoes'®*' and  that all the results presented above for algorithms of orders 2,

eBprt

, respectively, whereas letteC corresponds to 4, and 6 have been solved analytically or in quadratures.

eBopAt+Cepdt® Each of these extended schemes has itself corSaying in quadratures we mean that the problem was reduced
respondingly six, eight, four, and two sets of real solutiongto finding real zeros for a one-dimensional polynomial of a
for time coefficients. We have realized that the smallest valgiven order, so that we could identify exactly the number of
ues of the norm¢ [see Eq.(48)] of local errorsO(At”) solutions and their locations. Here the situation is somewhat
within the sets are 0.000 026 4, 0.000014 7, 0.000 146, andifferent because we must solve the system using purely nu-
0.000 006 07, respectively. So that the last scheme should lsgerical approaches, such as the Newton method. As a result,
considered as the best. The more explicit form for it is one cannot guarantee that we will find all possible solutions.
However, solving the system on a computer during a signifi-

g(A+B)At+0O(At") cantly long period of time, one can say with a great prob-
. ability that we have found almost all physically interesting
= gAPALBIALT UCAT g AOALEBAALQ AL = 2(0+ p)I(AU/2) solutions and chosen among them nearly optimal sets.

 @BIL=2(\+ 9)]At+ xCAL QA[1—2(6+p)|(AU/2) gBAAL

3
X eA@AteBﬁAt+,LLCAt eApAt' (50)

The numerical calculations have been performeddr-
TRAN using the well-recognized Newton solver with numeri-
cal determination of partial derivatives. The values for non-
linear functions(that constitute the system of equatipns

) ) ) were obtained using recursive relatidi28)—(27), (A1), and
with the optimal solution (A2), but not explicit expressions for them to save the pro-
cessor time and increase the precision of the computations.

p=0.109 705972 394 868 2,

The initial guesses for solutions were generated at random

within the interval[ —2.5,2.5 in each of the eighteen direc-

¢=0.414063226 7310831, tions. If Newton'’s iterations began to diverge at a particular
guess or during the calculations, a next random point was
¥=0.269 3315848935301, involved to repeat the process. In such a way, after several
days of continuously attacking the systems of equations on
A=1.131980 348 651 556, an Origin 3800 workstation, we found two and five solutions
for schemeg52) and (53), respectively. The optimal among
x=—0.013246 386 434 160 52, them are the following:

©=0.000864216 1339706166, (51)

corresponding t@=0.000006 07. In such a way, the error
function has been reduced more than in 200 times with re-
spect to schem&t?) for which {~0.001 50.

6. Force-gradient algorithms of order eight

In the case whelK =8 we must satisfy up to 18 order
conditions, namelyy=1, o=1, =0, 8=0, v, _4,=0, and
{1-10=0. Taking into account the symmetry of time coeffi-
cientsa,, b,, andc,, this can be achieved at least Rt
=12, i.e., using5= 2P —1=23 single exponential operators.
For P=12 the velocitylike and positionlike force-gradient
decomposition13) transforms into the schemes

CACACACACACACACACACACAC (52
and

ACACACACACACACACACACACA (53

026701-9

a;=0,

b, =b,,=1.839 699 354 244 40210 *,
€1=C12=0,

a,=a;,=6.922517 17273883210 1,
b,=b,,;=7.084 389757 23029910 1,
C,=C1,=3.976 209 968 238 72610 2,
az=a;;=—3.183450347 11999410 %,
bs=b,;=1.981440 44503353410 1,
C3=C10=2.245403 440322 73310 2,
a,=a,,=6.766 724 088 765 56510 1,

bs=bg=—6.409 380 745 116 97410 2,
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C4=Co=9.405 266 232 181 22410 %,
as=ag=—7.207 972470858 70610 1,
bs=bg=—6.887 429532 761 40910,
Cs=Cg= — 7.336 500 519 635 302102,
ag=a;=3.580316 862350 04610 *,
bs=b,=1.622 838050764 82410 1,
Co=C;=2.225664 796 363 73010 2,

a;=—3.756270611 75148810 1,

for velocitylike integration(52), and

b1,=C1,=0,
a;=a;»,=4.100967473880111 192 878 469 300 508 0
X101,
b;=b,,=4.824930981 741 495 291 269 584 266 478 5
X 1073,

c,=Cy;=1.474393690 779 752 836 471 724 476 073 6
X 1074,

PHYSICAL REVIEW E 66, 026701 (2002

c,=Cg=—1.230751686 083124 071673201696 003 4
X102,
as=ag=—5.692626 686 975377 3902939657321159
X107,
bs=b,=-1.529986 341174397 449921 9652320477
X103,
C5=C;=—7.329664 855912638538 701 716 164 3798
X103,
ag=a;=4.662994 989012485 357 6794423820194
x 1071,
bg=—3.742299 425900 257 160 684 246 260 379 1
X102,
Ce=1.529586 099452 374473199 329384700 1

X102,

for its positionlike counterpart53). The number of force
evaluations per times step for schen{gg and (53) is n;
=P—1=11, whereas the number of force-gradient recalcu-
lations consistsig=10[sincec,; =0 and thus the two bound-
ary lettersC in formula (52) should be actually replaced by
B] andng=11, respectively.

In view of a complicated structure of the ninth-order trun-
cation uncertaintie®©(At®), the optimal solutions just pre-

ay=a;;=—3.412334 575605278 048 910 169 737 849 9sented have been chosen in a somewhat different way than

x 1071,
b,=b1,=1.749239486 109 037 560 341900 1374207
x 1071,
C,=C10=2.328 845053193254 535719496 7600155
X104
az=a;n=2.564471402106 815049 2361761631743
X101,
b;=by=2.930436 637 095 706 616 436 454 620428 8
x 1071,
C3=Cg=6.164 865963553596 249 770561 988 475 2
X 1078,
a,=aq=2.776527 397581 243839410047 624 264 1
X107,

b,=bg=4.744894 016 845977 028 4238136482511
X 1072,

above, namely, by providing a minimum for the functién
=ma>§:1(|ap|,|bp|). This simplified criterion was used, in
particular, by Kahan and Lfi6,22], when optimizing usual
force algorithms. As a result, we have obtaingg,=|as|
=|ag|~0.721 for schemé&52) and §,,,=|as|=|ag|~0.569

for scheme(53). Since &, is smaller in the last case, the
positionlike integration should be considered as more prefer-
able. Its time coefficients have been presented even with
thirty two significant digits to be used in applications for
very accurate integration. In order to ensure that all the digits
shown are correct in both the cases, we have carried out a
few additional Newton'’s iterations iMAPLE with up 200
digits during the internal computations, and taking as initial
guesses the solutions already obtaineddRTRAN.

The positionlike decompositiofb3) has another advan-
tage over the velocity versiaib2) in that all the intermediate
(g=P) states in velocity and position space stay during the
integration within a given intervdl0,At], i.e., 0s2g=1ap
<1 and Oszgzlbpsl. This property may be important
when solving ordinary differential equatior($or specific
physical systems or in pure mathematics applicajiavigh
singularities beyond the interval of the integratiote that,
in particular, any system of differential equations of the form
d?x/dt?=f(x) is reduced to the equations of motion under
consideration in this paperNote also that in order to con-
struct eighth-order schemes within usual decomposition ap-
proach(6) (i.e., without involving any force gradientsit
could be necessary to apply up t&X28— 1= 35 (instead of

026701-10
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TABLE |. The basic decomposition force-gradient algorithms.

