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Linear and nonlinear marginal stability for fronts of hyperbolic reaction diffusion equations
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We study traveling fronts of equations of the form+ ¢(u)u,=u,,+ f(u). A criterion for the transition
from linear to nonlinear marginal stability is established for positive functipfis) and for any reaction term
f(u) for which the usual parabolic reaction diffusion equatin# u,,+ f(u) admits a front. As an application,
we treat reaction diffusion systems with transport memory.
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I. INTRODUCTION from linear to nonlinear marginal stability occurs at the same
parameter values than for the parabolic equation(Eq[.8].
Reaction diffusion equations are used to model transport In systems with exponential transport memapyu) is of
phenomena in a variety of contexts such as population dythe form
namics, transmission lines, flame propagation among others.
The prototype of such equations, for which a thorough un- d(u)=s—F'(u),
derstandind 1,2] of its properties has been achieved is the

parabolic reaction diffusion equation wheres is a parameter. Numerical integration of the partial

differential equation shows that for adequate initial condi-
U= Uyt f(u)  with  f(0)=1(1)=0, (1) tions the system evolves into the front of minimal speed. For

this case a variational principle for the speed of the front
where the subscripts denote derivatives. For positive reactiospeed was constructed for positive reaction teffifis); it
terms f(u), sufficiently localized initial conditions evolve was proved that for concave reaction terms, as in the para-
into a monotonic decaying traveling front joining the stablebolic equation, linear marginal stability hold§].
u=1 to the unstablai=0 equilibrium points. For bistable In this work we construct a variational principle to deter-
reaction terms, which satisf§<0 in (0a) and f>0 in  mine the minimal speed of fronts for any positive function
(a,1), with f5f>0, it is possible to find initial conditions for ¢(u) and general reaction terms for which the parabolic
which the system will evolve into a monotonic decaying €dquation admits a front. From this principle upper and lower
front joining the two stable equilibrium points=1 to u bounds are constructed, which permit theriori determi-
=0. In the first case there is a continuum of speeds for whictation of the transition from linear to nonlinear marginal
there exist monotonic fronts, the system evolves into theétability [11,12. We recover all known results as particular
front of minimal speed. In the second case there is a uniquéxamples, and construct others that show different types of
speed. behavior depending on the explicit functioh@) and ¢(u).

The use of Eq(1) to model a physical process involves Our main result is the following, consider E), with
assumptions on the stochastic process that describes the m@tu)>0, andf(u) a reaction term for which fronts of the
tion of the individuals. More specifically, Brownian motion parabolic equation exist, as described above. The minimal
is assumed3]. If instead a more realistic process is consid-(0r unique, for the bistable casspeed of the fronts joining
ered[4], then, in one spatial dimension, the differential equa-the stable to the unstable points-1 tou=0 is given by
tion that describes the motion is a hyperbolic reaction diffu-
sion equation of the form

1
2 fog(K(u))f(U)d u
utt+¢(u)ut:uxx+f(u)- (2) 2:SUR.]2‘IJ*1 ’ (3)

e —~g?(u)/g' (wdu
It has been shown that, as in the usual reaction diffusion 0
equation, for positivep(u), the hyperbolic equation admits
monotonic decaying fronts of speeek 1 and that the speed Where
of the front is determined from a related parabolic equation

[5]. 1 1

Equations of this form have been studied for particular o fo $(uydu S
cases of¢(u) obtained assuming specific functions for
memory effects in the diffusion terfit—10.

For constantp(u) and concave (u) the stability of the
traveling front has been prové0]. The asymptotic behav- .
ior of t_he front <_)f minimal s_p_eeq h_as also been fOlﬁmQ]_. K(u)=af S(u)d u. (5)
Numerical solutions for positiveindicate that the transition 0

and
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The supremum is taken over all positive decaying functions c? 4'(0) c2
g(u) for which the integrals exist. From this result it follows 5= =t 5 9
that, for positive reaction terms that satisf{(0)>0, the 1-c® ¢%0) 1-cf

following bound holds: o )
where we have called, the minimal speed derived from

£(0) c2 af(u) linear theory or, as it is known, linear marginal stability
— s $4S“9‘W’ value.
¢°(0) 1-c ¢ When f'(0)<0, linear theory imposes no constraint on

which enables one to characterize functions for which mar:[he speed. Analysis near the equilibrium pomt 1 imposes

ginal stability is valid. The lower bound, the marginal stabil- no constraint on the speed as we assumeftiapositive or

ity value, is that imposed by linear considerations alone Im-Of the bistable-type.
Y ' P y ' The simplest, but not unique, method to obtain a varia-

