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Dependence of acoustic levitation capabilities on geometric parameters

W. J. Xie* and B. Wei
Department of Applied Physics, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China

~Received 25 April 2002; published 28 August 2002!

A two-cylinder model incorporating boundary element method simulations is developed, which builds up the
relationship between the levitation capabilities and the geometric parameters of a single-axis acoustic levitator
with reference to wavelength. This model proves to be successful in predicting resonant modes of the acoustic
field and explaining axial symmetry deviation of the levitated samples near the reflector and emitter. Concave
reflecting surfaces of a spherical cap, a paraboloid, and a hyperboloid of revolution are investigated system-
atically with regard to the dependence of the levitation force on the section radiusRb and curvature radiusR
~or depthD! of the reflector. It is found that the levitation force can be remarkably enhanced by choosing an
optimum value ofR or D, and the possible degree of this enhancement for spherically curved reflectors is the
largest. The degree of levitation force enhancement by this means can also be facilitated by enlargingRb and
employing a lower resonant mode. The deviation of the sample near the reflector is found likely to occur in
case of smallerRb , largerD, and a higher resonant mode. The calculated dependence of levitation force onR,
Rb , and the resonant mode is also verified by experiment and finally demonstrated to be in good agreement
with experimental results, in which considerably a strong levitation force is achieved to levitate an iridium
sphere which has the largest density of 22.6 g/cm3.
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I. INTRODUCTION

Containerless processing of materials eliminates the c
tamination from container walls and hence has signific
applications in crucible-free solidification@1–4#, noncontact
measurement of physical properties of undercooled liqu
@5–7#, and investigation of fluid dynamics of free drop
@8–10#. The containerless state of an object can be achie
by levitation techniques employing acoustic, aerodynam
magnetic, electromagnetic, or electrostatic forces@10–17#.
Among all these techniques, acoustic levitation has no s
cial restriction on the levitated object such as its electric
magnetic properties, and no coupling with the strong hea
effect such as that in electromagnetic levitation. Therefo
its application potential is as wide as to cover all the sol
and liquids. Especially, it may find the most attractive app
cations in containerless processing of nonmetallic substa
and metallic alloys with a low melting temperature.

The fundamental concept of acoustic levitation is the
diation force produced by sound, which was first recogniz
by Kundt in 1886@18# and afterwards demonstrated by Kin
@19# to be a nonlinear effect of small objects with a hig
intensity acoustic field. Here, the radius of the objects,RS ,
should be smaller than the sound wavelengthl. It was shown
that the force produced by a standing wave is much lar
than that produce by a progressive wave, because the fo
is of the order of (RS /l)3 whereas the latter is of the order o
(RS /l)6. Therefore, acoustic levitation generally utilize
standing waves. For example, in a plane standing wave,
magnitude of the radiation force varies sinusoidally in t
vibration direction with a period ofl/2, which propels the
small objects toward the pressure nodes~or velocity antin-
odes! in the absence of gravity. If the maximum of the acou
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tic radiation force is equal to or larger than the weight of
object, it is also possible to levitate that object free fro
rigid support in the gravitational field.

There are two elementary arrangements of an acou
levitator @20#: triple axis and single axis. The single-ax
levitator employs a sound emitter and a reflector facing e
other, with the emitter-reflector axis parallel to the gravi
tional direction. Three emitter-reflector sets in an orthogo
arrangement combine into a triple-axis acoustic levita
Obviously, the single-axis arrangement is more simple a
convenient in addition to its great advantage of low cost.

During the last two decades, there was always a str
concern of the levitation force and levitation stability in th
study of acoustic levitation@20–27#, because the radiation
force produced by sound or ultrasound is comparativ
weak so that its applications are generally confined to li
substances. Space environment@10,18# is a suggested mean
to facilitate the use of acoustic levitation, where the nec
sary restoring force to hold a sample is much small. But
opportunities for space experiment are fairly rare, hen
more attention is paid to enhancing the levitation force a
stability in terrestrial laboratories. Strong sonic/ultrason
generators@22,23#, carefully designed resonant chambe
@18,20#, different medium atmospheres with high pressu
@24#, and even arrays of multitransducers@25# have been
taken as measures and given intensive investigations. It
also been recognized that reflectors and emitters with p
erly curved surfaces@21,23,25,26# will enhance the levitation
force remarkably. In fact, reflectors with concave reflecti
surface have been applied in a series of successful ex
ments on containerless processing of materials@23,27–30#.
However, it is still unclear that in what way the levitatio
force/stability is dependent on the geometric parameter
the levitator.