Algorithm Order n; ng Er3 Err5 Err7 Equations Remarks Label
CAC 2 1 1 83%102 1.34x102 2.24x10° (29 This work G2’
ACA 2 1 1 41K%10° 6.48<10° 7.25x10°“4 (29 This work? G2
BACAB 4 2 1 0 7.1%10*% 6.30x10°° (30,32 Refs.[24,26] A
CABAC 4 2 1 0 3.3410°° 2.72x10°* (30,33 This work A
CACAC 4 2 2 0 595%10 4 4.83x10°° (30,35 This work A"
ACACA 4 2 2 0 7.1%10 % 559x10°° (36,37 Refs.[24,26] B
ABACABA 4 3 1 0 1.41xX10°4° 1.04x10°5° (39),(41)/(42) Ref.[26]/This work® C/C’
CABABAC 4 3 1 0 855¢10°4° 2.24x10°5° (39),(43)/(44) Ref.[31)/This work D/D’
BACACACAB 6 4 3 0 0 1.5x10°2 (45),(47) This work G6’
CACABABACAC 6 5 3 0 0 2.6410°° (49 This work G6"
CABACACABAC 6 5 3 0 0 1.4%10°° (49 This work G6”
ABACACACABA 6 5 3 0 0 1.46¢10°4 (49 This work G6"’
ACABACABACA 6 5 3 0 0 6.0x10°° (50,51 This work? G6
BACACACACACA

CACACACACAB 8 11 10 0 0 0 (52 This work G8’
ACACACACACAC
ACACACACACA 8 11 11 0 0 0 (53 This work? G8

&The best algorithm within a given order.
®The value corresponding to schei@é.
“The value corresponding to scheré.

23) single exponential propagators. Such schemes hawals (besides their very cumbersome fopneannot be evalu-
never been derived by decompositi(@) because of the se- ated in quadratures and need performing implicit calculations
rious technical difficulties. They can be explicitly introduced by iteration. In view of this we can come to a conclusion that
only by compositions of lower-order integratasee the fol-  beyond fourth order, analytically integrable decomposition
lowing section. Instead, using generalized schefd®) has  algorithms with purely positive coefficients do not exist.
allowed us to derive eighth-order algorithms by direct de-Mathematically rigorous proof of this statement will be con-
compositions(the force-gradient algorithms have been pre-sidered in our further investigation and presented elsewhere.
sented in Sec. || B5 for order 9ix

All the decomposition algorithms obtained by us in Secs.
IB3,11B4, 1IB5, and Il B6 are collected in Table I. Here,
the designations Err3, Er5, and Err7 relate to the norms With increasing the order of integration to ten and higher,
Ja?+ B2, y, and ¢ of correspondingly third-, fifth-, and the construction of algorithms by direct decompositioh®)
seventh-order truncation errdisee Eqs(6), (15)—(18), (34), becomes inefficient because of a large number of order con-
and (48)], whereasn; and ny denote the numbers of force ditions and time coefficients. However, having the already
and force-gradient evaluations per time step. The optimaflerived force-gradient integrators of lower ord&rswe can
algorithms for orders 2, 4, 6, and 8 are labeled@®, C’,  try to compose them as
G6, andG8, respectively. Among other schemes presented _
for each given order, such algorithms reduce the truncation So(A)=Sc(d1At) - - Sc(dpAl) - - - S¢(d1 A1)
uncertainties to a minimum. Taking into account that this
reduction is achieved at the same or nearly the same compier obtaining an algorithm of ordep>K. Then the compo-
tational efforts, the optimal algorithms should be consideregition constantsl,, wherep=1,2, ... P, should be chosen
as the best not only with respect to their precision but inin such a way so as to provide the maximal possible value of
view of the overall efficiency as we{see also comments on Q at a given numbeP=2. Note that lower-order propaga-
this in Sec. Il). tions S¢(d,At) enter symmetrically in compositioi®4) and

Finally, it is worth remarking that the problem of con- their total number P—1 accepts odd values. So that if a
structing algorithms with only positive coefficierag andb, basic integratoB is self-adjoint, the resulting algorithi®,
for orders six and higher still remains. We mention that forwill be self-adjoint as well. The idea of using a formula like
order four, this problem has been resolvsée Sec. IIB%  (54) is not new and has been applied by different authors in
by transferring the force-gradient component of truncatiorprevious investigationgl,3,5,6,20—28 But these investiga-
uncertainties into the exponential propagators. For orlers tions were focused, in fact, on the compositions of usual
=6, additional higher-order gradients should appear undesecond-orderi{=2) schemesto our knowledge, no actual
these exponentials to provide the required positiveness. Owalculations of composition constants for fourth- and higher-
analysis has shown, however, that such high-order exponewrder-based integrators have been repgrtatthough using

C. Integration by advanced compositions

(54)
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the second-order-based approach allowed to introduce algo-y,,=qgXy,+ o[ Xy, Xy, Xo]+ Qud Xy, Xy, Xy, Xy, Xy ]
rithms to the tenth ordel5,6,29, further increasingQ has
led to unresolved numerical difficulties when finding the co- T Q[ Ay, Ay, A, A, A, A, A ]+ A A, A, A
efficients of the compositions.

Usually, these difficulties are obviated with the help o
Creutz and Gocksch’s meth¢80]. We mention that accord-

¢ Comparing Eqs(56) and(58) ylelds values ofj multipliers
at n=0, namely,q{¥=dp, qP=dK"?, q¥=df*3, g%

ing to this method, an algorithm of ord&+2 can be de- _dK+5: and q(o)_dK”a whereas q(o)_q(o)_q(o)_q(o)
rived by triplet concatenation, q(o)—q(o)—q(o)—o. Expanding both the sides of EG7)
into Taylor’s series with respect tht, one finds that values
Sk+2(At)=Sc(DgAt)Sc[(1—2Dg)At]S(DgAL), for these multipliers ah>0 can be obtained using the fol-

(55)  lowing recursive relations:

of a self-adjoint integrator of ordeK, where D=1/(2 qi" =gV +2d™, g H=qgi+2dMKL,
—2Y(K+1)) " |n particular, Chin and Kidwel[29] starting

from force-gradient algorithnt41) of order four and repeat- g5 V=g{"+2dMK*3 gD =gM+dM(q{M+dM)
ing procedurg(55) up to order 12, have indicated a visible (M AMK_ (1)

increase in the efficiency of the computation with respect to X (qy d™"—a3")/6,

second-order-based schemes. In this approach, however, the

number of force and force-gradient evaluatiofise most g8 V=gV +2d™M<+5, gt P=q{V+d™(q{"+d™)
time-consuming part of the calculationisicreases too rap-  (q{Md(MK+2_ (M) /6

idly with increasingK, namely, as 84" relatively to the i 43770,
fourth-order integrator.