proved lower bounds valid for all reaction terms are obtaineq. | ch A f th di introd h
by direct use of the variational principle tional characterization of the speed is to introduce a stretch-
' ing of coordinates that reduces the equation to the standard

parabolic reaction diffusion equati¢f]. Since¢(u)>0, we

l. SPEED OF FRONTS may introduce an independent coordinate defined by the fol-

Consider the hyperbolic reaction diffusion equation lowing transformation:
U+ d(U) U= Uy + F(U), (6) y=K(u), (10
with with K(u) defined in Eq.(5). The transformation is invert-
ible, andy varies between 0 and 1. In the new coordinates,
$(u)>0 and f(0)=f(1)=0, Eq. (7) reads
wheref(u) and ¢(u) e C}{0,1]. We shall assume thétbe- dp c f(K(y))
longs to the class for which monotonic fronts joining the p(y)d—— ———p(y)+ 5 7 =0,
equilibrium pointsu=1 to u=0 exist. The precise condi- Y a(l-c9) a(1-c9) (K™ (y)) )

tions have been spelled above in the Introduction, and more
precisely elsewherg2,13].

We wish to find the minima{or unique speed for which p(0)=p(1)=0,
there is a monotonic decaying traveling wave solutigr)
=u(x—ct) of Eq. (6). The functionu(z) satisfies the equa-
tion  (1—c?)u,,+cop(u)u,+f(u)=0, limu,  _..=1,
limu,_.=0, u,<0, wherez=x—ct. It is known [5] that
when f>0 there is a continuum of fronts for a range of c=—
speedscy<c<1. There is a unique speed in the bistable a(1-c?)
case. We may, as usual, consider the trajectory in phase space ,
by defining p=—u,(u). The monotonic decaying front @nd a reaction term
obeys

p>0 in (0,1).

This equation is the equation for fronts of the parabolic equa-
tion, of speed

c

fF(K™H(y))
dp Fy)= ——
(1—c2)pﬁ—c¢(u)p+f(u)=0, (73 a(1-c9) (K (y))

We now check thaF(y) satisfies all the requirements of the
p(0)=p(1)=0, p>0 in (0,1). (7b)  existence of fronts, if does. EffectivelyF(0)=F(1)=0 for

_ _ ¢>0 and 1-c?>0, sgnf)=sgn(f), and
Before going any further we recall the constraints posed by

linearization around the fixed points. Linearizing around 1 1 1
=0 we find thatp approaches zero aau, wherem is the f F(y)dy= 2f f(u)du.
largest root of 0 1-c%Jo

(1-c®)m?—cé(0)m+f'(0)=0, So that iff is of the bistable type, for which fronts exist, the
same holds foF if 1 —c¢?>0, which we know holds. More-
that is, over,
1 c¢(0) 1 \/ ) 1
m= - + c 0)— . (8 F'(y=0)= ———f'(0)
21-¢2 2(1-¢? #10) 1-c? Y a?(1—c?)

Whenf’(0)>0, since it is known that monotonic fronts ex- We may then apply directly the variational principle for
ist with c><1, m is real if the term in square brackets is fronts of the parabolic reaction diffusion equatifis]. The
positive, that is, if minimal speed for the existence of the front is given by
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1 A. Upper bound
. Zjo g(y)F(y)dy We present here a simple derivation of the upper bound,
c=max,—; : (12 valid both for positive and bistable reaction terms. From Eq.
f [—g?(y)/g'(y)]dy (15) the following inequality follows:
0
N y _ c 2 (K™ 1(y))
where the maximum is taken over all positive decaying func- 7 ~max;sug ——————
tionsg in (0,1) for which the integrals exist. The maximum is 1-cy y LY ¢(K™(y)
attained for 1
. f y g(y)dy
R y C y 0 16)
g=g=ex _J Eds , 0<yo<1l, (13 : ' (
YoP fo ~g(y)/g'(y)dy

provided that F’(0)<0, or, if F'(0)>0, when c?
>4F'(0) [13]. Written in terms of the original quantities,
f, ¢, this condition reads

But, as shown in the Appendix,

1 1
J yg(y)dySZJ —g%(y)/g’ (y)dy,
0 0

c?  4f'(0)
S (14 _
1-c? ¢?%0) from where we obtain
As in the usual parabolic case the maximum is attained ex- c?

(17

4a f(K™H(y))
cept at the linear marginal stability value. Here too one can =sug —¢(K*1( N
show that the linear marginal stability value is obtained by y y
taking the supremum instead of the maximum. In terms ofgying pack to the original independent variable, this is
the original functiond and ¢ , Eq. (12) reads

2

1 Ch _ 4o f(u) 19
- - ——<sup|o—— |
2 2a fo[gw)f(K ) S H(y))]dy 1-c2 MKW
H
=ma
1-c3 % J'l[_ 2(y)/g’ (y)]d Observe that this upper bound coincides with the linear value
0 g Wyigy)ldy when the supremum occurs @t 0.