Barmatz and Collas@18# developed a method to evalua
the levitation force and stability of levitated spheres in va
©2002 The American Physical Society05-1
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ous acoustic fields. Their method was based on Gor’ko
theory @31#, which gives the time-averaged potential f
acoustic radiation force on a small rigid sphere in ideal fl
ids:

U52pRs
3@^pin

2 &/~3r f c2!2r f^vin
2 &/2#, ~1!

whereU is the time-averaged potential,^pin
2 & and ^vin

2 & are
the mean square fluctuations of the incident pressure
velocity at the point where the sample with a radius ofRS is
located,r f andc are the density and sound speed of the flu
respectively. Then the levitation positions were determin
by finding the locations of potential minima that satis
]U/]xi50, wherexi is thei th coordinate. The force compo
nents around such a potential minimum is characterized
the restoring force, which will draw back the sample wh
small random external forces push it slightly away from t
equilibrium position. The components of this restoring for
can be written asFi52k ixi , wherek i is the i th restoring
force constant which can weigh the stability degree o
sample entrapped in the potential well. The acoustic ra
tion force components and restoring force constants can
described in terms of the time-averaged potential by

Fi52
]U

]xi
~2!

and

k i5
]2U

]xi
2 , ~3!

respectively. Barmatz and co-workers examined the acou
potential in rectangular, cylindrical, and spherical reson
chambers, in which the incident acoustic fields had b
known previously and written in analytical forms. Howeve
for a practically used acoustic levitator, such as that wit
concave reflector, the incident acoustic field is much m
complicated, and it is proper to employ a numerical meth
@32#.

In this paper, we propose a two-cylinder model for sing
axis acoustic levitators. The incident acoustic field is o
tained by solving the Helmholtz equation through the bou
ary element method. Then following Barmatz’s approach,
levitation positions, the acoustic radiation force, and the
storing force constants are analyzed on the basis of the t
averaged potential, during which main attention is focus
on the dependence of the levitation force and stability
geometric parameters of the reflector. In order to prove
reliability of this model, experimental results are also p
sented accordingly. The purpose of this paper is to shed l
on the possibility and feasibility of improving an acous
levitator’s capabilities by optimizing its geometric param
eters.

II. MODEL

Our model for single-axis acoustic levitator includes thr
parts: the sound emitter, the reflector, and the gas mediu
which the former two are immersed, as shown in Fig. 1~a!.
02660
’s

-

nd

,
d

y

a
a-
be

tic
t
n

a
e
d

-
-
-
e
-
e-
d
n
e
-
ht

e
in

The emitter is a cylinder with a lengthHa and a section
radiusRa . The reflector is also a cylinder with a lengthHb ,
a section radiusRb , and its upper side cut out by a spheric
surface with radiusR (R>Rb). The vibrating cylinder and
the reflector occupy the same axis of symmetry, namely,
z axis, which is in the antigravity direction. The bottom se
tion of the upper cylinder acts as the emitting surface~de-
noted byGE!, which vibrates sinusoidally in the normal d
rection with an amplituden0 and an angle frequencyv:
n5n0 exp(2jvt). The other surfaces of the two cylinders a
stationary. The intervalH between the reflector and the v
brating surface is defined as the distance from the low
point of the curved surface to the vibrating surface.

Based on this model, the incident acoustic field, descri
by velocity potentialF will exist in an infinite space. But
only the space between the reflector and the emitter, wh
the samples will be placed and levitated, is interesting
study. Because of the axial symmetry,F is not dependent on
the circular coordinatef and thus takes the form o
F(r,z)exp(2jvt). The spatial partF(r,z) satisfies the
Helmholtz equation with boundary conditions

¹2F1k2F50, ~4a!

]F

]n U
G2GE

50, ~4b!

]F

]n U
GE

52n0 , ~4c!

wherek is the wave number,G is the surface of the cylinder
with unit outward normn, andGE is the vibrating surface.
The Helmholtz equation can be further written as the bou
ary integral equation over the surfaces of the two cylind
and then numerically solved by the boundary elem
method:

C~M !F~M !5E
G
F]F~Q!

]n

exp~ jkr !

4pr

2F~Q!
]

]n S exp~ jkr !

4pr D GdG~Q!, ~5!

FIG. 1. Schematic of single-axis acoustic levitator.~a! Model,
~b! division of the boundary elements.
5-2
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whereM is an arbitrary point in space,Q is an arbitrary point
at the surfaceG, r is the distance betweenM andQ, andC is
a constant related to the geometric property at pointM. The
value of 4pC(M ) is equal to the solid angle enclosed by t
surfaceG at pointM.