(n+1)— y(M) 4 4 q{M L M)y glmM25n _ (n)
The present study is aimed to overcome the above prob- a7 g7+ d™(a1” +d™)(a1 a3~ 600,

lems by an explicit consideration of four-, sixth-, and eighth- +7q{MgiMd(™ + 7g{Md (M2 — g{M3g(MK
order-basedforce-gradient algorithms within general com-
position approack54). This results in a reduction in the total —7q{M2dMK+1_7¢Mg(MK+2)/360,

number of basic propagations to a minimum and signifi-
cantly speeds up the integration. The composition algorithmsq{"* ="+ 2dMK+7 g"* V=g +d™(q{V+d™M)
are derived up to the sixteenth order inclusively. (D (K44 ()
X(qyd™ 1 —qg)/e, (60)
1. Fourth-order based algorithms

(n+1) — 5N 1 g q(M 1 gy gtm2qn) _ (n)
In the case wheK =4, the basic self-adjoint propagation Hio di0 +d™ gy +d™) (01" a5" ~ 600

is +7qM g d™ 4 7gMdM2 - g{M3gmK+2
54(7_):eX17+X575+X777+X97-9+X117-11+..-, (56) _7q(ln)2d(n)K+3_7q(ln)d(n)K+4)/360,

where X,= A+ B. Explicit forms of higher-order truncation a;" 2=q{?+d™M(q{” +d™)(429{"?q{" — q{"*qs”

operatorsXy, Xy, Xy, Xy, and so on[which was B () 1 104(M3 () (1) (M) (1) ()
previously found forX; and X7, see Eqs(17) and(18)] are 252007" — 110770 d™ + 2949, 7 a4 d

not important within the composition approach. Then for- —42g{M2qMd(M2+ 2949{Md(M2— 62g{Mq{Md (M3
mula (54) reduces to seriemE&0,1, ... P—2) of the trans-
formation +q{Med(MK — 319 d(M4+ 11g{M4dMK+1
3 K+2 2 K+3
Sg‘+1)(At)=S4(d(”)At)Sg])(At)SAl(d(”)At), (57) +42q(1”) d(mK+ +62q(1”) d(MmK+

+31q{Md(MK+4y/15 120,
with S9)=5,(dpAt) and d™=dp_,_;. In view of Egs. 1o )

E:SaE;)t 2?0(;;5(:?“, :Sw structure of resulting propagation can be q(lgﬂ):q(lg)+d(n)(q(ln)d(n)4_q(zn))(q(zn)+d(n)5)/6_
. . o “ L Applying the above relation®—1 times will give the
So(At) = @VAtT Vs YA+ Vaath Y At O(At J, final values ofg multipliers and thus lead to the desired order
(58) conditions. For instance, the first condition is very simple
and reads); =dp+25 ;- 1d,=1. This provides); = X; and

with guaranteefsee Eqs(56), (58), and(59)] that the order of the
composition scheme will be at least not lower than that of the
Vi=a1 Xy, Vs=0Uods, Vr=0aX7+ [ Ay, Ay, Xs], basic scheme, i.eQ=4 in our case. All other multipliers
d2, dsz, Qa,...,0y should be consecutively set to zero,
Vo= Qs5Xo+ Qe[ X1, X, X7 ] +q7[ Xy, Xy, Xy, X, A5, forming higher-order conditions. The total numb€rof the

(59 conditions depends on a required or@er 4 of the compo-
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sition scheme. In particular, =6 we must kill the term d,=0.805 239957 695 780 823 266 281 698 027 82,
Vs at fifth-order truncation uncertainti¢see Eq(58)]. Tak-

ing into account Eq(59), this I’?SU“IS in two orQe_r conditions, d,=—0.491 931 059 146 231 010 223 881 388 641 43,
namely,q;=1 andqg,=0, which can be satisfied &=2.
Then one obtains a system of equatiogs=2d,+d,=0,
andq,=2d3+d>=0, with respect to two unknownsd, and
d,. The system can be solved analytically, and the solution is
d,=1/(2—2Y%=D, with d,=1-2d, that coincidegat K
=4) with the result of triplet constructiofb5). This coin-
ciding is not surprising because, as can be seen easily, both ds=0.399 595 380 303 292 563 593 499 770 878 19,
approache$b4) and(55) are identical in a partial case when
P=2 andQ—-K=2. dg=0.549 795 686 014 384 527 941 280 315 637 60,

With further increasing, composition approactb4) will (62)
lead to a more efficient integration. Indeed, choodidg 8 . o
requires that the terry; in Eq. (58) should be killed addi- and d7:1_2(d1+d2+d3+d4§d5§d6)-2 Th|§ set mini-
tionally. This is achieved by puttings=q,=0 in Eq.(59),  Mizes at once the normuf+q3+qigt a5, +qi) ™ of the
and, therefore, by solving &=4 a system of four nonlinear Main eleventh-order tery(At'!) of truncation errors and
equationsg;=1, g,=0, g;=0, andq,=0 with respect to the quantity maéglldp| to the values 0.00412 and 0.843
the same number of unknownl, d,, ds, andd,. So that (=|d;|), respectively. Here, the number of basic propaga-
the minimal number of fourth-order integrators in the eight-tions (stageg is 2P—1=13, i.e,, more than two times
order composition should beP2-1=7, whereas this num- smaller than this number{8X)2=27 within triplet concat-
ber is equal to 8~ K)2=9 when triplet concatenatigis5) is ~ enation(55).
used. Expressions for the non-linear equations can readily be In order to introduce twelfth-order algorithm@=12, on
reproduced by applying the corresponding set of recursivée basis of fourth-order compositions it is necessary to deal
relations(60). We will not present such expressions explic- with P=12 unknownsd,, to fulfill the same number of the
itly, because as has been realized, the order equations do r@der conditionsy; =1, andqg,_,,=0. Here we have found
allow to be solved analytically &®—K=4 for anyK=4.  more than 200 real solutions and perhaps there are somemore
But, these equations can be solved in a quite efficient waglse. The best among them, which minimizes tﬁ@dd to
numerically using the Newton’s method. Details of the nu-the value 0.611%|d,,|), is
merical calculations are similar to those described in Sec.

d;=0.354 492 586 543 984 605 355 292 699 884 83,

d,=—0.695739222711 402238030364 634619 97,

[IB6. Here (whenP=4, K=4, andQ=28) we have found d;=0.173850160930978554 360617 128 583 03,

five solutions, and it seems that no other real solutions exist.

The optimal set is d,=0.533774 798907 122 079 492 826 539 908 42,
d,=0.8461211474696757, d;=0.121 301386 146 683076 738022 919 664 95,

d,=0.158 012 845 800 856 7, d,=0.296 507 470 338071 952 734 400 325 056 29,

ds=—0.599 659998 573 354 540 184 823 120 082 33,
d;=—1.090 206 660 543 938,

de=0.090435812 862 044 371458 711 304 290 94,

d,=1.172 145334 546 811. (61)
d,= —0.439791 462 576 358 068 867 787 481 389 62,

Solution(61) simultaneously leads to the smallest values for
the maximal composition coefficient nﬁ;>i|dp|~1.172 and
the norm @Z+qg3+q2)¥?~0.270 of the main ninth-order
term J(At®) of truncations uncertainties.