(15
B. Lower bounds
Notice that the simpler form E@3) is obtained by changing

to the original independent variable The lower bounds have already been obtained, one is the

linear bound Eq.(9), and improved lower bounds can be

obtained by choosing particular trial functiogsEquality, in

MARGINAL STABILITY
2
Ch

For the parabolic reaction diffusion equation Ety, for
f>0, we know that the minimal speecd ¢ of the propagat- 1—cﬁ
ing front is bounded below and above. When these two

bounds coincide, then one can determine the speed unam- 1 . .
biguosly. A first estimate comes from the bourig2] . 2a fo[g(Y)f(K (Y (K™ (y))]dy
=max 1 - > T
f(u —C ’
2\ (0)<cpr=2sup % - fo[—gz(y)/g (y)ldy
(19

When these two bounds coincide linear marginal stability

holds. It may still hold if these two bounds do not coincide. IV. APPLICATIONS
This can be decided making use of the integral variational

principle that improves the lower bouf#i3], and of a mini- A. Constant ¢(u)
max variational principle that improves the upper bound As a first example consider the cagé€u)= ¢y, a con-
[14]. Combined use of the two permits the exact determinastant. As explained in the Introduction the stability of the
tion of the speed. For the bistable case, we can obtain thgaveling front for this equation has been proven recently
speed making use of the integral variational principle. In thig 10]. Numerical investigations have shown that the transition
section the analog of the above results is obtained for thé&om linear to nonlinear marginal stability occur at the same
hyperbolic fronts. parameter values as for the parabolic equation with the same
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reaction term[8]. This last fact follows directly from the d(u)=s—f'(u). (25)
bounds above. For a constapfu), we obtaina= 1/¢, and
y=u. Then, the bounds read Heres is a parameter that we choose large enough to guar-
, antee ¢(u)>0. For this functiona=1/s and K(u)=u
$oC

f(u) —f(u)/s. The speed of the front was studied for positive
u reaction terms, and it was shown that for concave reaction
terms marginal stability holds]. This can be proved easily

The upper and lower bounds are identical to those for th&'0m the present approach. As E(.8) shows, linear mar-
speed of fronts of the parabolic equation parabolic equatiorg'”al stability holds for all positive reaction terms with

2

, H
4f7(0)= o2 <4sup,

H

Eq. (15) reduces to f'(0)>0 provided that the supremum of
1 B( ) 4o f(u) (26)
2 u)f(u)du W= s
2.2 fog( )f(u) K(u)p(u)

—— =maxy =c2-. (20
1=¢ch fo[—g%u)/g'(u)]du

occurs onu=0, sinceB(0)=4f'(0)/43(0) is equal to the
lower bound. To prove then that linear marginal stability
holds it suffices to show th&'(u)<O0 for ue (0,1]. Taking
The speed of the front is determined in terms of the speed ahe derivative we obtain, after some algebra,

the parabolic front with the same reaction term, therefore the

transition from linear to nonlinear marginal stability occurs () a f§" sa hw -

at the same parameter values as for the parabolic case. The B'(u)=4 + u)i,

speed itself, however, is lower than the speed of the front of KW [ ¢?(u) WKW

the parabolic equation,

where h(u)=uf’—f. It follows immediately that for con-

2 cave reaction termB’(u)<0. For concave termg’<0, so
cﬁ,=%<cﬁp (21  the first term in the square brackets is negative. Afu) is
PG5+ Cor negative for concave functions as weli(0)=0, andh’

=uf’<0. We have recovered the result that for concave
functions withf’(0)>0, linear marginal stability holds, as it
does for the parabolic case.

As a second example, which shows that substantially dif- | contrast to the case of constapt the transition from

B. Suppression of nonlinear marginal stability

ferent behavior may occur, take the reaction functi¢n)  |inear to nonlinear marginal stability occurs at different pa-
=u(1-u)(1+au). The front of minimal speed for the para- rameter values than it does for the parabolic equation with
bolic equation is given by the same reaction term. To see this, consider again the reac-

tion term f(u)=u(1—u)(1l+au) as in Sec. IVB. In the
parabolic equation transition from linear to nonlinear mar-
ginal stability occurs aai=2. Choose hers=2 that guar-
Cop= \E + \ﬁ for a>2. (23 anteesp>0 for 0<a<(5+ \/2—1)/2~4.79. We show in Fig.
a 2 1 that the transition from linear to nonlinear marginal stabil-
ity occurs at a lower value cd than that for the parabolic
If we now consider the hyperbolic equation wih(u)=1  case. For the graph the trial functiggu) = (1—u)"/u*®was
+au, the upper and lower bounds coincide and the speed ysed. The dot-dash line shows the lower bound imposed by
the linear marginal stability value, the solid line the lower