To get the numerical solution of Eq.~5!, the boundary is
divided into N elements withN12 nodes as shown in Fig
1~b!. The values ofF(r,z) are interpolated linearly betwee
the corresponding every two adjacent nodes so that Eq~5!
can be transformed into an algebraic equation with the va
of F at the nodes to be solved. When the values ofF on the
boundary are known, it is convenient to obtain the value
an arbitrary point in the field from Eq.~5!. Then the incident
pressurepin and velocitynin of the incident acoustic field ca
be derived by the differentiation ofF with respect to time
and space, respectively.

For the purpose of simplicity, both the formulas and co
putation are nondimensionalized. The dimensionless len
velocity, sound pressure, and time-averaged potential ar

x̃5kx, ~6!

ñ5n/n0 , ~7!

p̃/~r fcn0!, ~8!

and

Ũ5U/~2pRs
3r fn0

2!, ~9!

respectively. Then the dimensionless force components
restoring force constants take the formsF̃ i

5Fi /(2pRs
3r fn0

2k) and k̃ i5k i /(2pRs
3r fn0

2k2), respec-
tively. It should be noticed that our definition is slightly di
ferent from Barmatz’s@18#: In our definition,n0 is the vibra-
tion amplitude of the emitter, whereas it denotes
maximum particle velocity in Barmatz’s. The advantage
our definition is that it relates the sound source with
resultant acoustic field as well as with levitation capabiliti
Additionally, the form ofŨ differs from Barmatz’s by a fac-
tor of 1

2.
By defining the dimensionless form of the velocity pote

tial asF̃5kF/n0 , Eq. ~5! can be transformed into

C~M !F̃~M !52E
GE

exp~ j r̃ !

4p r̃
dG̃~Q!

2E
G
F̃~Q!

]

]ñ S exp~ j r̃ !

4p r̃ DdG̃~Q!, ~10!

where a quantity having a symbol; on its top represents th
corresponding dimensionless form of that quantity. A sign
cant characteristic of Eq.~10! is that the solution ofF̃(Q) on
the boundary is only dependent on the dimensionless pa
etersR̃a , R̃b , R̃, H̃a , H̃b , andH̃, i.e., the geometric param
eters of the levitator with reference to wavelengthl. This
characteristic can be expressed asF̃5F̃(Q,$Xi%/l), where
$Xi% represents the set ofRa , Rb , R, Ha , Hb , andH. As a
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result, the subsequently derived quantities ofŨ, F̃ i , and k̃ i

take forms similar to forms as that ofF̃. In this way, a factor
involving the geometric parameters of a single-axis acou
levitator is ultimately introduced into the expressions ofU,
Fi , andk i , which weigh the capabilities of that levitator:

U52pr fn0
2RS

3ŨS Q,
$Xi%

l D , ~11!

Fi52pr fkn0
2RS

3F̃ i S Q,
$Xi%

l D , ~12!

k i52pr fk
2n0

3RS
3k̃ i S Q,

$Xi%

l D . ~13!

In order to extend the spherical reflecting surface to ot
surfaces of revolution, such as a paraboloid of revolution a
a hyperboloid of revolution, another parameterD (D<Rb) is
also defined in Fig. 1~a!, which is the depth of the concav
surface. We choose these three types of reflecting surf
because their geometric shapes are simple. GivingD andRb ,
the equations to describe them are definitely determined
2Dz5D21Rb

22AD21Rb
224D2r2 for a spherical cap,

z/D5r2/Rb
2 for a paraboloid of revolution, and 2Dz

5ARb
32D22r21D22Rb

2 for a hyperboloid of revolution.
In principle, the emitter surface can also be extended

concave shapes. Nevertheless, for a practical single-
acoustic levitator, the shape and size of the emitter hav
meet the requirement of matching with the transducer, wh
narrows the choice of emitter shape and size. In contrast,
free and easy to alter the reflector with various geome
parameters. Therefore, the effects of the reflector geom
on the levitation capabilities will be mainly discussed in th
paper.

It has been recognized in experiment that the length of
reflector does not affect the levitation capabilities visib
This seems reasonable since the acoustic field of intere
confined between the reflector and emitter. In the followi
sections, we will demonstrate that the roles ofHa andHb are
negligible in the geometric dependence of the levitation
pabilities. Then, the geometrical parameters to be discus
are narrowed down toRb , R, andH.

The single-axis acoustic levitation generally works
resonant states of the acoustic field, in which the dista
between the reflector and the emitter is adjusted to so
fixed values, namely,H5H1 ,H2 ,H3 ,... (H1,H2,H3
,¯). For example, if the acoustic field between the refle
tor and emitter is simply regarded as a plane standing w
@19#, H will satisfy Hm5ml/2 (m51,2,3,...). This means
that the parameterH is not so arbitrarily chosen as the oth
parameters. In fact, the valueHm is dependent on the geo
metric parameters of the reflector and emitter. In the follo
ing analysis, it is more convenient to use the resonant m
number, symbolized byH1 ,H2 ,H3 ,..., rather than the actua
values ofH.