When deriving tenth-order composition algorithifed K
=4), i.e., whenQ=10, three additional order conditions d;0=0.312364 165382755 761518 162 807 766 96,
arise,qs=0, gg=0, andg;=0, needed to eliminate the term
V(At®) [see Eqs(58) and(59)]. Then we come in overall to d;1=—0.590812 307 696 478 331 840904 434 453 03,
seven nonlinear equations that can be satisfied by appropri- (63
ately choosing composition constamtg(p=1,2, ... P) at
P=7. In this case, we have identified more than 150 reaith dj,=1-2%I' d,. Thus, the minimum number of
solutions and probably there are some othieses stopped the fourth-order stages needed to compose the twelfth-order al-
search after several days of computatickmong the solu-  gorithm is 2P—1=23, instead of up to ® ¥/?=81 as in
tions found, the optimal set looks the case of usual triplet constructi@db).

dg=—0.302515529 223 464 950 570 102 407 791 04,

dg=0.598 958 729892 479 821 145459 069 537 12,
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2. Sixth- and eighth-order based algorithms d,=0.884 801 393 044 428 625 907 738 636 257 20,

WhenK=6 or 8, the basic propagation reads
d,=0.119 224 044 302 066 480 525 932 640 292 66,

36( T) :eX17+ X777+ X979+X11711+X137-l3+ cee (64)
d;=-1.067 727 751680577 067 851 837 0004925,
or (68)
with dy=1—2(dy+dy+ds) and 8,,=|d,|=1.127 (within
three significant digifs At K=8 andQ= 12 we have found
respectively. Here, the compositions reduce to the recursiv@dain five solutions and the optimal one is

transformation d,=0.908 036 966 672 384 262 845 726 110 229 28,

SS( 7_) — eXlr+ X97'9+X11711+ X137'13+ X15715+ cee

(65)

(n+1) — (n) (n) (n)
SETP(AD =S dMAD ST (A Ss fdMAL),  (66) d,=0.095 777 180 465 215 511 634 906 238 400 062,

with Sg’) being equal toSg(dpAt) or Sg(dpAt) and n
=0,1,... P—2. The left-hand side of expressi@66) can
again be presented at eaclas a single exponential,

d;=—1.054541279811362759973451973877 8,
(69

with d,=1—2(d;+d,+d3) and 6,i,=|d,|=1.101.
) For K=6 andQ=12 there were more than 150 solutions
with the optimal set

K+1 K+3 K+5 K+7
SQ(At)=ele+yK+17 V3™ T YkesT YT T

where now
d;=0.647 253392 063 052 406 053 852 483 920 83,
V=01 X, Ykr1=datk+1,
d,=0.446 319415269595 769 601 026 012 579 86,
V3= U3k + 3+ Qo[ X1, X7, X 1],
d;=—0.664471336410462 210085294529 377 21,
Y +5=0s5Xk + 5+ Qe[ X1, X7, X 1 3]
Qo[ Xy, Xy X Xy K], d,=—0.582606 195718442 488 165 488 090 465 10,

Ve 1= Qo Xs 1 Gal Xy Xy, Ko ] ds=0.640 816 195890 131 172 056 343 117 071 57,
+Oud XX, XL A X a] d=0.318 055 965 988 833 404 309 185870 317 01,
(70

and d;=1-2(d;+d,+d3+d,+ds+dg) with 6,,,=|ds]
Recursive relations for multiplierg;_;, corresponding to =0.664.
transformation(66), remain the same in form as in the case  \WhenK =8 andQ= 14 we have computed more than 150

K=4, so that we should merely put eith€=6 orK=8in  solutions also and identified among them the following opti-
Eq. (60) to obtain the required set of order conditions. mal one:

In view of the equivalence of Eq$54) and (55) at Q
=K+ 2, the first step on increasing the order of composition d;=0.61158201716899487377123317047417,
scheme tdQ=8 whenK=6 or Q=10 whenK =38 is trivial
and vyields P=2, d;=1/(2—2YK*1)=D,, and d,=1 d,=0.467 630505 986 821 504 050 786 008 426 81,

—2d;. The next steps on increasit@@gto the higher values
K+4, K+6, andk+8 atk =6 or 8 are similar to the steps ~ d3=—0.632450304 032720773598 897 20182431,

described above fdf =4. Namely, they lead to the necessity

of solving numerically the system &f nonlinear equations, d,=—0.582233790207 205282750 723 564 426 67,
a:=1, g,=0,...9p=0, with P=4, 7, and 11, respec-
tively. The only difference from the cadé=4 is that atkK
=6 or 8 andQ=K+8, the number of equations reduces
from 12 toP=11, because of a somewhat simplified struc- ds=0.296 865 552 384 098 265 184 074 830 527 33,
ture of the last truncation operator shown in E67) with (71)
respect to that appearing in EG9). So that below we will iy d;=1—2(d;+dy+dg+ds+ds+dg) and Spn=|ds|
present final results only with brief comments for each of the_ j g35

above cases. The best set among the solutions found was At K=6 andQ=14 the best set, among more than 200
identified as the one that minimizes the quantiy ¢ tions realized, is

=max,_,|d,| (this almost always led to the minimization of

+0qa Xy, Xy, A, &, A, AL Xl (67)

ds=0.621098 524 510 755 480 596 516 864 109 28,

the norm for the main term of truncation errors as yell d;=0.325571 630660850807 129702179776 81,
ForK=6 andQ=10 there are five solutions with the best
set d,=—0.473897 717868342 226 376 536 537 958 35,
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d;=0.543766 497 635963 646 702 545 335 244 99,
d;=—0.640554 111412984 913342408 259 73418,
ds=0.281 390250470303 225880529 71757542,
de=0.563 457 786 184 056 756 502 290 114 090 13,
d,=0.642050045975269 441816 780514 774 48,
dg=—0.169 728 257 723913107 218 751 288 814 51,
dg=—0.579 730316 690 546 833 925 498 715 149 85,

d,=0.273 985802 830 633 798 706 233 909 797 62,
(72

with dy;=1-23:2 ,d, and pp=|d,|=0.642.

Finally for K=8 andQ=16 the optimal solution, among
again more than 200 sets calculated, is

d;=0.296 422548914 130709533124 502 130 71,
d,=0.552 685631853014 883 248 829 940 187 46,
d;=—0.581343 395 355 333933 156 055 443 099 40,
d,=0.234 036 652 654 204 812 435 632 023 332 67,
ds=—0.517 889589898 170553 039 786 588 274 53,
de=—0.439839 754 779929 205228 119705278 74,
d,=—0.201370781509421 699574 681119934 44,
dg=0.344 128 720025 288 946 229 759 271 974 16,
dg=0.030725917 609 965 587 988 954 283 097 65,

d;o=0.486 529539607 270412 812 805 350 314 55,
(73
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scheme of ordeK=4, it is necessary to apply (3 K/
=729 fourth-order stages. Taking into account that each such
stage requires; =3 force andny=1 force-gradient evalua-
tions[see Eqs(38) or (39)], one obtains in total the numbers
n¢=2187 andng= 729 corresponding to a whole time step.
On the other hand, in view of resul¥3), an integrator of
order Q=16 can be composed &=8 and P=11 using
2P—1=21 eighth-order stages for each of whioh=n,
=11[see Eq(53)]. So that the overall number of force and
force-gradient recalculations will be equal only to 231 that is
much smaller than the above values 2187 and 729 obtained
in the case&K=4.