cpe=2 for O<a<2, (22

2

Ch tor all bound from the variational principle. The transition occurs at

1_c2 +ooral & ataas low as 1.6 at least. The precise transition value can be

H found by using a better trial function. The dashed line shows

Effectively we obtain the upper bound, which guarantees that linear marginal sta-

bility holds for 0<a<1, values for whicHf is concave.
C,Z_| 1-u D. A bistable reaction term
4=41"(0)< —5 <4sUp———5=4. (29 - . ;
1-cy 1+au/2 The variational principle and the bounds obtained above

hold for positive and bistable reaction systems, no assump-
The minimal speed is the linear marginal stability value, notion on the sign off is made in the derivations. We may
transition from linear to nonlinear marginal stability occurs. therefore apply them to a bistable reaction term. We take as
A significant slowdown of the speed takes place. an example a case for which the speed of the parabolic front
can be determined exactly,

C. Time delayed diffusion fu=u(l-u)(u—a) for 0<a<1/2. 28)

In systems with exponential time delayed diffusion the
function ¢(u) adopts the form The unique value of the speed for which a front exists is
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10 y V. CONCLUSION
9- We have studied the speed of traveling fronts of hyper-
1 bolic reaction diffusion equation@®) for reaction terms for
84 upperbound which the parabolic reaction diffusion equatioh) admits
1 Fd fronts. A variational principle for the speed of the fronts has
77 / been obtained for a wide class of systems. Explicit upper and
N:‘,‘ 1 ‘ . lower bounds, obtained from the variational expression allow
- 99 7 one to characterize sytems for which marginal stability
= 5' holds. Depending on the nonlinearities of the functipfu)
o lower bounds the range of validity of linear marginal stability, can be in-
i creased or decreased, compared to the corresponding range
l for a parabolic equation with the same reaction term. The
3. initial value problem for the hyperbolic reaction diffusion
| fluy=u(1-u)(1 +au) $(u)=2-fu) has been solveld.0] in a particular case. Numerical solutions
2 . . T ' T . in more general situations indicate that the system evolves
1.0 15 20 25 3.0 3.5 4.0 45 for some initial conditions to the front of minimal speed. It is
a for these cases that the present results are relevant.
FIG. 1. Bounds on the speed of fronts for an example with time
delayed diffusion. The range of validity of linear marginal stability ACKNOWLEDGMENT
is reduced compared to the parabolic diffusion equation with the
same reaction term. This work was partially supported by Fondecyt Project

Nos. 1020844 and 1020851.

1
CpF:__a.\/E. (29)
N7 APPENDIX
Let g(y) be a positive decaying function, which satisfies

If ¢p(u)= a constant, the speed of the front is given b
dU) = o ’ 9 Y 4(1)=0, and callh(y)= —g'(y), so thath>0. Then

Eqg. (21); and the exact speed is known witlpr given

above.

For this bistable reaction term, witkb(u)=1—f'(u), 1 2 1 g 2
which is positive for G<a<1/2, with a simple trial function {f yg(y)du| = f — (y\/ﬁ)du
g(u)=1-u, all integrals are elementary, we obtain, using 0 olvh

g°(y) fl
< d 2h(y)dy,
1849 + 14a’ fo hiy) 9, Y h»)dy

2

ch (30)

= —.
88— 49+ 14a® _ _ _
where we used Schwarz’s inequality. The second integral on

Numerical determination of the speed can be made with anthe right side is, integrating by parts,
desired accuracy by use of improved trial functions.

We wish to point out that, in recent work, a variational 1 1 1
principle valid only for positive reaction terms has been ap- f y2h(y)dy=f y2[—g’(y)]dy:2f yg(y)dy,
plied to a bistable examplig]. Bistable reaction terms, by 0 0 0
definition, are not positive throughout the whole interval, so

the hypotheSiS of their derivation is violated. We attribute tthhere we used the fact thgtdiverges aty:O slower than
nearly perfect agreement between the speed of the front olp14/2) (this is equivalent tom/c>1/2) and thatg(1)=0,
tained from thei(nonapplicablgvariational principle to that  \yhich can be seen from E¢13). Replacing this in the in-
obtained from direct numerical integration to a coincidencegquality above we have the desired result,

for the specific trial function chosen. It is not difficult to find

an acceptable trial function, sharply peaked at the origin, for L L

which the integrand of their variational expression, and so f yg(y)dyszf 92(y)/h(y)dy.

the speed, becomes complex. 0 0
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