The behavior of Ũ, F̃ i , and k̃ i as a function of
$R/l,Rb /l,Hm /l% will be the main concerns of the follow
ing sections of this paper.
5-3
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III. COMPUTATION PROCEDURES

We present a levitator with parametersRa512.5 mm,
Ha515 mm, Rb520 mm, Hb520 mm, R540 mm as a
typical example to show the computation procedures. T
physical conditions for the calculation are a transducer wit
frequency of 16.7 kHz and a gas medium~air at room tem-
perature and unit atmosphere pressure!, which yields a wave-
length ofl520.36 mm. This example actually represents
class of levitators with parametersRa50.614l, Ha
50.737l, Rb50.982l, Hb50.982l, R51.965l.

The computation can be divided into three steps. At fi
the resonant states are determined, which gives the valu
Hm . In the second step, the incident acoustic field deno
by velocity potentialF is calculated for a given resonan
mode, from which the incident sound pressure and part
velocity, and ultimately, the time-averaged potentialU can be
derived. Based on the distribution ofU with respect to space
the positions of the levitated sample, the maximum restor
force, and the restoring force constants around a pote
well are determined at last.

A. Resonant modes of acoustic field

The resonant states are determined by studying the pr
of acoustic radiation powerP versusH, which in fact simu-
lates the real experimental manipulation of finding the re
nant states. The radiation power is calculated by

P52E
GE

^p•nn&dG, ~14!

where ^ & denotes the time average over a period of
acoustic vibration. The dimensionless form ofP is

P̃5Pk2/~r fcn0
2!. ~15!

Figure 2 shows a typical profile of the acoustic radiati
powerP̃ versus the reflector-emitter intervalH̃ in dimension-
less forms. There are four peaks in the profile and each
them denotes a resonant mode. The intensity and positio
the peaks are dependent onR̃a , R̃b , andR̃ strongly but with
negligible dependence onH̃a and H̃b . To compare with the
experiment that is conducted in air at room temperature~c
5340 m/s,k50.309 mm21, andl520.36 mm!, the applied

FIG. 2. The first four resonant modes calculated withR̃a

53.858,R̃b56.172, andR̃512.244.
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values ofR̃a , R̃b , andR̃ in Fig. 2 are taken to be the same
those in the experiment. It is easy to deduce the calcula
resonant intervals ofH1 , H2 , H3 , andH4 to be 12.1, 23.4,
34.6, and 45.6 mm, which are in good agreement with
measured values of 11.9, 22.7, 34.1, and 45.3 mm. So
model is successful in predicting the resonant modes of
acoustic field.

The plane standing wave was usually employed in m
of the previous theoretical analyses in which the reson
states satisfyHm5ml/2 (m51,2,3,...). Similarly, the reso
nant conditions in Fig. 2 can be written asH151.19l/2,
H252.30l/2, H353.40l/2, andH454.48l/2. It can be seen
that for a practically applied single-axis acoustic levitat
the resonant intervals between the reflector and emitter a
little larger than an integer times half a wavelength.

B. Time-averaged potential

For a given resonant mode, the time-averaged poten
can be derived by Eq.~1! in a dimensionless form

Ũ5^ p̃in
2 &/32^ñin

2 &/2, ~16!

where p̃in52 j F̃ and ñin52gradF̃. The distribution ofŨ
corresponding to modeH4 in Fig. 2 is plotted in thez-r

FIG. 3. Contour ofŨ in z-r plane withR̃a53.858,R̃b55.092,

andR̃512.244. The symbol1 denotes potential minimum.

FIG. 4. Single-axis acoustic levitation of four polymer spher
with a diameter of 3 mm in air.
5-4
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plane, as shown in Fig. 3. The contour ofŨ has four poten-
tial minima. Each of them denotes an expected position
the levitated sample. The two minima near the reflector
the vibrating surface are cycles around thez axis and the
other two are points at thez axis. The circle-shaped potentia
wells can explain the phenomenon that the samples nea
reflector and the transducer head deviate from the cylindr
axis, such as that in Ref.@24# and our experiment as show
in Fig. 4. Figure 3 also shows that the vertical positions
the four potential wells are close to those predicted by pl
standing wave approximation, which isz5l/4, 3l/4, 5l/4,
and 7l/4, respectively.