[ll. APPLICATIONS OF FORCE-GRADIENT
ALGORITHMS

A. Molecular dynamics simulations

In molecular dynamic$MD) simulations we dealt with a
system of N=256 identical (h=m;) particles interacting
through a Lennard-Jones potentiafp(r)=4u[(o/r)*?
—(o/r)®]. The particles were placed in a cubical box of
volumeV=L?3 and periodic boundary conditions have been
used to exclude the finite-size effects. For the same reason,
the initial potential was modified ag(r)=®(r) —d(ry)
—(r=r®’(ry) atr=<r, with ¢(r)=0 for r>r., where
r.=L/2 is the cutoff radius. Then the potential and its
first-order derivativee’ =de/dr will be continuous func-
tions anywhere ir including the truncation point=r.
This avoids an energy drift caused by the passage of particles
via the surface of truncation sphere as well as singularities of
¢'(r) and¢”(r) atr=r.. The simulations were carried out
in a microcanonical ensemble at a reduced densityr’of
=No?/V=0.845 and a reduced temperatureTdf=kgT/u
=1.7. All runs of the length =10 000 time steps each were
started from an identical well equilibrated initial configura-
tion p(0). Theprecision of the integration was measured in
terms of the relative total energy fluctuatiors=((E
—(ENAHM|(E)|, where E=3={ mvi+ 33 0(r;;) and
() denotes the microcanonical averaging.

with dy;=1-2322 ,d, and 8yin=|d15| = 0.592. The equations of motion were integrated using force-
As can be seen, the quantify,, decreases with increas- gradient algorithmg30), (36), and (38) of the fourth order
ing Q at anyK (4, 6, and 8 considered. Besides the improve- within schemesA, A’, B, C, andC’ [see Egs(32), (33),
ment of the precision of the integration, this leads to an ex{37), (41), and(42), respectivelj. For the purpose of com-
tension of the region of stability of the composition parison the integration with the help of usual fourth-order
algorithms. Indeed, the constamts appear in the composi- algorithm by Forest and RuttFR) [2] [which represents, in
tions [see Eq.(54)] in the form of the termd At [and its  fact, triplet concatenatio(s5) of second-order Verlet scheme
combinations of different orders when evaluating truncation8)] has been performed as well. The corresponding results
uncertaintiesO(At9*1)]. Then, taking into account that  for the total energy fluctuations as functions of the lerigth
=ma>§:l|dp|, the maximal value for the siz&t of the time  =t/At of the simulations are presented in Figalfor a
step, at which these uncertainties do not exceed an accefiypical reduced time step dft* = At(u/mo?)>=0.005. As
able level of precision, can be estimated s, 1/ min - can be seen, schemés B, and C exhibit a similar equiva-
This also explains a well correlation @,;, with the mini- lence in energy conservation. This is in agreement with our
mum for the norm of truncation errors. theoretical predictions presented in Sec. |IB4, where the
Sixth- and eighth-order based compositions may have adprecision of algorithms has been estimated in terms of the
vantages over algorithms based on fourth-order schemes eserm y [Eq. (34)] of fifth-order truncation error®(At®). In
pecially when constructing very precise integrators with highparticular, for scheme#, B, andC, it has been obtained as
values ofQ. For instance, in order to derive an integrator of y~0.000 713, 0.000 715, and 0.000 715, respectively. Fur-
order Q=16 on the basis of triplet concatenati@®b) of a  ther, as expected, scherAé (y~0.003 34) is worse in pre-
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(a) 10 — (v) we carried out additional simulations in which the parameter

10 ZpT T 10 1 \, being constant within each simulation, varied from one

9 - — ® o9 run to another. The total energy fluctuations obtained in such
= 10 2 0 simulations at the end of the runs for twiixed within each

— c Y 10 . . . .

o ;:—.'%2;: _5 run) undimensional time steps, namel{t* =0.0025 and
10 o 10 By 0.005, are shown in Fig.(fh) as functions ofA. As can be
T LY observed, the dependenciée\,At) have the global mini-

t/At A mum located at the same poikt=0.247 independent of the
size At of the time step. This point coincides completely
with the minimum given by Eq(42) for the functiony(\)
s\[see Eq.(34) and relations following just after Eq41)]
which is also included in the subset and plotted by a dashed

scheme depending on free parameatet two fixed time steps. The curve[whgre {?m upper lying part of the cur\{e corresponds to
values of\ related to schemeS andC’ are marked by the vertical the plus sign in Eq(40), whereas a lower lying part as well

lines. The functiony(\) is plotted by the dashed cur¢see the text @S the simulation data are related to the minus]sigm that
for additional explanations our criterion on measuring the precision of the integration in

terms of the norm of local truncated uncertainties is in ex-
cision and leads to values & which are approximately cellent acc_ord. Moreover, the energy fluctuations appear to
0.00334/0.000 745 times larger. Note that in microcanoni- P€ proportional to that normy as £(\,At)~yAt* and the
cal ensembles the total energy is an integral of motionCoefficient of the resulting proportionality almost does not
E(t)=E(0), so that within approximate MD simulations, depend on\ andAt.

smaller values of correspond to a better precision of the N Previous studies, algorithms of such a kind have been
integration. It is worth remarking also that another integral oftésted for classicdP6,29 and quantuni31] mechanics sys-

motion, namely, total momentunP=3",my;, is con- eMS composed of a few bodies origr even one body mov-
served exactly within force-gradient approad). The rea- ing in an external field The present investigations have

sons are that all velocities are updated at disee Eq(14)] demonstrated that force-gradient algorithms can be used with

during each stage of decompositions and the fact tha‘fqual success in statistical mechanics simulations dealing
sN f,=0 as well as2"\_,g =0 [as can be verified readily with a great number of particles, i.e., whi>1. In the last

using the structure of Eq11)]. case, the calculations of force gradients also present no dif-

The best accuracy in energy conservation can be achiev%?umes' Indeed, during the integration we should first evalu-

i i S o . ] o w3 e Ul 08 o parcl where 12, N
~0.000141. It minimizest to a level of ~107° that is a P prop

factor 0.00071/0.000 1445 lower than those related to ?;k?npO\iArI\(tag Oggléggr?tn tlr?ewfeavc\;ltotfr;tgte Sg::g:,rs gfcsgltlr)aznds
schemedA, B, andC. At the same time, the usual FR algo- 9 P an

rithm leads to the worst resufi~10-%. We see. therefore. =f;/m; are already known quantities, the calculations of gra-

that applying force-gradient approach allows to reduce unglentsgi will require number of operations proportional to

physical energy fluctuations up to two orders in magnitudethe same power oK, i.e., N2 (.bUt not toN?, as it may
Let us show now that this overcompensates the increaséaok at flrst3|gh1. Fgrther reducing the computanonal efforts
computational efforts caused by additional calculations ofS possible, taking Into account that fL.mCt'g(Tii.) [see Eq. .
the force gradients. The processor time used for carrying OLftll)] decrea_ses with Increasing t_he interparticle separation
these calculationsee Eq(11)] was nearly three times larger rij more rapidly than |n|F|aI potentlab(rij).. In such a case,
than that needed for evaluations of forces itself. Further, wé& secondary CUtQﬁ r_ad|uszc_<rc can be |r_1troduced when
should take into account that algorithmi @quiresn;=3 evaluatingg; [which is equivalent to putting(rij)=0 at
force andny=1 force-gradient recalculations per time step,rii>RC] in order to speed up the calculations.
whereasn;=3 andny=0 for FR scheme. As a result, one ) o _
obtains that the sizAt of one step within FR propagation B. Celestial mechanics simulations
must be (3-3X1)/3=2 times shorter than in the case of  One of the simplest ways to test force-gradient algorithms
algorithm C’ for spending the same overall processor timeof higher orders is to apply them to solution of the two-
within both the cases during the integration over a fixed timedimensional Kepler problem. In particular, this way has been
interval. Finally, in view of the fact that the global error and chosen by Chin and Kidwell26,29 when testing fourth-
thus the functiong are proportional to the fourth power of order algorithmsA, B, andC and higher-order iterated coun-
At, i.e., E~At%, one finds that, at the above conditions, theterparts of the last scheme. As has been established, this
level of conservation of the FR scheme reduces from®10  force-gradient scheme is particularly outstanding and ap-
£~1073/2%. So that relative efficiency of schen@’ with pears to be much more superior than usual nongradient inte-
respect to the FR integrator is actually equal togrators, such as fourth order by Forest and Raihas well
(103/2%/10 °=100/16~6. as by Runge and Kuttgl6,17], sixth order by Yoshiddi],