C. Restoring force and restoring force constants

The axial distribution ofŨ corresponding to Fig. 4 along
thez axis is shown in Fig. 5. Thez component of the dimen
sionless acoustic radiation forceF̃z derived by F̃z5

2]Ũ/] z̃ is also shown. It can be seen that closely below
potential well, there is a maximum ofF̃z , which determines
the maximum levitation force of that potential well. Th
maximum value ofF̃z is denoted byF̃zM , as shown in Fig.
5. Therefore, the largest levitation force of a potential wel

FzM52pr fkn0
2RS

3F̃zMS Q,
$Xi%

l D , ~17!

whereQ is the position of that potential well. Since the p
tential wells with a vertical position ofz50.851l and
1.406l are located at thez axis, the values ofF̃zM for them
are directly obtained to be 2.078 and 2.168. As to the ot

FIG. 5. Distribution ofŨ and F̃z alongz axis (r50).
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two off-axis potential wells, their radial positions should b
found first, then the value ofF̃zM for each of them can be
obtained by the derivation ofŨ along a vertical line that goe
through the potential minimum.

The distributions ofŨ and F̃r in horizontal planes are
shown in Figs. 6~a! and 6~b!, whereF̃r is ther component of
the dimensionless acoustic radiation force, derived byF̃r5

2]Ũ/]r̃. Figures 6~a! and 6~b! represent the point-shape
and circle-shaped potential well, respectively, and the ma
mum restoring force to draw back the sample in horizon
directions is defined asF̃rM accordingly. To calculate the
value of F̃rM , the vertical position of the potential we
should be found first, then the same procedure as for
derivation of Ũ along a horizontal line going through tha
potential minimum is followed.

Similarly, the restoring force constants,k̃z andk̃r , can be
obtained by the second derivation ofŨ with respect toz̃ and
r̃, respectively, at the point where a potential minimum
located.

D. Influence of H̃ a and H̃ b

Among the six geometric parameters, it has been fou
that the length of the cylinders,H̃a and H̃b , have a weak
influence on the calculation results. To demonstrate this,
calculation errors for the resonant interval and levitati
force versusH̃b are depicted in Figs. 7~a! and 7~b!, respec-
tively. The calculation errors ofH̃ are less than60.1%,
which means the influence ofH̃b on H̃ is negligible. The
calculation errors ofF̃zM are not beyond 25%, which seem
a little larger. However, compared with the roles ofR̃a , R̃b ,
andR̃, which affectF̃zM in the way of orders of magnitude
the influence ofH̃b is still very small. Therefore, in the fol-
lowing sections, we will omit the roles ofH̃a and H̃b , and
merely discuss the geometric parameters ofR̃a , R̃b , andR̃.

IV. RESULTS AND DISCUSSIONS

A. Spherically curved reflectors

The spherically concave reflectors being studied can
divided into three categories according to their section
dius, i.e.,Rb50.737l, 0.982l, and 1.228l, respectively. For
FIG. 6. The distribution ofŨ

and F̃r along x axis. The figures
give two different types of poten-
tial minima: ~a! a minimum point
and ~b! a circle.
5-5
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FIG. 7. Calculation errors of
~a! Hm and~b! FzM versusHb /l.

The applied parameters areR̃a

53.858, R̃b56.172, and D̃
51.852.
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for
each category of reflector, the levitation capabilities are
amined as functions of the curvature radiusR. The section
radius of the emitter,Ra , is fixed to be 0.614l in these
calculations. Figure 8 shows the variations ofF̃zM , k̃z ,
F̃rM , andk̃r versusR for reflectors withRb50.982l, under
the first resonant mode. Obviously, the laws that govern
relationships between these four quantities andR are similar.
This is true for almost all the cases. Therefore, we can
ploy only one of the above four quantities as a representa
to discuss the geometric dependence of the levitation c
bilities. Here we choose the maximum levitation forceF̃zM ,
because it is not only the most important quantity to we
the levitation capabilities, but also a quantity that can
easily verified by experiment.

The dependence ofF̃zM on R with different Rb under the
first three resonant modes is summarized in Fig. 9. It sho
be noted that, for modeH2 andH3 , the calculation is con-
ducted at the potential well that is closest to the reflector. T
value of R starts atR5Rb/2, where the corresponding re
flecting surface is a hemisphere cap, and ends withR becom-
ing a very large number, where the reflecting surface
proaches a planar surface. It is visible thatF̃zM is strongly
dependent upon the curvature radius of the reflector. W
the reflecting surface approaches a planar surface, the va
of F̃zM for the cases ofRb50.737l, 0.982l, and 1.228l are
of the same order of magnitude. Whereas when the reflec

FIG. 8. F̃zM , k̃z , F̃rM , and k̃r versusR/l for reflectors with
Rb50.982l under modeH1 .
02660
-

e

-
e
a-

h
e

ld

e

-

n
es

ng

surface approaches a hemisphere cap, there will be sig
cant difference in the magnitude ofF̃zM among the three
curves. About in the region ofR being within one to severa
times of a wavelength, each of the three curves reache
maximum value at a certain optimum curvature radius,Ropt.
Therefore, it is possible to enhance the levitation force
choosing an appropriate curvature radius of the reflector.
degree of enhancement by this means is different for e
class of reflectors and various resonant modes, which ca
measured by the ratio ofF̃zM at the optimum curvature ra
dius (R5Ropt) to that with a planar reflecting surface (R

5`), i.e., F̃zM(Ropt)/F̃zM(R`), as shown in Table I. It can
be concluded that, the larger the section radius of a refle
is, the larger is the degree of enhancement of its levitat
force by curving its reflecting surface; and that the sma
the resonant mode number is, the larger is the possibility
increase the levitation force by this means.

When the reflecting surface is very close to a hemisph
cap, the value ofF̃zM for Rb50.737l has an abrupt rise. Bu
with a near hemisphere cap, the reflecting surface is too d
for us to observe and manipulate the sample with suffici
convenience. In the practical design of a reflector, the surf
that is close to a hemisphere cap is generally not employ

B. Reflecting surface of paraboloid and hyperboloid
of revolution

We also studied the reflectors with a paraboloid or hyp
boliod of revolution surface. Figure 10 shows the variatio
of F̃zM as functions of depthD for these two types of reflec
tors as well as for spherically curved reflectors. The sect
radius of these reflectors isRb50.982l. The variation ofD
is within the region of 0,D<Rb . It is obvious thatF̃zM is
strongly dependent on the depth of the reflecting surface

TABLE I. F̃zM(Ropt)/F̃zM(R`) values for reflectors with differ-
ent Rb .

Rb /l Mode H1 Mode H2 Mode H3

1.228 38715 314.5 10.75
0.982 12928 39.54 3.765
0.737 7.129 1.761 1.240
5-6
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all the three types of reflectors and all the first three reson
modes. WhenD approaches an infinite small value, the r
flecting surfaces of all the three types of reflectors becom
planar surface. Hence it is natural that in this circumsta
the values ofF̃zM for the three curves will have the sam
magnitude under all the three modes. With the variation oD

from 0 toRb , there always exists a maximum ofF̃zM , which
means that the largest levitation force can be obtained
choosing a proper depth of the reflecting surface. This de
is denoted as the optimum depth,Dopt. Similarly, we can use
the ratio of F̃zM at D5Dopt to that at D50, i.e.,
F̃zM(Dopt)/F̃zM(0), to weigh the degree of the levitatio
force enhancement. The result is shown in Table II, fr
which it is visible that, the smaller the resonant mode nu
ber is, the larger is the degree of enhancement. Under m
H3, the degrees of enhancement for the three types of re
tors are nearly the same. It can be also found that for th

FIG. 9. Dependence ofF̃zM on R/l for reflectors with Rb

50.737l, 0.982l, and 0.982l under~a! modeH1 , ~b! modeH2 ,
and ~c! modeH3 .
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three types of reflectors, those with a spherically conc
surface have the largest potential for levitation force e
hancement by choosing appropriate depth, whereas th
with a reflecting surface of a hyperboloid of revolution ha
the smallest potential.

Although a large depth of the reflecting surface can
crease the levitation force remarkably, it may also hinder
access to the levitated sample, especially in modeH1 . In the
practical design of a reflector, the convenience of observ
and manipulating the sample must be taken into consid
ation. Thus the depth of the reflector should not be too lar
Experience tells us that the value ofD should be less than
l/2.

FIG. 10. CalculatedF̃zM versusD/Rb for different reflectors
under~a! modeH1 , ~b! modeH2 , and~c! modeH3 .

TABLE II. F̃zM(Ropt)/F̃zM(0) values for reflectors with differ-
ent reflecting surfaces.

Reflecting
surface

Mode H1 Mode H2 Mode H3

Spherical 12928 39.54 3.765
Parabolic 1386 31.52 3.671
Hyperbolic 598.9 21.73 3.527
5-7
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C. Levitation positions

Generally speaking, if the single-axis acoustic levita
works at a resonant state withH5Hm , there will bem po-
sitions for the levitated sample under the condition ofg
50. Figure 11 shows the vertical positions of the four pote
tial wells under modeH4 as a function ofR. With the in-
creasing ofR, the positions of the sample are slightly low
ered. It can be seen that, for a practical levitator,
positions of the sample are a little higher than those p
dicted by the plane standing wave analysis, which isz
5l/4, 3l/4, 5l/4, and 7l/4. Moreover, the interval betwee
two adjacent samples is a little longer thanl/2 sinceH4 is
larger than four times half a wavelength.