In order to ensure that scher®@ [Eq. (42)] is indeed the etc. In this subsection it will be demonstrated that further
best among the whole famil#0) of C’-like integratorg38), significant improvement in the effectiveness of the integra-

FIG. 1. (a) The total energy fluctuation§ as functions of the
length of the simulations performed using force-gradient algorithm
A A’, B, C, andC’ in comparison with the result of the usual FR
scheme(b) The fluctuations obtained within the extended’ -like
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tion can be reached by replacing standard iteration procedur sz — (a)
(55) by advanced composition approa@). Moreover, us- 24
ing our sixth- and eighth-order force-gradient algorithms as¥ 4
the basis for the composition has allowed us to perform the<
computations with extremely high precision which exceedss
by several orders the accuracy observed within standar® 00
fourth-order based schemes. 08
We will consider the motion of a particlglane} of mass 185 50 o51 : y o51
m,; moving in the(gravitationa) field ¢(r)=—c/r of the
central body(sun with massm,>m,, wherec>0 is the 4
constant responsible for intensity of the interaction. For sim- 1
plifying the calculations, one neglects the influence of all & os

other (=3,4, ... N) particles(planets, for whichm;<m,) _‘(’)22

(b)

(E/Eo—1)/At®

o—1)/8t°

(E/Eo—1)/At*°

in the (solan system. Then the motion can be described by & _;¢ J
the following system of two equations: 8 10
-1.4 \jos
dr dv r s 0.50 0.51 : . 0.51

a=V, a=—r—3, (74)

0
wherer=r,;—r,, and for clarity of presentation we have
used units in which the reduced masgm,/(m;+m,) and

the interaction constarttare equal to unity. Since the quan-
tity E=v2/2— 1/r (which is associated with the total eneygy
presents an integral of motion for E.4), it should be con-

served during the integration. However, this will be so if

(E/Eo—1)/At™

-3.0 -3
these equations are solved exactly. In numerical simulations %42 ‘2;‘;, 051 049 ‘;%’D 051
the local truncation uncertainti€3(At°%*1) accumulate step
by step during the integration process, leadingsadt to the FIG. 2. The normalized energy deviation of a particle in a

global errorsO(At®), whereQ denotes the order of a self- Keplerian orbit. The results obtained within fourth-, sixth-, eighth-,
adjoint algorithm. So that the quantiE/can be presented as tenth-, twelfth-, and fourteenth-order algorithms are showfajn

a function of time as (b), (c), (d), (e), and(f), respectively. The basic algorithms used are:
fourth-order scheme&, B, C, andC’, as well as sixth- and eight-
E(t)=Ey+ EQ(t)AtQ+ O(AtR*?), (75) order integrators(correspondingly marked a66 and G8). The

curves related to higher-order algorithms concatenated on the basis
where Eq=E(0) andEg is the main step-size independent of schemeC by standard iterations are labeled by the same I€tter
error coefficient. in each the sets. The fourth-, sixth-, and eighth-order based algo-
In our simulations we solved two-dimensional Kepler rithms constructed within advanced composition approach are
problem (74) with the same initial conditions(0)=(10,0) marked asS G6, andG8, respectivelysee the text
and v(0)=(0,1/10) as those used by previous authors
[26,29 to make comparative analysis more convenient. Thesubstantial only near mid period when the particle is at its
resulting highly eccentric§= 0.9) orbit provides a nontrivial closest position to the attractive center. Note also that within
testing ground for trajectory integration. The numerical ef-symplectic integration, the nonconservation of energy for pe-
fectiveness of each algorithm was gauged in terms of mainiodic orbits is periodic and its averagédver timest> P)
error coefficient EQ=IimAH0[E(t)—EO]/AtQ [see Eg. value is bounded and independentt ¢the independence of
(75)]. It can actually be extracted from the fractip&(t) averaged energy fluctuationstat At has already been dem-
—E]/At® by choosing smaller and smaller time steéfisto  onstrated in MD simulations, see Fig). TThat is why we
be entitled to completely ignore next higher-order correcpresented the results in Fig. 2 within a narrow region of time
tions O(At°"2?). This typically occurs in the neighborhood neart~ P/2, where the maximal deviations B, will give a
of At~ P/5000, whereP = 7/(2|Eo|3)*? is the period of the main contribution to the overall fluctuations.
elliptical orbit. Since we are dealing with algorithms of high  In the case of fourth-order integration we used most typi-
ordersQ and small step sizeAt, all the calculations have cal algorithmsA, B, C, andC’ [see Eqs(32), (37), (41), and
been carried out iIrFORTRAN using quadrupleiinstead of  (42), respectively. As can be seen from Fig(&, the pattern
double, as for MD simulationgprecision arithmetics for en- here is somewhat different from that in MD simulations
suring the correctness of the results. [please compare with Fig(d]. The algorithmC is clearly
The normalized energy deviatioks, /E, obtained in the  better than schemesandB, which confirms the conclusion
simulations applying fourth-, sixth-, eighth-, tenth-, twelfth-, of Ref. [26]. On the other hand, integrat@’ does not ex-
and fourteenth-order algorithms are plotted in Fig&),2 hibit an improved precision in energy conservation with re-
2(b), 2(c), 2(d), 2(e), and Zf), respectively, as functions of spect to schem€. Nearly the same was seen when iterating
time t during one period® of the orbit. These deviations are these algorithms to higher orders with the help of triplet
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construction(55). In particular, the sixth-orde€’ counter- by the same letter€ and S. We mention thatC-marked
part appeared to be even slightly better than the correspondurves have already been presented in the work by Chin and
ing counterpart of schem€ (see Fig. 2b)). At the same  Kidwell [26,29 up to order 12. They are redisplayed by us in
time, higher-order integrators based on schemeand B order to illustrate the evident superiority of our composition
were definitely worse. So that the obvious candidates foapproach over the standard iteration method. Indeed, for the
fourth-order based iteratior(§5) and composition54) are jteration integrators ¢-marked curvesof ordersQ=8, 10,
scheme< andC’. and 12, the magnitudes of the normalized energy coefficient
In order to understand why scher® does not lead to g, /g, after one period are 1.44, 19.24, and 424.8, respec-
the expected improvement over sche@én this particular  tively. On the other hand, the magnitudes related to the com-
situation, it should be taken into account that we deal with g,osjtion integrators $marked curves constitute corre-
small system, actually with one body moving in an EﬁeCtivespondingly 0.0953, 0.0577, and 1.41, ie., they are
external field. Moreover, such a body moves periOOI?CaIIYapproximately 15, 330, and 300 times smaller. In addition,
and, thus, covers only small part of phase space during i e composition integrators are faster with respect to their

displacement. This is contrary to many-body statistical SYStaration versions in factors 9/7, 27/13, and 81/23@* 8,

tems, where the phase point may visit considerably wide .
regions of phase space. In the latter case, during the averagg’ _and 12 res_pectl\_/el_§see Sec. A ], and thus the re-
ulting efficiencies will increase yet.

ing along the phase trajectories, different components, X . .
of fifth-order local uncertaintielsee Eq(17)] will enter with What about sixth- and eight-order-based composition
schemes aQ=87? First of all, let us consider the case of

approximately the same weights when forming the total erro " i )
vector O(At5). This has been tentatively assumed whengight-order integration. Here, the direct scheme chosen was

writing the normy of that vector in the form of Eq34) and ~ Position-like integrator53) [it leads to better energy conser-
further minimizingy to obtain algorithnC’. In the case of a  vation with respect to its velocitylike counterp&b2)]. The
few-body system, especially with periodic motion, the above'esult corresponding to this integrator is plotted in Fi¢g) 2
weights may differ considerably. This complicates an analyby the dashed curve marked @8. As can be seen, the
sis of the truncation terms and makes it impossible to find afiourth-order-based composition schengecirve is better at
exact global minimum for them within any analytical ap- Q=8 with respect to both dired8 and iterated56-like
proach. Note, however, that even here, the assumption orersions. With increasing the order to 10 and 12, they all
uniform contribution of truncation-error components worksbecome nearly equivalent in the accuracy of energy conser-
relatively well. Indeed, in view of dependencies shown invation. But fourth-order-based approach requires somewhat
Figs. 2a) and 2b), we can say that both the schen@snd fewer number of operations. For instance, for order 12, one
C' are comparable in precision. The same was observed fébtains that the numbers of force and force-gradient evalua-
their higher-order counterparts. For this reagand to re- tions per time step are equal for it @=23x3=69 and
serve more free space for other dependengciesigs. 4c)—  Ng=23, respectively, whereas these numbers for sixth- and
2(f) we will draw only curves corresponding to sche@e  eighth-order-based compositior36 and G8 are ny=13
When considering the sixth-order integration, we realizedX 5=65, ng=13xX3=39, andn;=ny=7X11=77 (where
that direct velocitylike scheme defined by E¢#5) and(47)  G6 integrator requires less operations th@8 schemg
is much worse(the maximum deviation of, were more However, beginning from order 14, the situation reverses.
than two orders largerthan its extended positionlike coun- The fourth-order-based compositi@approach is no longer
terpart given by Eq950) and(51). This is in agreement with ~ accessiblébecause of the absence of explicit expressions for
a prediction of Sec. II1B5. The result corresponding to theits time coefficients heje On the other hand, applying the
positionlike algorithm is plotted in Fig. () by the bold standard fourth-order-based iteratiGnmethod is very inef-
dashed curve marked &S6. As can be seen, all three curves ficient. In particular, aQ= 14 the maximal energy deviation
shown in Fig. 1b), namely,C, C', andG6 are close enough Within this method is|E 4/Eq|max=9901 with ng=21x5
to each other. But algorithi®6 uses onlyn;=5 force evalu- =729 andny=21x3=243. At the same time, the higher-
ations per time step, instead of=9 needed for iterate@- order-based composition schemes lead to much accurate re-
andC’-like schemedfor all these three cases the number ofsults, namely|E 4/ E|ma= 2.065 withn¢=21x 5=105 and
force-gradient evaluations is the same and equaljte3).  Ng=21X3=63 for G6- as well a9 E14/Eg| max=0.101 with
Therefore, for order six, direct decomposition approéi)  Ny=ng=13x11=143 for G8-based schemeévhere the
leads to more efficient integration than concatenations obetter precision for the last scheme compensates to some
fourth-order schemes. extent its increased values for quantitigsandng). We see,
Beginning from order eight, the above concatenationgherefore, that the relative efficiencies®6- andG8-based
based on standard iteratio(&5) and advanced compositions schemes with respect 6 approach constitute about 40
(54) will result in completely different integrators. The simu- 10°. Finally, in the cas&= 16 (not shown in Fig. 2we have
lation data for these iterated and compo§eHased integra- obtained the  values |E;g/Eg|ma=2.43<10°  and
tors are shown in Fig.(2) by thin (marked simply a€) and  |E16/Eg|max=48.16 corresponding tcC- and G8-based
bold (marked asS) solid curves, respectively. The curves schemes, respectively. Taking into account the numbens of
related to tenth- and twelfth-order iteration and compositiorandng for these schemes presented at the end of Sec. |1 C 2,
integrators(based on the same fourth-order sche@eare  one can conclude that the efficiency increases here also ap-
plotted correspondingly in Figs.(@ and 2e), and marked proximately in 16 to 1¢° times.
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n t_h|s work we havg formulat.ed a general t.heory of Con'Fijrderung der wissenschaftlichen Forschung under Project
struction of force-gradient algorithms for solving the equa-n g 15247

tions of motion in classical and quantum systems. This has
allowed us to extend considerably the class of analytically
integrable symplectic schemes. The algorithms derived in- APPENDIX

two, four, six, and eight as well as their composition coun-z, . [see Eqs(13), (15), and (18)] corresponding to the

terparts up to the sixteenth order in the time step. As hagyst type of self-adjoint transformations given by the first
been proven theoretically and confirmed in actual numericaline of Eq. (19) are

simulations, these algorithms lead to significant improve-

ment in the efficiency of the integration with respect to ex- /("1 (" 4 5(M (63082 + 1260y (™ — 638" (6a(™

isting force-gradient and nongradient schemes. It has been , . )

demonstrated that force-gradient algorithms can be used with +1) o2+ ¢(M3f21M + (272l + 92 »("

equal success for desgribing the motion in few-body classigal +1(M2) 5(M})/3780

and quantum mechanics systems as well as for performing '

statistical molecular dynamics observations over many-
. . - (n+1)_ »(n) 2_ 2

particle collections. In all the cases the calculation of force L =60 +aM (3368 (62l + M) oM - 50408

gradients presents no difficulties and requires computational _5040y(n)0_(n)_a_(n)3{336a(n)+(12ca(n)2
efforts comparable with those needed to evaluate usual 4
forces itself. The proposed algorithms may be especially use- +12aM p(M — (M2 (M1)/45 360,

ful for the prediction and study of very subtle dynamical

effects in different areas of physics and chemistry including (Y= ¢ — a(Mi50400™M BM + (W[ 50405V

the problems of astrophysical interest, whenever the precise

integration of motion during very long times is desirable. —84B(M M2+ 7233 (M2 (M35 (M2
The algorithms introduced exactly reproduce such impor- 1 243(M M (M) (M2 423

tant features of classical dynamics as time reversibility and

symplecticity. This explains their excellent energy conserva- +aM?(88y(M(M2—6728(M)11/15 120,

tion and stability properties. In this context it is worth men-

tioning another class cﬁhongradierjtintegra.tors recently de- Y= 4 aMi168xM[608M — (6a(M + p(M) ¢(M2]

veloped [34] on the basis of a modified Runge-Kutta

approach. Like the force-gradient algorithms, the Runge- +0(M[10 080y5M +5040y{" — 1683 (M2