The axial symmetry deviation of the sample closest to
reflector or emitter is often observed in experiment. T
cannot find an explanation from the plane standing w
description of the acoustic field. With our model, it can
explained naturally by the space distribution of the acou
field. Figure 12 shows the radial position of the lowe
sample as a function of the reflecting surface depthD under
different resonant modes. It is found that the deviation
generally within the scope ofRb/2, and likely to occur when
the reflector has a deeper reflecting surface, a smaller se
radius, and is working at a higher resonant mode.

V. COMPARISON WITH EXPERIMENT

A. Experimental method to evaluateF̃ zM

We have built up a single-axis acoustic levitator@30,32#
driven by a magnetostrictive transducer. The working f
quency of this transducer is 16.7 kHz, and its electric pow
is indicated by the input currentI. With the knowledge of
enhancing the levitation ability by optimizing the geomet
parameters of its reflector, as stated in the previous sect
we are able to levitate samples as dense as an iridium sp
with a diameter of 4 mm, which has the largest density
22.6 g/cm3 in the world. For a given sample with a densi
rs , there exists a corresponding minimum currentI m , which
is necessary to have that sample levitated. The magnitud
I m can be determined by gradually reducing the input curr
until the previously levitated sample falls down to the refle
tor. Changing the material of the samples, and repeating
above experiment, we can get a group ofI m versusrs .

FIG. 11. The vertical positions of the sample under modeH4

versusR/l. Here,Rb50.982l.
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In the above experiment, the condition to determine
critical current is the balancing of the acoustic levitati
force with the gravity of the sample. The gravitational for
with a consideration of buoyancy has been expressed by@33#

Fg5 4
3 prsgRs

3S 12
r f

rs
D , ~18!

wherers is the density of the sample andg is the gravita-
tional acceleration. EquatingFg with FzM , we can get the
following relationship:

rs5~3r fkF̃zM/2g!n0
21r f . ~19!

In order to seek for relations to the experiment, the vibr
ing amplituden0 of the emitter is assumed to be proportion
to the indicating current of the transducer, then

rs5aI m
2 1r f , ~20!

in which a is a coefficient proportional toF̃zM . The value of
a can be determined experimentally by a linear fitting to t
rs;I m

2 relationship. We choose the value ofF̃zM anda under
a set of fixed geometric parameters as the reference va
i.e.,

F̃zM
~R!5F̃zM~Q~R!,$Xi

~R!%/l! ~21!

and

a~R!5a~Q~R!,$Xi
~R!%/l!. ~22!

FIG. 12. The horizontal position of the sample closest to
reflector versusD/Rb under different resonant modes.
5-8
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Then it is easy to compare the calculation with experim
through

F̃zM /F̃zM
~R!5a/a~R!. ~23!

Six different kinds of materials are levitated in the expe
ment forrs;I m

2 fittings, as shown in Table III. The vibratin
head is fixed in the experiment withRa512.5 mm and the
samples are always levitated at the position closest to
reflector when the resonant mode number is aboveH2 . The
geometric parameters of the reflector are divided into th
groups according toRb , namely,Rb515, 20, and 25 mm,
respectively. Each group has three to four values forR ~see
Table IV!. Some of the linear fittings to thers;I m

2 relation-
ship are plotted in Fig. 13, and the fitting values ofa are
summarized in Table V.

It should be noted that the input current is confined in
range of 0.09<I<0.28 A in the experiment. Here, 0.09 A
the minimum current that can motivate the ultrasonic vib
tion, and a current below 0.28 A is safe for the normal wo
of the transducer. If the levitation force with a reflector
strong enough, the minimum currents necessary for lev
ing the six samples are all 0.09 A. On the other hand, if
levitation force with a reflector is weak enough, there will
only one or no sample that can be levitated below 0.28 A
both of these two cases, the fitting values ofa cannot be
obtained.

B. Comparison of calculations with experiments onF̃ zM

In the following comparison of calculation with exper
ment, the section radius of the emitter is fixed asRa

TABLE III. List of levitated samples forrz;I 2 fitting.

Material Density~g/cm3! Size ~mm!

Polymer 1.03 f4.2
Al 2.70 f4
Sn 7.28 f3
Fe 7.86 f4
Pb 11.34 f2.8
W 18.92 f3.232.9

TABLE IV. List of reflector parameters.

Reflectors Rb ~mm! R ~mm!