Kutta-like integrators also allow to produce time reversible

(n)3,.(n)2 (n)3 _(n)2
and symplectic trajectories in phase space with, in principle, +1922 0+ 51 g

arbitrary order in precision. However, such integrators are +6aMp(M(13p(M (M2 3363(M)
implicit and require cumbersome systems of globally (2 ) ()2 .
coupled(via positions and forces of all particlesonlinear +a'Ve(272/ M a'M=—13443")]}/15 120,

equations to be solved by expensive iterations at each step of
the integration process. Since, in practice, such equations ¢ V= ¢V —a(M{2520y" »(V + 7560y 5"
cannot be solved exactly, the time reversibility and symplec-

L. . . . . . — (n) (M2 ;(n) (M3 ,(nN3_ ,,(n)3,(n)3
ticity can be violated. This may lead, in particular, to insta- 29450y 0+ 180 o

bilities in long-term energy conservation, i.e., to the same +84a(M[ 1208 + (31(M — 223(M) ¢(M2]
problem inherent in the traditiong@honsymplectit Runge- ) 5
Kutta method(see the IntroductionAll these disadvantages +a(M2(234y(" ¢(M3— 15128 (M)

are absent in the present approach, where the phase trajecto-

: - approat ) +6am (n) _ (M) () ()
ries are propagated explicitly in time by applying consecu- 62 (420y; "~ 30857 Vo

tive simple shifts of particles in velocity and position space +3pM25(M3)1/45 360, (A1)

with exact preservation of the phase volume and reversibility

of the generated solutions. . é«gnJrl):ggn)+a(n)(18a(n)3o_(n)3_84a(n)[15ﬂ(n)_(a(n)
The approach presented can also be adapted to the inte-

gration of motion in more complicated systems, such as sys- + (M) (M2] 4 a(M2(15,(M (M3 — 2523(M (M)

tems with orientational or spin degrees of freedom, etc.,

- . . (n (n) _ (n) 3, (M 5(n) 4 5,(M2 ;(n)3
where splitting of the Liouville operator into more than two +6a(210y; " — 288V e+ )

parts may be necessary to obtain analytically solvable sub- +2(630y{M 1M — 630y o (M — 428N 1, (M2 (M
propagators. These and other related problems will be con-
sidered in a separate investigation. + p(M35(M3))/7560,
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LD = /4 a(M (252002 — 84 (M[ 8a(M?+ 12a(M (M + 1M gM2) 1+ b(M12520)V ("M + (W[ 7560,
+ v(”)z] oM o(”){5040y(1n) + [48a(”)4 — V(n)2( 294,301) +168&M+ V(n)o.(n)Z)]})/45 360,
+1208(M3p(M 4 92a(M2, (W21 183(M 3,(M3 (D= () [ 25204(M2p(M) 4 57HM3 (M4
+1(M*](M})/15 120, — 8400 ™ M (3 — pM2,,(M) 4 426(M (M3 5()

£ D= £ — a(M{504QM2 4 2520, (M) — 425(M (M3 — 126(M2(210y4M — (M4 (M) — (M (2520, (M)
+2520V (M — 420a(Ma(™ (@M + 2p(M) ¢ — 428 (M3 4 336c(M (M3 4 2520y M (M
+6%(MAg(M24 1 (MA5M2 4 25(M2) (M) (53N (M2 +p(M45(M2)]/15 120,

—294B8M) + a(M3(148,(M (M2 — 2943(")
+6a(M(420y4" - 568(M (M2

{E{H LY. {Eln) + (5040 (M2 (M — 424(M (M[ 120c(M — p(™
X M (360 + (M) ]+ p(M{9ph(M31,(M3

+30(M3¢(M2)}/15 120, 1846 (12,50 4 1g5(M2,, M3 () _ B[ 5040,
Y=+ aM (252002 - 424 (M 8a(M2+ 12a(M (M + 252004 — »(M2(848M — 672N
+ pM2] (M 4 1148(M4 (M2 — 43(M3(1478(M —51Mg(M2)11)/15 120, (A2)

59y (M2) 4 22,0173, (M2 117650
S+ (173 e 11765™) ggnﬂ):ggn)—[252(h(“)2b(”)—36b(”)3v(”)4
(M (2105 (M _ pgga(m ,m2

+24a7(210y,7+ 105y5 " — 2867w 426 M35 () 4 30p M2, M4 ()

+2p(M3g(M2) 1 (M (5040y5" + 2520y + 168 p(M[ 15(M — b (M (b + (V)]

_ (n)4,(n)2 (N3 4(n)2
84B 14 +5V g ))/15 120, —b(n)[15 120ygn)y(n)_ V(n)3(2528(n)+504:(n)

£ = £ 4 (g 1 (M) (252040 — 424(M[7a(M2

+7aM (M4 (M2] 4 [31a(MW4+ 62a(M3, (M

+ (M (M2)11/45 360,

+42a(n)2 (n)2+ 11a(n) (n)3+ (n)47 (n) /15 120 §(6n+l): §(6n)—{630a(n)2b(n) - 27b(n)3v(n)4— 21C(n) V(n)aa(n)
v e Lo ' 1+ 9b(M2,, (M350 _ 630" (M 206(M — (") ,(0)
For the transformation of the second tyjjsee the second

line of Eq.(19)] we have obtained X (6b™+ ¢ (M)]—b(M[1260y5V 1M + »(M3( 215
LD = A (1804, (M3 1 1502, M3 +252 -1 (M2)]}/3780,
+42cM V(”)(BO,B(n) +30c(M— (M (M2) §(7n+ 1) g(Yn) — b(”)v(”)[2520y(1n) —42a(M p(M2— 1 (M4(EH(M
—84aM(158(Mp (M 4 300(Mc(M — 3p(M34,(M —a(M)]/15 120,

+15¢(M (N — 2p(M2,,(n) 5(N) _ K(n) y(n)(r(n)z) gg” 1 gg‘) N (504(})(”) y(ln) L) 4260 (M4 g2, (15

~ 6210757+ v(M2(1450) + 63 +b(M(MS5(M) /15 120,

M2 4 b 12607 1M 20 530y
v 1 DT 1260y, v - 207 6307 £ = 70 (3840 (M) — (W[ 84c(M — p(m) ()

+ v(MW2(428M 4 84c(M — (M &(M2)]1)/7560,
X (12bM +54(M)]11/15 120,
§(2n+ 1)_ g(zn)_'_ (1%(n)4v(n)3_ 3%(n)3y(n)3a_(n)

(+1)_ 40) _ () (M6
+ 426 (M (1208 + 1206 — (M 5(M2) Clo = oD TAS 120

— 2522 (208Mp™M 4 40pM (M — 3p(M35,(M All these relations, as well as other symbolic expressions
presented in the work, have been carried out usiagH-

+20c(M (M — 2 (M2 ,(M) (M) — (M) 1, (M) () 2) EMATICA 4.0 and MAPLE 6 packages installed on the Silicon
Graphics Origin 3800 workstation at Linz University. The

+24p™M?[315y4" — p(M2(218M + 42¢(M numerical calculations have also been performed there.
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