No. 1 15 17
No. 2 15 19.5
No. 3 15 25
No. 4 20 25
No. 5 20 29
No. 6 20 36
No. 7 20 40
No. 8 25 32
No. 9 25 39
No. 10 25 55
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512.5 mm, and the reference is set as the reflector withRb
520 andR540 mm working at modeH2 . So the depen-
dence ofF̃zM on the section radius and curvature radius
the reflector and on the mode number is discussed, as sh
in Fig. 14. It can been seen that

~1! For the same reflector, the levitation force decrea
with the increasing of the mode number.

~2! The calculation agrees well with the experiment on t
F̃zM /F̃zM

(R)-Rb /l-R/l-mode dependence, especially wh
Rb50.737l and 0.982l. In the case ofRb51.228l, the
variation tendency ofF̃zM /F̃zM

(R) for experiment and calcula
tion are also in agreement.

~3! In Figs. 14~b! and 14~c!, the intensively increasing
tendency ofF̃zM /F̃zM

(R) with decreasing ofR/l for modeH1

is not evidently demonstrated by experimental data. The
son lies in two aspects. On one hand, with larger sec
radius and near optimum curvature radius, the levitat
force is strong enough, so that the critical indicating curre
to levitate the six samples are all 0.09 A. In this case,
experimental date forF̃zM /F̃zM

(R) is unavailable. On the othe
hand, it is surprising of the calculation that the increas
tendency ofF̃zM /F̃zM

(R) with decreasing ofR becomes so
steep, whenR is approaching the optimum value. Since t
calculation is based on linear equations of the acoustic fi

FIG. 13. Linear fittings tors;I m
2 for some reflectors under vari

ous resonant modes.

TABLE V. Fitting value ofa.

Reflectors

a

Mode H1 Mode H2 Mode H3

No. 1 55
No. 2 274.55
No. 3 1341.52 41.8
No. 4 587.80
No. 5 753.02 39.53
No. 6 3987.89 404.79 49.76
No. 7 1202.70 295.30 41.28
No. 8 1894.25 126.46
No. 9 3987.89 1064.84 370.85
No. 10 336.57 222.18 107.89
5-9
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no absorption or attenuation is taken into considerati
whereas the nonlinear effects and absorption cannot be
glected when the acoustic field becomes ultraintense. Th
fore, it is guessed that the actual tendency is not so stee

~4! Both the calculation and experiment suggest that
obtain the best levitation ability, the single-axis acoustic le
tator should be operated under mode 1 using a reflector
a large section radiusRb and an appropriate curvatur
radiusR.

FIG. 14. Comparison of calculation with experiment on dep

dence ofF̃zM /F̃zM
(R) as a function ofR/l under the first three mode

with ~a! Rb /l50.737,~b! Rb /l50.982, and~c! Rb /l51.228.
tur

L

ev
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VI. CONCLUSIONS

Single-axis acoustic levitation capabilities are strongly d
pendent on the geometric parameters of the levitator.
study this geometric dependence systematically, a t
cylinder model incorporating boundary element meth
simulation is developed. According to this model, the levi
tion force and stability are functions of the emitter secti
radiusRa , the reflector section radiusRb , the curvature ra-
dius R ~or depthD!, and the resonant mode numberHm (m
51,2,3,...). This model proves to be successful in predict
the resonant modes of acoustic field and explaining the
viation of the samples near the reflector and emitter.

On the basis of this model, the reflecting surfaces o
spherical cap, a paraboloid of revolution, and a hyperbol
of revolution with various section radiiRb and different cur-
vature radiiR or depthsD are systematically investigated
The calculations show that it is possible to enhance the l
tation force of a levitator by optimizing the curvature radi
or depth of its reflector, and that the smaller the reson
mode, the larger the degree of enhancement is. Among
three shapes of reflecting surfaces, the largest degree o
hancement in levitation force can be obtained for spher
reflecting surfaces by this means. As to the reflectors w
spherically concave surfaces, the larger the section radiu
the larger is the possibility to increase its levitation force
choosing an appropriate curvature radius. It is also revea
that the axial symmetry deviation of the sample closest to
reflector is likely to occur when the reflector has a dee
reflecting surface, a smaller section radius, and is workin
a higher resonant mode.

We also developed an experimental method to verify
dependence of levitation force on the geometric parame
of the reflector, in which remarkable enhancement in lev
tion force is achieved so as to levitate an iridium sphere t
has the largest density ofrs522.6 g/cm3. The experimental
data and the calculated results are in good agreement, w
indicates that better levitation capabilities can be obtained
working under modeH1 and applying a spherically concav
reflector with a large section radiusRb and an appropriate
curvature radiusR.
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